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1 Introduction

1.1 The origin of the problem

In a recent paper ([16]) a complete characterization was given of polynomially growing (strongly)
transient graphs (with volume growth V (x,R) ' Rα) possessing sub-Gaussian behavior with
mean exit time E(x,R) ' Rβ ( α > β ≥ 2). In this setting the classical Gaussian estimates are
replaced with the so called sub-Gaussian estimates which have the form

pn(x, y) ≤ Cn
−α

β exp−
(

dβ(x, y)
Cn

) 1
β−1

(UEα,β)

pn(x, y) + pn+1(x, y) ≥ cn
−α

β exp−
(

dβ(x, y)
cn

) 1
β−1

(LEa,β)

for n ≥ d(x, y) if and only if the volume growth is polynomial and the Green function decays
polynomially as well. The β > 2 case has the sub-Gaussian name to reflect the sub-diffusive
character of the diffusion process.

The aim of this paper is to prove the strongly recurrent counterpart ( α < β ) of the result (
[16] where α > β) . In fact this paper proves more. It shows a local (or as it is sometimes, a
called relative) version assuming volume doubling instead of polynomial growth. This setting
brings two new difficulties. One is the local formalism, the other is that due to the recurrence
there is no global Green function (contrary to the transient case of [16]) and all the analysis is
based on the local Green function, the Green function of the process killed on exiting from a
finite set. This technique was developed in [25], [26] and in [27].

1.2 Basic objects

Let Γ be an infinite connected graph and µx,y the weight function on the connected vertices
x ∼ y, x, y ∈ Γ, inducing a measure µ on Γ. The measure µ(x) is defined for an x ∈ Γ by

µ(x) =
∑

y:y∼x

µx,y

and for A ⊂ Γ
µ(A) =

∑
x∈A

µ(x).

The graph is equipped with the usual (shortest path length) graph distance d(x, y) and open
metric balls defined for x ∈ Γ, R > 0 as B(x,R) = {y ∈ Γ : d(x, y) < R} and its µ−measure is
V (x,R). The surface of the ball (which does not belong to it) is S(x,R) = {y ∈ Γ : d(x, y) = R}.

Definition 1.1 The graph has volume doubling property if there is a constant CV > 0 such
that for all x ∈ Γ and R > 0

V (x, 2R) ≤ CV V (x,R) (D)
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It is clear that volume doubling implies V (x,R) ≤ CRα with

α = lim sup
log V (x,R)

log R
≤ log2 CV .

.

The random walk is defined by the weights via the one-step transition probabilities

P (x, y) =
µx,y

µ(x)
,

P(Xn+1 = y|Xn = x) = P (x, y)

and
Pn(x, y) = P(Xn+1 = y|X0 = x)

while the transition probability kernel is

pn(x, y) =
1

µ(y)
Pn(x, y).

Definition 1.2 The transition probability kernel satisfies the local sub-Gaussian estimates if
there are c, C > 0 such that for all x, y ∈ Γ and n ∈ N

pn(x, y) ≤ C

V (x, n
1
β )

exp−
(

d(x, y)β

Cn

) 1
β−1

, (UEβ)

p̃n(x, y) ≥ c

V (x, n
1
β )

exp−
(

d(x, y)β

cn

) 1
β−1

, (LEβ)

where p̃n = pn + pn+1.

The β- parabolic Harnack inequality can be introduced in the following way (c.f. [17] and [3]).
Let C ={C1, C2, C3, C4, η} the profile of the parabolic Harnack inequality if 0 < C1 < C2 <
C3 < C4 ≤ 1, η < 1 are constants.

Definition 1.3 A weighted graph satisfies (β−parabolic or simply) parabolic Harnack inequality
if for any given profile C there is a constant CH(C) > 0 for which the following is true. Assume
that u is the solution of the equation

un+1(x) = Pun(x)

on
U = [k, k + Rβ] × B(x,R)

for k,R ∈ N, then on the smaller cylinders defined by

U− = [k + C1R
β, k + C2R

β] × B(x, ηR)

U+ = [k + C3R
β, k + C4R

β] × B(x, ηR)

and taking (n−, x−) ∈ U−, (n+, x+) ∈ U+, d(x−, x+) ≤ n+ − n− the inequality

u(n−, x−) ≤ CH ũ(n+, x+) (PHβ)

holds, where ũn = un + un+1.
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It is standard that if the (classical) parabolic Harnack inequality holds for a given profile, then
it holds for any other profile as well, provided the volume doubling condition holds. It is clear
that the same holds for the β−parabolic Harnack inequality.

The elliptic Harnack inequality is direct consequence of the β-parabolic one as it is true in the
classical case.

Definition 1.4 The graph satisfies the elliptic Harnack inequality if there is a C > 0 such that
for all x ∈ Γ, R > 1 and v > 0 harmonic function on B(x, 2R) which means that

Pv = v on B(x, 2R)

the following inequality holds
max

B(x,R)
v ≤ C min

B(x,R)
v. (H)

The notation aξ ' bξ will be used in the whole sequel if there is a C > 1 such that 1/Caξ ≤ bξCaξ

for all possible ξ.

Definition 1.5 The exit time from a set A is defined as TA = min{k : Xk ∈ A,Xk+1 /∈ A}. Its
expected value denoted by Ex(A) = E (TA|X0 = x). Denote T = TR = Tx,R = TB(x,R). and the
mean exit time by E(x,R) = E (Tx,R |X0 = x).

Definition 1.6 The graph has polynomial exit time if there is a β > 0 such that for all x ∈ Γ
and R > 0

E(x,R) ' Rβ. (Eβ)

1.3 The result in brief

The main result presents a strongly recurrent counterpart (α < β) of the result of [16] (where
α > β) and goes beyond it on one hand giving local version of the sub-Gaussian estimate and
on the other hand providing a set of equivalent conditions to it (given later in Section 2 as well
as the definition of strong recurrence.).

Theorem 1.1 For strongly recurrent graphs with the property that for all x, y ∈ Γ, x ∼ y

µx,y

µ(x)
≥ p0 > 0 (p0)

the following statements are equivalent

1. Γ satisfies (D), (Eβ) and (H)

2. Γ satisfies (UEβ), (LEβ)

3. Γ satisfies (PHβ)
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Remark 1.1 We shall see that the implications 2. =⇒ 3. =⇒ 1. hold for all random walks on
weighted graphs. The details will be given in Section 2.

Additionally it is proved that for the same graphs (PHβ) implies the β-Poincaré inequality which
is defined below.

Definition 1.7 The generalized Poincaré inequality in our setting is the following. For for all
function f on V, x ∈ Γ, R > 0∑

y∈B(x,R)

µ(y) (f(y) − fB)2 ≤ CRβ
∑

y,z∈B(x,R+1)

µy,z(f(y) − f(z))2 (Pβ)

where
fB =

1
V (x,R)

∑
y∈B(x,R)

µ(y)f(y)

To our best knowledge the results of Theorem 1.1 is new for β = 2 as well. It is a generalization
of several works having the Gaussian estimates (β = 2) ([29], [9], [17] and their bibliography).

Results on sub-diffusive behavior are well-known in the fractal settings but only in the presence
of strong local symmetry and global self-similarity (c.f. [1] and its bibliography)

We recall a new result from [17, Theorem 5.2] which is in some respect generalization of [12]
[13],[24],[23] and [11].

Theorem 1.2 The following statements are equivalent for Dirichlet spaces equipped with a met-
ric exhibiting certain properties

1. volume doubling and (P2)

2. (UE2) and (PH2) for ht(x, y)

3. (PH2)

In fact [17] provides new and simple proof of this which involves scale-invariant local Sobolev
inequality eliminating the difficult part of the Moser’s parabolic iterative method. A similar
result for graphs with the classical method was given by [9].

These findings are partly extended in [17, Section 5.] to the sub-Gaussian case, (non-classical
case as it is called there), showing that on Dirichlet spaces with proper metric

(UEβ) and (LEβ) =⇒ (PHβ) and (D)

which is exactly 2. =⇒ 3. in Theorem 1.1 in the context of the paper [17]. Let us point out
that Theorem 1.1 uses the usual shortest path metric without further assumption.

