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PERFECT SAMPLING OF ERGODIC HARRIS CHAINS1

By J. N. Corcoran and R. L. Tweedie

University of Colorado and University of Minnesota

We develop an algorithm for simulating “perfect” random samples from
the invariant measure of a Harris recurrent Markov chain. The method
uses backward coupling of embedded regeneration times and works most
effectively for stochastically monotone chains, where paths may be sand-
wiched between “upper” and “lower” processes. We give an approach to
finding analytic bounds on the backward coupling times in the stochasti-
cally monotone case. An application to storage models is given.

1. Introduction. There has been considerable recent work on the devel-
opment and application of algorithms that will enable the simulation of the
invariant measure π of a Markov chain, either exactly (that is, by drawing a
random sample known to be from π) or approximately, but with computable
order of accuracy. These were sparked by the seminal paper of Propp and
Wilson [18], and several variations and extensions of this idea have appeared
since [7, 9, 10, 12, 11, 13, 14, 16, 17]. These ideas have proved effective in
areas such as statistical physics [18, 7] or spatial point processes [13, 14],
where they provide simple and powerful alternatives to methods based on
iterating transition laws, for example.

In this paper we develop an implementation of the Propp–Wilson algorithm
which can be used when the chain is Harris recurrent, even though in standard
constructions of such chains the paths of the chain may not actually meet;
see [16] for an example. The key idea is to wait until all paths are in some
“small set” [15] and by constructing an artificial regeneration for all paths at
that time, to ensure that they do couple on an extended state space involving
the regeneration time variables. This idea has been used by Murdoch and
Green [17] when the whole space is small (so that the chain is uniformly
ergodic), and their results can be seen as special cases of our method.

These coupling methods are very effective in implementation when the
chain has some monotonicity properties, since then one needs only to con-
struct paths from the maximal and minimal elements, using the fact that all
other paths are “sandwiched” between these two. When the top and bottom
paths are in the small set then one can attempt to regenerate all paths simul-
taneously. Many chains of interest in statistical physics or operations research
satisfy such stochastic monotonicity properties, and in the absence of maximal
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or minimal elements it is often the case that we can construct stochastically
upper and lower dominating processes to give the desired sandwiching result.

After developing the required structure in Section 2 and the general algo-
rithm in Section 3, we show in Section 4, which is the main part of the paper,
that this scheme is viable for monotone chains. In Section 5 we implement the
method in practice for a storage system with no attainable minimal element
and investigate the rate of convergence of the algorithm.

2. Stochastic recursive sequences and backward coupling. Form-
ally, we consider a Markov chain on a state space X, which we assume is a
separable metric space (although this restriction could be relaxed as noted on
page 18 of [4]). Since we are concerned with sample path behavior, we write
X = �Xn�∞n=0 for the version of the chain starting at x0 (which may be fixed or
random); versions starting with other initial values will be distinguished by
other notation when they occur. We let P�x�A� denote the transition law of the
chain, and assume that there exists an invariant (or stationary) probability
measure π; this satisfies

π�A� =
∫

X
π�dx�P�x�A�(1)

for all measurable A. The chain is called Harris recurrent if, for every A with
π�A� > 0 we have P�Xn ∈ A infinitely often) = 1 ∀ x ∈ X. Note that for Harris
recurrent chains π is unique.

Our goal is to draw values from the invariant measure π. In order to do
this we first briefly describe the “stochastic recursive sequence” (SRS) coupling
construction framework which forms the basis of the Propp–Wilson algorithm
in [18]. This was developed in the form below by Borovkov and Foss [2, 8, 5, 3].

The SRS construction enables us to use deterministic sample path argu-
ments which are particularly suited to a simulation environment, and more
details are in [9]. We construct a probability space �
�� �P�, where with-
out loss of generality 
 = 	0�1
� is a doubly infinite product space and P is
Lebesgue measure, so that there is an independent and identically distributed
sequence �ξn�∞n=−∞ of uniform U	0�1
 random variables given by ξn�ω� =
ωn where ω = �ωn� for ω ∈ 
; and there is then a measurable function
f� X × 	0�1
 → X such that X satisfies the recursion

X0 = x0� Xn+1 = f�Xn� ξn�� n ≥ 0(2)

and has transition probabilities P�x� ·�. Note that in (2) we only use ξn� n ≥ 0;
the doubly infinite construction becomes relevant in constructing backward
coupling times below.

