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A NEW REPRESENTATION FOR A RENEWAL-THEORETIC
CONSTANT APPEARING IN ASYMPTOTIC
APPROXIMATIONS OF LARGE DEVIATIONS'
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The probability that a stochastic process with negative drift exceed a
value a often has a renewal-theoretic approximation as a — . Except for
a process of iid random variables, this approximation involves a constant
which is not amenable to analytic calculation. Naive simulation of this
constant has the drawback of necessitating a choice of finite a, thereby
hurting assessment of the precision of a Monte Carlo simulation estimate,
as the effect of the discrepancy between a and o is usually difficult to
evaluate.

Here we suggest a new way of representing the constant. Our approach
enables simulation of the constant with prescribed accuracy. We exemplify
our approach by working out the details of a sequential power one
hypothesis testing problem of whether a sequence of observations is iid
standard normal against the alternative that the sequence is AR(1).
Monte Carlo results are reported.

1. Introduction. In many contexts, the probability « that the maximal
value of a stochastic process exceed a prespecified value is a quantity of
considerable importance. In risk theory it shows up as the probability of ruin,
in sequential analysis it appears in the form of error probabilities, in options
pricing it is the probability that an option will be exercised, in branching
processes it is the probability that the population size be large. Its value is
usually hard to fix precisely, and approximations are often called for. When
the stochastic process under study is the sequence of partial sums of iid
observations, renewal theory supplies practical formulas which in turn pro-
vide useful approximations. [For an overview, see Siegmund (1985).] Renewal
theory has been developed for other processes, too—such as when the under-
lying observations are generated by a Markov chain [Kesten (1974)] or by a
time series [Lalley (1986)]. However, in these cases the renewal-theoretic
results are not as useful as in the iid case, for, although they provide limiting
expressions which (if evaluated) could be used as approximations, these
expressions contain constants which, in contrast to the iid case, are not
amenable to calculation.

In this article we develop a different renewal-theoretic approximation for
the probability «. Our approximation, too, contains a constant which cannot
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be calculated analytically. However, this constant can be evaluated by Monte
Carlo. In principle, the constants appearing in the standard renewal-theoretic
form can also be evaluated by Monte Carlo. However, the standard represen-
tation suffers from difficulties involved in measuring the precision of the
Monte Carlo estimate, as renewal theory involves crossing a barrier which
tends to infinity, and in a given simulation it is not easy to evaluate the effect
of the discrepancy between infinity and the (necessarily finite) barrier used.
In contrast, the constant appearing in our representation does not involve a
barrier tending to infinity and can be evaluated by Monte Carlo to any degree
of prescribed accuracy.

In the following, we regard the sequential analytic problem of a power one
test of hypotheses. We chose this problem to exemplify our approach because
it is relatively simple in structure and because it is a basic underlying
building block for calculating the ARL to false alarm in changepoint prob-
lems. We describe our approach in Section 2. To illustrate the considerations
involved, we first consider an iid case of a power one test of a shift of a normal
mean. Then we apply our method to testing a null hypothesis that a sequence
of observations is iid standard normal against an alternative that the se-
quence is AR(1). Monte Carlo results are reported.

Both of the examples worked out in this paper can be interpreted as the
probability of a stochastic process crossing a straight line boundary. With
appropriate modifications, the approach can be applied to more complex
problems such as repeated significance testing. These modifications entail
nonnegligible technical considerations, the spelling out of which would make
an already long paper even lengthier and would not add enough insight to the
basic understanding of the approach to justify their inclusion.

2. A rule of thumb. The changepoint problem deals with monitoring a
sequence of observations for a change from one probability regime to another.
With this as background, we envision the following.

Let X=X, X,,... be a sequence of observations. Let P,, P, be probability
measures for X which have the same support for each finite sequence
X,,..., X,. A (usually power one) test of H,: X~ P; vs. H;: X~ P, is to reject
the null hypothesis H, if max,_, ... L, > A, where L, = dP(X,,...,X,)/
dPy(X,..., X,) and A is a prespecified constant. The level of significance of
this test is @ = Py(max,_,... L, > A). By a well-known martingale argu-
ment [Ville (1939), page 100], o < 1/A. Renewal theory is often called upon
to obtain an approximation « = const/A as A — «.

Let P®) be a measure under which X,..., X, behave according to P, and
Xi+1> Xpy9,--. according to P, [in the sense that the distribution of
X1, Xp49,-.. conditional on X;,..., X, is the same as it would have been

had X,..., X, been distributed according to P, (and had attained the same
values)].

Such a situation is easy to describe if X, are iid under both P, and P;, in
which case P®) is the measure under which the first £ observations are
distributed dP; and the ensuing dP;. Other cases of interest include a
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transition from one Markov chain to another, one time series model to
another, and so on.

Note that
L dP"™(X,,...,X,)/dP(X,,..., X},), ifn<k,
n/ I = dP(X,,...,X,)/dP®(X,,...,X,), ifn>Ek.
Define
M, = max (L,/L,),
l<n<ow
Sk= Z (Ln/Lk)'
n=1

In most cases of interest (including all of those mentioned above) if P*) is the
true distribution of the sequence X, then M, will be attained at a time n
close to k. In fact, the order of magnitude of L,/L, will be exponential in
—|n — k|, so that S, will be finite. Furthermore, if %k is large, L,/L, will
contribute little to both M, and S, when |n — k| is large. Therefore, (M,,, S,)
under P®) will have a limit in distribution (M, S) as & — «. Since M, < S,,
it follows that M < S.

