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OPTIMAL INVESTMENT IN INCOMPLETE MARKETS WHEN
WEALTH MAY BECOME NEGATIVE1

By Walter Schachermayer

Vienna University of Technology

This paper accompanies a previous one by D. Kramkov and the present
author. While in [17] we considered utility functionsU � �+ → � satisfying
the Inada conditions U′�0� = ∞ and U′�∞� = 0, in the present paper we
consider utility functions U � � → � which are finitely valued, for all
x ∈ �, and satisfy U′�−∞� = ∞ and U′�∞� = 0. A typical example of this
situation is the exponential utility U�x� = −e−x.
In the setting of [17] the following crucial condition on the asymptotic

elasticity of U, as x tends to +∞, was isolated: lim supx→+∞
xU′ �x�
U�x� < 1.

This condition was found to be necessary and sufficient for the existence
of the optimal investment as well as other key assertions of the related
duality theory to hold true, if we allow for general semi-martingales to
model a (not necessarily complete) financial market.
In the setting of the present paper this condition has to be accompanied

by a similar condition on the asymptotic elasticity of U, as x tends to −∞,
namely, lim infx→−∞

xU′ �x�
U�x� > 1. If both conditions are satisfied — we then

say that the utility function U has reasonable asymptotic elasticity — we
prove an existence theorem for the optimal investment in a general locally
bounded semi-martingale model of a financial market and for a utility
function U � � → � , which is finitely valued on all of �; this theorem
is parallel to the main result of [17]. We also give examples showing that
the reasonable asymptotic elasticity of U also is a necessary condition for
several key assertions of the theory to hold true.

1. Introduction. The present work accompanies the previous paper [17]
by D. Kramkov and the author. For the motivation and history of the utility
maximization as well as for references and notation we refer in the sequel to
[17] without further notice.
In the present paper the setting differs from that of [17] in the following

respect: we consider a utility function U � �→ �, which is defined and finitely
valued everywhere on the real line; in addition we make the usual assumptions
thatU is smooth (i.e., continuously differentiable), increasing, strictly concave
and s.t.

U′�∞� �= lim
x→∞U′�x� = 0 and U′�−∞� �= lim

x→−∞U′�x� = ∞�(1)

As in [17] the financial market is modeled by a d-dimensional semi-
martingale S = ��Si

t�1≤i≤d�0≤t≤T describing the discounted price process of
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biläumsfondprojekt Number 7049.

AMS 2000 subject classifications. G11, G12, C61.
Key words and phrases. Utility maximization, incomplete markets, duality.

694



OPTIMAL INVESTMENT IN INCOMPLETE MARKETS 695

d risky traded assets. For the bond price process we let Bt ≡ 1. In the present
paper we also assume that the semi-martingale S is locally bounded and
this assumption will be crucial for the present methodology (see Remark 2.6
below).

Definition 1.1. A probability measure Q ∼ P (resp. Q � P) is called an
equivalent (resp. absolutely continuous) local martingale measure if S is a
local martingale under Q.
The family of equivalent (resp. absolutely continuous) local martingale mea-

sure will be denoted by � e�S� [resp. � a�S�]. We assume throughout this
paper that

� e�S� �= ��(2)

Note that, under the present assumption that S is locally bounded, this
definition coincides with definition 2.1 in [17]: indeed, it is easy to verify that a
locally bounded semi-martingale S is a local martingale underQ iff Definition
2.1 of [17] is satisfied, that is, each positive process X of the form Xt =
X0 +

∫ t
0 HudSu with X0 ∈ �+ is a local Q-martingale (compare [11] and [1]).

After this rather harmless task of fixing the proper definition of� e�S� and
� a�S� we now pass to a more delicate issue, namely the concept of admissi-
ble trading strategies which is appropriate in the present context. Recall the
subsequent definition from [7] which essentially is the same concept as used
in [17]:

Definition 1.2. A predictable S-integrable process H is an admissible
trading strategy if the stochastic integral �H ·S�t =

∫ t
0 HudSu is uniformly

bounded from below.
For x ∈ �, we denote by �b�x� the set of processes

Xt = x+ �H ·S�t� 0 ≤ t ≤ T�(3)

where H runs through the admissible trading strategies.

We have used the super-script b to indicate that the processes in �b�x� are
uniformly bounded from below. However, in the present context of maximiz-
ing expected utility for a utility function U�x� which is finitely valued, for
all x ∈ �, it is natural to consider processes �Xt�0≤t≤T such that Xt is not
necessarily uniformly bounded from below, if one wants to have a chance to
find the maximizer of the utility maximization problem (6) below.
We adopt the following concept.

Definition 1.3. For x ∈ �, define the set � b
U�x� by

� b
U�x� = �GT ∈ L0����T�P� � GT ≤XT

for some X ∈ �b�x� and E��U�GT��� <∞��
(4)
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and let �U�x� denote the set

�U�x� = �FT ∈ L0����T�P�� ∪ �∞�� � U�FT� is in
the L1�P�-closure of �U�GT� � GT ∈ � b

U�x����
(5)

Let us interpret the above concept: � b
U�x� consists of all random variables

GT such that U�GT� is P-integrable (so that the expected utility may be de-
fined) and such that GT is dominated by some final wealth XT which may be
achieved by an economic agent with initial endowment x and a finite credit
line, by trading on the stock S. Note that we don’t impose integrability condi-
tions on GT but only on U�GT�. [Recall that L0����T�P� denotes the set of
all (equivalence classes of) �T-measurable �-valued random variables.]
In the next step we enlarge the set Cb

U�x� by considering the closure of the
random variables U�GT�, where the closure is taken with respect to the norm
of L1����T�P�. As U defines a bijection between � and �, in the case when
U�∞� = ∞, and a bijection between � ∪ �+∞� and � −∞�U�∞��, in the case
when U�∞� <∞, we can write these random variables as U�FT�, where FT

are �T-measurable random variables, possibly assuming the value +∞ in the
case U�∞� <∞.
Speaking in economic terms, �U�x� describes all random variables FT mod-

eling (possibly infinite) wealth at time T such that the utility U�FT� may be
approximated by the utility U�GT�, where GT ranges through the set of ran-
dom variables dominated by XT, for some X in �b�x�, with respect to the
norm of L1�P�; this norm is natural as our optimization criterion (6) below
pertains to maximizing expected utility.
The subscript T in the notation FT pertains to the �T-measurability of this

random variable and the fact that it describes a quantity related to time T.
But the reader should note that FT was not defined as the terminal random
variable of some process �Ft�0≤t≤T which in turn should be given by some
stochastic integral on the process S (or as a random variable dominated by
such an object).
The rationale behind this approach is the following: we believe that the nat-

ural domain for the utility maximization problem (6) below should be chosen
to be some closure of the set of terminal valuesXT resulting from processesX
in �b�x�: indeed, economic considerations suggest that one only should allow
quantities which may be approximated (in some sense to be specified) by the
situation describing economic agents with finite credit lines, which precisely
is the idea behind the definition of �b�x�.
The set �U�x� is the largest conceivable set obeying this criterion [it is the

closure of � b
U�x� with respect to the weakest conceivable topology if we are

interested in expected utility]. Of course, we could impose additional restric-
tions to make this set smaller, such as requiring that the random variables
FT are of the form FT = x+ �H ·S�T for some “reasonable” integrand H.
We deliberately don’t do this at the present stage, but rather formulate

our optimization problem over the “big” set �U�x�. It will turn out that–under
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appropriate assumptions–the optimal solution F̂T�x� ∈ �U�x� to the optimiza-
tion problem (6) will automatically be the terminal value of an integral on the
process S, which, a posteriori, gives a more satisfactory solution than restrict-
ing a priori the possible domain of optimization.
We now have prepared the ingredients for the definition of the optimization

problem studied in this paper:

�E�U�FT���FT ∈ �U�x�� −→ max !(6)

We still observe that it follows from the definition of �U�x� that we have
the equality

sup
FT∈�U�x�

E�U�FT�� = sup
GT∈� b

U�x�
E�U�GT���(7)

As in [17] we denote by u the value function

u�x� = sup
FT∈�U�x�

E�U�FT���(8)

which now is defined on the entire real line �. Throughout the paper we
assume

u�x� < U�∞� �= lim
x→∞U�x� for some x ∈ ��(9)

to exclude trivial cases (see Remark 3.7 below for a thorough discussion of
this assumption). Noting that a convex combination of admissible integrands
is an admissible integrand we deduce from (7) that u is a concave function on
�; hence assumption (9) readily implies that u�x� is finitely-valued for each
x ∈ �. [For the fact that u�x� > −∞, for all x ∈ �, simply note that Bt ≡ 1
implies that u�x� ≥ U�x� > −∞.]
We note in passing that, under assumption (9), for X ∈ �b�x�, we automat-

ically have that E��U�XT��� <∞, which would allow to simplify the definition
�4� of � b

U�x�: by requiring that GT ≤ XT, for some X ∈ �b�x� and GT is
uniformly bounded from below we automatically have E��U�GT��� < ∞. This
shows in particular that, under assumption (9), the set � b

U�x� does not depend
on U.
We now turn to the central notion of this paper, which is the counterpart of

the concept of the asymptotic elasticity AE�U� = lim supx→∞
xU′�x�
U�x� as defined

in [17], where +∞ now is replaced by −∞:

Definition 1.4. For a utility function U � �→ � the asymptotic elasticity
at −∞ is defined as

AE−∞�U� = lim inf
x→−∞

xU′�x�
U�x� �(10)

To keep in line with the above notation we shall write AE+∞�U� for the
quantity lim supx→+∞

xU′�x�
U�x� , which was denoted by AE�U� in [17].



698 W. SCHACHERMAYER

One easily checks that under assumption (1) the asymptotic elasticity at
−∞ is a well-defined number in �1�∞�, and that this number is invariant
under affine transformations of U. Recall from [17] that AE+∞�U� is a well-
defined number in �−∞�1�, which is invariant under affine transformations
of U, provided U�∞� remains strictly positive.
Here are some examples: For the exponential utility U�x� = 1 − e−x we

obtain AE−∞�U� = ∞ and AE+∞�U� = 0; for utility functions of the form
U�x� = −�x�α, as x → −∞, where α > 1 is a fixed constant, we obtain
AE−∞�U� = α; finally, for utility functions of the form U�x� = x ln�−x�, as
x→ −∞, we obtain AE−∞�U� = 1. Recall from [17] that for utility functions
of the form U�x� = x

ln�x� , as x→∞, we have AE+∞�U� = 1.
The economic interpretation of the asymptotic elasticities AE+∞�U� and

AE−∞�U� is very similar: it is the limit of the ratio between the marginal
utility U′�x� and the average utility U�x�

x
, as x→∞ or x→ −∞ respectively.

The extreme cases AE+∞�U� = 1 and AE−∞�U� = 1 correspond to the case
when the marginal utility in the limit equals the average utility, as x → ∞
and x → −∞ respectively. From an economic point of view this property of
a utility function seems unreasonable (in both cases x → ∞ and x → −∞).
Economic intuition suggests that the marginal utility U′�x� should be sub-
stantially smaller than the average utility U�x�

x
, as x→∞, and substantially

bigger as x→−∞. This leads us to the following definition.

Definition 1.5. A utility function U � �→ � satisfying (1) has reasonable
asymptotic elasticity if AE+∞�U� < 1 and AE−∞�U� > 1.

