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Abstract

The Pólya urn has been extensively studied and is widely applied in many disciplines.
An important application is to use urn models to develop randomized treatment al-
location schemes in clinical studies. As an extension of the Pólya urn, the randomly
reinforced urn was recently proposed to optimize clinical trials in the sense that pa-
tients are assigned to the best treatment with probability converging to one. In this
paper, we prove a Gaussian process approximation for the sequence of random com-
positions of a two-color randomly reinforced urn for both the cases with the equal
and unequal reinforcement means. By using the Gaussian approximation, the law of
the iterated logarithm and the functional central limit theorem in both the stable con-
vergence sense and the almost-sure conditional convergence sense are established.
Also as a consequence, we are able to to prove that a random limit of the normalized
urn composition has no point masses under the only assumption of finite (2 + ε)-th
moments.
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1 Introduction

Asymptotic properties, including the strong consistency and asymptotic normality,
of urn models and their applications are widely studied in recent years under various
assumptions concerning the updating rules, for example, one may refer to Chauvin,
Pouyanne and Sahnoun (2011), Bai, Hu and Rosenberger (2002), Bai and Hu (2005), Hu
and Rosenberger (2006), Janson (2004, 2006), Zhang, Hu and Cheung (2006) etc. In this
paper, we consider a kind of two-color urn model, called the randomly reinforced urn
(RRU) model, which is a generalization of the original Pólya urn (cf. Eggenberger and
Pólya (1923), Pólya (1931)). The main issue of this model different from most urn models
in literature is that, as shown, the proportions of balls in the urn will not converge to a
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Gaussian approximation for reinforced urn

non-extreme constant and the numbers of different type balls may increase in different
speeds. This issue makes its asymptotic properties quite different from those of other
urn models and difficult to study.

The RRU model is described as follows. Consider a two-color urn with the initial
urn components Y0 = (Y0,1, Y0,2), where Y0,k > 0 is the number of type k balls. The urn
is sampled sequentially. Suppose the urn components are Ym = (Ym,1, Ym,2) after m
samplings. At the (m+ 1)-th sampling, a ball of type k is drawn with a probability

pm+1,k =
Ym,k
|Ym|

, where |Ym| = Ym,1 + Ym,2.

And the sampled ball is replaced in the urn together with a nonnegative random num-
ber Um+1,k of balls of the same type k, generated from a distribution µk with mean
mk > 0. This is the model introduced and formally named the randomly reinforced urn
in Muliere, Paganoni and Secchi (2006a). But it would appear in earlier literatures in
different versions. For example, Durham and Yu (1990) proposed a similar model for
sequential sampling in clinical trails. In our RRU setting, the numbers of balls take pos-
itive real values, not necessary integers. When Um+1,1 = Um+1,2 = α is a constant and
a positive integer, a RRU is the original Pólya urn (cf. Eggenberger and Pólya (1923),
Pólya (1931)) which is very popular in literatures. The RRU model is of fundamental
importance in many areas of applications, for instance in economics (cf. Erev and Roth
(1998), Beggs (2005), Hopkins and Posch (2005)), in information science (cf. Martin
and Ho (2002)), in resampling theory etc. In clinical trial studies, the RRU model is uti-
lized to define a response-adaptive design focusing to reduce the expected number of
patients receiving inferior treatments (cf. Durham, Flournoy, Li (1998), Li, Durham and
Flournoy (1996), Muliere, Paganoni and Secchi (2006a,b), Paganoni and Secchi (2007),
May and Flournoy (2009) etc).

Suppose the reinforcement distributions µ1 and µ2 have bounded supports. In Muliere,
Paganoni and Secchi (2006a), it is showed that the sequence {Zn =

Yn,1
|Yn|} of the random

sample proportions in the urn converge almost surely to a random limit Z∞ ∈ [0, 1].
When µ1 = µ2, Crimaldi (2009) proved a central limit theorem by showing the almost-
sure conditional convergence to a Gaussian kernel of the sequence {

√
n(Zn − Z∞)}.