In most cases of interest (including all of those mentioned above) the limit

1
I=1im —|logL,dP,;
n—->o N
exists. Define
1 - M
IS’

Arguments in subsequent sections will justify the following:

(2.1) A=

RULE oF THUMB. In most cases of interest,

(2.2) AP)( max L,>A) > asA- o
l<n<w
so that for large A,
A
a-;;.

We suggest that the representation (2.1) is useful from a practical point of
view, since usually one wants to be able to evaluate A to any desired degree of
accuracy. The limit I can usually be obtained analytically. Although E(M /S)
is in general analytically intractable, it is readily amenable to simulation:
0 < M/S < 1, and one can usually give theoretical bounds on the exponential
decay of L,/L, (as |n — k| becomes large). In the non-iid case, this is an
improvement over the renewal-theoretic results available at present, which
at best yield the existence of a limit A in (2.2), but do not provide means for
its calculation. Its approximation by Monte Carlo as A — « [by the left side
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of (2.2) or even by importance sampling [cf. Siegmund (1976)] leaves open the
question “When is A large enough?,” so that one doesn’t have a handle on the
accuracy of the simulation.

Insight into the relation between E(M/S) and the renewal-theoretic con-
stant can be gained by noticing the following heuristic argument, which is
due to Siegmund. Given a large m, the expression

E(k)[maxlsnsm Ln}

g= an
is (almost) independent of k. (Some dependence is introduced by negligible
boundary effects.) It follows that

1 2 maX1<n§an
E(M/S) ~ — ¥, E"”[m—L}
k=1

n=1"n

= %EO[ max Ln],

l<n<m
which is known to be asymptotically (as m — «) equivalent to the traditional
representation of the constant as the Laplace transformation of the over-
shoot. [See Hogan and Siegmund (1986), Lemmas 3.3 and 3.4.]

At first glance, our “rule of thumb” admittedly looks mysterious. The
intuition behind (2.1) is basically technical. The classical renewal-theoretic
argument regarding the asymptotics of the significance level of a sequential
test entails a change-of-measure component. This enables studying a tail
probability (of the original measure) in terms of the behavior of a central part
of a distribution (the transformed measure). Therefore, it is natural to look
for a suitable measure to which the problem under study can be transformed.

In the classical iid setting, the behavior of Z), the ladder increment of
the log-likelihood process, is independent of /7, = X7_'Z'. Hence, the dis-
tribution of the overshoot can be represented as a convolution of the re-
newal measure and the distribution of a single ladder increment of the log-
likelihood process

o

(2.3) [:Pl(z+2a+y —x)[ y fl;l(x)}dx,
1

n=

where f;. (x) is the density of /;_; and y > 0. This fails when the depen-
dence structure is more complicated. Therefore, it is reasonable to look for an
alternative to the renewal measure [} _,f;+ (x)] dx, one which will enable
a separation between local behavior and long-term characteristics of the
process.

When studying the changepoint problem, a measure which shows up quite
naturally is Y _;P"™ [cf. Yakir (1995)], whose likelihood ratio with respect to
P® is ¥»_|L,/L,. Therefore, it is natural to attempt to use this measure to
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separate local behavior and long-term characteristics of the process. So

PO( max L, ZA)

l<n<o»

i E®)
k=1

]1( max anA) i L,
n=1

l<n<oe»

= i E(k)[
1

maxlsn<wLn/Lk H(maX1£n<wL ZA)}
k=

% n
ZCrﬂlzll’n/l’k maxy ., <o Ln
I(max,_,.. L ZA)[

n
l‘naxlsrz<oc Ln

M o)
~F— (k)
Esxf Y dP }

k=1

which is reminiscent of (2.3) in terms of separating local and long-term
behavior. The content of this paper is to make this argument rigorous.

The basic ingredients of the proof are asymptotic independence between
large blocks of observations, local central limit theorems regarding log-likeli-
hood ratios and large deviations arguments. Although the examples we work
out entail normal observations, the arguments should hold in general.
Nonetheless, a full proof of (2.2) seems to require a case-by-case treatment. In
Section 3, we give a proof for an iid case, which can be taken as a blueprint
for the basic ideas. In Section 4, we deal with a more complicated case, which
we believe exemplifies the problems arising in the general case. We conjec-
ture that our rule of thumb is valid in most cases which possess the
aforementioned basic ingredients. Clearly, the rule won’t work always: if
the dependence is too strong—such as when all observations are identically
the same—the result is wrong. In intermediate cases, such as interchange-
able sequences, appropriate modifications to our rule should hold.

3. An iid case. In this section, we exemplify our approach by considering
a power one test of a shift of a normal mean. The considerations involved are
prototypical to more complicated problems.

Let X, X,,... be a sequence of observations. Let P, be a measure accord-
ing to which these observations are iid N(0,1) and let P, be a measure
according to which they are iid N(u, 1). Let

o [P X,
n T %8 P, (X,,..., X,)

0= 104

(,U«Xi - Mz/z)

12

VA

i

1

i

so that [, is the log-likelihood ratio statistic based on n observations and
Z, is the log-likelihood ratio statistic based on the ith observation. Let I =
EZ = u?/2.
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The null hypothesis P, is rejected in favor of P, if

(3.1) max [, > a.
l<n<o»

where a = log A. The significance level of this test is given by

PO( max [, za),
l<n<w»

which we want to approximate by calculating the limit

lim eaPO( max [, > a).
a—>» l<n<w

Using the notation of Section 2, we formulated the theorem.

THEOREM 3.1.