Although this is not the issue of the present paper, in order to keep the
definitions in [17] consistent with the present paper we propose to say that
a utility function U: �+ → � satisfying the Inada conditions U′�0� = ∞ and
U′�∞� = 0 has reasonable asymptotic elasticity if AE+∞�U� < 1.
With this notation we shall see that the condition of reasonable asymptotic

elasticity is the crucial condition for the existence of the optimal solution to
the maximization problem (6): for the case of utility functions U � �+ → �
satisfying the Inada conditions this was shown in [17] and for the case of
utility functions U � �→ � satisfying (1) this is the main result of the present
paper (Theorem 2.2 below).
To formulate the dual problem to (6) we define the conjugate function V�y�

of the function U�x� by
V�y� = sup

x∈�
�U�x� − xy�� y > 0�(11)

which, under condition (1), is a smooth, convex function satisfying

V�0� = U�∞�� V�∞� = ∞� V′�0� = −∞� V′�∞� = ∞�(12)

We have the relation U′ = �−V′�−1 and we denote by I the inverse function
�U′�−1 (which is equal to −V′) (compare [20], [16], [17]).
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We also note the formula

V�y� = U�I�y�� − yI�y��(13)

which will be used several times below.
To give a concrete example: for U�x� = −e−x we obtain V�y� = y�ln�y�−1�,

U′�x� = e−x and V′�y� = ln�y�.
A by now classical route to solve the (primal) optimization problem (6) is to

pass to the dual problem (see, e.g., [3], [18], [16]):

v�y� = inf
Q∈� a�S�

E

[
V

(
y
dQ

dP

)]
�(14)

Again the question arises about the appropriate domain over which the
dual optimization problem is minimized. “Morally speaking” the proper set
consists of the equivalent martingale probability measures for the process S:
by this we mean that under sufficiently strong hypotheses [e.g., requiring that
� is finite (compare [19])] the duality between (6) and (14) works out perfectly
if one minimizes in (14) over the set of equivalent martingale measures only
(i.e., the set of probability measures Q, equivalent to P, such that S is a
Q-martingale).
But in order to obtain general results one has to enlarge this set: already

Definition 1.1 of � e�S� and � a�S� refer to the concept of local martingales
rather than martingales. In [17] a further enlargement of the set � e�S� was
necessary in order to obtain good duality results: we had to introduce a certain
class � �1� of supermartingales extending the class of density processes of
equivalent local martingale measures.
It turns out, however, that this latter enlargement is not necessary in the

present setting: we shall see that the optimal solution to the dual problem is
automatically attained by a probability measure; in fact, in many cases we can
assert that the optimal solution necessarily is in� e�S�, that is, equivalent to
P. But there are also cases where we cannot assert this and have to consider
the larger set � a�S�.
Clearly we could adopt the same philosophy as in the formulation of the

primal problem (6): we could first formulate the dual problem by optimizing
over some “big” set (such as in [17]) containing� a�S� and subsequently show
that the optimal solution lies already in� e�S� or� a�S� respectively. But for
the dual problem we refrain from doing so as we consider it only as a technical
gimmick for solving the primal problem, which is the question of our original
concern.
For all these reasons we decided to formulate (14) as an optimization prob-

lem over � a�S�.
The fact that, under appropriate conditions, the optimal solution to (14)

is attained for an element Q̂ of � e�S� or � a�S� respectively was already
obtained in the paper [2] of F. Bellini and M. Fritelli (see Remark 2.4 below).
Let us end the introduction by an overview of the paper: the basic theme

is to find conditions under which the formal duality between (6) and (14) can
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be turned into precise theorems, and to identify the optimal solutions to these
two optimization problems and their mutual relations.
In Section 2 we shall prove two theorems on these lines: the (easier) case

of a complete financial market is dealt with in Theorem 2.1 while the case of
an incomplete financial market is treated in Theorem 2.2 which is the main
result of the paper. For the latter theorem to hold true we crucially need the
assumption of reasonable asymptotic elasticity of the utility function U. The
question to which extent a theorem analogous to Theorem 2.1 of [17] holds
true, dealing with the case of incomplete markets and possibly unreasonable
asymptotic elasticity, is left to future research.
In Section 3 we give some examples showing what may go wrong if one

drops the assumption of reasonable asymptotic elasticity, and in section 4 we
give some characterizations of the property AE−∞�U� > 1. These results turn
out to be rather straightforward variations of the theme treated in [17], and
are therefore presented as briefly as possible.

2. The main results. We shall approximate the utility function U � �→
� satisfying (1) by an increasing sequence U�n� of utility functions such that
U�n��x� = −∞, for x ≤ −�n + 1�, in order to relate the present setting to
the results from [17]: Then clearly the optimization problem with respect to
U�n� is essentially the same as the one treated in [17], modulo the shift of the
singularity of U�n� from zero to −�n + 1�. For the sake of clarity we resume
the situation in some detail:
Fix a utility function U satisfying (1) and an increasing sequence �U�n��∞n=1

of strictly concave, smooth utility functions,U�n� ≤ U, such thatU�n� coincides
with U on �−n�+n�. On the negative end of the real line we require that
U�n��x� > −∞ for x > −�n+ 1� and limx↘−�n+1�U�n��x� = −∞; on the positive
end of the real line we impose the requirement AE+∞�U�n�� < 1. If U already
satisfiesAE+∞�U� < 1, we don’t have to modifyU on �+ and therefore assume
in this case that U�n��x� = U�x�, for x ≥ 0.
In the case when U has reasonable asymptotic elasticity and U�0� > 0, we

choose the U�n�’s in addition in such a way that the estimates in Corollary
4.2 below hold true, uniformly in n ∈ �. This technical issue will be used in
Step 4 of the proof of Theorem 2.2 and it is easy to verify that this is always
possible.
Denote by V�n� the conjugate function of U�n� and observe that U�n� and

V�n� increase stationarily to U and V respectively.
The function Ũ�n��x� = U�n��x − �n + 1�� is finitely valued for x > 0, and

satisfies the requirements of Theorem 2.2 of [17]; therefore, fixing x > 0, and
using the notation of [17], there exists a unique optimal solution X̃�n��x� =
x+ �Hn ·S� ∈ ��x� to the optimization problem

ũ�n��x� = sup
X∈��x�

E
[
Ũ�n��XT�

]
� x > 0�(15)
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Note that it does not matter in the above optimization problem whether
we optimize over the set ��x� of non-negative processes as introduced in [17]
or the set �b�x� as defined in 1.2 above: the assumption � e�S� �= � implies
that for a process of the form X = x + �H ·S� which is uniformly bounded
from below and such that XT ≥ 0 we already have Xt ≥ 0, for all 0 ≤ t ≤ T
(compare [7] for this easy fact).
Hence by a simple shift on the real line, for x > −�n + 1�, the process

X̂�n��x� �= X̃�n��x+n+1�− �n+1� is the optimal solution to the optimization
problem

u�n��x� = sup
X∈�b�x�

E
[
U�n��XT�

]
� x > −�n+ 1��(16)

Clearly we have

u�n��x� = ũ�n��x+ n+ 1�� x > −�n+ 1��(17)

Passing to the dual problem, fix x > −�n + 1� and let y = �u�n��′�x� =
�ũ�n��′�x+ n+ 1�. Denoting by Ṽ�n� (resp. ṽ�n�) the conjugate function to Ũ�n�

(resp. ũ�n�) and letting Ỹ
�n�
T �y� = �Ũ�n��′�X̃�n�

T �x + n + 1�� = �U�n��′�X̂�n�
T �x��

we infer from Theorem 2.2 of [17] that Ỹ�n�
T �y� is an element of � �y� (this

definition is recalled after (20) below) and that it satisfies

ṽ�n��y� = inf
YT∈� �y�

E
[
Ṽ�n� �YT�

]
= E
[
Ṽ�n�
(
Ỹ
�n�
T �y�

)]
� y > 0�(18)

To relate Ṽ�n� and ṽ�n� to the conjugate functions V�n� and v�n� of U�n� and
u�n� respectively, observe the simple equalities

V�n��y� = Ṽ�n��y� + �n+ 1�y�
v�n��y� = ṽ�n��y� + �n+ 1�y�

(19)

which directly follow from the conjugacy relations.
Hence we obtain

v�n��y� = inf
YT∈� �y�

E
[
Ṽ�n��YT�

]
+ �n+ 1�y

= E
[
Ṽ�n�
(
Ỹ
�n�
T �y�

)]
+ �n+ 1�y(20)

= E
[
V�n�
(
Ỹ
�n�
T �y�

)]
+ �n+ 1�

(
y−E

[
Ỹ
�n�
T �y�

])
�

The last formula merits some comment: recall from [17] that � �y� consists
of the non-negative supermartingales �Yt�0≤t≤T starting at Y0 = y and such
thatXtYt is a supermartingale, for eachX ∈ ��1�, and that � �y� denotes the
set of all non negative random variables dominated by some terminal value
YT, where Y ranges through � �y�. In particular E�YT� ≤ y and we have
equality iff YT/y is the Radon-Nikodym derivative of some Q ∈ � a�S�, in
which case Yt = E�dQ

dP
�Ft�.
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If E�Ỹ�n�
T �y�� = y then the above formula reduces to the pleasant equality

v�n��y� = E
[
V�n�
(
Ỹ
�n�
T �y�

)]
�(21)

the formula one would expect naively. In general, however, the additional term
�n+ 1� �y−E�Ỹ�n�

T �y��� has to be added; for an interpretation of this term as
the action of the singular part of the optimal solution Ỹ�n��y� on the function
V�n� we refer to [5].
Summing up what we have obtained so far for the dual problem to the

primal problem (16): using the notation from [17], the conjugate function v�n�

to the value function u�n� defined in (16) is given by

v�n��y� = inf
YT∈� �y�

E
[
V�n��YT�

]
+ �n+ 1� �y−E�YT�� � y > 0�(22)

and, for y = �u�n��′�x�, the unique optimal solution to (22) is given by Ŷ�n�
T �=

Ỹ
�n�
T ∈ � �y� via the formula

Ŷ
�n�
T �y� =

(
U�n�
)′ (

X̂
�n�
T �x�

)
�(23)

We now can formulate the theorem pertaining to the case of complete fi-
nancial markets:

Theorem 2.1 (Complete case). Assume that �1� and �9� hold true and that
� e�S� = �Q� where Q is a probability measure equivalent to P. Then�

(i) The value function u�x� defined by �8� is a continuously differentiable
concave function defined and finitely valued on the real line �; the value
function v�y� defined by �14� is finitely valued, for at least one y > 0; it is
continuously differentiable and strictly convex on the interior of the interval
�y � v�y� <∞�. The functions u and v are conjugate, that is,

v�y� = sup
x∈�

�u�x� − xy�� y > 0�

u�x� = inf
y>0
�v�y� + xy�� x ∈ ��

(24)

(ii) Denote by �α�β�⊆ �+ the �possibly empty� interior of the interval �y �
v�y� <∞� and denote by �a� b�⊆ � the �possibly empty� image of the interval
�α�β� under the map −v′. For a real number x in the closure of �a� b�, let
y = u′�x�; the optimal solution FT�x� ∈ �U�x� to �6� exists, is unique and
given by the formula

FT�x� = I

(
y
dQ

dP

)
�(25)

The random variable FT�x� equals the terminal value X̂T�x� of a uniformly
integrable Q-martingale �X̂t�x��0≤t≤T starting at X̂0�x� = x, which is of the

form X̂�x� = x+ �H ·S�, for a predictable S-integrable process H.
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If �α�β� is not empty, then, for x ∈ �\�a� b�, the optimal solution to �6� does
not exist.
(iii) The value function u�x� is strictly concave on �a� b� and affine on the

�possibly empty� intervals � −∞� a� and �b�∞�.
(iv) For y in the closure of �α�β� and x in the closure of �a� b� we have the

relations

v′�y� = E

[
dQ

dP
V′
(
y
dQ

dP

)]
�

xu′�x� = E
[
X̂T�x�U′

(
X̂T�x�

)]
�

(26)

where in the boundary case y = α �resp. y = β� the term v′�y� has to be
interpreted as a right �resp. left� derivative.