Our paper is confined to graphs, but from the definitions, results and proof it will be clear that
they generalize in measure metric spaces and in several cases the handling of continuous space
and time would be even easier.
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2 Preliminaries

2.1 Basic Definitions

In this section we give the necessary definitions and formulate the main result in detail.

Condition 1 During the whole paper for all x ∼ y

P (x, y) =
µx,y

µ(x)
≥ p0 > 0 (p0)

is a standing assumption.

The analysis of the random walk needs some basic elements of potential theory([10]). For any
finite subgraph, say for a ball A = B(w,R), w ∈ Γ, R > 0 the definition of the resistance (on
the subgraph induced on A ) ρ(B,C) = ρA(B,C) between two sets B,C ⊂ A is a well defined
quantity if µ−1

x.y is the resistance associated to the edge x s y. Thanks to the monotonicity
principle (c.f. [10]) this can be extended to the infinite graph, but we do not need it here. For
the sake of short notation we shall introduce for x ∈ Γ, R > r ≥ 1

ρ(x,R) = ρ({x}, S(x,R))

and
ρ(x, r,R) = ρ(B(x, r), S(x,R))

for the resistance of the annulus.

Definition 2.1 We say that the random walk (or the graph) is strongly recurrent if there is a
cρ > 0,M ≥ 2 such that for all x ∈ Γ, R ≥ 1

ρ(x,MR) ≥ (1 + cρ)ρ(x,R). (SR)

Remark 2.1 It is evident that from (SR) it follows that there is a δ > 0 and c > 0 for which
ρ(x,R) > cRδ (δ = log2(1+cρ)). It is well known that a random walk is recurrent if ρ(x,R) → ∞
(c.f.[21], [10]), which means that strongly recurrent walks are recurrent.

The weakly recurrent case (i.e. the random walk is recurrent but (SR) is not true) is not dealt
with in the present paper. In this case, a similar result is expected along very similar arguments,
but the appearance of slowly varying functions brings in extra technical difficulties.
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Definition 2.2 For A ⊂ Γ, PA = PA(y, z) = P (y, z)|A×A is a sub-stochastic matrix, the
restriction of P to the set A. It’s iterates are denoted by PA

k and it defines also a random walk,
killed at the exiting from the ball.

GA(y, z) =
∞∑

k=0

PA
k (y, z),

gA(y, z) =
1

µ(z)
GA(y, z)

is the local Green function (and Green kernel respectively). The notation PR = P x,R =
PB(x,R)(y, z) will be used for A = B(x,R) and for the corresponding Green function by GR.

Remark 2.2 It is well-known that (c.f. [25])

GR(x, x) = µ(x)ρ(x,R)

as special case of
GA(x, x) = µ(x)ρ(x, ∂A)

where we have used the notation ∂A for the boundary of A : ∂A = {z ∈ Γ\A : ∃y ∈ A and
y ∼ z}

Definition 2.3 We introduce the maximal recurrent resistance of a set A ⊂ Γ with respect to
the internal Dirichlet problem

ρ(A) = max
y∈A

ρ(y, ∂A)

which is by the above remark
ρ(A) = max

y∈A
GA(y, y)/µ(y).

Definition 2.4 We say that the graph has regular (relative to the volume) resistance growth if
there is a µ > 0 such that for all x ∈ Γ, R > 0

ρ(x,R) ' Rµ

V (x,R)
. (ρµ)

Definition 2.5 The annulus resistance growth rate is defined similarly. It holds if there is a
C > 0, µ > 0,M ≥ 2 such that for all x ∈ Γ, R > 0

ρ(x,R,MR) ' Rµ

V (x,R)
(ρA, µ)

The Laplace operator of finite sets is ∆A = I − PA = (I − P )|A×Aor particularly for balls is
I − PB(x,R) = (I − P )|B(x,R)×B(x,R). The smallest eigenvalue is denoted in general by λ(A) and
for A = B(x,R) by λ = λ(x,R) = λ(B(x,R)). For variational definition and properties see [8].

Definition 2.6 We shall say that the graph has regular eigenvalue property if there is a ν > 0
such that for all x ∈ Γ, R > 0

λ(x,R) ' R−ν . (λν)
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2.2 Statement of the results

The main result is the following

Theorem 2.1 For a strongly recurrent weighted graph (Γ, µ) if (p0) holds then the following
statements are equivalent

1. (Γ, µ) satisfies (D),(H) and


(Eβ) or
(ρβ) or
(ρA,β) or

(λβ)

2. (Γ, µ) satisfies (UEβ), (LEβ)

3. (Γ, µ) satisfies (PHβ)

In fact we show more in the course of the proof, namely.

Theorem 2.2 For all weighted graph (Γ, µ) with (p0) then each of the statements below imply
the next one.

1. (Γ, µ) satisfies (UEβ), (LEβ)

2. (Γ, µ) satisfies (PHβ)

3. (Γ, µ) satisfies (D),(H) and (ρA,β)

The proof of Theorem 2.1 follows the pattern shown below.

(p0) + (D) + (Eβ) + (H)

⇓
Proposition3.1

⇓
(E)

Theorem 4.1
⇓

((Eβ) ⇐⇒ (ρβ) ⇐⇒ (ρA,β) ⇐⇒ (λβ))

Theorem 3.1
⇓

(Ψ)
(D) + (E) (D) + (Eβ) + (E)︸ ︷︷ ︸
Theorem 5.1

⇓
Theorem 5.1

⇓
(DLE) (DUE) + (PUE)

+ (D) + (H) + (Ψ)

(DUE) + (DLE) + (H)︸ ︷︷ ︸+(D) (PUE) + (Ψ)︸ ︷︷ ︸
Proposition 6.3,6.4

⇓
(NLE) + (D)︸ ︷︷ ︸

Theorem 6.1
⇓

(UEβ)
Proposition6.6

⇓
(LEβ)
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The idea, that in statement 1. of Theorem 2.1, the conditions regarding time, resistance
and eigenvalue might be equivalent is due to A. Grigor’yan, as well as the suggestion that the
Rβ−parabolic Harnack inequality could be inserted as a third equivalent statement.

The proof of the lower estimate is basically the same as it was given in [16]. The proof of
the upper estimate and the equivalence of the conditions need several steps and new arguments.
Corollary 4.6 and Theorem 4.1, collect some scaling relations. Theorem 5.1 uses the λ−resolvent
technique (c.f. [5], [27]) while Theorem 6.1 is a generalization of [13].

During the whole paper several constants should be handled. To make their role transparent we
introduce some convention. For important constants like CV we introduce a separate notation,
for unimportant small (< 1) constants we will use c and big (> 1) constants will be denoted by
C. The by-product constants of the calculation will be absorbed into one.

3 The exit time

Let us introduce the notation

E(R) = E(x,R) = max
w∈B(x,R)

E(TB(x,R)|X0 = w).

Definition 3.1 The graph satisfies the center-point condition if there is a C > 0 such that

E(x,R) ≤ CE(x,R) (E)

for all x ∈ Γ and R > 0.

Proposition 3.1 For all graphs (Eβ) implies (E) and

E(x,R) ' Rβ. (Eβ)

Proof. It is clear that B(x,R) ⊂ B(y, 2R) for all y ∈ B(x,R), consequently for y where the
maximum of E (.)(TB(x,R)) is attained

E(x,R) = E y (TB(x,R)) ≤ E(y, 2R) ≤ CRβ

while by definition
E(x,R) ≥ E(x,R) ≥ cRβ.

The next Lemma has an important role in the estimate of the exit time and in the estimate of
the λ−resolvent introduced later.

Lemma 3.1 For all A ⊂ Γ, x ∈ A, and t ≥ 0, we have

Px(TA < t) ≤ 1 − Ex(A)
E(A)

+
t

2E(A)
. (3.1)
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Proof. Denote n = btc and observe that

TA ≤ t + 1{TA>t}TA ◦ θn

where θn is the time shift operator. Since {TA > t} = {TA > n}, we obtain, by the strong
Markov property,

Ex(TA) ≤ t + Ex

(
1{TA>t}EXn (TA)

) ≤ t + Px (TA > t)E(A).