3.2 lim P L, > )—A—lEM
(3.2) im e?Pg( max [, >a)=2r=E—=.

a—>® l<n<o»
Proor. The proof will require the following lemmas.

LEMMA 3.1. Given & > 0, there exists a finite constant ¢ > 0 such that

3.3 lim e“P, max [ >a|l <e&/2,
0 n
a— n<2a/pu?-cja
. ime max <a, max [, > a| < &/2.
3.4 lim e“P, L L 2
a—® n<2a/p?+c/a l<n<eo

ProoF. Let |x] denote the integer part of x. In order to show (3.3),
consider the stopping time of the power one SPRT:

N = min{n: 1, > a}.

Using the usual technique of turning Py-calculations into E,,

eaPO( max [, > a) = El[exp(—(lN —a))l|N< i—z - C\/E”

n<2a/p?-cja

< Pl( max [, > a)
n<2a/p?-cya

- Varl(llza/uzwaﬂ)
- aciut/4

>

where the last inequality follows by applying Doob’s inequality to the P;-
martingale [, — nu?/2. Finally,
Vary(!sa ) 2 cjal) . |2a — pcva |

ac’ut /4 aciut/4
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which can be made as small as desired, uniformly in a, by choosing a large
enough c.
The claim (3.4) can be shown in a similar way. Indeed,

2a
e"PO( max [, <a, max [, > a) =e'Py| — + cVa <N < o
n<Q@a/pu?+cja l<n<w w

IA

2a
Pl(—2 +ea <N <o
W

< Py(lgayu2seya) < @)
o epVa /2
\/[Za + c,u2\/EJ ’

and the proof of the lemma follows. O

Denote by J(k, t) the set of integers {i: [i — k| < t}. Define the set of indices
J =J2a/u? c/a). For any k € J consider the changepoint measure P*
given by

X, X,,..., X, ~iid, N(gu,1),
X1 Xpi0... ~iid,  N(0,1).

In the next lemma the measure P, is transformed to the measure *, . ,P*.

LEMMA 3.2.

I(max,c I, = a)

P, I >al= E®
O(gleg?](” a) ng Y, exp{l,}.

ProOF. The log-likelihood ratio of P™ to P,, based on the complete
sequence of observations, is /,,. Hence the likelihood ratio of P, to ©, . ;P is

1/Zn€J exp{ln} O

Next we turn to the investigation of the term

l(max,.; !, = a)

Zne Jexp{ln}

E®)

as a function of 2 and a. Given £, it will be shown that this term can be
approximated by a similar term for which the set of indices ¢/ is replaced by
the set J(k,¢),t = ((32/u®) V Dlog a.
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LEMMA 3.3. Let &> 0 be given. Then for all 2a/u> —cja +t <k <
2a/u? + ca — t it is true that

e“E(k)[ I(max,. 1, > a) ]

ZnEJ exp{ln}
L(max, c s 1, = a) &
- +
Zne J(k,t)exp{ln}

I(max,. 1, > a) }

and

< e®E®
a

(3.5)

ag (k)
¢ |: z"neJ exp{ln}

1
> ——e°E®
1+e¢

L(max, c jp.¢ !, = a)] e

Ene J(k,t) exp{ln} a ’

provided that a is large enough.

PrROOF. On the one hand,

[ 1(max, c y. 0 1 = a) ]

I(max,.;7, >a) < e E®
B i ZVLEJ exp{ln}

Z:n ed exp{ln}

e“E(k)[

+P(k)(maxln > max ln)
ned ned(k,t)

]]'(maxne J(k,t) ln = a) ]

< e’E®
Z"n e J(k,t) exp{ln}

+ P(k)(nlilka-)%—(tln -1, > 0)

+ P(k)(1<m3§—tl" -1, > 0).

On the other hand,

s I(max,c;1, = a) S Qe E® 1(max, c j4.0 L, = @)
ZneJ EXp{ln} ZnEJ exp{ln}
> ! QAR L(max, c j,0) ln = @)
L+e Lne gkt €XP{L,}

%]

- P(k)( Y., exp{l,-1,} = 6‘/2)

n=k+t+1

k—t—1
- P(k)( Y exp{l, -1} = 8/2).

n=1
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Notice that

Y. Z, n>k,
L=
- Y Z, n<k,

i=n+1

and for large enough values of n — &,

P

i Zi>—%2(n—k)) 1 - ®(u/n -k /4)
i=h+1

(3:6) _ dexp(—(#7/32)(n — b))
- m2m(n—k)

The sum of these probabilities over n,n > k + ¢, is o(1/a). This observa-
tion leads to the conclusion that for large enough a,

2]

&
P(k)( Y expll, — L} =35

n=k+t+1

&
< —.
2a

Similar derivations give bounds to the other probability terms under consid-
eration and the proof of the lemma follows. O

REMARK. The lemma, with appropriate changes in the definition of J(k, t),
is valid also for % such that cVa — ¢t < |k — 2a/u? < cva .

One can rewrite the term

P I(max, c s, = a)
ZnEJ(k,t) exp{ln}

in the form

max, exp{!l,
0 € J(k,t) {l.} Xp{_(

Z:n e J(k,t) exp{ln}

l,_,+ max [, -1, ,— a)}
ned(k,t)

X]l(lk_t+ max ln—lk_tZa).
ned(k,t)

It can be seen that the term, in this form, is an expectation of the product of
two random variables. The first random variable,

max, c g, ) exp{l, — [,} _ My

ZneJ(k,t)eXP{ln - lk} - Sy
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is positive and bounded by one. Its distribution, under P, is independent of
k and of [, _,. The second random variable is an exponent, over a set, of a sum
of two independent variables [,_,, which has a normal distribution, and
max, ¢ s (!, — 1,_,), which is nonnegative.