Proof. Consider the sequence of value functions v�n� � �+ → � introduced
at the beginning of this section. As � e�S� = �Q� we clearly have

v�n��y� = E

[
V�n�
(
y
dQ

dP

)]
(27)

and

v�y� = E

[
V

(
y
dQ

dP

)]
�(28)

It follows from the monotone convergence that, for y > 0, v�n��y� increases
to v�y�; as regards �u�n��x��∞n=1, for x ∈ �, it is obvious that this sequence
increases to a limit - let us denote it by u�∞��x� - for which we have u�∞��x� ≤
u�x� as u�n��x� ≤ u�x�, for each n ∈ �.
To verify that u�∞��x� indeed equals u�x�, fix x ∈ � and find, for ε > 0,

GT ∈ � b
U�x� such that u�x� < E�U�GT�� + ε. If XT is the terminal value of a

process X ∈ �b�x� such that GT ≤ XT we have u�x� < E�U�XT�� + ε < ∞
where the last inequality follows from (9). As XT is uniformly bounded from
below we have that E�U�n��XT�� is finite, for n sufficiently large, and by the
monotone convergence theorem, this sequence converges to E�U�XT��, which
readily implies that u�x� < u�n��x� + 2ε, for n large enough.
Summing up: we have shown that u�n� and v�n� increase monotonically to

u and v respectively. As u�n� and v�n� are conjugate it follows that u and v are
conjugate too.
Next we observe that �u�x��x∈� is a finitely valued, concave non-decreasing

function. Noting that the inequality u�x� ≥ U�x� implies that u�∞� = U�∞�,
we deduce from (9) that u�x� < u�∞�, for each x ∈ �, which implies that
u is strictly increasing. Hence there is at least one y > 0 such that, for c
sufficiently large, the affine function h�x� = c + yx dominates the function
u�x�; hence we have that �y > 0 � v�y� <∞� is a non-empty interval and we
denote by α ≥ 0 and β ≤ ∞ the left and right endpoints of this interval.
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We also deduce from the strict convexity of V that v is strictly convex on
�α�β� and therefore, using elementary properties of the duality relation of
conjugate functions, that u is continuously differentiable on �. ✷

We now shall distinguish the cases that �α�β� is degenerate or not:

Case 1. 0 ≤ α < β ≤ ∞.
To verify formula (26) for v′�y� and y ∈�α�β�, let �yn�∞n=1 be a sequence in

�α�β� converging monotonically to y. We then have

lim
n→∞

v�yn� − v�y�
yn − y

= lim
n→∞

E
[
V
(
yn

dQ
dP

)]
−E
[
V
(
ydQ

dP

)]
yn − y

= lim
n→∞E

[
dQ

dP
V′
(
ỹn

dQ

dP

)]
(29)

= E

[
dQ

dP
V′
(
y
dQ

dP

)]
where we have used the mean-value theorem of differential calculus and ỹn =
ỹn�ω� is a random variable taking values in the interval between y and yn; the
last equality follows from the continuity of V′ and the monotone convergence
theorem, noting that, if �yn�∞n=1 monotonically converges to y, the sequence of
random variables �ỹn�∞n=1 does so too.
Hence we have proved that

v′�y� = E

[
dQ

dP
V′
(
y
dQ

dP

)]
for y ∈�α�β��(30)

which shows in particular that v is a continuously differentiable function on
�α�β�.
Letting −b = limy↘α v

′�y� and −a = limy↗β v
′�y�, observe that −v′ induces

a bijection between �α�β� and �a� b�.
What happens at the boundary points α and β? We only discuss the left

limit point α ≥ 0, the case of the right limit point β being analogous: if the
left limit

v�α+0� �= lim
y↘α

v�y�(31)

is finite, then we have

v�α+0� = E

[
V

(
α
dQ

dP

)]
= v�α��(32)

Similarly, if the left limit

v′�α+0� �= lim
y↘α

v′�y�(33)
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is finite, then we have

v′�α+0� = E

[
dQ

dP
V′
(
α
dQ

dP

)]
�(34)

In the case v�α� < ∞ we also have v′�α+0� = v′r�α�, where v′r�α� denotes the
right derivative of v at α, while, in the case v�α� = ∞ we obtain v′�α+0� = ∞
which also can be interpreted as a right derivative of v at α.
To verify the above assertions observe that (34) follows immediately from

(30) and the monotone convergence theorem using the monotonicity of V′. The
assertion (32) similarly follows from the finiteness of v�y� = E�V�ydQ

dP
�� on

�α�β� and a slight adaptation of the monotone convergence theorem: first note
that, in the case α = 0, the formula v�0� = E�V�0dQ

dP
�� = V�0� trivially holds

true, hence we may assume that α > 0. Writing ymin = argminV�y� = U′�0�,
split � into the sets A1 = �αdQ

dP
> ymin�, A2 = �αdQ

dP
< ymin/2� and A3 =

�αdQ
dP

∈ �ymin/2� ymin��. We then verify

lim
n→∞E

[
V

(
yn

dQ

dP
χAi

)]
= E

[
V

(
y
dQ

dP
χAi

)]
� i = 1�2�3�(35)

In the cases i = 1 and i = 2 we apply the monotone convergence theorem,
where we consider n large enough such that yn < 2α. In the case i = 3 we
apply Lebesgue’s theorem, for n large enough such that yn < 2α, noting that
V is bounded on �ymin/2�2ymin�.
We have thus proved assertions (32) and (34) and the subsequent remark

on the right derivative v′r�α� now follows too.
For x ∈ � ∩ �a� b� and y = u′�x� ∈ �α�β� we define

X̂T�x� �= I

(
y
dQ

dP

)
(36)

so that

EQ

[
X̂T�x�

]
= E

[
dQ

dP
I

(
y
dQ

dP

)]
= −v′�y� = x�(37)

By the preceding discussion, the above equality also holds true in the lim-
iting cases 0 < α = y and y = β < ∞, provided that v′�y� is finite [where in
these boundary cases v′�y� has to be interpreted as the right or left derivative
of v at α and β respectively].
Using the hypotheses � e�S� = �Q� we may apply the martingale repre-

sentation theorem (see [21]): equality (37) implies that X̂T�x� is the termi-
nal value of a uniformly integrable Q-martingale

(
X̂t�x�

)
0≤t≤T

starting at

X̂0�x� = x.
We still have to verify that X̂T�x� =� FT�x� is in �U�x�; we shall show

that there is in a sequence X�n��x� ∈ �b�x� such that U�X�n�
T �x�� converges to

U�X̂T�x�� in the norm of L1�P�.
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For x ∈ � and, for n ∈ �, verifying n > −x, define X�n�
T �x� by

X
�n�
T �x� = �X̂T�x� ∨ �−n�� − δnχ�X̂T>x�(38)

where δn ≥ 0 is chosen in such a way that EQ�X�n�
T �x�� = x. ClearlyX�n�

T �x� is
bounded from below by −n. By the martingale representation theoremX

�n�
T �x�

is the terminal value of a uniformly integrable Q-martingale X�n��x� ∈ �b�x�.
As EQ�X̂T�x�� = x it follows that δn decreases to zero; this easily implies

that E��U�X̂T�x�� −U�X�n�
T �x���� tends to zero.

To see that X̂T�x� really is the optimal solution to (6) we note that, for
x ∈ � ∩ �a� b�and y = u′�x�, we have

E
[
U
(
X̂T�x�

)]
= E

[
U

(
I

(
y
dQ

dP

))]
= E

[
U

(
I

(
y
dQ

dP

))]
− yE

[
dQ

dP
I

(
y
dQ

dP

)]
+yE

[
dQ

dP
I

(
y
dQ

dP

)]
= E

[
V

(
y
dQ

dP

)]
+ yx

= v�y� + yx

= u�x��

(39)

The uniqueness of X̂�x� is a consequence of the strict concavity of U and the
fact that X̂�x�may be written as X̂�x� = x+�H·S� follows from Yor’s theorem
(see [21] and [15] for the vector valued case). Finally, the strict concavity of u on
the interval �a� b� now follows from the existence of the optimal solutions X̂�x�,
for x ∈ �a� b� ∩ � by using Scholium 5.1 of [17]. The latter result also implies
that, for x ∈ �\�a� b�, the optimal solution FT ∈ �U�x� does not exist. Indeed,
the fact that u is affine on the intervals �−∞� a� and �b�∞� is a straightforward
consequence of the conjugacy of u and v. Supposing that there exists x < a

(or x > b) such that X̂�x� exists, then by considering �X̂�x� + X̂�a��/2 (or
�X̂�x� + X̂�b��/2) and using the argument of Scholium 5.1 one arrives at a

contradiction to u
(
x+a
2

) = u�x�+u�a�
2 (or u

(
x+b
2

)
= u�x�+u�b�

2 ).

We still have to show the second formula in (26)

xu′�x� = E
[
U′
(
X̂T�x�

)
X̂T�x�

]
� x ∈ �a� b� ∩ ��(40)

But (40) simply is a reformulation of formula (30) observing that x = −v′�y�,
u′�x� = y, X̂T�x� = −V′�ydQ

dP
� and U′�X̂T�x�� = ydQ

dP
.

Case 2. 0 < α = β <∞.
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First we note that this case may indeed occur due to the lack of reasonable
asymptotic elasticity (see proposition 3.5 below).
In this case we have v�α� < ∞, while v�y� = ∞, for all y �= α. Assertions

(ii) and (iv) then are vacuous and assertions (i) and (iii) are trivially satisfied
as–by the conjugacy of u and v –the function u�x� is affine in x ∈ �.
The proof of Theorem 2.1 now is complete. ✷

We now turn to the case of incomplete markets, that is, when � e�S� is not
reduced to a singleton �Q�.

Theorem 2.2 (Incomplete case, reasonable asymptotic elasticity). Assume
that �1�� �2� and �9� hold true and that U has reasonable asymptotic elas-
ticity. Then:

(i) The value functions u and v are finitely valued, strictly concave �resp.
convex�� differentiable functions defined on � �resp. �+�� they are conjugate
and satisfy

u′�∞� = 0� v′�0� = −∞�

u′�−∞� = ∞� v′�∞� = ∞�
(41)

The value function u has reasonable asymptotic elasticity.

(ii) For y > 0, the optimal solution Q̂�y� ∈� a�S� to the dual problem �14�
exists, is unique and the map y !→ Q̂�y� is continuous in the variation norm.
(iii) For x ∈ � the optimal solution F̂T�x� ∈ �U�x� to the primal problem

�7� exists, is unique and is given by

F̂T�x� = I

(
y
dQ̂�y�
dP

)
�(42)

where u′�x� = y.

(iv) If Q̂�y� ∈� e�S� and x = −v′�y�, then F̂T�x� equals the terminal value
X̂T�x� for a process of the form X̂t�x� = x+�H·S�t, whereH is predictable and

S-integrable, such that X̂ is a uniformly integrable martingale under Q̂�y�.
(v) We have the formulae

v′�y� = E

[
dQ̂�y�
dP

V′
(
y
dQ̂�y�
dP

)]
�

xu′�x� = E
[
X̂T�x�U′

(
X̂T�x�

)]
�

(43)

where the usual rule 0 ·∞ = 0 is applied, if the integrands are of this form.

Proof. Without loss of generality we assume thatU�0� > 0 so thatV�y� >
0, for all y > 0. Let U�n�, V�n�, u�n� and v�n� be defined as in the beginning
of this section. Recall that we have chosen U�n� such that the estimates of
Corollary 4.2 hold true, uniformly in n ∈ �.
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We break the proof into several steps:
Step 1� limn→∞ v�n��y� < ∞, for each y > 0, and the function v�∞��y� =

limn→∞ v�n��y� is bounded on compact subsets of �0�∞�. If �yn�∞n=1 tends to
y > 0, then v�n��yn� tends to v�∞��y�.
First note that �v�n��y��∞n=1 is bounded for at least one y > 0: indeed, simi-

larly as in the proof of Theorem 2.1 we deduce from the fact that u�x� < U�∞�,
for each x ∈ �, that the conjugate function to u is finite for at least one
y > 0. As u�n� ≤ u, for all n ∈ �, and v�n� is conjugate to u�n� we have
limn→∞ v�n��y� <∞.
Using Theorem 2.2 of [17] we may find Q�n� ∈� e�S� such that

sup
n

E

[
V�n�
(
y
dQ�n�

dP

)]
<∞�

Now we use the assumption that U has reasonable asymptotic elasticity. It
follows from Corollary 4.2 below and the discussion at the beginning of this
section that, for y > 0, we can find a constant C > 0, s.t. the estimate

lim
n→∞v�n��y� ≤ lim

n→∞E

[
V�n�
(
y
dQ�n�

dP

)]

≤ sup
n

CE

[
V�n�
(
y
dQ�n�

dP

)]
<∞�

(44)

holds true uniformly in n ∈ � and y ranging in a compact subset of �0�∞� (the
constant C depending on this compact subset of �0�∞�). This also implies the
last assertion of Step 1 in view of the convexity and monotone convergence of
the functions v�n�.