Applying the definition Ex(A) = Ex(TA), we obtain (3.1).

The following Theorem is taken from [16], see also [27],[28].

Theorem 3.1 Assume that the graph (Γ, µ) possesses the property (Eβ), then there are cΨ, C >
0 such that for all x ∈ Γ , R ≥ 1 and n ≥ 1, we have

Ψ(x,R) = Px(Tx,R ≤ n) ≤ C exp

(
−cΨ

(
Rβ

n

) 1
β−1

)
. (Ψ)

4 Some potential theory

Before we start the potential analysis we ought to recall some properties of the measure and
volume.

Proposition 4.1 If (p0) holds then, for all x ∈ Γ and R > 0 and for some C = C(p0),

V (x,R) ≤ CRµ(x). (4.2)

Remark 4.1 Inequality (4.2) implies that, for a bounded range of R, V (x,R) ' µ(x).

Proof. Let x ∼ y. Since P (x, y) = µxy

µ(x) and µxy ≤ µ(y), the hypothesis (p0) implies p0µ(x) ≤
µ(y). Similarly, p0µ(y) ≤ µ(x). Iterating these inequalities, we obtain, for arbitrary x and y,

p
d(x,y)
0 µ(y) ≤ µ(x). (4.3)

Another consequence of (p0) is that any point x has at most p−1
0 neighbors. Therefore, any ball

B(x,R) has at most CR vertices inside. By (4.3) the measure of y ∈ B(x,R) is at most p−R
0 µ(x),

whence (4.2) follows.

The volume doubling has a well-known consequence, the so-called covering principle, which is
the following

Proposition 4.2 If (p0) and (D) hold then there is a fixed K such that for all x ∈ Γ, R > 0,
B(x,R) can be covered with at most K balls of radius R/2.

Proof. The proof is elementary and well-known, hence it is omitted. The only point which
needs some attention is that for R < 2 condition (p0) has to be used.

We need some consequences of (D). The volume function V acts on Γ×N and has some further
remarkable properties ( [8, Lemma 2.2]).
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Lemma 4.1 There is a C > 0, K > 0 such that for all x ∈ Γ, R ≥ S > 0, y ∈ B(x,R)

V (x,R)
V (y, S)

≤ C

(
R

S

)α

(V1)

where α = log2 CV and
2V (x,R) ≤ V (x,KR). (V2)

Definition 4.1 The graph has property (HG) if the local Green functions displays regular be-
havior in the following sense. There is a constant L = L(A0, A1, A2, A3) > 0 integer such that
for all x ∈ Γ, R > 1,

max
w∈B(x,A2R)\B(x,A1R)

max
y∈B(x,A0R)

max
z∈B(x,A0R)

GA3R(y,w)
GA3R(z,w)

< L. (HG)

The analysis of the local Green function starts with the following Lemma which has been proved
in [16, Lemma 9.2].

Lemma 4.2 Let B0 ⊂ B1 ⊂ B2 ⊂ B3 be a sequence of finite sets in Γ such that Bi ⊂ Bi+1,
i = 0, 1, 2. Denote A = B2 \ B1, B = B0 and U = B3. Then, for any non-negative harmonic
function u in B2,

max
B

u ≤ H inf
B

u (4.4)

where

H := max
x∈B

max
y∈B

max
z∈A

GU (y, z)
GU (x, z)

. (4.5)

Proof. The following potential-theoretic argument is borrowed from [6]. Denote for an X ⊂ Γ
X = X ∪ ∂X. Given a non-negative harmonic function u in B2, denote by Su the following class
of superharmonic functions:

Su =
{
v : v ≥ 0 in U, ∆v ≤ 0 in U , and v ≥ u in B1

}
.

Define the function w on U by

w(x) = min {v(x) : v ∈ Su} . (4.6)

Clearly, w ∈ Su. Since the function u itself is also in Su, we have w ≤ u in U . On the other
hand, by definition of Su, w ≥ u in B1, whence we see that u = w in B1. In particular, it suffices
to prove (4.4) for w instead of u.

Let us show that w ∈ c0(U). Indeed, let v(x) = Ex(U). Let us recall that the function Ex(U)
solves the following boundary value problem in U :{

∆u = 1 in U,
u = 0 outside U.

(4.7)

Using this and the strong minimum principle, v is superharmonic and strictly positive in U .
Hence, for a large enough constant C, we have Cv ≥ u in B1 whence Cv ∈ Su and w ≤ Cv.
Since v = 0 in U \ U , this implies w = 0 in U \ U and w ∈ c0(U).
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Denote f := ∆w. Since w ∈ c0(U), we have, for any x ∈ U ,

w(x) =
∑
z∈U

GU (x, z)f(z). (4.8)

Next we will prove that f = 0 outside A so that the summation in (4.8) can be restricted to
z ∈ A. Given that much, we obtain, for all x, y ∈ B,

w(y)
w(x)

=
∑

z∈A GU (y, z)f(z)∑
z∈A GU (x, z)f(z)

≤ H,

whence (4.4) follows.

We are left to verify that w is harmonic in B1 and outside B1. Indeed, if x ∈ B1 then

∆w(x) = ∆u(x) = 0,

because w = u in U1. Let ∆w(x) 6= 0 for some x ∈ U \ B1. Since w is superharmonic, we have
∆w(x) < 0 and

w(x) > Pw(x) =
∑
y∼x

P (x, y)w(y).

Consider the function w′ which is equal to w everywhere in U except for the point x, and w′

at x is defined to satisfy
w′(x) =

∑
y∼x

P (x, y)w′(y).

Clearly, w′(x) < w(x), and w′ is superharmonic in U . Since w′ = w = u in B1, we have w′ ∈ Su.
Hence, by the definition (4.6) of w, w ≤ w′ in U which contradicts w(x) > w′(x).

Corollary 4.1 If (p0) is true then (HG) and (H) are equivalent.

Proof. The proof of (HG) =⇒ (H) is just an application of the above lemma setting B0 =
R(x,A0R), B1 = B(x,A1R), B2 = B(x,A2R), B3 = B(x,A3R). The opposite direction follows
by finitely many repetition of (H) using the balls covering B(x,A2R)\B(x,A1R) provided by
the covering principle.

Proposition 4.3 If (SR) and (H) holds then there is a c > 0 such that for all x ∈ Γ, R > 0

ρ(x,R, 2R) ≥ cρ(x, 2R). (ρA > ρ)

Proof. Denote A = B(x,MR) and let us define the super-level sets of GA as Hy = (z ∈
B(x,MR) : GA(x, z) > GA(x, y)} and Γy the potential level of y using the linear interpolation
on the edges ( [26, Section 4.]). For any y ∈ S(x,R)

ρ(x,MR) = ρ(x,Γy) + ρ(Γy, Sx,MR).

Let us choose w ∈ S(x,R) which maximize ρ(Γy, Sx,MR). From the maximum principle and the
choice of w it follows that ρ(x,Γy) is minimized and

ρ(x,Γw) ≤ ρ(x,R)
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on the other hand (c.f.[25]) ρ(Γw, S(x,MR)) = 1
µ(x)G

A(w, x), and using (HG) it follows that

ρ(Γw, S(x,MR)) ≤ L

µ(x)
min

y∈S(x,R)
GA(y, x) ≤ Lρ(x,R,MR)

which provides

ρ(x,MR) ≤ ρ(x,R) + Lρ(x,R,MR) ≤ 1
1 + cρ

ρ(x,MR) + Lρ(x,R,MR)

where the last inequality is a consequence of (SR). Finally it follows that

ρ(x,MR) ≤ 1 + cρ

cρ
Lρ(x,R,MR).

Remark 4.2 The converse of this proposition is straightforward. If for all x ∈ Γ, R > 1

ρ(x,R,MR) ≥ cρ(x,MR)

then the random walk is strongly recurrent. This follows from the shorting (c.f. [25]) of S(x,R)
which gives the inequality

ρ(x,MR) ≥ ρ(x,R) + ρ(x,R,MR)

and using the condition
ρ(x,MR) ≥ ρ(x,R) + cρ(x,MR)

follows (SR).