LEMMA 3.4. Let ¢ > 0 be given. Then, for large enough a,

P L(max, c s 1, = a) s I(a +t>=max, 4.0, = a)
ZneJ(k,t)eXp{ln} B ZneJ(k,t)eXp{ln}
&£
+—.
Va

Proor. From the alternative form in which the term was rewritten it can
be concluded that

O

e“E(k)l I(max, c s, >a+1t) ] <ot

ZnEJ(k,t) eXP{ln}

The process variable {I, — [,_,: n € J(k, t)} has a positive drift up to time
k and a negative drift thereafter. In the next lemma we show that its
maximum is of a controllable order.

LEMMA 3.5. Let € > 0 be given. Then

P(k)( max [, — 1, ,> 8\/5) <eg/Va.
ned(k,t)

ProoF. The process exp{l, — [,} is a P*"-martingale of mean one. Hence,

P(k)( max [, — 1, > 8\/(;/2) < exp{—eva /2.
ned(k,t)

The random variable /, — [, _, has a normal distribution and

sva — tu?

PO, — 1, ,>ela/2)=1-® Sy

J

which converges to zero at a rate faster than 1/a. O

Lemmas 3.4 and 3.5 can be summarized by saying that the term

e“E(k)l IL(max, c s, L, = a)]

Zn e J(k,t) exp{ln}
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can be approximated, up to an o(1/ Va ) term, by

l,_,+ max ln—lk_t—a)}

ned(k,t)

E(k) maanJ(k,t)eXp{ln} {_(
P
Zn e J(k,t) exp{ln}

(3.7) x]l(a vtsl,_,+ max I, —1, ,>a
ned(k,t)

max ln—lk,tga/c?) .
ned(k,t)

This expectation will be approximated by conditioning on the values of
max, c s nexpll, — 1, and X, _ ;. , exp{l, —[,_,} and then integrating
over the values of the independent random variable /,_,. This random
variable has a normal distribution. The approximation will result from the
following lemma.

LEMMA 3.6. Assume that

X, ~N(nr,no?), n=1,2,....
Let n = n(a) be a sequence of integers where (n —a/7)/Va =y as a — »
and let m = m(a) and t = t(a) be two sequences of real numbers that are
o(Va) with t(a) — © as a — . Then

lim VaEexp(— (X, + m —a))l(a +t =2 X, + m = a)
VT ™
V2mo P 20’2y

uniformly for y in a compact set.

Proor. The density of X, at x is given by

1 (x — nr)?
flx) = WP{‘T}

1 1 at? (x—a n—a/t 2
—— ————exXp{ — - .
Vn V27o P 2no?\ na Va
However, a/n — 7, hence

G 0
Jim a f(x) = me"f’{‘mf}

uniformly in x, for x for in the range [a — m,a — m + ¢].
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The integral
/a_m+texp(—(x +m —1))dx

converges to 1. The proof of the lemma follows from standard convergence
arguments. O

From Lemma 3.6 we conclude that the P*)-conditional expectation, given
M} and S}, of the ingrand in (3.7) can be approximated by the term

M, Vr 3 (k —a/a-)2
— ———expl — 5 .
S, V2ma o 20

The unconditional expectation becomes

M, Vr ™ (k—a/7) const,
E®| — | ——=——=—exp{ — <
S, |V27a o 202 a Va

where c¢Va is the radius of the interval o, the interval of indices centered
about a /7. Notice, moreover that E*)[ M, /S,] converges, as k increases, to a
constant we denote by E[ M /S].

Next we return to the summation, over % in the set J, of the approximated
terms. Summation is approximate to integration against the counting mea-
sure. When we transform the variable of integration %2 to the variable
y=(k —a/7)/Va we get that

I(max,.;{, >a)
Z:nEJeXp{ln}

M} Vr {_ 73 (k—a/f)z}
2

a

exp{ — const, - c?},

eaPO(maxln > a) =e® ) E®
ned red

=(1+0(&)) L E

ked .S

——eX
V2ma o P o?

M- c \/; 7'3 9
= (1 + O(S))E[g/_cm exp{—my }dy

—(1+ 0(8))E[% 1(2<1>(°'T3/2) - 1).

17 g

Finally, letting £ — 0, in which case ¢ — «, we can conclude that the limit A
of e® times the tail probability can be represented as

)\EMl EM2
=E|—|- =E|<-|—. m
S|t S | u?

4. A more complicated example: testing H,: X~ iid N(0,1) vs. H;:
X~ AR(1). In this section we show our rule of thumb to hold for testing H:
X~ iid N(0,1) vs. H;: X is an autoregressive sequence with p = 1 and with a
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known autoregression parameter 0. Apart from this problem being of interest
in its own right, the proof of the rule of thumb in this case is an example for
the type of considerations, beyond the blueprint proof of Section 3, which are
required for more complicated cases.

Let X,, X;, X,,... be a sequence of observations. Let P, be the measure
according to which these observations are iid N(0, 1), and let P; be a measure
according to which X, ~ N(0,1) and X, = 6X,_; + ¢ for i > 1, where ¢, are
iid N(0, 1) and are independent of X, and |6| < 1. Define

n gdpo(Xo,,Xn) = i“*i—-1 i—1 = i
1 62

I=-———.
21-16

Let M, S be as in Section 2.