Step 2� Denote by �Ŷ�n�
T �yn��∞n=1 ∈ � �yn� the optimal solution to the opti-

mization problem (22) and let �yn�∞n=1 tend to y > 0.
Then �Ŷ�n�

T �yn��∞n=1 converges in the norm of L1����T�P� to a random
variable ŶT�y� which satisfies

y = E
[
ŶT�y�

]
�(45)

From (22) we have the formula

v�n��yn� = E
[
V�n�
(
Ŷ
�n�
T �yn�

)]
+ �n+ 1�

(
yn −E

[
Ŷ
�n�
T �yn�

])
�(46)

As �v�n��yn��∞n=1 tends to v�∞��y� < ∞, as V�n� ≥ 0 and E�Ŷ�n�
T �yn�� ≤ yn, we

immediately obtain that

lim
n→∞

(
yn −E

[
Ŷ
�n�
T �yn�

])
= 0�(47)

In fact, we have a stronger result, namely

v�∞��y� = lim
n→∞E

[
V�n�
(
Ŷ
�n�
T �yn�

)]
�(48)
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or, what by (46) amounts to the same,

lim
n→∞�n+ 1�

(
yn −E

[
Ŷ
�n�
T �yn�

])
= 0�(49)

Indeed, if (49) were wrong, we could find α > 0 such that, for infinitely
many n ∈ �,

�n+ 1�
(
yn −E

[
Ŷ
�n�
T �yn�

])
> α�(50)

Find ε > 0 such that supk v
�k��yk� < α�1−ε�

4ε , and find n > m such that (50)
holds true and λ = ym

yn
is close enough to 1 so that (151) below (see corollary 4.2)

is satisfied uniformly for all V�n�, and such that �n+1−�m+1�ym

yn
� > �n+1�/2

and v�n��yn� < v�m��ym� + α/4 hold true to estimate

v�m��ym� ≤ E

[
V�m�

(
ym

yn

Ŷ
�n�
T �yn�

)]
+ �m+ 1�

(
ym −E

[
ym

yn

Ŷ
�n�
T �yn�

])
≤ E

[
V�n�
(
ym

yn

Ŷ
�n�
T �yn�

)]
+ �m+ 1�ym

yn

(
yn −E

[
Ŷ
�n�
T �yn�

])
≤ �1+ ε�E

[
V�n�
(
Ŷ
�n�
T �yn�

)]
+ �n+ 1�

(
yn −E

[
Ŷ
�n�
T �yn�

])
−
(
n+ 1− �m+ 1�ym

yn

)(
yn −E

[
Ŷ
�n�
T �yn�

])
≤ �1+ ε�v�n��yn� − α/2

< v�m��ym��

(51)

a contradiction showing (48).
To show that the sequence �Ŷ�n�

T �yn��∞n=1 converges in the norm of L1�P�
we adopt a strategy which will turn out to be useful several times in the
subsequent proof: we shall show that this sequence is uniformly integrable
and Cauchy in the topology of convergence in measure; this will readily imply
the convergence of �Ŷ�n�

T �yn��∞n=1 in the norm of L1�P� to a random variable
ŶT�y� ∈ L1�P�.
We start with the uniform integrability:
So suppose that �Ŷ�n�

T �yn��∞n=1 fails to be uniformly integrable, that is, there
is α > 0 such that, for each C > 0,

lim sup
n→∞

E
[
Ŷ
�n�
T χ�Ŷ�n�

T ≥C�
]
> α�(52)

It follows from the inequality

V�n��z� ≥ U�n��−n� + nz(53)

and the assumption U�n��−n� > −∞ that

lim
z→∞

V�n��z�
z

≥ n�(54)
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Fix n ∈ �, find C�n� > 0 such that V�n��z� ≥ �n− 1�z, for z ≥ C�n�, and find
m > n such that

E�Ŷ�m�
T �ym�χ�Ŷ�m�

T �ym�≥C�n��� > α�(55)

Using (22),

v�m��ym� ≥ E
[
V�m�

(
Ŷ
�m�
T �ym�

)]
≥ E
[
V�n�
(
Ŷ
�m�
T �ym�

)]
≥ E
[
V�n�
(
Ŷ
�m�
T �ym�

)
χ�Ŷ�m�

T �ym�≥C�n��
]

≥ E
[
�n− 1�Ŷ�m�

T �ym�χ�Ŷ�m�
T �ym�≥C�n��

]
≥ �n− 1�α�

(56)

which contradicts the boundedness of �v�m��ym��∞m=1 showing the uniform in-
tegrability of �Ŷ�n�

T �yn��∞n=1.
To show that �Ŷ�n�

T �yn��∞n=1 is Cauchy with respect to the topology of con-
vergence in measure, suppose to the contrary that there is α > 0 such that
there are arbitrarily large n and m verifying

P
[
�Ŷ�n�

T �yn� − Ŷ
�m�
T �ym�� > α

]
> α�(57)

As V�n� increases to V stationarily on compact subsets of �0�∞� and, in
the case V�0� <∞, stationarily on compact subsets of �0�∞�, we may use the
boundedness of �v�n��yn��∞n=1 to find N ∈ � and a compact set K contained in
�y ≥ 0 � VN�y� = V�y� <∞� such that, for n ≥N,

P
[
Ŷ
�n�
T �yn� �∈K

]
< α/3�(58)

By the strict convexity of V and the compactness of K we may find η > 0
such that, for y1� y2 ∈K, �y1 − y2� > α, we have

V

(
y1 + y2
2

)
≤ V�y1� +V�y2�

2
− η�(59)

Find ε > 0 small enough such that v�k��yk� < αη
6ε , for all k ∈ �, and find

n > m ≥N, such that (57) holds true, v�n��yn� < v�m��ym�+ αη
3 , and such that

λ = ym

yn
is close enough to 1 so that λ < 1 + ε and (151) holds true uniformly



OPTIMAL INVESTMENT IN INCOMPLETE MARKETS 711

for all V�n� to estimate

v�m��ym�

≤ E

V�m�

 ym

yn
Ŷ
�n�
T �yn� + Ŷ

�m�
T �ym�

2


+�m+ 1�

ym −E

 ym

yn
Ŷ
�n�
T �yn� + Ŷ

�m�
T �ym�

2


≤
(
E

[
V�m�

(
ym

yn

Ŷ
�n�
T �yn�

)]
+ �m+ 1�

(
ym −

ym

yn

E
[
Ŷ
�n�
T �yn�

])
+E
[
V�m�

(
Ŷ
�m�
T �ym�

)]
+ �m+ 1�

(
ym −E

[
Ŷ
�m�
T �ym�

]))
/2− αη

3

≤
(
E

[
V�n�
(
ym

yn

Ŷ
�n�
T �yn�

)]
+ �n+ 1�ym

yn

(
yn −E

[
Ŷ
�n�
T �yn�

])
+E
[
V�m�

(
Ŷ
�m�
T �ym�

)]
+ �m+ 1�

(
ym −E

[
Ŷ
�m�
T �ym�

]))
/2− αη

3

≤
(
�1+ ε�v�n��yn� + v�m��ym�

)
/2− αη

3

≤ v�m��ym� −
αη

6
�

(60)

This contradiction shows that �Ŷ�n�
T �yn��∞n=1 is Cauchy in measure and

therefore converges in the norm of L1�P� to a random variable which we
denote by ŶT�y�.
Equation (45) now follows from (47).
Step 3� For �yn�∞n=1 tending to y > 0, the sequence �V�n��Ŷ�n�

T �yn���∞n=1
tends to V�ŶT�y�� in the norm of L1����T�P�.
For y > 0, the probability measure Q̂�y� defined by dQ̂�y�

dP
= ŶT�y�/y is an

element of� a�S� and the unique minimizer to the dual optimization problem
(14).
The value function v defined in (14) satisfies v�y� = v�∞��y� = E�V�ŶT�y���,

and this function is strictly convex.
The maps y !→ Q̂�y� and y !→ V�ŶT�y�� are continuous in the variation

norm.
Clearly the measure Q̂�y� defined above is a probability measure absolutely

continuous with respect to P.
To verify that S is a local martingale under Q̂�y�, first note that, using

the proposition 3.1 of [17] and the notation introduced there, ŶT�y� ∈ � �y�
as ŶT�y� is the limit in probability of the elements y

yn
Ŷ
�n�
T �yn� ∈ � �y�. If

Z denotes the density process Zt = E�dQ̂�y�
dP

��t� and τ is a stopping time
such that the stopped process Sτ = �11��0�τ�� ·S� is bounded, it follows from
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the definition of � �y� that ZtS
τ
t as well as −ZtS

τ
t are supermartingales and

therefore martingales; by the local boundedness assumption on S this implies
that S is a local martingale under Q̂�y�.
To check that Q̂�y� is indeed the minimizer of (14), it suffices to show that

v�∞��y� ≥ E�V�ŶT�y��� which follows from (48) and Fatou’s lemma:

v�∞��y� = lim
n→∞E�V�n��Ŷ�n�

T �yn���
≥ E� lim

n→∞V�n��Ŷ�n�
T �yn���

= E�V�ŶT�y��� ≥ v�y��
(61)

As limn→∞ v�n��y� = v�∞��y� ≤ v�y� we have equalities above and obtain in
particular that

v�∞��y� = v�y��(62)

The strict convexity of v now follows from the strict convexity of the function
V and the convexity of the set � a�S�.
Noting that �V�n��Ŷ�n�

T �yn���∞n=1 is a sequence of positive random variables
in L1�P� converging to V�ŶT�y�� in measure and such that the expectations
E�V�n��Ŷ�n�

T �yn��� converge to the expectation E�V�ŶT�y���, we deduce that
�V�n��Ŷ�n�

T �yn���∞n=1 converges to V�ŶT�y�� in the norm of L1�P�.
The continuity of the map y !→ Q̂�y� is a straight-forward consequence of

the results of step 2: indeed, it suffices to show that for �yk�∞k=1 tending to
y > 0 we have

lim
k→∞

"ŶT�yk� − ŶT�y�"L1�P� = 0�(63)

Choosing an increasing sequence �nk�∞k=1 such that
lim
k→∞

"ŶT�yk� − Ŷ
�nk�
T �yk�"L1�P� = 0(64)

the result follows from step 2.
The continuity of y !→ V�ŶT�y�� follows in the same way from the conver-

gence of �V�n��Ŷ�n�
T �Yn���∞n=1 in the variation norm.