Corollary 4.2 If (SR) and (H) hold then

ρ(x,MR) ≥ ρ(x,R,MR) ≥ cρ(x,MR)

and consequently
ρ(x,R,MR) ' ρ(x,MR).

Hence (ρµ) ⇐⇒ (ρA,µ) holds under statement 1. in Theorem 2.1.

Corollary 4.3 If (p0), (D) and (ρβ) hold then

(SR) ⇐⇒ α < β ⇐⇒ ρ(x,R) ≥ cRδ

where c > 0, δ > 0 independent of x and R.

We included this corollary for sake of completeness in order to connect our definition of strong
recurrence with the usual one. The proof is easy, we give it in brief.

Proof. The implication (SR) =⇒ ρ(x,R) ≥ cRδ is evident. Assume ρ(x,R) ≥ cRδ. Using (ρβ)
one gets

Rβ

V (x,R)
≥ cRδ

13



which gives
V (x,R) ≤ CRβ−δ

and a < β, applying limpsup on both sides. Finally again from (ρβ)and α < β

ρ(x,MR) ≥ c
(MR)β

V (x,MR)

(D)

≥ cMβ−α Rβ

V (x,R)
≥ cMβ−αρ(x,R)

and M =
(

1+cρ

c

) 1
β−α provides (SR).

Corollary 4.4 If (SR) and (H) holds then there is a C > 1 such that for all x ∈ Γ, R > 0

Gx,MR(x, x) ≤ C min
y∈B(x,R)

Gx,MR(y, x). (CG)

Proof. Let us use Proposition 4.3.

1
µ(x)

Gx,MR(x, x) = ρ(x,MR) ≤ Cρ(x,R,MR)

≤ max
y∈B(x,MR)\B(x,R)

C

µ(x)
Gx,MR(y, x)

where the last inequality follows from the maximum principle. The potential level of the vertex
w maximizing Gx,MR(., x) runs inside of B(x,R) and w ∈ S(x,R). Here we assume that R ≥ 3
and apply (HG) with A0 = 1/3, A1 = 1/2, A2 = 1, A3 = M.

max
y∈B(x,MR)\B(x,R)

C

µ(x)
Gx,MR(y, x) = max

y∈S(x,R)

C

µ(y)
Gx,MR(x, y)

(HG)

≤

min
y∈S(x,R)

CL

µ(y)
Gx,MR(x, y) = min

y∈B(x,R)

C

µ(x)
Gx,MR(y, x).

For R ≤ 2 we use (p0) adjusting the constant C.

The next proposition1 is an easy adaptation of [25].

Proposition 4.4 For strongly recurrent walks if (D) and (CG) hold then

ρV ' E.

More precisely there is a constant c > 0 such that for all x ∈ Γ, R > 0

cV (x,R)ρ(x,R) ≤ E(x,R) ≤ V (x,R)ρ(x,R). (4.9)

In addition (ρβ) holds if and only if (Eβ) holds.

1Special thanks are due to T. Delmotte pointing out that condition of strong recurrence was missing but
essential for the lower estimate in the Proposition and later in the sequel.
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Proof. The upper estimate is trivial

E(x,R) =
∑

y∈B(x,R)

GR(x, y) =
∑

y∈B(x,R)

µ(y)
µ(x)

GR(y, x)

=
∑

y∈B(x,R)

µ(y)
µ(x)

P (Tx < TR)GR(x, x) =
1

µ(x)
GR(x, x)V (x,R).

The lower estimate is almost as simple as the upper one.

E(x,MR) =
∑

y∈B(x,MR)

GMR(x, y) ≥
∑

y∈B(x,R)

µ(y)
µ(x)

GMR(y, x)

at this point one can use (CG) to get∑
y∈B(x,R)

µ(y)
µ(x)

GMR(y, x) ≥ 1
C

∑
y∈B(x,R)

µ(y)
µ(x)

GMR(x, x)

=
1
C

ρ(x,MR)V (x,MR)

from which the statement follows for all R = M i. For intermediate values of R the statement
follows using R > M i trivial lover estimate and decrease of the leading constant as well as for
R < M using (p0).

The first eigenvalue of the Laplace operator I − PA for a set A ⊂ Γ is one of the key objects
in the study of random walks (c.f. [8] ). Since it turned out that the other important tools are
the resistance properties, it is worth finding a connection between them. Such connection was
already established in [26] and [27]. Now we present some elementary observations which will
be used in the rest of the proofs, and are interesting on their own.

Lemma 4.3 For all random walks on (Γ, µ) and for all A ⊂ Γ

λ−1(A) ≤ E(A) (λE)

Proof. Assume that f ≥ 0 is the eigenfunction corresponding to λ = λ(A), the small-
est eigenvalue of the Laplace operator ∆A = I − PA on A and let f be normalized so that
maxy∈Af(y) = f(x) = 1. It is clear that

E(TA) =
∑
y∈A

GA(x, y)

while ∆−1
A = GA consequently

1
λ

=
1
λ

f(x) = GAf(x) ≤
∑
y∈A

GA(x, y) = Ex(TA)

which gives the statement.
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Lemma 4.4 For all random walks on (Γ, µ) it is obvious that

Ex(TA) ≤ ρ(x, ∂A)µ(A) (4.10)

and
E(A) ≤ ρ(A)µ(A). (4.11)

Proof.

Ex(TA) =
∑
y∈A

GA(x, y) =
∑
y∈A

GA(y, x)
µ(y)
µ(x)

≤ GA(x, x)
µ(x)

∑
y∈A

Py(TA > Tx)µ(y) ≤ ρ(x, ∂A)µ(A).

The second statement follows from the first one taking maximum for x ∈ A on both sides.

Proposition 4.5 (c.f. [27],[28])For all random walks on (Γ, µ) and for A ⊂ B ⊂ Γ finite sets

λ(B) ≤ ρ(A,B)µ(B\intA)
E (Ta,B )2

where Ta,B denotes the exit time from B on the modified graph Γa, where A shrunk into a single
vertex a which has all the edges to vertices B\A which connects A and B\A. (All the rest of the
graph remains the same as in Γ.)

Proof. We repeat here the proof of the cited works briefly. Consider the smallest eigenvalue
of the Laplacian of B.

λ(B) = inf

(
(I − P )B f, f

)
‖f‖2

2

≤
(
(I − P )B v, v

)
‖v‖2

2

if v(z) is the harmonic function on B\{a}, v(a) = R(a,B), v(z) = 0 if z ∈ Γ\B. It is easy to see
that (

(I − P )B v, v
)

= R(A,B)

while using the Cauchy-Schwarz inequality

‖v‖2
2 ≥ E (Ta,B )2

µ(B\A)
.

Corollary 4.5 (c.f. [27],[28])For all random walks on weighted graphs and R ≥ 2

λ(x, 2R) ≤ ρ(x,R, 2R)V (x, 2R)
E(w,R/2)2

where w∈ S(x, 3/2R) minimizes E(w,R/2).
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Proof. Apply Proposition 4.5 with A = B(x,R), B = B(x, 2R) and observe that the walk
should cross S(x, 3/2R) before exit from B and restarting from this crossing point we get the
estimate

E (Ta,B ) ≥ min
w∈S(x,3/2R)

E(w,R/2)

which provides the statement.