There are infinitely many such constructions to choose from and the partic-
ular construction used is largely a matter of convenience. However, one special
situation worth noting immediately is when f�x� ξ� is monotone in the first
variable; such chains are called stochastically monotone and the algorithms
below are particularly easy to implement in this case.
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Now on �
�� �P�, let �θm�∞m=−∞ denote the family of shift transformations;
that is, for any ω = �ωn�∞n=−∞ ∈ 
, and any −∞ < m < ∞, set θmω =
�ωn+m�∞n=−∞� It follows from these definitions that ξn+m = θmξn, for any m�n.
We also define, for any set B ∈ � , θmB = �θmω�ω ∈ B�, and for any random
variable ψ� 
 → X, the shifted random variable ψm �= θmψ is defined as
ψm�ω� = ψ�θmω�.

Using the recursive construction, for any m we introduce a “shifted” Markov
chain θmX = �θmXn�� n ≥ 0 as follows: if the “original” Markov chain X starts
from x0 at time 0 and takes the value Xn = f�Xn−1� ξn−1� at time n, then the
“shifted” Markov chain θmX starts at time m from the value θmx0 and takes
the value θmXn = f�θmXn−1� ξm+n−1� at time m+ n, n = 1�2� � � � .

Using these shift operators we define as in [9] the minimal backward cou-
pling time ν�X� by

ν�X� = min�m ≥ 0� θ−n1Xn1
= θ−n2Xn2

∀ n1� n2 ≥ m� ≤ ∞�(3)

Any integer-valued random variable ν ≤ ∞ is a backward coupling time for X if

�ν ≤ m� ⇒ �θ−n1Xn1
= θ−n2Xn2

∀ n1� n2 ≥ m��(4)

and a backward coupling time is successful if ν < ∞ almost surely.
Note that the backward coupling time is defined for shifts of the chain

starting from x0. We will see in the next section how this relates to coupling
of different copies of the chain from different starting points. If one has a
successful backward coupling time, then one can give a constructive approach
showing that there exists a stationary version of the chain X. We have from
Theorem 3.1 of [9] the following result.

Theorem 2.1. Let ν be a successful backward coupling time. Put X̃0 =
θ−νXν and define X̃n = θnX̃0 for n ∈ �. Then the sequence X̃ = �X̃n�∞n=−∞
forms a stationary Markov chain with transition probabilities P�x� ·�, so that
in particular when the chain is Harris recurrent, θ−νXν ∼ π.

Thus, in order to draw from π it suffices to find a backward coupling time ν
and then, starting from ν, accept the value θ−νXν which is the value returned
at time zero. Theorem 2.1 ensures that this is indeed a draw from π.

The idea behind the Propp–Wilson algorithm is an elegant exploitation of
this structure. Suppose that we consider a family of chains X�x�, each with
the same laws as X, but with the version X�x� starting from x ∈ X. If we can
find a time T such that all of the chains X�x� starting, not at time zero, but
at time −T, have the same value at time zero, then as is shown in Theorem 1
of [18], this common value is a perfect draw from π and such a T (called a
“vertical” backward coupling time in [9]) is indeed a backward coupling time
as described above.

Intuitively, it is clear why this result holds with such a random time T.
For consider a chain starting at −∞ with the stationary distribution π. At
every iteration it maintains the distribution π. But at time −T it must pick
some value x, and from then on it follows the trajectory from that value. But
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of course it arrives at the same place at time zero no matter what value x is
picked at time −T so the value returned by the algorithm at time zero must
itself be a draw from π.

For this to be practicable we need to ensure that T is indeed finite. Propp
and Wilson [18] show that this occurs for irreducible aperiodic finite space
chains, and for a number of stochastically monotone chains possessing maxi-
mal and minimal elements. In what follows, we will use minorization methods
to develop an implementation of the algorithm that can be applied to more
general Harris chains.