Step 4. The map y !−→ dQ̂�y�
dP

V′�ydQ̂�y�
dP

� is continuous in the variation
norm. In fact, for �yn�∞n=1 tending to y > 0, the sequence �Ŷ�n�

T �yn��V�n��′
�Ŷ�n�

T �yn���∞n=1 tends to ŶT�y�V′�ŶT�y�� in the variation norm.
The sequence �ŶT�y��V�n��′�Ŷ�n�

T �yn���∞n=1 converges to ŶT�y�V′�ŶT�y�� in
measure and the positive parts tend to the positive part in the variation norm;
(this is just a preliminary result as we shall only be able in step 6 below to
show that the negative parts converge in the variation norm too).
By Corollary 4.2(ii) below, there is a constant C such that

y
∣∣∣(V�n�

)′
�y�
∣∣∣ ≤ CV�n��y� for y ≥ 0�(65)

uniformly in n ∈ �, where, in the case y = 0, we adopt the rule 0 ·∞ = 0.
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Hence the sequence of random variables �Ŷ�n�
T �yn��V�n��′�Ŷ�n�

T �yn���∞n=1 is
dominated in absolute value by the L1-convergent sequence
�CV�n��Ŷ�n�

T �yn���∞n=1 and therefore uniformly integrable. By the continuity
of the map y !→ yV′�y�, which holds true, for y > 0, and, in the case V�0� =
U�∞� <∞, for y ≥ 0 too, we also have that �Ŷ�n�

T �yn��V�n��′�Ŷ�n�
T �yn���∞n=1 con-

verges in measure to ŶT�y�V′�ŶT�y��, and therefore in the norm of L1�P�.
The first assertion of step 4 now follows from the second one by the same

easy argument as at the end of step 3 above.
We now turn to the last assertion of step 4. The convergence in measure

of the sequence �ŶT�y��V�n��′�Ŷ�n�
T �yn���∞n=1 towards ŶT�y�V′�ŶT�x�� being

again obvious, we have to prove the uniform integrability of the positive parts

ŶT�y�
(
V�n�
)′ (

Ŷ
�n�
T �yn�

)
+

= ŶT�y�
(
V�n�
)′ (

Ŷ
�n�
T �yn�

)
χ��V�n��′�Ŷ�n�

T �yn��≥0� for n ∈ ��
(66)

To do so, it clearly will suffice to show the uniform integrability of the double
sequence

Ŷ
�m�
T �ym�

(
V�n�
)′ (

Ŷ
�n�
T �yn�

)
χ��V�n��′�Ŷ�n�

T �yn��≥0�� m�n ∈ �� m ≥ n�(67)

For this we use the inequality

Ŷ
�m�
T �ym�

(
V�n�
)′ (

Ŷ
�n�
T �yn�

)
χ��V�n��′�Ŷ�n�

T �yn��≥0�

≤ max
{
Ŷ
�m�
T �ym�

(
V�m�
)′ (

Ŷ
�m�
T �ym�

)
χ��V�n��′�Ŷ�n�

T �yn��≥0� �

Ŷ
�n�
T �yn�

(
V�n�
)′ (

Ŷ
�n�
T �yn�

)
χ��V�n��′�Ŷ�n�

T �yn��≥0��
}

m�n ∈ �� m ≥ n�

(68)

which is easily verified by distinguishing pointwise the cases Ŷ
�m�
T �ym� ≥

Ŷ
�n�
T �yn� and Ŷ

�m�
T �ym� < Ŷ

�n�
T �yn�.

As the family of functions on the right hand side of (68) is uniformly inte-
grable we have completed the proof of step 4.

Step 5. We have the formula

v′�y� = E

[
dQ̂�y�
dP

V′
(
y
dQ̂�y�
dP

)]
for y > 0�(69)

To prove this formula first observe that the term on the right hand side is
a continuous function of y > 0 by step 4. As regards the term on the left hand
side we deduce from the convexity of v that the derivative v′�y� exists, for all
but countably many y’s. Hence it will suffice to show (69) under the additional
assumption that v′�y� exists.
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To do so we proceed similarly as in the proof of Theorem 2.1 above (compare
also [17], Lemma 3.10). Let �yn�∞n=1 be a sequence tending to y > 0 such that
v′�y� exists.
We shall show the two inequalities:

lim sup
n→∞

v�yn� − v�y�
yn − y

≤ E

[
dQ̂�y�
dP

V′
(
y
dQ̂�y�
dP

)]
(70)

and

lim inf
n→∞

v�yn� − v�y�
yn − y

≥ E

[
dQ̂�y�
dP

V′
(
y
dQ̂�y�
dP

)]
�(71)

First we observe that it will suffice to show the above inequalities where the
terms v�yn�−v�y�

yn−y are replaced by v�n��yn�−v�n��y�
yn−y . Indeed, observe that, for y > 0

such that v′�y� exists, we easily deduce form the convexity and the monotone
convergence of the v�n�’s that

lim
n→∞

v�yn� − v�y�
yn − y

= lim
n→∞

v�n��yn� − v�n��y�
yn − y

�(72)

To prove (70) we therefore fix y > 0 such that v′�y� exists and estimate

lim sup
n→∞

v�yn� − v�y�
yn − y

= lim
n→∞

v�n��yn� − v�n��y�
yn − y

≤ lim sup
n→∞

E
[
V�n�
(
yn

y
Ŷ
�n�
T �y�

)]
−E
[
V�n�
(
Ŷ
�n�
T �y�

)]
yn − y

(73)

≤ lim sup
n→∞

E

Ŷ�n�
T �y��V�n��′

(
ỹn

y
Ŷ
�n�
T �y�

)
y


= E

[
dQ̂�y�
dP

V′
(
y
dQ̂�y�
dP

)]
�

where, as in the proof of Theorem 2.1, we have applied the mean value the-
orem of differential calculus and the random variables ỹn take values be-
tween y and yn. The last equality follows from the fact that the sequence

Ŷ
�n�
T �y��V�n��′� ỹn

y
Ŷ
�n�
T �y�� tends to the random variable ydQ̂�y�

dP
V′�ydQ̂�y�

dP
� al-

most surely and, using corollary 4.2(i) and (ii) uniformly in n ∈ � below, is dom-
inated in absolute value by the uniformly integrable sequence
�CV�n��Ŷ�n�

T �y���∞n=1, for some constant C > 0.
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Regarding (71), fix again y > 0 such that v′�y� exists and estimate

lim inf
n→∞

v�yn� − v�y�
yn − y

= lim
n→∞

v�n��yn� − v�n��y�
yn − y

≥ lim inf
n→∞

E
[
V�n�
(
Ŷ
�n�
T �yn�

)]
−E
[
V�n�
(

y
yn
Ŷ
�n�
T �yn�

)]
yn − y

(74)

= lim inf
n→∞ E

Ŷ�n�
T �yn��V�n��′

(
ỹn

yn
Ŷ
�n�
T �yn�

)
yn


= E

[
dQ̂�y�
dP

V′
(
y
dQ̂�y�
dP

)]
�

where in the last equality follows as in (73) above, this time using the uniform
integrability of the sequence �CV�n��Ŷ�n�

T �yn���∞n=1.
Step 6. For a sequence �yn�∞n=1 converging to y > 0, the sequence(

ŶT�y��V�n��′�Ŷ�n�
T �yn��

)∞
n=1

converges toward ŶT�y�V′�ŶT�y�� in the variation norm.
Observe that

E
[
ŶT�y��V�n��′�Ŷ�n�

T �yn��
]
= −EQ̂�y�

[
X̂

�n�
T �xn�

]
y ≥ −xny(75)

where xn = −�v�n��′�yn� and where we have used that the processes X�n�,
which start at X�n�

0 = xn and are integrals on S and uniformly bounded from
below, are Q̂�y�-supermartingales.
Similarly as in step 5 note that by the smoothness of v we have limn→∞ xn =

limn→∞−�v�n��′�yn� = −v′�y� = x.
Hence the sequence �ŶT�y��V�n��′�Ŷ�n�

T �yn���∞n=1 converges to ŶT�y�V′

�ŶT�y�� in the norm of L1�P�, as it converges in measure, the positive parts
are uniformly integrable and for the expectations we have the inequality

lim inf
n→∞ E

[
ŶT�y�

(
V�n�
)′ (

Ŷ
�n�
T �yn�

)]
≥ lim

n→∞�−xny� = −xy = v′�y�y(76)

= E
[
ŶT�y�V′

(
ŶT�y�

)]
�

Hence (76) implies that the sequence ŶT�y�
(
V�n�)′ (Ŷ�n�

T �yn�
)
converges in

the norm of L1�P�.
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Step 7. For x ∈ �, denote by X̂
�n�
T �x� ∈ �b�x� the optimal solution to the

primal problem (16).
The sequence �U�X̂�n�

T �x���∞n=1 converges in the variation norm to a ran-
dom variable U�F̂T�x��, where F̂T�x� is a � −∞�∞�-valued random variable,
belonging to �U�x�.
We have

lim
n→∞u�n��x� = u�x� = E

[
U
(
F̂T�x�

)]
�(77)

hence F̂T is the unique maximizer to the primal problem (6). Its relation to
the minimizer Q̂�y� of the dual problem (14) is given, for u′�x� = y, by

F̂T�x� = I
(
ŶT�y�

)
= I

(
y
dQ̂�y�
dP

)
�(78)

We also have that u and v are conjugate, as u�n� and v�n� are so, and u�n�

and v�n� converge monotonically to u and v, respectively.
Fix x ∈ � and deduce from (23) that X̂�n�

T �x� is given by

X̂
�n�
T �x� = I�n�

(
Ŷ
�n�
T �yn�

)
(79)

where yn is determined via �u�n��′�x� = yn. To show that �yn�∞n=1 converges
to y, observe that the concave functions u�n� increase to a function, which we
denote by u�∞�, and which is conjugate to v = v�∞�. As we have seen that v
is strictly convex on �+, the conjugate function u�∞� is smooth and therefore
�u�n��′ converges to �u�∞��′ pointwise (in fact, uniformly on compact subsets of
�), which proves that yn !→ y �= −v′�x�.
Next we show that

lim
n→∞

∥∥∥U (X̂�n�
T �x�

)
−U�n�

(
X̂

�n�
T �x�

)∥∥∥
L1�P�

= 0�(80)

Indeed, otherwise we could find α > 0 such that the above expression is
bigger than α, for infinitely many n’s, which gives rise to the following estimate
for infinitely many n’s

u�n+1��x� ≥ E
[
U�n+1�

(
X̂

�n�
T �x�

)]
= E
[
U
(
X̂

�n�
T �x�

)]
≥ E
[
U�n�
(
X̂

�n�
T �x�

)]
+ α

= u�n��x� + α�

(81)

where in the equality above we have used that U�n+1��x� coincides with U�x�,
for x ≥ −�n+ 1� and that X̂�n�

T �x� ≥ −�n+ 1�. This contradiction to (9) shows
(80).
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Hence we obtain from Steps 3 and 4

lim
n�m→∞E

[∣∣∣U (X̂�n�
T �x�

)
−U
(
X̂

�m�
T �x�

)∣∣∣]
= lim

n�m→∞E
[∣∣∣U�n�

(
X̂

�n�
T �x�

)
−U�m�

(
X̂

�m�
T �x�

)∣∣∣]
= lim

n�m→∞E
[∣∣∣U�n�

(
I�n�
(
Ŷ
�n�
T �yn�

))
−U�m�

(
I�m�
(
Ŷ
�m�
T �ym�

))∣∣∣]
≤ lim

n�m→∞

(
E
[∣∣∣U�n�

(
I�n�
(
Ŷ
�n�
T �yn�

))
− Ŷ

�n�
T �yn�I�n�

(
Ŷ
�n�
T �yn�

)
−
(
U�m�

(
I�m�
(
Ŷ
�m�
T �ym�

))
− Ŷ

�m�
T �ym�I�m�

(
Ŷ
�m�
T �ym�

))∣∣∣]
+ E
[∣∣∣Ŷ�n�

T �yn�I�n�
(
Ŷ
�n�
T �yn�

)
− Ŷ

�m�
T �ym�I�m�

(
Ŷ
�m�
T �ym�

)∣∣∣])
= lim

n�m→∞

(
E
[∣∣∣V�n�

(
Ŷ
�n�
T �yn�

)
−V�m�

(
Ŷ
�m�
T �ym�

)∣∣∣]
+ E
[∣∣∣Ŷ�n�

T �yn�I�n�
(
Ŷ
�n�
T �yn�

)
− Ŷ

�m�
T �ym�I�m�

(
Ŷ
�m�
T �ym�

)∣∣∣])
= 0�

(82)

So �U�X̂�n�
T �x���∞n=1 converges in the norm of L1�P� to a random variable

which we may write as U�F̂T�x��, where F̂T�x� is in �U�x� by the very defi-
nition of this set.
As E�U�F̂T�x��� = u�∞��x� we also have shown that u = u�∞�.
The formula

F̂T�x� = I
(
ŶT�y�

)
(83)

now follows from

X̂
�n�
T �x� = I�n�

(
Ŷ
�n�
T �yn�

)
� n ∈ ��(84)

where on both sides we pass to the limits in the topology of convergence in
measure.

Step 8� We have the formula

xu′�x� = E
[
F̂T�x�U′

(
F̂T�x�

)]
�(85)

Indeed, just as in the proof of Theorem 2.1 this formula now is just a refor-
mulation of formula (69).