Proposition 4.6 For all recurrent random walks and for all A ⊂ B ⊂ Γ

λ(B)ρ(A,B)µ(A) < 1 (4.12)

particularly for B = B(x, 2R), A = B(x,R), x ∈ Γ, R ≥ 1

λ(x, 2R)ρ(x,R, 2R)V (x,R) ≤ 1, (4.13)

furthermore assuming (D)
λ(x, 2R)ρ(x,R, 2R)V (2R) ≤ C, (4.14)

and for B = B(x,R), A = {x} if (D), (SR) and (H) hold then

λ(x,R)ρ(y,R)V (x,R) ≤ C. (4.15)

Proof. The idea of the proof is based on [15] and [26]. Consider u(y) harmonic function on B
defined by the boundary values u(x) = 1 on x ∈ A,u(y) = 0 for y ∈ Γ\B. This is the capacity
potential for the pair A,B. It is clear that 1 ≥ u ≥ 0 by the maximum principle. From the
variational definition of λ it follows that

λ(B) ≤ ((I − PA)u, u)
(u, u)

≤ 1
ρ(A,B)µ(A)

where we have used the Ohm law, which says that the unit potential drops from 1 to 0 between
∂A to B results Ieff = 1/Reff = 1/ρ(A,B), incoming current through ∂A and the outgoing
”negative” current through ∂B. It is clear that (4.13) is just a particular case of (4.12), (4.14)
follows from (4.13) using (D) finally, (4.15) can be seen applying Corollary (4.2).

The above results have an important consequence. It is useful to state it separately.

Corollary 4.6 If (p0), (SR) and (H) holds then for all x ∈ Γ, R ≥ 1

E ' E ' λ−1 ' ρV ' ρAV ' ρV (4.16)

where the arguments (x,R) are suppressed and ρA = ρ(x,R, 2R).

Proof. The proof is straightforward from Corollary 4.2, proposition 4.4,4.6 and Lemma4.3.

Theorem 4.1 Assume (p0), (SR) and (H) then the following statements are equivalent for all
x ∈ Γ, R ≥ 1

E(x,R) ' Rβ (4.17)
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follows
λ(x,R) ' R−β (4.18)

and

ρ(x,R) ' Rβ

V (x,R)
, (4.19)

ρ(x,R, 2R) ' Rβ

V (x,R)
. (4.20)

Proof. Thanks to Corollary 4.4 (SR) and (H) implies (CG) and by Proposition 4.4 from (CG)
follows (4.9) and directly (4.17) ⇐⇒ (4.19),while (4.19) ⇐⇒ (4.20) follows from Corollary 4.2.
On the other hand (4.17) ⇐⇒ (4.18) is a direct consequence of Proposition 3.1 and Corollary
4.6.

This Theorem shows that the alternatives under the first condition in Theorem 2.1 are equivalent.

5 The diagonal estimates

The on-diagonal estimates basically were given in [26]. There the main goal was to get a Weyl
type result by controlling of the spectral density via the diagonal upper (and lower) bounds of the
process, killed at leaving B(x,R). The result immediately extends to the transition probabilities
of the original chain.

Theorem 5.1 If (p0)(D), (Eβ) and (H) hold then there are ci, Cj > 0 such that for n,R ≥
1, x ∈ Γ

Pn(x, x) ≤ C1
µ(x)

V (x, n
1
β )

(DUE)

Pn(x, y) ≤ C2
µ(y)(

V (x, n
1
β )V (y, n

1
β )
)1/2

(PUE)

and furthermore if n ≤ c3R
β then

P2n(x, x) ≥ PB(x,R)
n (x, x) ≥ C4

µ(x)

V (x, n
1
β )

. (DLE)

The (DLE) follows from the next simple observation

Proposition 5.1 For all (Γ, µ) for A ⊂ Γ, and fixed w ∈ A if

E(A) ≤ C0Ew(A)

then for n ≤ 1
2Ew(A)

PA
2n(w,w) ≥ cµ(w)

µ(A)
.
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Proof. ¿From the condition using Lemma 3.1 it follows, that if n ≤ 1
2Ew(A) then

Pw(TR > n) >
Ew(A) − n

E(A)
=

1
2C0

= c > 0

c2 ≤ Pw(TR > n)2 ≤ (e∗wPA
n 1
)2

(5.21)

≤
∑

y∈A

PA
n (w, y)

√
µ(y)
µ(y)

2

≤
∑

y∈A

µ(y)

∑
y∈A

PA
n (w, y)2

µ(y)


= µ(A)

∑
y∈A

PA
n (w, y)

PA
n (y,w)
µ(w)


≤ 1

µ(w)
µ(A)PA

2n(w,w)

which was to be shown.

Corollary 5.1 If (p0) and (E) holds then

P
B(x,R)
2n (x, x) ≥ c

µ(x)
V (x,R)

≥ c
µ(x)

V (x, 1
δn

1
β )

if δ < 1 and δRβ > n.

Proof. The statement follows from Proposition 5.1.

Proposition 5.2 If (p0), (D), (Eβ) and (H) holds then there is a δ > 0 such that for all R > 0
and 1 ≤ n < δRβ

P2n(x, x) ≥ P
B(x,R)
2n (x, x) ≥ c

µ(x)

V (x, n
1
β )

. (5.22)

Proof. We can apply Proposition 5.1 for A = B(x,R), to get (5.22) with w = x and having
(E) thanks to Proposition 3.1.

Definition 5.1 Let us define the λ−resolvent and recall the local Green function as follows

Gλ(x, x) =
∞∑

k=0

e−λkPk(x, x)

and

GR(x, x) =
∞∑

k=0

P
B(x,R)
k (x, y).
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The starting point of the proof of the (DUE) is the following lemma (from [27]) for the
λ−resolvent without any change.

Lemma 5.1 In general if λ−1 = n then

P2n(x, x) ≤ cλGλ(x, x).

Proof. The proof is elementary. It follows from the eigenfunction decomposition that
P

B(x,R)
2n (x, x) is non-increasing in n (c.f. [16] or [27]). For R > 2n P

B(x,R)
2n (x, x) = P2n(x, x),

hence the monotonicity holds for P2n(x, x) in the 2n < R time range. But R is chosen arbitrarily,
hence P2n is non-increasing and we derive

Gλ(x, x) =
∞∑

k=0

e−λkPk(x, x) ≥
∞∑

k=0

e−λ2kP2k(x, x) ≥
n−1∑
k=0

e−λ2kP2k(x, x)

≥ P2n(x, x)
1 − e−λ2n

1 − e−2λ
.

Choosing λ−1 = n follows the statement

Lemma 5.2 If (E) holds then
Gλ(x, x) ≤ cGR(x, x).

Proof. The argument is taken from [26, Lemma 6.4]. Let ξλ be a geometrically distributed
random variable with parameter a e−λ. One can see easily that

GR(x, x) = Gλ(x, x) + Ex(I(TR ≥ ξλ)GR(Xξλ
, x))

−Ex(I(TR < ξλ)Gλ(XTR
, x)) (5.23)

from which
Gλ(x, x) ≤ P (TR ≥ ξλ)−1GR(x, x).

Here P (TR ≥ ξλ) can be estimated thanks to Lemma 3.1

P (TR ≥ ξλ) ≥ P (TR > n, ξλ ≤ n)

≥ P (ξλ ≤ n)P (TR > n) ≥ c′
E − n

2CE
> c.

if λ−1 = n = 1
2E(x,R) and (E) holds.

Proof of Theorem 5.1. Combining the previous lemmas with λ−1 = n = 1
2E(x,R) one gets

P2n(x, x) ≤ cλGλ(x, x) ≤ cE(x,R)−1GR(x, x).

Now let us recall from Remark 2.2 , that GR(x, x) = µ(x)ρ(x,R) and let us use the conditions

GR(x, x) = µ(x)ρ(x,R)
(λρµ)

≤ Cµ(x)
λ(x,R)V (x,R)

(λE)

≤ Cµ(x)E(x,R)
V (x,R)
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and by Lemma 5.1 and 5.2

P2n(x, x) ≤ Cµ(x)E(x,R)−1ρ(x,R)

≤ Cµ(x)E
E(x,R)V (x,R)

(E)

≤ Cµ(x)
V (x,R)

(D)

≤ Cµ(x)

V (x, n
1
β )

.

¿From this it follows that P2n+1(x, x) ≤ cµ(x) V (x, n
1
β )−1 and with Cauchy-Schwartz and the

standard argument (c.f. [8]) one has that

Pn(x, y) ≤ µ(y)

√
Pn(x, x)

µ(x)
Pn(y, y)

µ(y)
(5.24)

consequently

Pn(x, y) ≤ µ(y)

(
1

V (x, n
1
β )V (y, n

1
β )

)1/2

.