THEOREM 4.1.
M

lim e“PO( max [, > a) = 7E§
a— © l<n<o®

The proof of Theorem 4.1 follows the lines of the proof of Theorem 3.1. The
differences which have to be taken into consideration are the nonnormality of
Z; and the dependence between /, and [, — [,. A conditioning argument will
take care of the problems caused by this dependence, and the asymptotic
normal limit of the density of X7_,Z, (standardized) as well as large devia-
tions arguments will be substituted for the normality of Z,. We will sketch
the proof in this section. Some of the formal details are relegated to the
Appendix.

LEMMA 4.1. Given & > 0, there exists a finite constant c. such that if ¢ > c,

e
(4.1) lim e“PO( max [, > a) <,
a—w n<a/I—c/a 2

£

(4.2) lim e“PO( max [, <a, max [, > a) < —.
a—>® n<a/I+c/a l<n<o 2

SKETCH OF PROOF. This is along the same lines of the proof of Lemma 4.1,
except that the P,-compensator of ©7_,Z, is (2 /2)X?_, X2 ,. The variances of
Y (Z, —(62/2)X% ) and X', X2 | are O(n). O

In the following three lemmas the moment generating function of the
log-likelihood statistic is investigated, both under P, and under P;. The basic
ingredients of the proof—asymptotic independence between large blocks of
observations, local central limit theorems regarding log-likelihood ratios and
large deviations arguments—are later shown to hold, using properties of the
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moment generating function. The problems of dependence of [,,[, — [, and
the nonnormality of Z; can thus be overcome. The proofs of these lemmas is
by somewhat lengthy calculations.

LEMMA 4.2.
E, exp{yZZi} XO’Xn+1)
i=1
2 .
(]_‘[?Zlai)y/ Y J ;
- exp| (/2| T T | (57|
(T (1 + v(8; — 1)/5i))1/2 “lico\yt1 -
where
5§ =1+ 602-26 =1,...
J COS( n + 1 )’ .] ) ’ n:
-1
2 = (03) ns
E/ = (Ml"“}l‘l’n)’
with
1+6% li—jl=0,
%i; =\ —0, i —jl=1,
0, otherwise,
and
1- 62 X
_ i _ p2n+2-i gn+l—i _ pn+1—i 0
M = 1_92n+2(0 0 , 0 o )(Xn+1)‘

LEMMA 4.3. Let p, 3, be as in Lemma 4.2. For small enough vy there exists
a constant o > 0 such that w[X;_((y/(y + DY(E,) u< o(X§ + X7, ).

LEMMA 4.4. Let X, ~ N(0,72%) where 0 < 1< 1/(1 — 62), X, ~ N(0, 1) for
1 =1,2,... all be independent. Let s be such that

1+ 62 + /(1 + 0%) — 46%s> > 0.
Then

Eexp{s > (60X, X, — 02Xi2—1/2)}
i-1

<0

n/2
)
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LEMMA 4.5.

Pymaxl, za) = L E®

l(max,.; !, = a)
z"neJ exp{ln}

The proof is verbatim as with Lemma 3.2.
LEMMA 4.6. Let & > 0 be given and let ¢ be as in Lemma 4.1. There exists

1< y <o such that if t = yloga then for all a/I —cVa +t <k <a/I+
cva —t, it is true that

&
+ —
a

<

E(’"’)[ I(max,. 1, = a) }

E(k) ]l(maxne J(k,t) ln = a)
Y, csexp{l,}

ZneJ(k,t) eXP{ln}
and
I(max,c ;!{, = a)

z"n ed exp{ Zn}

E(k)[

1 (k)l I(max, c s, = a)] &

l+e Zne J(k,t) exp{ln} E

provided that a is large enough.

SKETCH OF PROOF. This is along the lines of the proof of Lemma 3.3,
verbatim until (3.6) and (3.6) replaced by a large deviation argument which
utilizes Lemmas 4.2 and 4.4.

REMARK. Lemma 4.6, with appropriate changes in the definition of J(k, t),
is also valid for % such that ¢c/a — ¢t < |k —a/I| < cVa.

One can rewrite the term

e“E(k)l I(max, c sl = a)]

Zn e J(k,t) exp{ ln}

in the following form:

l,_,+ max (I,—1,_ —a)
ZnEJ(k,t)exp{ln} Bt ( * t) )

ned(k,t)
X ]l(lk_t + max (I, —1,_,) = a)l.
ned(k,t)
This is an expectation of the product of two random variables. The first is
max, c jk, ) exp(/,} . My

z"nEJ(k,t) exp{ln} S;‘; ’

which is positive and bounded by 1. Its conditional distribution under P*),
given X, = 0 and X, _,, is independent of [, _, and does not depend on %. The
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second random variable is an exponent (on a set) of a sum of two variables,
Iy, and max, ¢ ;4. (I, —I,_,), which are conditionally (on X _,) indepen-
dent.

In the next lemma we assume that ¢ = y log a, with y as in Lemma 4.6.

LEMMA 4.7. Let € > 0 be given. Then, for large enough a,

eaE(k) ]l(maXnEJ(k,t) ln = a) < e"E(k) ]l(a +i= maxneJ(k,t) ln = a)
Yye J(k,t)exp{ln} L, J(k,t)exp{ln}
&
+—.
Va

The proof is verbatim as with Lemma 3.4.

The process variable {I, — [,: n € J(k, ¢)} has a positive drift up to time &
and a negative drift thereafter. In the next lemma we show that its maximum
is of a controllable order.