Aletti, May and Secchi (2009) extended Crimaldi’s result to a general case where re-
inforcement means m1 and m2 are equal and proved that Z∞ has no point masses in
[0, 1] by using this kind of conditional central limit theorem. When the means m1 and
m2 are different, the limit proportion Z∞ of a RRU is showed to be a point mass either
1 and 0 by Beggs (2005), Hopkins and Posch (2005) and Muliere, Paganoni and Secchi
(2006a) under the assumption that the supports of µ1 and µ2 are bounded from 0, and by
Aletti, May and Secchi (2009) under the only assumption that µ1 and µ2 have bounded
supports. May and Flournoy (2009) proved that the sequence

{ Yn,1

Y
m1/m2
n,2

}
converges al-

most surely to a random limit ψ∞ ∈ (0,∞) both when m1 = m2 and m1 6= m2. Berti et
al. (2010, 2011) derived the almost-sure central limit theorems for a multi-color RRU.
However, the reinforcement means are also assumed to be equal.

The purpose of this paper is to establish the Gaussian process approximation of the
sequence {Zn} when m1 = m2 as well as the sequence

{ Yn,1

Y
m1/m2
n,2

}
when m1 6= m2, under

the assumption that µ1 and µ2 have only finite (2 + ε)-th moments. We will show that
both these sequences can be approximated by a tail stochastic integral with respect
to a Brownian motion mixed with a random variable. It is interesting that, as we will
find, the mixed Gaussian process for approximating is nearly independent of the urn
composition to be approximated. Our Gaussian process approximation enables us (i)
to establish the law of the iterated logarithm; (ii) to establish the functional central
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limit theorem in both the stable convergence sense and the almost-sure conditional
convergence sense; (iii) to prove that the limit ψ∞ (resp. Z∞) has no point masses in
[0,∞] (resp. in [0, 1]) when m1 6= m2 (resp. when m1 = m2) under the assumption
that µ1 and µ2 have only finite (2 + ε)-th moments. Another implication of our Gaussian
approximation is that we are able to establish the central limit theorem in a simple way
for the random number Nn,k of draws, where Nn,k is the number of type k balls being
drawn in the first n samplings. In a response-adaptive design in clinical trials driven by
a RRU model, Nn,k is the number of patients allocated to treatment k, and its asymptotic
behavior is of particular interest.

For the generalized Friedman urn models and immigrated urn models , Bai, Hu and
Zhang (2002), Zhang and Hu (2009) and Zhang et al. (2011) established the Gaussian
approximation for both the urn proportions Yn,k

n and the sampling proportion Nn,k
n . But

the RRU which we consider here is not covered by their assumptions. The main reason
is that the mean replacement matrix diag(m1,m2) of a RRU is not irreducible and hence
the limit of Yn,k

n and Nn,k
n is not a constant in (0, 1).

The paper is organized as follows. The main approximation theorems with applica-
tions for the equal and unequal reinforcement mean cases are stated in Section 2 and
Section 3, respectively, and the proofs of the approximations appear in the last section.
Some remarks on unsolved problems are discussed in Section 4.

Notations. In the sequel of this paper if having not been specially mentioned,
(Ul,1, Ul,2), l = 1, 2, . . . are assumed to be independent identically distributed random
vectors with finite second moments. Let Xm,k be the result of the m-th drawing, i.e.,
Xm,k = 1 if the m-th drawn ball is of type k, and 0 otherwise. It is obvious that Nm,k =∑m
j=1Xm,k and Xm,1 +Xm,2 = 1. Denote Fn = σ

(
Ul,k, Xl,k, Yl,k : k = 1, 2; l = 1, . . . , n

)
to

be the history σ-field generated by all the observations up to stage n, and F∞ =
∨
n Fn.

Further, for two positive sequences {an} and {bn}, we write an = O(bn) if there is a
constant C such that an ≤ Cbn, an ∼ bn if an

bn
→ 1, and an ≈ bn if an = O(bn) and

bn = O(an).

2 Equal reinforcement mean case

In this section, we consider the case of m1 = m2 > 0. Let σ2
k = E[(U1,k/mk)2], k = 1, 2,

Zn =
Yn,1

Yn,1 + Yn,2
, Z∞(ω) = limZn(ω), H(ω) =

σ2
1

Z∞
+

σ2
2

1− Z∞
.

To start, we shall assume P(Z∞ = 0) = P(Z∞ = 1) = 0, for otherwise H may have no
definition. The almost sure convergence of Zn is proved by May and Flournoy (2009)
under the condition that the reinforcement distributions µ1 and µ2 have bounded sup-
ports, and by Zhang et al. (2014) under the condition that E[U1,k log+ U1,k] <∞, k = 1, 2.
The following theorem is the main result on the Gaussian approximation.