3. Algorithms forHarris chains.

3.1. Uniformlyminorized chains. Wefirst describe a construction described
in [17], the “multigamma” coupler. Suppose the chain satisfies the uniform
minorization condition

Pk�x� ·� ≥ εX ϕ�·�� x ∈ X(5)

for some probability measure ϕ and some 0 < εX ≤ 1. Such chains are “uni-
formly ergodic” and have a number of desirable properties ([15], Chapter 16)
and in particular they are Harris chains with finite invariant measures.

When k = 1, one way to simulate from such a chain is to draw a sequence εn

of i.i.d. U	0�1
 random variables, and a sequence Vn of i.i.d. variables with
law ϕ; if εn+1 ≤ εX then we set Xn+1 = Vn+1, and if εn+1 > εX then we
choose Xn+1 from the “residual” distribution

R�Xn� ·� = 	P�Xn� ·� − εXϕ�·�
/	1− εX
�(6)

It is obvious that Xn+1 has the correct marginal distribution with this
construction.

Clearly one can construct an SRS representation for this chain, as given
in [17], and although this is more complicated, it is clear how the joint dis-
tributions will interact: in particular, if εn+1 ≤ εX it follows that the value
of Xn+1 is Vn+1 independent of Xn. Thus, to construct a backward coupling
time with this construction, as we move back in time one step, we successively
draw U	0�1
 variables εn and set T = min�n� ε−n ≤ εX�.

Since this couples chains from all starting points, it is a vertical coupling
time. Conversely, in [9] we show that when any backward coupling occurs
using a vertical backward coupling time, the chain must in fact be uniformly
ergodic, with (5) holding for some εX� ϕ and k. We remark that this result has
been misinterpreted as saying that backward coupling can only hold for uni-
formly ergodic chains. This is incorrect. If we can construct an “upper process”
�Un� and a “lower process” �Ln� such that

Un ≥ Xn ≥ Ln

along any sample path, for all n ≥ 0, then at the time of coalescence of these
processes we also get a successful backward coupling which may not entail uni-
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form ergodicity. Subtle constructions of such processes occur in point process
models [14] or for storage models [6] for models demonstrably not uniformly
ergodic.

3.2. A generalHarris chain algorithm. If the chain is not uniformly ergodic,
one cannot assume that the minorization (5) holds for all x. Let us call a set C
small if the k-step transition law Pk�x� ·� is minorized for some 0 < ε < 1 and
for some density ϕ, but only on C; that is,

Pk�x�dy� ≥ εϕ�dy�� x ∈ C�(7)

It is known that for aperiodic Harris chains, every set with π�A� > 0 contains
a small set of positive π-measure [15]. In what follows we will assume that
C is such a set with k = 1. This ensures aperiodicity also and is sometimes
called the strongly aperiodic case.

Now consider the Nummelin splitting construction [15], in which we con-
struct sample paths by using the transition law P�x� ·� for x ∈ Cc, but each
time x ∈ C we draw a sequence εn of i.i.d. U	0�1
 random variables, and a
sequenceVn of i.i.d. variables with law ϕ. If εn+1 ≤ ε then we setXn+1 = Vn+1,
and if εn+1 > ε then we again choose Xn+1 from the “residual” distribution
R�Xn� ·� in (6). With this structure we see that that Xn+1 has the correct
marginal distribution, as in the previous section. This suggests a method of
backward coupling analogous to that in Section 3.1, as follows. Draw a doubly
infinite set of i.i.d. U	0�1
 variables εn, independent of the ξn. Consider again
the family of chains X�x�, with X�x� starting from x ∈ X. Suppose we can find
a time T such that:

1. All of the values X
�x�
r starting at time −T are simultaneously in C at a

time r with −T < r < 0.
2. The value of εr ≤ ε.

Then we can update all of the chains at r + 1 with a value drawn from ϕ;
and they will then all have the same value at time zero. Thus T will be a
backward coupling time and the common value is a perfect draw from π.

Møller [16] mentions that Murdoch suggests using such a method in the
context of models that only get close but do not couple. Murdoch has told us
(private communication) that his suggestion came from seeing a preprint of
our current paper.