LEMMA 4.8. Let € > 0 be given. Then

e
P(k)( max (I —1,_,)> \/c;)s—.
nEJ(k,t)( n k t) € ‘/E

SKETCH OF PROOF. This is along the lines of the proof of Lemma 3.5, using
a large deviation argument (instead of the normality of [, —[,_,) which
utilizes Lemma 4.2 and 4.3.

Lemmas 4.7 and 4.8 can be summarized by saying that the term

e“E(k)l I(max, ¢y, = a)]

Z"n e J(k,t) eXp{ ln}

can be approximated, up to a o(1/ Va ) term, by

E(k) max, ¢ J(k,t) exp{ln} Xp( _(

ly_, + 1 -1 —
ZneJ(k,t)eXp{ln} k=t max (n k*t) a))

ned(k,t)

x]l(a+tzzk,t+ max (I, -1, ,) >a; max (ln—lkt)seﬁ)l-
ned(k,t) ned(k,t)

This expectation will be approximated by conditioning on the value of X, _,,
My = max,c ;.. nexp{l, —1,_,} and Sff =X, ;. nexp{l, —1,_,} and then
integrating over the (conditionally) independent random variable I,_,. We
will need the following two lemmas.

LeMMA 4.9. Suppose {X,} is a sequence such that the density of (X, —
nt)/(on) converges to the N(0,1) density uniformly on compact sets. Let
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m =m(a) and t = t(a) =, _ . be two sequences of real numbers that are
o(Ya). Then, forn = yJa +a/7,

lim VaEexp(— (X, + m —a))l(a +t =X, + m = a)

a -
= —,_ZWO_exp ——20_2y .

The proof is analogous to that of Lemma 3.6.

LeEMMA 4.10. Conditional on X, _,, the P®-conditional density of the
random variable [Lf21Z, — 7(k — )] /loVk — t], with =1/ and o? =
62/(1 — 02), converges to the N(0,1) density as a — %. The convergence is
uniform on compact sets.

SKETCH OF PROOF. The integral of the absolute value of the characteristic
function of [Zf;fZi — 1(k — #)]/[oVk — ] is finite, by virtue of Lemma 4.2
and Lemma 4.3. O

From Lemmas 4.9 and 4.10 we can conclude that the P“*)-conditional
expectation (conditional on M;* and S}) of

M

Si
can be approximated by

MF 1 Vr 73 (k—a/T)2
S_;fﬁ\/ﬂa'exp 202 a

with 7 and o as in Lemma 4.10. Notice that E®(M;* /S}) converges, as &
increases, to a constant we denote by E(M /S).

Next we turn to the summation, over £ in the set </, of the approximated
terms. Summation is approximated by integration with respect to counting
measure. When we transform the variable of integration to the variable
y=(k —a/7)/Va we get that

exp(— (L, + M —a))l(a+t>1, ,+Mj >a; M < &/a)

e"PO(maxln > a) =e® ) E®

[ I(max,.;1, > a) }
ned ked

ZnEJexp{ln}

M a/T+cja 1 ‘/; 73 (k —a/7)2
B Y = x|

S bea/recfT Va V270 20

a

EM c \/; 1 y2 d
- Ff—c\/_ﬂ'oexp _50'2/7'3 Y
M1

- EBE—— as¢c —»>

S T
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and so

lim e“PO( max [, > a) = EET |

a—® l<n<o®

5. Monte Carlo. Using the notation of Section 4, we know from Theorem
4.1 that

1 M ger
lim e“PO( max [, > a) = TEE = A.
a— © l<n<ow

Table 1 gives an idea of the rate of convergence, where the Monte Carlo was
done by the importance sampling formula

e“PO(ILn:E(wln > a) =E, exp{a — Iy},

where N = min{n: [, > a} and E; denotes expectation with respect to P;.
Hence exp{a — I} was simulated under P,, and Table 1 represents the
means and standard errors for a = jlog10, j=1,...,6, based on 100,000
simulations, when 6 = 0.7. (The value 6 = 0.7 corresponds to I = (1/2)0%/
(1 — 6%) = 0.48 = 0.5, which is the information in the iid hypothesis testing
problem of H,: X, ~N(0,1) vs. H;: X, ~ N(,1) where, by the way, A =
0.5604).

Clearly, although the convergence is not slow—by a = 2log 10 it seems
that it is within 10% of the limit—evaluating the limit by this method is
problematic, as it is not clear how large a value of a one should choose.
Evaluating A directly (by simulating M /S) produces a much more reliable
estimate: 0.4261 as the mean and 0.0010 as the standard error (see Table 2).
Clearly, precision to two significant digits is not achieved if e® < 105,

Using the methods of Lemma 4.4 to get bounds on the moment generating
function of the log-likelihood statistic, one can achieve exponential bounds on
likelihood ratios and thus bound the expression

E— -E
S S*

b

‘M M*

TABLE 1
Means and standard errors of expla — Iy} based on 100,000 simulations made under P; for
0 = 0.7 and for various values of a

e® 10 102 103 104 10° 108

Mean 0.4921 0.4605 0.4474 0.4384 0.4356 0.4327
StdErr 0.0009 0.0009 0.0009 0.0009 0.0009 0.0010
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TABLE 2
Means and standard errors of (1/I1)X(M* /S*) and numbers of observations (2t + 1) on which
M*,S* are based, for various values of 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean 09174 0.8342 0.7527 0.6711 0.5921 0.5120 0.4261 0.3296 0.2057
StdErr 0.0012 0.0012 0.0012 0.0013 0.0013 0.0012 0.0010 0.0008 0.0004
2t +1 40001 10001 4001 2001 2001 1001 1001 1001 1001

where M* and S* are computed from a process of 2¢ + 1 observations (¢ to
each “side” and one in the middle). We chose ¢ to bound this expression by
1077, and ran 100,000 replications of (1/I)(M*/S*) for each of 6=
0.1,0.2,...,0.9. The results are entered in Table 2.