Theorem 2.1. Suppose m1 = m2 > 0, EUp1,1 <∞ and EUp1,2 <∞, where 2 ≤ p < 4. Then
(possibly in an enlarged probability space) there is standard Brownian motion B(y) such
that

Z∞ − Zn = Z∞(1− Z∞)H

∫ ∞
nH

dB(y)

y
+ o(λn) a.s., (2.1)

where

λn =

{
n−

1
2 (log log n)

1
2 , if p = 2,

n
1
p−1(log n)

1
2 , if 2 < p < 4.
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Furthermore, the Brownian motion B(y) can be constructed with a filtration of σ-fields
{Gn} and a non-decreasing sequence of stopping times {Tn} satisfying the following
properties:

Property (a) Fn ⊂ Gn, Tn is Gn measurable;

Property (b) Tn = nH + o(n2/p) a.s.;

Property (c) Conditionally on Fn, B(Tn+y)−B(Tn), y ≥ 0, is also a standard Brownian
motion.

Remark 2.2. Denote W (t) = −t
∫∞
t
y−2dB(y). By checking the covariance function, it

is easily seen that W (t), t > 0 is a standard Brownian motion.

Remark 2.3. The process in (2.1) for approximating is a tail stochastic integral respec-
tive to the Brownian motion. It seems to be independent of Zn. Actually, according to
Property (b) nH can be replaced by Tn, and

√
Tn
∫
Tn
y−1dB(y) is indeed a normal ran-

dom variable which is independent of Zn. We will illustrate this interesting property in
Corollary 2.6 in more details.

We will prove Theorem 2.1 by first approximating Zn − Z∞ to an infinite summa-
tion of a weighted martingale sequence and then approximating the martingale to a
Brownian motion by applying the Skorokhod embedding method. The detailed proof of
Theorem 2.1 will be stated in Appendix A. In the sequel of this section, we give several
corollaries as applications. Define

σ̃(ω) =
√
Z∞(1− Z∞)

√
(1− Z∞)σ2

1 + Z∞σ2
2 ,

σ̃n(ω) =
√
Zn(1− Zn)

√
(1− Zn)σ2

1 + Znσ2
2 .

The first corollary is the following law of the iterated logarithm.

Corollary 2.4. Suppose m1 = m2 > 0, EU2
1,1 <∞ and EU2

1,2 <∞. Then

lim sup
n→∞

√
n(Zn − Z∞)√

2 log log n
= σ̃ a.s..

Proof. Write γ(x) =
√
x/(2 log log x), G(x) = −

∫∞
x
y−1dB(y). By (2.1), we need to show

that
lim sup
n→∞

γ(nH)G(nH) = lim sup
T→∞

γ(T )|G(T )| = 1 a.s. (2.2)

Note that γ(x)G(x) = xG(x)/
√

2x log log x, and that xG(x) is also a standard Brownian
motion. (2.2) follows from the law of the iterated logarithm of the Brownian motion.

The next corollary is on the functional cental limit theorem.

Corollary 2.5. Suppose m1 = m2 > 0, EUp1,1 <∞ and EUp1,2 <∞ for some p > 2. Define

Wn(t) = t
√
n(Z[nt] − Z∞), t > 0.

Then
Wn(·) d→ σ̃B∞(·) stably, (2.3)

in the Skorokhod topological space D(0,∞), where B∞(t) is a standard Brownian mo-
tion which is independent of F∞. In particular,

lim
n→∞

P

(
max0≤l≤n l(Zl − Zn)

σ̃n
√
n

≥ x
)

= e−2x
2

, x > 0. (2.4)
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Here the stable convergence in (2.3) means that for any bounded and (uniformly) con-
tinues function f : D(0,∞)→ (−∞,∞),

E
[
f
(
Wn(·)

)
IE
]
→ E

[
f
(
σ̃B∞(·)

)
IE
]

for any event E.

Proof. (2.4) is due to fact that

max
0≤l≤n

l(Zl − Zn)

σ̃
√
n

= sup
0<t≤1

Wn(t)− tWn(1)

σ̃

d→ sup
0<t≤1

(B∞(t)− tB∞(1))

and thatB∞(t)−tB∞(1) is a Brownian bridge. For (2.3), note thatW (t) = −t
∫∞
t
y−1dB(y)

is also a standard Brownian motion. By (2.1),

n(Zn − Z∞)− σ̃√
H
W (nH) = o(n1/2) a.s.,

which implies that for any T > 0,

sup
0<t≤T

∣∣∣∣Wn(t)− σ̃W (nHt)√
nH

∣∣∣∣→ o(1) a.s..