In carrying out this algorithm recursively backward in time, we must, as
with the Propp–Wilson algorithm, take care that we reuse the same uniform
random variables at each time, and we must in particular take care that if, at
a time point m, we fail to regenerate using ϕ because εm > ε, then every path
that enters C at time m from an earlier starting time (before −T) also fails to
regenerate atm. In other words, the chain we must use isZn = �Xn� εn�� n ≥ 0
and its shifted versions, if we are to use the coupler above. This is in contrast
to the construction in the forward direction, where we need only generate
values of εn at times when the chain is actually in C.
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We note that in practice the implementation will be of value only if we can
ensure that the family X�x� all enter the small set C simultaneously (and in
a reasonable time). Trivially, this will happen for the uniformly ergodic case
if we take C = X (the Murdoch–Green algorithm). We see below that this also
occurs for monotone chains under some conditions. However, if we take C to
be some proper subset, it still follows that the algorithm as described above
using the family X�x� will lead to a “vertical” backward coupling time, and thus
from Theorem 4.2 of [9] the chain must in fact be uniformly ergodic (although
with the construction of upper and lower processes this may be avoidable).

Even for uniformly ergodic chains, however, we may gain in two ways by
introducing the Harris coupling algorithm. First, in practice if the value of εX
in (5) is very close to zero, we can often speed up the Murdoch–Green version
by selecting a “smaller” small set, which is entered reasonably often and which
has a higher success rate in regenerating through ϕ using (7). Second, even
though vertical coupling can only be successful for uniformly ergodic chains,
it does not follow that the value of k in (5) has to be k = 1. If (5) only holds for
some large value of k, then it may be impractical to use the Murdoch–Green
construction on the k-step chain and the Harris coupler we have here will
be far more simple to realize. Both of these are illustrated in the example in
Section 5.

4. The stochastically monotone algorithm.

4.1. Bounding the family X�x�. We next consider a stochastically monotone
chain X = �Xn� on a linearly ordered state space X. By this we mean that
there is an order on X such that x ≤ y implies f�x� ξ� ≤ f�y� ξ� for any
realization of ξ, where f is a stochastic recursion generating X.

When the chain is stochastically monotone with an upper and lower bound-
ing process, as described below, we only need to ensure that these processes
are in C in order to be able to regenerate using ϕ. This is analogous to ensur-
ing that the upper and lower processes in the Propp–Wilson algorithm reach a
single common point; at that time the “sandwiching” property of the stochas-
tic monotonicity ensures that chains from all starting points have this same
common value.

An upper and lower process pair Un� Ln is defined formally as a pair of
processes generated by sequences

U0� Un+1 = fU�Un� ξn��
L0� Ln+1 = fL�Ln� ξn�

in such a way that two properties hold: (1) the sandwiching property, that for
any xl ≤ x ≤ xu, we have

fL�xl� ξ� ≤ f�x� ξ� ≤ fU�xu� ξ��
so that

θ−nLn−k ≤ θ−nXn−k ≤ θ−nUn−k� n ≥ k ≥ 0(8)
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whenever L0 ≤ X0 ≤ U0 and (2) a “funneling property”, that for all n ≥ m ≥
k ≥ 0,

θ−nUn−k ≤ θ−mUm−k�

θ−nLn−k ≥ θ−mLm−k�
(9)

so that upper processes starting earlier lie beneath those starting later, and
lower processes starting earlier are above those starting later.

If the space has maximal and minimal pointsK�0, thenUn�Ln can be taken
as the chains starting from these points; that is, we can take fL = fU = f,
with U0 = K�L0 = 0. When the upper or lower process is not simply the
chain itself run from a maximal or minimal point then other processes may
be designed, as developed in, for example, Kendall [14] and Møller [16]. In the
latter, this is exploited to show that if there is a time in the past from which
the upper and lower processes are within ε at time 0, then each path (and
hence in particular any stationary-start path) is sandwiched into that ε-set.

We shall see that in our case, when we introduce an adjoined coin-tossing
process εn, more care again is needed to get the appropriate upper process
and lower process for the chain Zn even when the original chain does have
maximal and minimal points.