Step 9� u�x� has reasonable asymptotic elasticity.
Indeed, by Corollary 4.2 we have that, for each λ > 0, there is a constant

C > 0 such that

V�λy� ≤ CV�y� for y > 0�(86)

and in view of the identity v�y� = E�V�ŶT�y��� established in (61) this in-
equality passes over to the value function v:

v�λy� ≤ Cv�y� for y > 0�(87)
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It follows from Proposition 4.1 below and [17], Lemma 6.1 that the latter
inequality implies the reasonable asymptotic elasticity of u and therefore in
particular the assertions (41).

Step 10� Supposing that Q̂�y� is equivalent toP and letting x verify u′�x� =
y, the formula

X̂t�x� = EQ̂�y�
[
F̂T�x�

∣∣�t

]
(88)

defines a uniformly integrable Q̂�y�-martingale, which is a stochastic inte-
gral on S starting at X0�x� = x, for a predictable S-integrable integrand
�Ĥt�x��0≤t≤T,

X̂t = x+ �Ĥ�x� ·S�t = x+
∫ t
0
Ĥu�x�dSu� 0 ≤ t ≤ T�(89)

First note that (88) well-defines a uniformly integrable Q̂�y�-martingale as
we have

EQ̂�y�
[∣∣∣F̂T�x�

∣∣∣] = E

[∣∣∣∣∣dQ̂�y�dP
I
(
ŶT�y�

)∣∣∣∣∣
]
<∞�(90)

We also note that X̂0�x� = x, as by (69) and (83) we have

EQ̂�y�
[
F̂T�x�

]
= E

[
dQ̂�y�
dP

I
(
ŶT�y�

)]
= −v′�y� = x�(91)

By Theorem 2.2 of [17] each X̂�n��x� is a stochastic integral on S starting
at X̂�n�

0 �x� = x for some integrand Ĥ�n��x�:

X̂
�n�
t = x+

(
Ĥ�n��x� ·S

)
t
� 0 ≤ t ≤ T�(92)

Our aim is to deduce the limiting formula (89). We know that the sequence of
terminal values �X̂�n�

T �x���∞n=1 converges to X̂T�x� in the norm of L1�Q̂�y��.
Indeed letting yn = �u�n��′�x� we have shown in step 6 that the sequence
−ydQ̂�y�

dP
X̂

�n�
T �x� = �ŶT�y��V�n��′�Ŷ�n�

T �yn���∞n=1 converges to ŶT�y�V′�ŶT�y��
= −ydQ̂�y�

dP
X̂T�x� in the norm of L1�P�, which amounts to the same thing.

If we knew that the processes X̂�n� were uniformly integrable Q̂�y�-martin-
gales we could apply Yor’s theorem [21] to deduce (89) from (92). But unfortu-
nately we only know that the processes X̂�n� are Q̂�y�-supermartingales [we
only have shown that they are u.i. martingales under Q̂�yn�] and, in fact,
there is no reason why they should be Q̂�y�-martingales.
Hence we have to work a bit harder and apply the more general methodol-

ogy as developed in [10].
First we want to control the negative parts of X̂�n�. Using the L1�Q̂�y��-

convergence of �X̂�n�
T �x��∞n=1, we may pass to a subsequence, still denoted by
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�X̂�n��∞n=1 such that
∑∞

n=1 "�X̂�n�
T �x�� − �X̂�n+1�

T �x��"L1�Q̂�y�� < ∞� Hence the
supremum over the negative parts

Z �= sup
n

(
X̂

�n�
T �x�

)
−

≤ �X̂�1�
T �x��− +

∞∑
n=1

∣∣∣∣ (X̂�n�
T �x�

)
−
(
X̂

�n+1�
T �x�

) ∣∣∣∣(93)

has finite expectation under Q̂�y�. Denoting by Zt = EQ̂�y��Z��t� the Q̂�y�-
martingale with terminal value Z = ZT, we define, for N ∈ �, the stopping
times

τN �= inf�t � 0 ≤ t ≤ T and Zt ≥N��(94)

where we define the inf over the empty set to equal T, and the functions wN

by

wN = ZτN
χ�τN<∞� +Nχ�τN=T��(95)

It is easy to verify that τN increases almost surely to T, that wN ∈ L1�Q̂�y��,
for each N ∈ �, and that, for fixed N, the sequence ��X̂�n��x��τN�∞n=1 of pro-
cesses stopped at time τN is bounded from below by the function wN.
Hence we are in a position to apply, for fixed N, Theorem D of [10]. To

avoid (mainly notational) difficulties pertaining to the repeated formation
of convex combinations we isolate the easy diagonalization argument before
we apply Theorem D of [10]: by Komlos’ theorem (compare [10], Theorem
1.3) we may find a sequence, denoted by �ξ1�n�∞n=1, of processes such that
ξ1�n ∈ conv�X̂�n��x�� X̂�n+1��x�� � � �� such that the sequence of random vari-
ables �ξ1�nτ1

�∞n=1 converges a.s.; next we form in a similar way a sequence of
convex combinations �ξ2�n�∞n=1 of the sequence of processes �ξ1�n�∞n=1 such that
�ξ2�nτ2

�∞n=1 converges a.s.; note that the a.s. convergence of �ξ2�nτ1
�∞n=1 still holds

true. Continuing in an obvious way we obtain a sequence ��ξk�n�∞n=1�∞k=1 of se-
quences of processes obtained by repeatedly taking convex combinations and
such that �ξk�nτj

�∞n=1 converges a.s., for each k and j = 1� � � � � k. The diagonal se-
quence of processes �ξn�n�∞n=1 then is a sequence of convex combinations of the
original sequence �X̂�n��x��∞n=1 and has the property that �ξn�nτj

�∞n=1 converges
a.s., for each j ∈ �.
Summing up, by passing to a sequence of convex combinations–which we

now still denote by the sequence of processes �X̂�n��x��∞n=1–we may and do
assume that, for each N ∈ �, the sequence of random variables �X̂�n�

τN �x��∞n=1
converges a.s. to a random variable which we denote by XτN

. Also note that

�XτN
�∞N=1 converges a.s. to X̂T�x� as τN → T almost surely.

After this preparation we may deduce from Theorem D of [10] that we can
find a sequence �H�N��∞N=1 of S-integrable predictable processes supported by
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��τN−1� τN�� such that the stochastic processes H�N� ·S are supermartingales
and such that

x+ �H�1� ·S�τ1 ≥Xτ1
(96)

and

�H�N� ·S�τN ≥XτN
−XτN−1 for N > 1�(97)

We now paste the H�N�’s together and define the S-integrable predictable
integrand

H �=
∞∑

N=1
H�N��(98)

It follows from Theorem D of [10] that the resulting process

X̃t �= x+ �H ·S�t(99)

is a well-defined Q̂�y�-supermartingale, as �X̃t�0≤t≤T is bounded from below
by the uniformly integrable Q̂�y�-martingale �−Zt�0≤t≤T. From (96) and (97)
we obtain that

x+ �H ·S�T = X̃T ≥ X̂T�x��(100)

On the other hand, using (88) and the Q̂�y�-super-martingale property of
�X̃t�0≤t≤T we obtain

x = EQ̂�y��X̂T�x�� ≤ EQ̂�y��X̃T� ≤ x�(101)

Hence we must have equality in (100) and the process X̃ equals the process
X̂�x� and therefore is a uniformly integrable Q̂�y�-martingale, for which the
representation (89) holds true if we define Ĥ�x� �=H.
The proof of Theorem 2.2 now is complete. ✷

Remark 2.3. We have assumed in item (iv) of Theorem 2.2 that Q̂�y� is
equivalent to P and left open the case, when Q̂�y� only is absolutely continu-
ous with respect to P.
Note that in the case, when U�∞� = ∞, it is obvious from (14) and the

equality U�∞� = V�0� that for the minimizer Q̂�y� ∈ � a�S� we have that
Q̂�y�
dP

> 0 almost surely, that is, that Q̂�y� ∈ � e�S�, so that Theorem 2.2(iv)
applies. But there are also other important cases where one may assert that
Q̂�y� is equivalent to P: for example, it follows from the work of I. Csiszar [4]
that, for the exponential utility U�x� = −e−x, the condition

inf
Q∈� e�S�

E

[
V

(
y
dQ

dP

)]
<∞(102)

implies that Q̂�y� ∈ � e�S�. Note, however, that there is a slight difference
between condition (102) and the finiteness of v�y� as defined in (14).
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In general, there is little reason why Q̂�y� should be equivalent to P. A
thorough discussion of this case is left to the future research.
We also note that the processes Xt = x+�H·S�t which are uniformly inte-

grable under some Q ∈� e�S�, such as the optimal process X̂�x� in Theorem
2.2(iv) above, have extensively been studied in [8], where they were shown
to have a number of features which make them interesting in applications to
Mathematical Finance.

Remark 2.4. As mentioned in the introduction, F. Bellini and M. Fritelli
have proved, using different methods, a result which implies that the assump-
tions (1), (2) and

inf
Q∈� a�S�

E

[
V

(
dQ

dP

)]
<∞(103)

imply that there is a unique minimizer Q̂ ∈� a�S� to (103) which is in� e�S�
if U�∞� = ∞.
We have reproved this result in step 2 above, but this proof is rather com-

plicated as we had to prepare the ground for the proof of the other assertions
of Theorem 2.2 too.
If one is only interested in the result of F. Bellini and M. Fritelli above

one may proceed in a considerably simpler way and one does not need the
assumption of reasonable asymptotic elasticity of U. For the sake of complete-
ness we sketch the argument: applying Theorem 2.2 of [17] we may find, for
each n ∈ �, a measure Q�n� ∈� e�S� satisfying

v�n��1� + 1
n
> E

[
V�n�
(
dQ�n�

dP

)]
�(104)

The applicability of Theorem 2.2 of [17] is justified as we have chosen the
sequence �U�n��∞n=1 such that each U�n� has reasonable asymptotic elasticity,
even when U fails to do so.
Assumption (103) clearly implies that limn→∞ v�n��1� < ∞. We shall show

that �Q�n��∞n=1 converges in the variation norm by showing that �dQ�n�
dP

�∞n=1 is
uniformly integrable and converges in measure. As regards the uniform in-
tegrability we just copy the argument from (56) above. As regards the con-
vergence in measure we have–at least–two possibilities: either we repeat the
argument of (57) above showing directly that �dQ�n�

dP
�∞n=1 is Cauchy in measure;

or we may also be lazy and avoid this argument by applying Komlos’ theorem:
passing to convex combinations of �Q�n��∞n=1 one can without further argument
assume that this sequence of convex combinations, still denoted by �Q�n��∞n=1,
is Cauchy in measure. Consequently �dQ�n�

dP
�∞n=1 is convergent in the norm of

L1�P� to some dQ̂
dP
.

As � a�S� is closed in the variation norm we have that Q̂ ∈ � a�S� and
Fatou’s lemma implies that it is the minimizer to (103).
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The uniqueness of Q̂ now follows from the strict convexity of V and the fact
that Q̂ ∈� e�S�, if U�∞� = V�0� = ∞, is obvious.