For the Brownian motion W (·), we have

W (n·)√
n

d→ B∞(·) mixing,

i.e., for any given event E with P(E) > 0, the conditional distribution of W (n·)√
n

converges
to a Brownian motion. It follows that( σ̃√

H
,H,

W (n·)√
n

)
d→
( σ̃√

H
,H,B∞(·)

)
stably.

Note that σ̃W (nH·)√
nH

is a continuous function of
(
σ̃√
H
, H, W (n·)√

n

)
of the form f(r, h, x(·)) =

rx(·h). It follows that

σ̃
W (nH·)√

nH

d→ σ̃
B∞(·H)√

H

d
= σ̃B∞(·) stably.

The proof is now completed.

Corollary 2.5 implies the central limit theorem for
√
n(Zn − Z∞). Aletti, May and

Secchi (2009) proved a strong version of the central limit theorem. For every Borel set
B, every ω, and n = 1, 2, . . ., define

Kn(ω,B) = P
(√
n(Zn − Z∞) ∈ B

∣∣Fn

)
(ω),

i.e., Kn is a version of the conditional distribution of
√
n(Zn − Z∞) given Fn. Aletti,

May and Secchi (2009) showed that, if m1 = m2 and the distributions of µ1 and µ2 have
bounded supports, then for almost every ω, the sequence of probability distributions
Kn(ω, ·) converges weakly to the normal distribution

N
(
0, σ̃2(ω)

)
.

We denote this kind of convergence by

√
n(Zn − Z∞)

∣∣∣
Fn

d→ N
(
0, σ̃2(ω)

)
a.s.. (2.5)
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This kind of conditional central limit theorem was first established by Crimaldi (2009)
for a special case that µ1 = µ2. Its generalizations to multi-color case can be found in
Berti et al. (2010, 2011). Aletti, May and Secchi (2009) also showed that (2.5) implies
that Z∞ has no point masses in (0, 1). Our next corollary states that (2.5) and a type of
conditional functional central limit theorems follow from the Gaussian approximation.

Corollary 2.6. Suppose m1 = m2 > 0, EUp1,1 <∞ and EUp1,2 <∞ for some p > 2. Then

sup
t≥1

∣∣∣∣√n(Z∞ − Z[nt])− σ̃n
√
Tn

∫ ∞
Tnt

dB(y)

y

∣∣∣∣ = o(n−ε) a.s. (2.6)

for some ε > 0, and further, Bn(t) = −t
√
Tn
∫∞
Tnt

y−1dB(y), t ≥ 1, is a standard Brownian
motion on [1,∞) which is independent of the history sigma field Fn.

As a consequence,

Wn(·)
∣∣
Fn

d→ σ̃(ω)B∞(·) a.s., (2.7)

in the Skorokhod topological space D[1,∞), where Wn(t) is defined as in Corollary 2.5,
B∞(t) is a standard Brownian motion which is independent of F∞.

In particular, (2.5) holds, Z∞ has no point masses in (0, 1), and there exists a se-
quence of standard normal random variables for which ζn is independent of Fn and

√
n(Zn − Z∞) = σ̃nζn + o(n−ε) a.s., (2.8)

Proof. We first prove (2.6). By (2.1),

sup
t≥1

∣∣∣∣√n(Z∞ − Z[nt])− Z∞(1− Z∞)H
√
n

∫ ∞
ntH

dB(y)

y

∣∣∣∣ = o(n−ε) a.s.

Let Hn =
σ2
1

Zn
+

σ2
2

1−Zn . Note that Zn − Z∞ = O(
√
n−1 log log n) a.s. by Corollary 2.4, and

Tn
n = H + o(n2/p−1) a.s.. It follows that

√
nZ∞(1 − Z∞)H − σ̃n

√
Tn = o(n2/p−1/2) a.s..

Further,

n
2
p−

1
2 sup
t≥1

∣∣∣∣∫ ∞
ntH

dB(y)

y

∣∣∣∣ = n
2
p−

1
2O(

√
n−1 log log n) = o(n−ε) a.s.

It remains to show that

sup
t≥1

∣∣∣∣∣
∫ Tnt

ntH

dB(y)

y

∣∣∣∣∣ = o(n−
1
2−ε) a.s.