4.2. Constructing an upper process. Consider the situation where the small
set C is at the “bottom” of the space X = 	0�K
, since in this case we do not
need to be concerned about the lower process. Let C = 	0� c
 be a small set on
which the one-step transition law P�x� ·� is minorized so that

P�x� ·� ≥ εϕ�·�� x ≤ c�(10)

Note that the “residual” transition law R�x� ·� given by (6) is stochastically
monotone, from the monotonicity of P�x� ·�. However, R need not be stochasti-
cally lower than P nor need ϕ. We write fR�x� ξ� for a monotone (in x) function
such that the distribution of fR�x� ξ� is R�x� ·� when as usual ξ ∼ U	0�1
, and
similarly fϕ�ξ� as a function which generates variables with distribution ϕ.

Now let us consider two independent sequences of U	0�1
 variables, εn

and ξn, independent for n =� � � � �−1�0�1� � � � � and conduct a coin toss Hn

where Hn = 0 if εn ≤ ε, with Hn = 1 otherwise. The stochastic recursive
sequence formulation of the chain using splitting [15] is then given by

Xn+1 =



f�Xn� ξn�� Xn > c�
fR�Xn� ξn�� Xn ≤ c� Hn = 1,
fϕ�ξn�� Xn ≤ c� Hn = 0,

(11)

We construct an upper process for Zn = �Xn� εn� by taking

Un+1 =




max�f�Un� ξn�� fR�c� ξn��� Un > c� Hn = 1,
max�f�Un� ξn�� fϕ�ξn��� Un > c� Hn = 0,
fR�Un� ξn�� Un ≤ c� Hn = 1,
fϕ�ξn�� Un ≤ c� Hn = 0.

(12)
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It is then obvious that (9) holds if U0 = K, the maximal element in the space.
It is also clear from (11) that for all x and all sequences ξn� εn, if X0 = x and
U0 = K then Xn ≤ Un, n = 0�1� � � � , and so (8) holds. Hence Un is indeed an
upper process.

We can now define the algorithm for generating a perfect sample from π.

Monotone coupling algorithm.

1. For each n = 1�2� � � � � generate independent U	0�1
 variables ξ−n� ε−n;
2. For each n = 1�2� � � � � choose θ−nU0 = K and simulate the upper process

�θ−nUk�nk=0.
3. Continue until reaching

T = min�n ≥ 1� θ−nUm ∈ C�ε−n+m ≤ ε for some 1 ≤ m ≤ n� ≤ ∞(13)

and let m�T� denote the smallest value of m in �11�.
4. For s = −m�T��−m�T� + 1� � � � �0 draw θ−m�T�Xm�T�+s according to �11�;

so that in particular θ−m�T�X1 has the distribution ϕ, since by definition of
m�T� we have θ−m�T�X0 ≤ c and H−m�T� = 0.

For this algorithm to be successful, it is necessary to choose the functions
f�x� ξ� and fϕ�ξ� in a compatible manner. One such effective implementation
occurs if we choose these to be the “natural” functions corresponding to the
inverse distribution functions on the linearly ordered space. We then have the
following theorem.

Theorem 4.1. Provided a version of the natural inverse distribution func-
tions are used, the monotone coupling algorithm is such that T given by �13�
is a successful backward coupling time, and so θ−TXT = θ−m�T�X−m�T� ∼ π.

Proof. Since the marginal stationary distribution of Zn is π, and since
we have already shown in (9) and (8) that T is a backward coupling time of Zn

by construction, it only remains to verify that T < ∞ with probability one.
First observe that P�c� 	0� c
� > 0, for otherwise, by stochastic monotonicity,
P�x� 	0� c
� = 0 for all x ≥ c, and the chain is not Harris recurrent. Hence at
least one of ϕ	0� c
 andR�c� 	0� c
� is positive; assume without loss of generality
that it is the former, so that there exists δ such that for all ξ ≤ δ, we have
fϕ�ξ� ≤ c using the natural function fϕ.