Remark 2.5. The formula

u′�x� = E�X̂T�x�U′�X̂T�x���
x

(105)

may be viewed as a special case of a general principle on the variation of the
optimal investment X̂T�x�. We interpret this principle of valuing by marginal
utility in economic terms (compare [12] and [6]): suppose your initial endow-
ment is changed from x to x+ h, for some small h ∈ �. What is the resulting
change u�x+h�−u�x� in expected utility, if we invest optimally in the financial
market S?
One may use the additional endowment h to finance the contingent claim

h
x
X̂T�x� (we assume for simplicity x �= 0), which can be replicated on the
financial market at a cost of h. The resulting difference in expected utility
then equals

E

[
U

(
x+ h

x
X̂T�x�

)
−U
(
X̂T�x�

)]
≈ h ·E�X̂T�x�U′�X̂T�x���

x
�(106)

Economic intuition suggests that
(
1+ h

x

)
X̂T�x� equals the optimal invest-

ment X̂T�x+ h� up to terms of order o�h�, which leads us to conjecture
u�x+ h� − u�x�

h
≈ E�X̂T�x�U′�X̂T�x���

x
�(107)

In the present paper as well as in [17] we have given precise and fairly
general conditions making sure that this intuitive reasoning indeed leads to
the precise formula (105).
Let us now consider an alternative use of the additional endowment h,

namely investing it into the bond: this results in a terminal wealth X̂T�x�+h.
Again economic intuition suggests that this investment should be optimal, for
given endowment x + h, up to terms of order o�h�. Hence we conjecture the
relation

u�x+ h� − u�x�
h

≈ E�U�X̂T�x� + h� −U�X̂T�x���
h

(108)

≈ E�U′�X̂T�x����(109)

Under which conditions does this–even simpler–relation result in a precise
formula? The answer is: in the setting of the present paper it does hold true,
while in the setting of [17] things may go wrong.
Indeed, using the relations y = u′�x� and U′�X̂T�x�� = ŶT�y� the formula

u′�x� = E�U′�X̂T�x���(110)
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is equivalent to the formula

y = E�ŶT�y���(111)

As we have seen, formula (111) always holds true under the assumptions of
Theorem 2.2 of the present paper; on the other hand, it was shown in Example
5.1 of [17] that the assumptions of Theorem 2.2 of [17] are not sufficient to
imply the validity of (111).
In a way, this situation is not too surprising, if one thinks in economic

terms: Formula (105) reflects the logic of a multiplicative variation of the
optimal endowment X̂T�x� while formula (110) reflects the logic of an additive
variation. While, at least on an intuitive level, a multiplicative variation does
fit well to utility functions U � �→ � as well as to utility functions U � �+ →
�, the additive variation is prone to lead to difficulties, whenU′�0� = ∞, while
it does fit well to utility functions U defined on all of �.

We thank I. Klein for helpful comments on the theme of this remark.

Remark 2.6. In the present paper we have assumed that the stock price
process S is a locally bounded semi-martingale, a setting which is slightly less
general then the one chosen in [17].
The reason for assuming local boundedness is that our present approach

is based on approximating the optimal process X̂�x� by a sequence X�n��x�
of processes which are bounded from below, thus modeling, for fixed n, the
situation of an economic agent with a finite credit line. The assumption of
local boundedness of S is crucial for this approach to work successfully, which
again is not too surprising if one thinks in economic terms.
We give an easy example illustrating the new phenomena arising in the non

locally bounded case: Let S = �S0� S1� be a one period process with S0 = 0
and S1 normally distributed with mean µ ∈ � and variance σ2 > 0. We
consider S to be defined with respect to its natural filtration ��0��1�. Given
the endowment x ∈ � the set of random variables

	 �x� �= �x+ �H ·S�1 �H predictable and S-integrable�(112)

trivially reduces to the set

	 �x� �= �x+ λS1 � λ ∈ ���(113)

Let us now consider the exponential utility U�x� = −e−x and the optimiza-
tion problem

�E�U�X1��� X1 ∈	 �x�� !−→ max!(114)

An elementary calculation reveals the well-known result that the maximizer
to this problem is given by X̂1 = x + λ̂S1, where λ̂ = µ/σ , which makes
perfect sense economically: the higher the Sharpe-ratio µ/σ of the investment
opportunity is, the more the utility-maximizing agent wants to invest in it.
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But note that, for µ �= 0, this investment cannot be approximated by trading
strategies on S which are uniformly bounded from below (i.e., which can be
chosen by an agent with a finite credit line), as there are no such trading
strategies except for the zero-investment.
Summing up: in the case of non locally bounded processes the modeling

of the optimal investment as a limit of investments which are bounded from
below does not work any more and a different methodology has to be developed.
This theme is left to future research.

3. Examples. In this section we give some examples similar to example
5.2 in [17] where the assumptionAE−∞�U� = 1 now replaces (or accompanies)
the assumption AE+∞�U� = 1 of [17].

Lemma 3.1. Assume that U � � → � is a utility function satisfying �1�
such that AE−∞�U� = 1; denote by V its conjugate function. Then there is
a probability measure Q on �+ supported by a sequence �xk�k≥0 of positive
numbers increasing to infinity such that�

(i)
∫∞
0 V�x�Q�dx� <∞.

(ii)
∫∞
0 xV′�x�Q�dx� <∞.

(iii)
∫∞
0 V�γx�Q�dx� = ∞ for any γ > 1.

Proof (Compare [17], Lemma 5.1). Using Proposition 4.1(iii) below we
may find a sequence �yn�n≥1 of positive numbers increasing to infinity such
that, for any γ > 1�

∞∑
n=1

1
22n

V�γyn�
V�yn�

= +∞�(115)

Denote

xn =
yn

1+ 1
2n

and pn =
K

22nV�yn�
(116)

where the normalizing constant K is chosen such that
∑∞

n=1pn = 1. We now
are ready to define the measureQ, which is supported by the sequence �xn�n≥1:

Q�xn� = pn�(117)

Let us check the assertions of our lemma. We have∫ ∞
0

V�x�Q�dx� =
∞∑
n=1

pnV�xn� <∞(118)

where we have used that for all but finitely many n’s we have V�xn� ≤ V�yn�
and that

∑∞
n=1pnV�yn� <∞. This proves 3.1(i). Regarding 3.1(ii), we use the

inequality

xV′�x� ≤ 1
γ − 1 �V�γx� −V�x�� ≤ 1

γ − 1V�γx��(119)
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which is valid for any γ > 1 and x sufficiently big, to get

xnV
′�xn� ≤ 2nV�yn��(120)

for n sufficiently big, say n ≥ n0, and hence∫ ∞
0

xV′�x�Q�dx� =
∞∑
n=1

pnxnV
′�xn� ≤ const +

∞∑
n=n0

pn2
nV�yn� <∞�(121)

Finally, (115) implies 3.1(iii): for any γ > 1∫ ∞
0

V�γx�Q�dx� =
∞∑
n=1

pnV�γxn� = ∞�(122)

The proof is complete. ✷

Remark 3.2. Assertions (i)-(iii) of Lemma 3.1 are sensitive only to the be-
havior of Q near infinity. For example, we can always choose Q in such a
way that

∫∞
0 xQ�dx� = 1. [Note that assertion 3.1(i) implies in particular that∫∞

0 xQ�dx� <∞.]

We now can formulate the analogue to example 5.2 of [17]:

Proposition 3.3. Let U � � → � be a utility function satisfying �1� and
such that AE−∞�U� = 1. Then there is a complete continuous financial market
�St�0≤t≤T such that�

(i) there is a ∈ � such that, for x ≥ a, the optimization problem �6� has
a unique optimal solution X̂�x�, while, for x < a, no optimal solution to �6�
exists.
(ii) u is continuously differentiable; it is strictly concave on �a�∞�, while

u′�x� = 1, for x ≤ a.
(iii) v is continuously differentiable and strictly convex on �0�1� and the left

derivative v′l at y = 1 equals v′l�1� = −a, while v�y� = ∞, for y > 1.

Proof. We proceed similarly as in [17], Example 5.2.
Let U be a utility function satisfying (1) and such that AE−∞�U� = 1.

Let W be a standard Brownian motion with W0 = 0 defined on a filtered
probability space ����T� ��t�0≤t≤T�P�, where 0 < T < ∞ is fixed and the
filtration ��t�0≤t≤T is supposed to be generated by W. Let Q be a measure on
�0�∞� for which the assertions (i)-(iii) of Lemma 3.1 hold true and such that
(see Remark 3.2) ∫ ∞

0
xQ�dx� = 1�(123)

Let

− a =
∫ ∞
0

xV′�x�Q�dx��(124)
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and η an �+-valued random variable on ����T�, whose distribution under
P coincides with the measure Q. Clearly, (123) implies that E�η� = 1. The
process

Zt = E�η��t�� t ≥ 0�(125)

is a strictly positive martingale with initial value Z0 = 1. From the integral
representation theorem we deduce the existence of a predictable process µ =
�µt�t≥0 such that

Zt = 1+
∫ t
0
µsZsdWs(126)

or, equivalently,

Zt = exp
(∫ t

0
µsdWs − 1

2

∫ t
0 µ

2
sds

)
�(127)

The stock price process S is now defined as

St = 1+
∫ t
0
Su �−µudu+ dWu� �(128)

Standard arguments based on the integral representation theorem and the
Girsanov theorem imply that the family of martingale measures for the pro-
cess S consists of exactly one element (i.e., the market is complete) and that
the density process of the unique martingale measure is equal to Z. The veri-
fication of the assertions (i)-(iii) of the proposition 3.3 now follows exactly the
same lines as the proof of proposition 5.2 in [17] and therefore is omitted. ✷

We now turn to the case of utility functions U � � → � satisfying (1) and
such that AE+∞�U� as well as AE−∞�U� equal 1; in this situation we may
construct examples which – from an economic point of view – are even more
puzzling than the above example described in Proposition 3.3.
First we need a combination of Lemma 3.1 above with Lemma 5.1 from

[17]:

Lemma 3.4. Let U � � → � be a utility function satisfying �1� such that
AE+∞�U� = AE−∞�U� = 1. There is a probability measureQ on �+ supported
by an increasing sequence �xk�k∈
 such that limk→−∞ xk = 0, limk→∞ xk = ∞
such that�

(i)
∫∞
0 V�x�Q�dx� <∞ and

∫∞
0 xQ�dx� = 1.

(ii)
∫∞
0 x�V′�x��Q�dx� <∞.

(iii)
∫ 1
0 V�γx�Q�dx� = ∞, for any γ �= 1.

Proof. The proof is a straightforward combination of the proofs of Lemma
3.1 above and Lemma 5.1 of [17]: for �xk�k≥0 we mimic the former and for
�xk�k<0 the latter one. ✷
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Proposition 3.5. Let U � � → � be a utility function satisfying �1� and
such that AE+∞�U� = AE−∞�U� = 1. Then there is a complete continuous
financial market �St�0≤t≤T such that�

(i) There is precisely one x0 ∈ � for which the optimal solution �6� exists;
moreover this optimal solution X̂�x0� is unique.
(ii) u�x� = c+ x for some constant c ∈ ��
(iii) v�1� <∞ while, for y �= 1, we have v�y� = ∞.

Proof. We repeat the construction of the proof of Proposition 3.3 above
where the measure Q on �+ now satisfies the properties listed in Lemma 3.4
rather than those of Lemma 3.1. Then it follows from Lemma 3.4(i) and (iii)
that assertion 3.5(iii) is satisfied which in turn implies 3.5(ii) by the conjugacy
of the functions u and v. As regards assertion 3.5(i) we deduce form Scholium
5.1 of [17] that there is at most one x0 ∈ � such that the optimal solution X̂�x0�
exists. To find this x0 and the corresponding X̂�x0� we define the random
variable

X �= I�ZT� = −V′�ZT��(129)

where ZT is defined as in the proof of proposition 3.3 above. Then it follows
from Lemma 3.4(ii) that

E ��X�ZT� =
∫ ∞
0
�V′�x��xQ�dx� <∞(130)

so that x0 = E�XZT� is well defined and, using the martingale representation
theorem, we may write X as

X = x0 +
∫ T
0
HudSu�(131)

Here the process �x0 +
∫ T
0 HudSu�0≤t≤T is a uniformly integrable martingale

under the unique martingale measure for the financial market �St�0≤t≤T (the
density of this martingale measure with respect to P is given by ZT). In other
words the random variable X equals the terminal value X̂T�x0� of a process
X̂�x0� ∈ ��x0�.
To show that X̂�x0� is the unique solution to the optimization problem (6)

(for x = x0) it suffices to show that E�U�X̂T�x0��� = u�x0� holds true. Noting
that u�x0� = v�1� + x0 this equality follows from

E
[
U�X̂T�x0��

]
= E �U �I�ZT���
= E �U �I�ZT�� − I�Zt�ZT� +E �I�ZT�ZT�
= E �V�ZT�� +E �XZT�
= v�1� + x0

(132)

which yields 3.5(i) and thus completes the proof. ✷
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Remark 3.6. One also may construct several variants of the example given
in proposition 3.5 [always using the hypothesis AE+∞�U� = AE−∞�U� =
1]: for example, one may modify the construction of Lemma 3.4 such that
assertion 3.4(ii) is replaced by:

3.4(ii ′)
∫∞
0 x�V′�x��Q�dx� = ∞�

while assertions 3.4(i) and 3.4(iii) remain uncharged.
Plugging a measure Q satisfying 3.4(i), (ii′) and (iii) into the construction

of proposition 3.5, we again obtain the assertions 3.5(ii) and (iii) while (i) is
replaced by:

3.5(i ′) There is no x ∈ � for which the optimal solution X̂�x0� exists.
A second variation is to modify the construction of Lemma 3.4 so that we

have:

3.4(i ′′)]
∫∞
0 V�γx�Q�dx� <∞ for 1 ≤ γ ≤ 2 and ∫∞0 xQ�dx� = 1.