This proves (DUE) and (PUE) and (DLE) follows from Proposition 5.2.

6 Off-diagonal estimates

In this section we deduce the off-diagonal estimates based on the diagonal ones.

6.1 Upper estimate

The upper estimate uses an idea of [13].

Theorem 6.1 (p0) + (D) + (Eβ) + (H) =⇒ (UEβ)

For the proof we generalize the inequality (c.f. [12, Proposition 5.1])

Lemma 6.1 For all random walks and for any L(s) ≥ 0 convex (non-concave from below)
function (s > 0) and D > 0

Pn(x, y) ≤ (M(x, n)M(y, n))1/2 exp−2L (d(x, y))

where

M(w,n) =
∑
z∈Γ

Pn(w, z)2

µ(z)
exp L (d(w, z)) .

Proof. Let us observe first that the triangular inequality

d(x, y) ≤ d(x, z) + d(z, y)
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implies using the Jensen inequality that

L(d(x, y)) ≤ L(d(x, z) + d(z, y))

≤ 1
2

(L (d(x, z)) + L (d(z, y))) .

This means that
exp (−2L(d(x, y)) + L (d(x, z)) + L (d(z, y))) ≥ e > 1

hence

Pn(x, y) =
∑
z∈Γ

Pn(x, z)Pn(z, y) =
∑
z∈Γ

Pn(x, z)
µ(y)
µ(z)

Pn(y, z)

≤ µ(y)
∑
z∈Γ

Pn(x, z)
µ(z)1/2

Pn(y, z)
µ(z)1/2

e(−L(d(x,y))+ 1
2
(L(d(x,z))+L(d(z,y))))

≤ µ(y)e−L(d(x,y))

(∑
z∈Γ

p(x, z)2

µ(z)
e

1
2
L(d(x,z))

)1/2

×
(∑

z∈Γ

p(y, z)2

µ(z)
e

1
2
L(d(z,y))

)1/2

.

Corollary 6.1 For all random walks and D > 0, β > 1

Pn(x, y) ≤ (ED(x, n)ED(y, n))1/2 exp−
(

d(x, y)

D (2n)
1
β

) β
β−1

where

ED(w,n) =
∑
z∈Γ

Pn(w, z)2

µ(z)
exp

(
d(w, z)

Dn
1
β

) β
β−1

Proof. Consider the L(s) =
(

sβ

Dn

) 1
β−1 function. L is non-concave if β > 1 hence Lemma 6.1

applicable.

The next step towards to the proof of (UEβ) is to get an estimate of ED(w,n).

Lemma 6.2 For all w ∈ Γ, n ∈ N (PUE) and (Ψ) implies

ED(w,n) ≤ C

V (w,n
1
β )
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Proof. Let us assume first that d(w, z) < n
1
β in the summa of ED. In this case

Pn(w, z)2

µ(z)
exp

(
d(w, z)β

Dn

) 1
β−1

≤ C
Pn(w, z)2

µ(z)

hence ∑
d(w,z)<n

1
β

Pn(w, z)2

µ(z)
exp

(
d(w, z)β

Dn

) 1
β−1

≤ C
∑

d(w,z)<n
1
β

Pn(w, z)Pn(z,w)
µ(w)

≤ C
∑
z∈Γ

Pn(w, z)Pn(z,w)
µ(w)

(DUE)+(D)

≤ C

V (w,n
1
β )

. (6.25)

Let us consider the sum of ”far away” vertices and denote δ =
(

1
D

) 1
β−1 .

∑
d(w,z)≥n

1
β

Pn(w, z)2

µ(z)
exp

(
d(w, z)β

Dn

) 1
β−1

≤
∑

d(w,z)≥n
1
β

Pn(w, z) exp δ

(
d(w, z)β

n

) 1
β−1

max
z

Pn(w, z)
µ(z)

.

The max can be handled as usual using (PUE)

max
z

Pn(w, z)
µ(z)

≤ C

V (w,n
1
β )

(
V (w,n

1
β )

V (z, n
1
β )

)1/2

≤ C

V (w,n
1
β )

(
V (w, d(w, z))

V (z, n
1
β )

)1/2

(D)

≤ C

V (w,n
1
β )

(
d(w, z)

n
1
β

)α/2

≤ C

V (w,n
1
β )

Cε exp
εα

2
d(w, z)

n
1
β

≤ C

V (w,n
1
β )

Cε exp
εα

2

(
d(w, z)

β
β−1

n
1

β−1

)
≤ C

V (w,n
1
β )

exp
εα

2

(
d(w, z)β

n

) 1
β−1

Applying this in the sum

∑
d(w,z)≥n

1
β

Pn(w, z)2

µ(z)
exp δ

(
d(w, z)β

n

) 1
β−1

≤ C

V (w,n
1
β )

∞∑
r=n

1
β

∑
z∈S(w,r)

Pn(w, z) exp
(εα

2
+ δ
)(rβ

n

) 1
β−1

=
C

V (w,n
1
β )

∞∑
r=n

1
β

Pn(w,S(w, r)) exp
εα

2

(
rβ

n

) 1
β−1
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Here Pn(w,S(w, r)) can be estimated using (Ψ) to get further upper bound by

C

V (w,n
1
β )

∞∑
r=n

1
β

Pn(w,S(w, r)) exp
(εα

2
+ δ
)(rβ

n

) 1
β−1

≤ C

V (w,n
1
β )

∞∑
r=n

1
β

exp
(εα

2
+ δ
)[(rβ

n

) 1
β−1

− c	

(
rβ

n

) 1
β−1

]

and if ε is chosen ε =
2c	
3α and δ =

c	
3 (i.e. D =

(
3

c	

)β−1
) then finally we obtain

C

V (w,n
1
β )

∞∑
r=n

1
β

exp
(εα

2
+ δ
) [(rβ

n

) 1
β−1

− c	

(
rβ

n

) 1
β−1

]
(6.26)

≤ C

V (w,n
1
β )

∞∑
r=n

1
β

exp−c	

3

(
rβ

n

) 1
β−1

(6.27)

where the last sum is evidently bounded by a constant depending only on cΨ and β. The
estimates in (6.25) and (6.27) provide the statement.

Proof of Theorem 6.1. Now we collect our findings. By Proposition 3.1 (Eβ) implies (Ψ)
while (PUE) is given by Theorem 5.1, consequently we can apply Lemma 6.2 in Lemma 6.1.
The final step is standard to replace V (y, n

1
β )1/2 with

V (x, n
1
β )1/2Cε exp

εα

2

(
d(x, y)β

n

) 1
β−1

as in the proof of Lemma 6.1 with a slight further decrease of the leading constant in the
exponent.

Let us remark that this proof is considerably simpler than those given in [13], [8] with the aid
of integral estimates and mean value inequalities while here we have the full power of (Ψ).

6.2 Lower estimate

For the lower estimate it is common to use the upper estimate of the time derivative of the heat
kernel.

Definition 6.1 For a function un(x) on N × V we define the time derivative as

∂nu = un+2 − un.

Definition 6.2 For any set U and a function u on U , denote

osc
U

u := max
U

u − min
U

u.
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The following statements are taken from [16].

Proposition 6.1 ([16, Proposition 11.2]) Assume that the elliptic Harnack inequality (H) holds
on (Γ, µ). Let u ∈ c0(B(x,R)) satisfy in B(x,R) the equation ∆u = f . Then for any ε > 0,
there exists σ = σ(ε,H) < 1 such that for any positive r < R,

osc
B(x,σr)

u ≤ 2
(
E(x, r) + εE(x,R)

)
max |f | . (6.28)

Proposition 6.2 ([16, Proposition 12.1, 12.2]) For all A ⊂ Γ, x, y ∈ Γ, n ∈ N∣∣∂npA(x, y)
∣∣ ≤ Cn−1

(
pA

n (x, x)pA
n (y, y)

)1/2
. (6.29)

Corollary 6.2 If the (D) and (DUE) hold then there is a C > 1 such that for all x, y ∈ Γ,

n ∈ N, d(x, y) ≤ cn
1
β ∣∣∣∂nPB(x,R)(x, y)

∣∣∣ ≤ C
µ(y)

nV (x, n
1
β )

(6.30)

¿From these propositions the next particular diagonal lower estimate follows again as in [16,
Proposition 13.1].