Write an = Tn − nH. Note that W (x) = −x
∫∞
x
y−1dB(y) is a standard Brownian motion

and ∫ Tnt

ntH

dB(y)

y
=
W (nHt+ ant)−W (nHt)

Tnt
+
W (ntH)

ntH

nH − Tn
Tn

.

The second term on the right hand of the above equality does not exceed

O(
√
n−1 log log n)o(n

2
p−1)

uniformly in t ≥ 1 almost surely, by the law of the iterated logarithm. The first term
does not exceed

O

(√
ant(log(nH) + log log(nHt))

Tnt

)
= o(n

1
p−1(log n)

1
2 )

uniformly in t ≥ 1 almost surely, by the path properties of a Brownian motion (cf. Hanson
and Russo (1983)). The proof of (2.6) is now completed.
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Let Bn(y) = B(Tn + y) − B(Tn). Then conditionally on Gn, Bn(y) is a standard
Brownian motion. It is obvious that

Bn(t) = −t
√
Tn

∫ ∞
Tn(t−1)

dBn(y)

Tn + y
.

Hence, conditionally on Gn, Bn(t), t ≥ 1, is a mean zero Gaussian process with covari-
ance function

Tnts

∫ ∞
Tn(t−1)

dy

(Tn + y)2
= s for t ≥ s ≥ 1.

It follows that Bn(t), t ≥ 1, is a standard Brownian motion and is independent of Gn. So,
it is independent of Fn because Fn ⊂ Gn. The proof of the main part of the corollary is
now completed.

Now for (2.7), from (2.6) it follows that

dist
(
Wn(·), σ̃nBn(·)

)
→ 0 a.s. in D[1,∞),

where dist(·, ·) is a metric in D[1,∞). Note that σ̃n is Fn-measurable and σ̃n → σ̃ a.s.,
and, conditionally on Fn, σ̃nBn(·) and σ̃nB∞(·) has the same distribution. Hence, (2.7)
follows from (2.8) by noting the following fact that:

ξn(·)
∣∣
Fn

d→ σ̃B∞(·) a.s. and dist
(
ξn(·), ηn(·)

)
→ 0 a.s. in D[1,∞)

=⇒ ηn(·)
∣∣
Fn

d→ σ̃B∞(·) a.s. in D[1,∞).

This fact follows from that for any bounded and uniformly continuous function f :

D[1,∞)→ (−∞,∞),

lim sup
n→∞

∣∣∣E[f(ηn)− f(ξn)
∣∣Fn

]∣∣∣
≤E
[

lim sup
n→∞

|f(ηn)− f(ξn)|
∣∣∣∨
n

Fn

]
= 0 a.s.,

due to Lemma A.2 of Crimaldi (2009).
Finally, (2.8) follows from (2.6) by letting ζn = Bn(1), and (2.5) is a conclusion of (2.8)

or (2.7). Aletti, May and Secchi (2009) showed that (2.5) implies Z∞ having no point
masses in (0, 1) by utilizing a metric of the weak convergence of probability measures
with the limit distribution being absolutely continuous. Here we give a straightforward
proof. Let f(t) = e−t

2/2 be the characteristic function of a standard normal distribution.
Firstly, note that (2.5) implies that for every

∨
n Fn-measurable event E,

lim
n→∞

E[eit
√
n(Zn−Z∞)IE |Fn] = f(σ̃t)IE a.s.

In fact, if let In = E[IE |Fn], then In → IE a.s.. And hence

lim
n→∞

E[eit
√
n(Zn−Z∞)IE |Fn] = lim

n→∞
E[eit

√
n(Zn−Z∞)In|Fn]

= lim
n→∞

E[eit
√
n(Zn−Z∞)|Fn]In = f(σ̃t)IE a.s.,

where in the fist equality we use the fact that

ηn → 0 a.s. and |ηn| ≤M a.s. =⇒ E[ηn|Fn]→ 0 a.s..

This fact is due to Lemma A.2 of Crimaldi (2009). Next, choosing E = {Z∞ = p},
p ∈ (0, 1), yields

f(σ̃t)IE = lim
n→∞

E[eit
√
n(Zn−p)IE |Fn]

= lim
n→∞

eit
√
n(Zn−p)E[IE |Fn] = lim

n→∞
eit
√
n(Zn−p)IE a.s..
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Hence, |f(σ̃t)|IE = IE a.s.. So IE = 0 a.s. because |f(σ̃t)| < 1 on E. The proof is now
completed.