It should be noted that A is symmetric in 6. (This can be seen by showing
that the joint moment generating function of the 2¢# + 1 summands making
up M* and S* is a function of 02.)

APPENDIX

PrOOF OF LEMMA 4.1, EQUATION (4.1). Let N = min{n: [, > a}:

e“PO( max lnza)
n<a/I-cja

=E,exp(—(ly —a))L(N <a/I —cVa)
<P, mex 1 =)

n

X2 ro X7
An>a/l —cla, > Z(Zi—B2 ;1)2a—022—1)

i=1 1 2

=P,

1=

n X2 Icva
An<a/l —cva, > Z(Zi—Gz 1) )
i=1

<P >
2 2
X2, Icva
+Pla—-0%) — <
1 i=21 2 2
Varl(la/l—c‘/a_ — 02/ X2 1/2)
<
- I?ac?/4
a/lzeja x2 IcVa
+Pla—06% ) 1<
i=1 2 2
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where the last inequality follows from applying Doob’s inequality to the
P,-martingale /, — 02X , X2 ,/2.

n 2
El( Z GXi—l(Xi - BXil))
i=1

n X2
Varl( Y (Zi - 021—1))
i-1 2

2 2
n n 0
= GZEI( )y Xilei) =0°E; Y X2 < —n
i=1 i=1 1-96
and
02 a/I—ca IC\/(;
Pl ? i§1 Xiz_l >a — B
02 a/l—ca 1 IC\/E
< P J— 2 —_ > .
I El ( il 1—02) 2
Note that

n 1 n i—1 ) 1 02_ 62n+2
B f(x- 2] - BB o)
i=1 i=1

1- 62 izo 1- 062 (1- 02"

which is bounded in 1 < n < «, and that Var,(X"_,X? ;) = O(n). Therefore,
by Chebyshev’s inequality,

g2 a/I-c/a Ieva O(a
— )Y X?,>a- < (a)
i-1

P
H 9

Hence, choosing ¢ to be large enough yields (4.1). O
ProoF or LEMMA 4.1, EQUATION (4.2).

e“PO( max [, <a, max [, > a)
n<a/I+cya l<n<»

=e"Py(a/I + ca <N < =)

= Pl(la/IJrc\/E < a)

Var,(Z9/47 " (Z, — (02/2) X2 ,)) .\ Var,((6%/2)L4/5 e X2 )
I%c%a /4 I%c%a /4

O(a)
I%c%a /4

where the last equality follows from the same considerations as given above.
Choosing ¢ to be large enough yields (4.2). O
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ProoF oF LEMMA 4.2. Without loss of generality, let X, ~ N(0,1/(1 —
6%)), X, =0X;, +¢ for i=1,...,n+1, ¢ ~N(0,1) iid. Denote X= (X,
...,X,,X,,,). E;X= 0. Direct calculations show that

1 0 e 0n+1
0 1 e 0”
covy(X) = 7| S =3,
0n+1 on" 1

Define
Sit={(S. 1)1 <i,j < n).

Generally, if

A=B1 A= (Au Alz)’

Ay Agy
then[A,; — A, Ay Ay, 171 = By,. Therefore
covy(Xp,.. ., X 1X0, X, 1) =3t =300

The eigenvalues of this matrix are obtained from Anderson (1971) 6.5.4, and
are §;,i=1,...,n.

Now
1 Hi 0n+1
(XO’Xi’Xn+1),~N Qyﬁ 0! 1 gnti-i
-0 0n+1 0n+1—i 1
Since, if
| PR P
Y,,Y,,Y.) ~N|e, ,
(Y1,Y,,Y5) (_ (F21 Ty
then

Y, — «
E(Y,Y,,Y;) = a; + F12F2_21(Yz _ az)’

it follows that

-1
_ _pn2 i n+1-i 1 0n+1 XO
E{(X|Xy,X,,1) =(1—-6%)(6',6 )(0n+1 1 X .,

= M-
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Now,
El(eXP(’Y Z Zi) ‘ XO’Xn+1)
i=1
= [z, exp(— %(z — WS (x  p) + (v/2)ax)(2m) "R,

< exp (- /3 - )|

|2;1 |(7+ 1)/2

((y+ 1)zt =y, |7*

+ 1)? _
+%EE;1((7+1)2;1—M)

%ﬂli (yzl)jzilﬂ '

Jj=0

1

y+1
X exp(— TE’EJIE

(117, 8,)"
= /2 €XP

RS
nol1+
i=1 Y 6i

Proor OF LEMMA 4.3. Denote by A the 2 X 2 matrix

(Oi _ 02n+2—i)2 (0i _ 92n+2—i)(0n+1—i _ 9n+1+i))

n
X A | A A A
i=1 (0L _ 02n+27z)(0n+17z _ 0n+1+t) (el _ 02n+27l)2

1-6% \° X,
p=|1gme | Ko XAl x -

Now, max E/AE equals the largest eigenvalue of A, which is in our case
a,; + a;5. Therefore

/

=

2
1-— 62
Bp < (X0 + X)) s
(1 _ 62n+2)

M=

X [(ai _ 02n+2—i)2 + (01— g2nt2iy(grriti - 0n+1+i)].

i=1
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Now

02 02n+2 _ 02n+4 + 04n+4

gi — p2nt2—i 2 _ _ — 9np2nt2
1( ) T 1T 1- 62 "