Proposition 6.3 Assume (p0) then from (DUE) + (DLE) + (H) follows that for all there is
a C > 1 such that x, y ∈ Γ, n ∈ N, R > Cnβ

PB(x,R)
n (x, y) + P

B(x,R)
n+1 (x, y) ≥ c

µ(y)

V (x, n
1
β )

(PLE)

provided d(x, y) ≤ δn
1
β .

Proof. Let us fix x ∈ Γ , n ∈ N and set

R =
(n

ε

)1/β
, (6.31)

for small enough positive ε. So far we assume only that ε satisfies the restriction in (DLE)
but later one more upper bound on ε will be imposed. Denote A := B(x,R) and introduce the
function

u(y) := pA
n (x, y) + pA

n+1(x, y).

By the hypothesis (DLE), we have u(x) ≥ cV (x, n
1
β )−1. Let us show that

|u(x) − u(y)| ≤ c

2
1

V (x, n
1
β )

, (6.32)

provided d(x, y) ≤ δn1/β , which would imply u(y) ≥ c
2V (x, n

1
β )−1, hence proving (PLE).
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The function u(y) is in class c0(A) and solves the equation ∆u(y) = f(y) where

f(y) := pA
n+2(x, y) − pA

n (x, y).

The on-diagonal upper bound (DUE) implies, by Corollary 6.2,

max |f | ≤ C

nV (x, n
1
β )

. (6.33)

By (H) and Proposition 6.1, we have, for any 0 < r < R and for some σ = σ(ε2) ∈ (0, 1),

osc
B(x,σr)

u ≤ 2
(
E(x, r) + ε2E(x,R)

)
max |f | .

As it is derived in Proposition 3.1, (E ≤) implies a similar upper bound for E. Estimating
max |f | by (6.33), we obtain

osc
B(x,σr)

u ≤ C
rβ + ε2Rβ

V (x, n
1
β )

.

Choosing r to satisfy r = εR and substituting from (6.31) n = (εR)β, we obtain

osc
B(x,σr)

u ≤ C
ε2Rβ

nV (x, n
1
β )

=
εC

V (x, n
1
β )

,

which implies

osc
B(x,σr)

u ≤ c

2
1

V (x, n
1
β )

, (6.34)

provided ε is small enough.

Note that
σr = σε2/βR = σε2/β

(n

ε

)1/β
= σε1/βn1/β = δn1/β

where δ := σε1/β . Hence, (6.34) implies

|u(x) − u(y)| ≤ c

2
1

V (x, n
1
β )

,

provided d(x, y) ≤ δn1/β , which was to be proved.

Proposition 6.3 immediately implies the near diagonal lower estimate.

Proposition 6.4 Assume (p0) then from (DUE) + (DLE) + (H) follows that for all x, y ∈
Γ, n ∈ N

P̃n(x, y) = Pn(x, y) + Pn+1(x, y) ≥ c
µ(y)

V (x, n
1
β )

(NLE)

provided d(x, y) ≤ δn
1
β .

The next proposition embeds the above statement in our chain of proofs.
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Proposition 6.5 Assume (p0) then

(D) + (Eβ) + (H) =⇒ (NLE).

Proof. The statement follows from Theorem 5.1 and Proposition 6.4.

Proposition 6.6 If (p0) and (D) are true then

(NLE) =⇒ (LEβ)

Proof. Using (NLE) and the standard chaining argument the lower estimate (LEβ) can be
easily seen. It is exhaustively elaborated for the regular volume growth case ( [16, Proposition
13.3]) (or see [9, Theorem 3.8 lower bound] under the doubling condition.) and the proof
generalizes automatically to the recent situation hence we give here just the key step of the
proof. Assume that d = d(x, y), δn

1
β < d ≤ εn and consider a sequence of vertices oi ∈ Γ for

i = 1, 2.. = k = C
(

dβ

n

) 1
β−1

, o0 = x, ok = y where C = C(ε, δ) is a big constant and

d(oi,oi+1) ≤
⌈

d

k

⌉
=: r

and set m =
⌊

n
k

⌋ − 1. Recognize that r ' (
n
d

) 1
β−1 and m ' (

n
d

) β
β−1 and apply (NLE) for

zi ∈ B(oi, r) =: Bi, with d(zi, zi+1) ≤ 3r ≤ δm
1
β (which can be ensured with the right choice of

C). (NLE) holds in the form

P̃m(zi, zi+1) ≥ cl
µ(zi+1)

V (zi, n
1
β )

(cl < 1). This can be applied to get

P̃n(x, y) ≥
∑

(z1,..zk−1)∈B1×..Bk−1

clµ(z1)
V (x, r)

clµ(z2)
V (o1, r)

...
clµ(y)

V (ok−1, r)

≥ c′
µ(y) exp (−k log 1/cl)

V (x, n
1
β )

which is the (LEβ). For the trivial d(x, y) ≤ δn
1
β and > εn cases see the arguments in [16].

7 The return route of the proof

In this section the proof of the implications 2. =⇒ 3. =⇒ 1. in Theorem 2.1 are given. Partic-
ularly we shall prove (ρA,β) from the set of equivalent conditions in 1. and hence Theorem 2.2.
It should be emphasized again that we do not use the recurrence assumption.

Theorem 7.1 (p0) + (UEβ) + (LEβ) =⇒ (PHβ)
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This is proved in [17] based on a method of [11, Section 3] developed for the case β = 2, and
can be reconstructed from the clear interpretation of [9, Section 3.3] as well.

Theorem 7.2 If (p0) and (PHβ) hold, then (D), (ρA,β) and the elliptic Harnack inequality are
true.

The elliptic Harnack inequality evidently follows from the β−parabolic one. The proof of the
rest is via proving (DUE) and (PLE), namely for all x ∈ Γ, R > 0, A = B(x, 2R)

P̃A
n (x, y) = PA

n (x, y) + PA
n+1(x, y) ≥ cµ(y)

V (x, n
1
β )

(7.35)

if d(x, y) < R and 4
9Rβ ≤ n ≤ 5

9Rβ.

Proposition 7.1 (p0) + (PHβ) =⇒ (DUE), (PLE as in 7.35), (NLE)

Proof. Let us show (borrowing the idea from [9, Proposition 3.1]) the diagonal upper estimate
first. Let us fix y ∈ Γ and let un(x) = Pn(x, y) the solution on [0, Rβ)] × B(x, 2R). Let us use
(PHβ) for the profile C ={4

9 , 5
9 , 6

9 , 1, 1
2} to x, y, z ∈ Γ, d(x, y) ≤ R, d(z, y) ≤ R. It provides

Pn(x, y) ≤ CH P̃2n(z, y) (7.36)

which can be summed over B(x,R)

Pn(x, y) ≤ CH

V (x,R)

∑
z∈B(x,R)

µ(z)P̃2n(z, y)

=
CHµ(y)
V (x,R)

∑
z∈V (x,R)

P̃2n(y, z)

≤ Cµ(y)
V (x,R)

≤ C
µ(y)

V (x, n
1
β )

.

Let us remark that the particular choice of the profile has no real importance, the only point
is to ensure that n− = n, n+ = 2n can be chosen. This will be applied repeatedly without any
further comment.

The next step is to show (PHβ) =⇒ (7.35) This can be seen again from (PHβ) applied to
PA

n getting PA
n (z, y) ≤ CH P̃A

2n(x, y) for z ∈ B(x,R) and for an other solution ũ of a parabolic
equation with boundary conditions as follows. Let uk(w) defined on [0, Rβ ] × B(x, 2R) and

uk(w) =
{

1 if 0 ≤ k ≤ n∑
z∈B(x,R) PA

k−n(w, z) if n < k ≤ 2n
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(PHβ) provides for y ∈ B(x,R/2)

1
CH

=
1

CH
un(x) ≤ ũ2n(y) =

∑
z∈B(x,R)

P̃A
n (y, z)

=
∑

y∈B(x,R)

P̃A
n (z, y)

µ(z)
µ(y)

≤
∑

y∈B(x,R)

2CH P̃A
2n(x, y)

µ(z)
µ(y)

=
2CHV (x,R)

µ(y)
P̃A

2n(x, y).