Next, let N and ξ′0� ξ
′
1� � � � � ξ

′
N−1 be such that X′

N = f�f�· · ·f�K�ξ′0� · · ·
ξ′N−1� ≤ c. Such a finite sequence exists since the chain is Harris recurrent.
Since we are using the natural functions, it follows that for any sequence
ξ0� ξ1� � � � � ξN−1 with ξj ≤ ξ′j for all j, we also have XN = f�f�· · ·f�K�ξ0� · · ·
ξN−1� ≤ c. Now consider the set VN = +N−1

0 	0�min	δ� ξ′j

 ⊆ 	0�1
N and the
set BN+1 = 	0� ε
N+1. Then the event �ξ0� ξ1� � � � � ξN−1 ∈ VN�ε0� � � � � εN ∈
BN+1� has positive probability. Thus there is also positive probability η that
for N + 1 consecutive steps we draw Hn = 0 and for the first N of these fϕ
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is in C. By the definition of the upper process, then, starting from K we have
positive probability that XN is in C, and at that time N we get regeneration.

Hence, since θ is measure preserving, we have P�T ≤ N�U0 = K� ≥ η > 0.
But now, by construction and stochastic monotonicity, P�T ≤ N�U0 = x� ≥ η
for any x ≤ K, and so we have P�T ≤ mN�U0 = K� ≥ 1 − �1 − η�m, which
shows that T is successful. ✷

Obviously a similar proof will work for many other choices of function.
However, note that if we choose the functions f�x� ξ� to be natural but we
perversely choose fϕ�ξ� to be the reverse of the natural function (so that for
some a and ξ ∈ 	a�1
 we generate the renewals in 	0� c
), then the algorithm
may never converge; for then (depending on the model) we could need values
of ξ near 0 to drive the chain to 	0� c
, but these same values might cause
fϕ�ξ� to be above c, and in that case the upper process would never reach
	0� c
.

The situation is somewhat more complicated if we take C = 	a� b
 as our
small set, since we now must allow for the possibility of the upper process
going below a. We do not spell out more details here, but note that there
is one rather surprising drawback to the two-sided version of the algorithm:
one cannot always claim that the time when the upper and lower processes
reach C will be successful. In somewhat pathological circumstances one can
construct chains where the choice of ξ that brings the lower process into C
simultaneously drives the upper process out of C, even using natural func-
tions. Thus care needs to be taken to ensure that the algorithm is viable when
C is not at the bottom of the space.

4.3. A simplifying assumption and convergence rates. The algorithm is
considerably simplified and more intuitive when C = 	0� c
, and we can also
take ϕ = P�c� ·�, that is, when we have

P�x� ·� ≥ εP�c� ·�� x ∈ C�(14)

The constraint (14) is a different relationship than stochastic monotonicity, but
is consistent with such monotonicity and occurs in chains with, for example,
appropriate asymptotically random walk behavior, such as the storage model
in Section 5. It will be satisfied if the Harnack inequality

d−1P�x� ·� ≤ P�y� ·� ≤ dP�x� ·�
is satisfied for all x�y ∈ C and some d > 0. In this case,

R�c� ·� = 	1− ε
−1	P�c� ·� − εϕ�·�
 = P�c� ·��
and so, regardless of the value of εn, we have that when Un = x ∈ Cc, by mono-
tonicity the draw of Un+1 is carried out according to max�f�x� ξ�� f�c� ξ�� =
f�x� ξ�: that is, rather than constructing a new upper process Un we just run
the chain Xn itself until it reaches the set C, and only then is the value of εn
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relevant, exactly as in the forward splitting construction. Thus in this case
the upper process U∗

n is generated by

U∗
n+1 =




f�U∗
n� ξn�� U∗

n > c,
fR�U∗

n� ξn�� U∗
n ≤ c� Hn = 1,

fϕ�ξn�� U∗
n ≤ c� Hn = 0.

(15)

To differentiate from the general context we write the related backward cou-
pling as

T∗ = min�n ≥ 1� θ−nU∗
m ∈ C and ε−n+m ≤ ε for some 1 ≤ m ≤ n��(16)

It is tempting to hope that this simplified version should work even without
the special choice of ϕ in (14). However, it can be shown [6] that by selecting the
times at which we will use εn as in (15), we may induce bias unless ϕ = P�c� ·�.