3.4(ii ′′)
∫∞
0 x�V′�γx��Q�dx� <∞ for 1 ≤ γ ≤ 2.

3.4(iii ′′)
∫∞
0 V�γx�Q�dx� = ∞ for γ �∈ �1�2�.

Using such a probability measure Q in the construction of Proposition 3.5
yields the following assertions:

3.5(i ′′) There are numbers −∞ < a < b < ∞ such that, for x ∈ �a� b�, there
exists a unique optimal solution X̂�x� to �6�� for x �∈ �a� b� the optimal
solution to �6� does not exist.

3.5(ii ′′) u�x� is a smooth function which is strictly concave on �a� b�, while
u′�x� = 2, for x ≤ a, and u′�x� = 1, for x ≥ b.

3.5(iii ′′) v�y� is a finitely valued, smooth and strictly convex function on the
interval �1�2� while v�y� = ∞, for y �∈ �1�2�. The right derivative v′r�1�
at 1 and the left derivative v′l�2� at 2 are finite and we have

v′r�1� = −b and v′l�2� = −a�

The proofs of the above observations are rather straightforward variations
of the preceding arguments and left to the energetic reader.

Remark 3.7. The attentive reader certainly has noticed a slight difference
between [17] and the present paper with respect to the condition insuring that
the value function u�x� as defined in (8) does not become degenerate: in (9)
above we have required that

u�x� < U�∞� for some x ∈ ��(133)
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while in [17] we have used the assumption

u�x� <∞ for some x > 0�(134)

Of course, it is natural that in the context of the present paper we allow
x to vary in �, while, in the context of [17], x varies in �+. But why do we
have to impose in (133) the (stronger) requirement u�x� < U�∞� instead of
u�x� < ∞? Clearly these two requirements coincide if U�∞� = ∞. But what
happens if U�∞� < ∞? The point is that for a utility function U � �+ → �
satisfying U′�0� = ∞, as considered in [17] and such that U�∞� <∞ we may
deduce already from our standing assumption 2, that is, � e�S� �= �, that we
automatically have u�x� < U�∞�, for all x > 0. Indeed, the equality u�x� =
U�∞�, for some x > 0, implies that there is a sequence �H�n��∞n=1 of admissible
integrands such that the processes X�n� = x +H�n� ·S are nonnegative and
such that �X�n�

T �∞n=1 tends to +∞ almost surely. This implies that the sequence
of trading strategies �H�n��∞n=1 defines a “free lunch with bounded risk” as
H�n� ·S ≥ −x, which is in contradiction to the assumption � e�S� �= � (see
[7]).
Summing up: we have that for a utility function U � �+ → � satisfying

U′�0� = ∞ as in [17] under the assumption � e�S� �= � the conditions u�x� <
∞ and u�x� < U�∞�, for some x > 0, are equivalent. Indeed, the case U�∞� =
∞ this is true for trivial reasons, while in the case U�∞� <∞ both conditions
are automatically satisfied.
In the context of the present paper the situation is not so pleasant any more.

In the subsequent Lemma 3.8 we show that, for any utility functionU � �→ �
satisfying (1) and such that U�∞� < ∞ we may construct a financial market
S satisfying � e�S� �= � but such that u�x� = U�∞�, for all x ∈ �. To exclude
these cases we had to use assumption (133) in the present paper.

We thank C. Summer for helpful comments on the theme of this remark.

Lemma 3.8. Let U � � → � be a utility function satisfying �1� and such
thatU�∞� <∞. Then there is a complete continuous financial market �St�0≤t≤T
such that:

u�x� = U�∞� for all x ∈ ��(135)

Proof. Fix a sequence �pn�∞n=1 of strictly positive numbers,
∑∞

n=1pn = 1,
such that

lim
n→∞pnU�−n2n� = 0�(136)

Letting qn = 2−n, define xn = qn
pn
. Now repeat the construction of proposition

3.3 to find a complete, continuous financial market �St�0≤t≤T such that the
Radon-Nykodym derivative ZT of the unique equivalent martingale measure
for the process S has the form

ZT =
∞∑
n=1

xnχDn
(137)
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where �Dn�∞n=1 is a partition of � into �T-measurable sets, satisfying P�Dn� =
pn.
Now we consider the Arrow-Debreu-type securityA�n�, whose payoff at time

T is defined as

A
�n�
T = −n2nχDn

�(138)

that is, which pays to the holder −n2n at time t = T (or, phrased the other
way round, obliges the holder to pay n2n) if the true state of the world ω lies
in Dn and zero otherwise.
As our market is complete, the price of this security at time t = 0 equals

A
�n�
0 = E

[
ZTA

�n�
T

]
= pnxn · �−n2n� = −n�(139)

On the other hand the expected utility of the security A�n� at time t = T,
which equals E�U�A�n�

T �� = pnU�−n2n�, tends to zero as n → ∞. Speaking
informally: the Arrow–Debreu-type security A�n� is a very good deal for an
agent whose utility is defined by U: she receives the amount n at time t = 0
while the possible loss of n2n at time t = T, if the true state of the world
happens to lie inDn, has little effect on the expected utility, as we have chosen
pn to be very small.
Now fix C > 0, and m ∈ � and define, for n > m, the security X�n� by

X
�n�
T =

m∑
j=1

CχDj
− n2nχDn

�(140)

Its price at time t = 0 is given by

X
�n�
0 = C

m∑
j=1

qj − n�(141)

so that for fixed initial endowment x ∈ �, we have X�n�
0 < x, for n sufficiently

large, which means thatX�n�
T ∈ � b

U�x�. On the other hand, the expected utility
of X�n�

T equals

E
[
U
(
X

�n�
T

)]
= U�C�

m∑
j=1

pj − o�n�(142)

which is arbitrarily close to U�∞�, if we chose C > 0 and m ∈ � sufficiently
large. Hence

u�x� = sup
XT∈� b

U�x�
E�U�XT�� = U�∞��(143) ✷
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4. The asymptotic elasticity at ��. In this section we give a charac-
terization of the property that the asymptotic elasticity AE−∞�U� at minus
infinity of a utility function U � � → � is equal to 1. The result is entirely
parallel to the characterization of the property that the asymptotic elasticity
AE+∞�U� at plus infinity is equal to 1 which were obtained in Section 6 of
[17].

Proposition 4.1. Let U � � → � be a utility function satisfying �1�� The
following assertions are equivalent�

(i) AE−∞�U� > 1.
(ii) There is x0 < 0, λ > 1 and c > 1 such that

U�λx� < cλU�x� for x < x0�(144)

(iii) There is y0 > 0, λ > 1 and C <∞ such that

V�λy� < CV�y� for y > y0�(145)

(iv) There is y0 > 0 and C > 0 such that

V′�y� < C
V�y�
y

for y > y0�(146)

Proof. (i) ⇒ (ii): Assuming AE−∞�U� > 1 we may find α > 0 and x0 < 0
such that xU′�x�

U�x� > 1+ α, for x < x0. Given λ > 1 we may estimate, for x < x0:

U�λx� ≤ U�x� +U′�x��λ− 1�x
≤ U�x� +U�x��λ− 1��1+ α�(147)

≤ U�x��1+ �λ− 1��1+ α���
Noting that the term in the last bracket is strictly bigger than λ we have
proved (ii).

(ii) ⇒ (iii): Assuming that (ii) holds true for x0 < 0, λ > 1 and c > 1 let
y0 = U′�λx0� and estimate, for y > y0 and µ = c > 1:

V�y� = sup
x<x0

�U�x� − xy�

> sup
x<x0

[
1
cλ

U�λx� − xy

]
= sup

x<x0

1
cλ
�U�λx� − �λx��cy��

= 1
cλ

V�cy��

(148)

which proves (iii).
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(iii) ⇒ (iv): Assuming that (iii) holds true for some y0 > 0, λ > 1 and C <∞
let y > y0 and estimate:

V′�y� ≤ V�λy� −V�y�
λy− y

≤ �C− 1�V�y�
�λ− 1�y = C′V�y�

y
�

(149)

where C′ = �C−1�
�λ−1� .

(iv) ⇒ (i): Assuming that (iv) holds true for some y0 > 0 and C > 0 let
x0 = −V′�y0� and estimate, for x < x0:

U�x� = inf
y>y0

�V�y� + xy�
= V �U′�x�� + xU′�x�
> C−1V′ �U′�x��U′�x� + xU′�x�
> xU′�x� (1−C−1)

(150)

showing that AE−∞�U� ≥ �1−C−1�−1. ✷

The subsequent consequence of Proposition 4.1 was used several times in
this paper:

Corollary 4.2. If U � � → � is a utility function satisfying �1�� U�0� >
0, having reasonable asymptotic elasticity, and �λ0� λ1� is a compact interval
contained in �0�∞�, we may find constants C > 0 and K > 0 s.t.:

(i) V�λy� ≤ CV�y�, for y > 0 and λ0 ≤ λ ≤ λ1.
(ii) y�V′�y�� ≤ CV�y�, for y > 0.
(iii) For ε > 0 we may find δ > 0 s.t. for all �1− δ� < λ < �1+ δ� we have

�1− ε�V�y� < V�λy� < �1+ ε�V�y� for y > 0�(151)

Proof. (i) It follows from Proposition 4.1(iii) above and Lemma 6.3(iii) in
[17] that for a given interval �λ0� λ1� we may find a constant C and 0 < y0 <
y1 <∞ such that

V�λy� ≤ CV�y� for 0 < y < y0 and y1 < y <∞�(152)

For the y lying in the interval �y0� y1� first note that the assumption U�0� > 0
implies that V�y� > 0, for all y > 0. Hence by a compactness argument we
have

lim
C→∞

inf
y0≤y≤y1�λ0≤λ≤λ1

CV�y� −V�λy� = ∞�(153)

which implies that, for C > 0 sufficiently large, assertion (i) holds true.
(ii) The proof of inequality (ii) is analogous now applying Proposition 4.1(iv)

above and Lemma 6.3(iv) of [17].
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(iii) For the proof of (iii) observe that it suffices to prove one of the inequal-
ities in (151), say

V�λy� < �1+ ε�V�y� for y > 0�(154)

Denoting by y the argmin of V, that is, where V′�ymin� = 0, note that the
above inequality is trivial for λ < 1 and y > ymin/�1− δ� as well as for λ > 1
and y < ymin�1+ δ�. The non-trivial cases are:

A. when λ < 1 and y is close to zero (say 0 < y < y0 for some y0 > 0) and

B. when λ > 1 and y is close to infinity (say y1 < y for some y1 > 0).

In Case A the validity of (154) follows from [17], Lemma 6.3(iii) and Case
B follows from a refinement of proposition 4.1(iii) above, which is completely
analogous to the situation of [17], Lemma 6.3(iii) and left to the reader.
Finally the extension to the case λ < 1 and y0 ≤ y ≤ ymin/�1 − δ� as

well as λ > 1 and ymin/�1 + δ� ≤ y ≤ y1 is obtained from the assumption
infy>0V�y� = V�ymin� > 0 and a compactness argument similarly as in the
proof of (i) above. ✷
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