This proves (7.35) for R ≥ 9, for small R − s the statement follows from (p0). We have got
(PLE) for 2n and it follows for 2n + 1 using (p0) in the one step decomposition. It is clear
that (NLE) follows from (7.35) imposing the condition d(x, y) ≤ n

1
β (which is stronger than

the assumed d(x, y) ≤ R, n ≤ 5
9Rβ).

Proposition 7.2 (p0) and (PHβ) imply (D).

Proof. The volume doubling is easy consequence of (DUE) and (NLE) provided by Proposition
7.1 from (PHβ). Consider n = Rβ,m = (2R)β and apply the conditions to get

c
µ(x)

V (x,R)
≤ P̃n(x, x)

(PH)

≤ CP̃m(x, x) ≤ C
µ(x)

V (x, 2R)
(7.37)

Proposition 7.3 If (p0), (D) and (DUE) hold then

λ(x,R) ≥ cR−β (7.38)

Proof. We shall choose later 0 < ε < 1 and assume R ≤ εn
1
β and y, z ∈ B(x,R) =: A. At the

end of the proof of Theorem 5.1 we have seen that (DUE) implies upper estimate of Pn(y, z)
which is in our case

PA
n (y, z) ≤ C

µ(z)(
V (y, n

1
β )V (z, n

1
β ))
)1/2

.

For w = y or z d(x,w) ≤ R using (Dβ) one has

V (x, n
1
β )

V (w,n
1
β )

≤ C

which results that
PA

n (y, z) ≤ C
µ(z)

V (x, n
1
β )

.
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If φ is the eigenfunction belonging to the smallest eigenvalue λ of I − PB(x,R) normalized to
(φ1) = 1 then

(1 − λ)n = φPA
n 1 ≤

∑
y,z∈B(x,R)

φ(y)PA
n (y, z)

≤
∑

z∈B(x,R)

Cµ(z)

miny∈B(x,R) V (y, n
1
β )

≤ C
V (x,R)

V (x, n
1
β )

≤ C
V (x, εn

1
β )

V (x, n
1
β )

but using (V2) for ε =
(

1
K

)m
C

V (x, εn
1
β )

V (x, n
1
β )

≤ C
2−mV (x, n

1
β )

V (x, n
1
β )

<
1
2

if m = dlog2 C + 1e . Finally, using the inequality and 1 − ξ ≥ 1
2 log 1

ξ for ξ ∈ [12 , 1] for ξ =
1 − λ(x,R) one has

λ(x,R) ≥ log 2
2n

≥ cR−β.

Corollary 7.1 If (p0) and (PHβ) hold, then there is a C > 0 such that for all x ∈ Γ, R > 1

ρ(x,R, 2R) ≤ C
Rβ

V (x, 2R)
.

Proof. The statement direct consequence of (4.13) and Proposition 7.3.

The lower estimate of E is quite simple in the possession of the (7.35) which is a consequence
again of (PHβ) by Proposition 7.1.

Proposition 7.4 If (p0) and (7.35) (variant of (PLE) ) holds, then there is a c > 0 such that
for all x ∈ Γ, R ≥ 0

E(x,R) ≥ cRβ

Proof. We assumed that for all x ∈ Γ, R ≥ 1

P̃B(x,4R)
n (x, y) = PB(x,4R)

n (x, y) + P
B(x,4R)
n+1 (x, y) ≥ cµ(y)

V (x,R)

if 4
9Rβ ≤ n ≤ 5

9Rβ, y ∈ B(x,R/2). By definition

E(x,R) =
∞∑

k=0

∑
y∈B(x,R/2)

P
B(x,2R)
k (x, y) ≥

∞∑
k=0

∑
y∈B(x,R/2)

1
2
P̃

B(x,2R)
k (x, y)

5
9
Rβ ′∑

k=( 1
4
R)β

∑
y∈B(x,R/2)

1
2
P̃

B(x,2R)
k (x, y)

(PLE)

≥ c
V (x,R/2)

V (x,
(

5
9

) 1
β R)

Rβ (D)
= cRβ .
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Corollary 7.2 If (7.35)(variant of (PLE) ) holds then

ρ(x,R, 2R) ≥ c
Rβ

V (2R)

Proof. Let us use Corollary 4.5

ρ(x,R, 2R) ≥ λ(x, 2R)E(w,R/2)2

V (x, 2R)

and Proposition 7.3 and 7.4 to get immediately the statement.

Proof of Theorem 7.2. Proposition 7.1 gives (D) and (ρA,β) and the elliptic Harnack inequal-
ity evidently follows from the parabolic one. This finishes the proof of 3. =⇒ 1. in Theorem 2.1
and hence the whole proof is complete.

Proof of Theorem 2.2. As we stated during the steps 2. =⇒ 3. =⇒ 1. particularly when 1. is
reached at the condition (ρA,β) neither the recurrence nor it’s strong form was used, hence we
have proved this Theorem as well.

8 Poincaré Inequality

In this section we show that a Poincaré type inequality follows from the parabolic Harnack
inequality. The opposite direction is not clear. There are some indications that it might be
generally not true.

Proposition 8.1 ¿From (PHβ) follows that for all function f on V, x ∈ Γ, R > 0∑
y∈B(x,R)

µ(y) (f(y) − fB)2 ≤ CRβ
∑

y,z∈B(x,R+1)

µy,z(f(y) − f(z))2 (8.39)

where
fB =

1
V (x,R)

∑
y∈B(x,R)

µ(y)f(y)

Proof. The proof is easy adaptation of [9, Theorem 3.11]. We consider the Neumann boundary
conditions on B(x, 2R) which has the new transition probability P ′(y, z) ≥ P (y, z) equality holds
everywhere inside and strict inequality holds at the boundary. Consider the operator

Qg(y) =
∑

P ′(y, z)g(z)

and W = QK where K = CRβ. Since Wg > 0 for g > 0 is a solution of the parabolic equation
on B(x, 2R) using the hypothesis we have

W (f − Wf(y))2(y) ≥
∑

z∈B(y,R+1)

cµ(z)
V (y, 2R)

(f(z) − Wf(y))2

≥ c

V (x, 3R)

∑
z∈B(x,R)

µ(y)(f(y) − fB(x,R))
2
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since
∑

z∈B(x,R) µ(y)(f(y) − λ)2is minimal at λ = fB. We conclude to∑
y∈B(x,R)

µ(y)(f(y) − fB(x,R))
2 ≤ c

∑
y∈B(x,R+1)

W (f − Wf(y))2(y)

≤ c
(
‖f‖2

2 − ‖Wf‖2
2

)
≤ cK ‖∇f‖2

2

where ‖f‖2
2 =

∑
y∈B(x,2R) µ′(y)f(y)2 and ‖∇f‖2

2 =
∑

y,z∈B(x,2R) µy,z(f(y) − f(z))2. The last
inequality is the result of the repeated application of

‖Wf‖2
2 ≤ ‖f‖2

2 and ‖f‖2
2 − ‖Wf‖2

2 ≤ ‖∇f‖2
2

Recalling the definition of K, the result follows .

References

[1] Barlow, M.T.; Nualart, D. Diffusion on Fractals. in: Lectures on probability theory and statistics.
Lectures from the 25th Saint-Flour Summer School held July 10–26, 1995. Edited by P. Bernard.
Lecture Notes in Mathematics, 1690. Springer-Verlag, Berlin, 1998.

[2] Barlow, M.T. and Bass, F.R. The Construction of the Brownian Motion on the Sierpinski Carpet,
Ann. Inst. H. Poincaré, 25, (1989) 225-257
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