M=

i

and

n
Z (01 _ 92n+2—i)(9n+1—i _ 0n+1+i) — n0n+1(1 + 02n+2).
i-1
Therefore there exists a constant & > 0 such that wp< £&(X§ + X?2, ). The
maximal eigenvalue of 37 is [1 — 260 cos(wn/(n + 1))/(1 + 6%))V. Hence
26 d

m cos(wn/(n + 1))

W3 < E(X3 +Xf+1)[1 -
and so for small enough y there exists w > 0 such that
I y o\ o J 20
T () siesex s xz ) () |1 1o
s =0 1+90

v+ 1
<o(X;+X2,). ]

J

Y
y+1

ProOOF OF LEMMA 4.4. Denote by 7, _; the sigma-algebra generated by the
first n — 1 observations and let b6 < 1/2. Then

E[exp(bX?)exp|s 0X, X, — 0°X? ,/2)||7_,
n i—14% i—1
i=1
n—1 X%l
- exp(s > (BXi_lXi -~ 92LT))(1 —2b)" /2
i=1

1 5 s? 9
X exp 50 195 ° X7 1.

Denote

62 s?
(o) = ?(1—21; _8)‘
The solutions to the equation f(b) = b are

1— 0%+ \/(1 +02%5)° — 4922
by s = 1

Clearly,

1- 6% — \/(1 + 025)” — 460%s2
f™(b) > b, = 1 as n — o, O
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Proor or LEMMA 4.6. On the one hand
I(max,. 1, >a) } _g®

ned “n

ZneJ eXp{ n}

E(k)[

I(max,c s 11, = a) l

Zn ed eXp{ ln}

< P(k)(nrilgi(tl —1,>0) + P<k>(1<r£13§ L=l > 0).

On the other hand,

E(k)[ I(max,.; 1, > a) } ]l(maanJ(k nl,=a)
ZnEJeXp{ln} nE J(k,t) exp{l }
o . E—t-1 &
> —P(k)( Y. exp{l, -1} = —) P(k)( Y. exp{l, -1} > —).
n=k+t+1 2 n=1 2

Notice that

Y. Z, n>k,
i=k+1

— b= k

- Y Z, n<k,

i=n+1
that for fixed n > 0 and large enough a,
> &
P(k)( max [, — [, > 0) < P(k)( Y. exp{l, —1,} = —)
n>k+t n=k+t+1 2

0

n=k+t+1

v 7z —e—z(n—k))

i=k+1

k—t—-1 k
< ) P““( Y Zi<n(k—n)).

n=1 i=n+1

and

—t-1
P(k)( max [, —lk>0)<P(k)( Y. exp{l, -1} =
-1

l<n<k-—t

DO &

By virtue of Lemma 4.4, for 0 < s < 1/[|6[(2 — |6))], there exists C(s) such
that

P

A ——(n—k))

i=k+1

(n—k)/2
exp{—0%s/2}

(1+ 0% +V(1+0%)" - 46%7 ) /2

< C(s)

< C(sg)g"_k
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for some 1 > ¢ > 0 and s; > 0. Therefore

2

Y Z>-(n-k)

i=k+1

t+1
r P® < C(s,)—.
n=k+t+1 ¢ 1— g
Note that log(1 +y) — 1+ 1/(1 +y) > 0 for all y > —1, with equality iff
y = 0. It follows that

%]

af (I17-,5,)""
dy (IT7=1(1 + (8, — 1)/6i))1/2 y=0
1 n
=ai§[l°g<1+<6i—l>>—1+m -0
Furthermore,
lo

(I17-,8,)"” )
(12, (1 + y(8 — 1)/8,))*

n
~ Ej;lly log(1 + 6% — 26 cos(mx)

—log|1 +

y[6% — 26 cos(mx)] p
1+ 62— 26cos(mx) -

Hence, there exist p > 0, s > 0 such that, using the notation of Lemma 4.2,
Elexp( —-s i Zi) < exp(—pn).
i=1
It follows from Lemma 4.2 that
P(k)( i Z;, < n(k - n)) <exp(—(p—ms)(k —n)).
i=n+1
Choosing 1 small enough completes the proof of Lemma 4.6. O

PrROOF OF LEMMA 4.7. The process exp{l, — [,} is a P®)-martingale of
mean one. Hence,

Va
P®| max (I, -1,) > Ay exp(—eva /2).
ned(k,t) 2

By virtue of Lemmas 4.2 and 4.3, in a manner similar to the proof of Lemma
4.6, it follows that for s > 0,

PO((L, = 1;-,) > e\/E/Z) < exp(spt — seva /2). O
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Proor oF LEMMA 4.10. The unconditional asymptotic distribution of
(XtiZ, — (B — t)1)/(aVE — t) is N(0,1) by virtue of Anderson (1971).

By virtue of Lemmas 4.2 and 4.3, the conditional asymptotic distribution is
the same (apart from the set {X,_, > o(n'/*)}, which becomes negligible).

To conclude the proof, one needs to show that the absolute value of the
characteristic function y(A) is integrable. By Lemma 4.2, for small enough
y> 0,

N 51 ~1/2
Ix(A)] < 1+1iA
Jj=1 J
~1/2
(5 - 1)
= 1+ A2 5
j=1 (5))
. o\ —1/2
62 — 260 cos(mj/(n + 1))
< 1+A2 3 ;
{j:16—2cos(mj/(n+ 1>y} 1+0 —20COS(7T_]/(]’L+1))
< exp( —const A?)

for an appropriate positive constant. O
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