In [9] the rates of convergence of successful backward coupling times are
related to those of forward coupling times. However, to make these connections
one needs to consider the minimal coupling times in both directions, and even
for the general monotone algorithm it is not clear when we will achieve this
minimal time. For the algorithm (15), however, where the bounding process
is just Xn itself started from the maximal element, we can express T∗ as a
minimal time. Consider the extended process

Wn = �Xn� εn�An��(17)

where An is the age process since the last regeneration in C. It is clear that T∗

is the minimal backward coupling time for this process. Now let τ̃ denote the
forward coupling time of W (starting at 0) and a stationary chain W̃ given
by (17). Since the chain is stochastically monotone, if x0 is the maximal ele-
ment of the space it follows as in (28) of [9] that

P�τ̃ ≤ n� = P�T∗ ≤ n��(18)

Thus if we can estimate the rate of convergence of the forward coupling time τ̃
then this gives estimates of the rate of convergence of the backward coupling
time. We illustrate this in the next section.

5. Storage models. In this section we illustrate our results for a finite
storage system on 	0�K
 with independent and identically distributed expo-
nential replenishments with mean 1/µ at the arrival times of a Poisson process
with rate λ. Excessive input above K < ∞ is considered overflow and cannot
be saved for future use. Between arrivals, content is released deterministically
at rate r�u�. The Markov chain embedded just prior to arrival times satisfies
the PASTA property [1] which ensures that its stationary distribution is iden-
tical to the stationary distribution of the continuous time chain.

We shall consider specifically the case r�u� = βu for β > 0. With this release
rule, it is easy to see that π��0�� = 0, so that normal regeneration at zero does
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not apply. For x ∈ �0�K
, it can be shown (Lund, private communication) that
the density π�x� of the stationary distribution π is given by

π�x� = x�λβ−1−1�e−µx∫K
0 x�λβ−1−1�e−µx dx

for x ∈ �0�K
�(19)

In general the denominator cannot be integrated analytically, and although
there are obviously simple numerical approaches to its determination, this
example enables us to verify the accuracy of the method. More difficult choices
of r do not change the methods below and enable us then to simulate perfectly
from many other models.

To execute the algorithm described in Section 4, we first simulate the inter-
arrival times and hold these fixed over all realizations from all starting points.
Once this is done we need only minorize the process jumps (replenishments)
since the release is deterministic once the interarrival times are fixed. For x
in the small set C = 	0� c
, where 0 < c < K, one possible minorization is
given by

Px�jump to dh� ≥ e−µc · eµcµe−µh 1l�h≥c� dh�(20)

where 1l�·� is the indicator function. Thus we can choose ε = e−µc and ϕ�dh� =
eµcµe−µh1l�h≥c�dh. In this case we satisfy (14), and (15) can be implemented.

Note that, using this argument, the chain satisifies the uniform minoriza-
tion 5, with εX = e−µK. For any large value of µK the Murdoch–Green imple-
mentation is therefore very slow, and (as we see below) the approach using
regeneration in C can be very much faster.

For this choice of ε and ϕ, the residual jump probability density Q�x� x+h�
is given by

Q�x� x+ h� = 1
1− ε

{
µe−µh� for h < c− x,
µe−µh�1− e−µx�� for h ≥ c− x,

where x is the current position of the chain. The residual law R is given by
jumping with Q and following the deterministic release path until the time of
the next jump.

We illustrate the results when K = 10, c = 1, λ = 1, µ = 2, β = 1. These
parameter choices allow us to verify that the algorithm is indeed returning
samples from π, as illustrated in [6]. We also assess empirically how long one
must run the algorithm and compare this with analytic bounds using (18).
The mean value of T∗ obtained from 10,000 independent backward couplings
is 9.2 embedded time steps. In other words, on average, the upper process
started from K = 10 has reached the small set C = 	0�1
 and the ε-coin has
turned up a head after approximately nine steps.

To calculate an analytic bound on the rate of convergence, we need to make
a number of approximations. Begin by noting that if we are outside 	0�1
, the
storage model reaches 	0�1
 more quickly than the model with constant unit
release rate 	r�x� = 1
, by stochastic comparison. Thus it suffices to analyze
this simpler model to get bounds. Second, we note that the time to hit C from
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a fixed x if K = ∞ bounds the time to hit C if K < ∞, so we can make this
further simplification, even though we might expect to get rather inefficient
(even if analytic) bounds with these changes.

To bound the regeneration times using (18) we need to find a Foster–
Lyapunov function V� X → 	1�∞� satisfying

P∗V ≤ λCV+ b1lC�(21)

where C = 	0�1
, b < ∞, and λC < 1; here P∗ is the law of the embedded chain
of the infinite K, unit release model. We assume, without loss of generality,
that V�x� ≡ 1 on C. In this case we have that

P∗�x�dy� = λµ

λ+ µ
e−µ�y−x�e−�λ+µ�d dy� y > 0�

P∗�x�0� = µ

λ+ µ
e−λx�

where d = max�0� x − y�. If we let V�x� = γx for x �∈ C = 	0�1
, then for
1 < γ < eµ, we have that

P∗V�x� =
[

λµ

λ+µ

(
1

logγ+λ
+ 1

µ−logγ

)]
V�x�+ µ

λ+µ

(
logγ+λ−λγ

logγ+λ

)
e−λ�x−1�

≤
[

λµ

λ+µ

(
1

logγ+λ
+ 1

µ−logγ

)
+ µ

λ+µ

(
logγ+λ−λγ

logγ+λ

)
1
γ

]
V�x�

�= λC�λ�µ�γ�V�x��
When λ = 1 and µ = 2, we have that λC�1�2� γ� achieves a minimum of
λC ≈ 0�84 at γ ≈ 1�88. After similar computations for x ∈ C = 	0�1
, we get
that b ≈ 2�4.

Now if we define τ̃ to be the coupling time of a chain started from K and
a chain started with the stationary distribution π, then EK�βτ̃� = EK�βT̃�,
where we define T̃ as the time of the first regeneration according to the dis-
tribution ϕ in the forward setting,

T̃ = min�n ≥ 1� Xn ∈ C and Xn+1 ∼ ϕ��
By Theorems 2.1 and 2.2 of Roberts and Tweedie [19], we have an upper bound
on the generating function of T̃ given by

EK

[
βT̃

]
≤ εV

φ�β�
K

1− �1− ε��	λC + b− ε
/	λC�1− ε�
�φ�β� for 1 ≤ β ≤ eβ
∗
�(22)

where VK �= EK	V
 + µ�C�b/λC, φ�β� = logβ/ log�1/λC�, ε is from the
minorization condition, µ = δK is the measure concentrated at K and

β∗ = log
[�1− ε�log λC

]
log�	λC + b− ε
/	λC�1− ε�
�

In the unit release case, r�x� ≡ 1, we may use the same jump process minoriza-
tion given in (20).
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Since K �∈ C, from (21) we have that

VK = EK	V
 = PV�K� ≤ λCV�K� = �0�84��1�88�K�

and we have a bound on the generating function of T̃ given by

EK

(
βT̃

)
≤ e−2	�0�84��1�88�K
5�8 logβ

1− �1− e−2��4�3�5�8 logβ
for 1 ≤ β ≤ 1�01�(23)

Note that due to the regenerations and residual jumps of the process, our
model is not necessarily stochastically monotone for chains started in the time
interval 	−T∗�0
 but does maintain monotonicity for chains started at earlier
times. However, by an argument similar to (18) applied to the tails of τ̃ and T∗

one can show that τ̃ ∼ T∗. Hence, we have that EK�βT∗� = EK�βτ̃� = EK�βT̃�.
Therefore, we can conclude that

EK�βT∗� ≤ e−2	�0�84��1�88�K
5�8 logβ

1− �1− e−2��4�3�5�8 logβ
for 1 ≤ β ≤ 1�01�

Using Theorem 4.1 of [19], we also have

EK	T∗
 ≤ [
ε−1 log��1− ε�−1J� + logVK

]
/ log λ−1

C

= 5�74	10�73+ log�0�84� +K log�1�88�
�
where J = 1+ �b− ε�/λC.

For K = 10, E10	T∗
 ≤ 97�4 which can be compared with the computed
means of around 9.2 for these parameters. The bounds above are clearly larger
than the empirical results, but nonetheless they give us one rigorous approach
to answering the question of convergence rates.

Finally, we note that the restriction on having a finite bound K can be
removed by suitably constructing a random upper process. Details of one
approach are in [6]; an earlier sketch of related ideas was given by D. B.
Wilson (personal communication).
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