From the above proof, we obtain the following corollary.

Corollary 2.7. Suppose {Y∞, Yn, n ≥ 1} is a sequence of random variables, {an} is a
sequence of constants with an → ∞, and Gn is a filtration of σ-fields such that Yn is
Gn-measurable. If for almost every ω, the distribution of an(Yn − Y∞) conditionally on
Gn converges to a non-degenerate distribution, then Y∞ has no point masses.

Remark 2.8. By (2.5), it can also be shown that for every event E,

lim sup
|t|→∞

lim sup
n→∞

∣∣∣E[ exp
{
− itn 1

2Z∞
}
IE
]∣∣∣

≤ lim sup
|t|→∞

lim sup
n→∞

E
∣∣∣E[ exp

{
itn

1
2 (Zn − Z∞)

}
IE
∣∣Fn

]∣∣∣
= lim sup
|t|→∞

lim sup
n→∞

E
∣∣E[f(tσ̃n)IE∣∣Fn

]∣∣ = lim sup
|t|→∞

E
[ ∣∣f(tσ̃∞)∣∣ IE] = 0.

Let fE(t) be the characteristic function of the conditional distribution of Z∞ given E

with P(E) > 0. Then the above equality means that

lim
|t|→∞

lim sup
n→∞

∣∣∣fE(tn
1
2 )
∣∣∣ = 0.

Note that for any t0 ≥ 1, n0 ≥ 1 and |s| ≥ 2t0n0, there exist a real number t with |t| ≥ t0
and an integer n ≥ n0 such that s = tn1/2. We conclude that

lim
|s|→∞

fE(s) = 0.

This is related to the Cramér condition. Obviously, if E = {Z∞ = p}, p ∈ (0, 1), and
P(E) > 0, then |fE(t)| ≡ 1 which is a contradiction.

The next corollary is the central limit theorem for the random number of draws.

Corollary 2.9. Suppose m1 = m2 > 0, EUp1,1 <∞ and EUp1,2 <∞ for some p > 2. Then

√
n

(
Nn,1
n
− Z∞

)
d→ h(ω) ·N(0, 1) stably, (2.9)

where h(ω) =
√
Z∞(1− Z∞)

√
(1− Z∞)(2σ2

1 − 1) + Z∞(2σ2
2 − 1), and N(0, 1) is a stan-

dard normal random variable which is independent of F∞.

Proof. We need to prove that

√
n

(
Nn,1
n
− Z∞

)
d−→−

√
Z∞(1− Z∞)N1

(
0, σ2

1 − 1
)

+
√

1− Z∞Z∞N2

(
0, σ2

2 − 1)
)

+ σ̃ ·N3(0, 1) stably,

where N1

(
0, σ2

1 − 1
)

, N2

(
0, σ2

2 − 1
)

, N3(0, 1) are three independent normal random vari-

ables which are independent of F∞. Write

An,k =

∑n
l=1Xl,k(Ul,k/mk − 1)

Nn,k
, k = 1, 2. (2.10)

EJP 19 (2014), paper 86.
Page 8/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3432
http://ejp.ejpecp.org/


Gaussian approximation for reinforced urn

Then

An,k = O
(√

n−1 log log n
)
a.s. and

Yn,k
mkNn,k

= 1 +An,k.

By the Taylor expansion and (2.8), we have that

Nn,1
n
− Z∞ =

Nn,1
Nn,1 +Nn,2

− Z∞ =

Zn
1+An,1

Zn
1+An,1

+ 1−Zn
1+An,2

− Z∞

=− Zn(1− Zn)
(
An,1 −An,2) + (Zn − Z∞) +O

( log log n

n

)
=− Zn(1− Zn)

(
An,1 −An,2) + σ̃nζn + o(n−

1
2 ) (2.11)

=− Zn(1− Zn)√
Nn,1

(√
Nn,1An,1

)
+
Zn(1− Zn)√

Nn,2

(√
Nn,2An,2

)
+ σ̃nζn + o(n−

1
2 ) a.s.

Note that ζn is a standard normal random variable which is independent of σ̃n, Zn,
Nn,k and An,k, k = 1, 2. Also, σ̃n → σ̃ a.s., Zn(1−Zn)

√
n√

Nn,1
→
√
Z∞(1 − Z∞) a.s. and

Zn(1−Zn)
√
n√

Nn,2
→ Z∞

√
1− Z∞. The proof is completed if we have shown that

(√
Nn,1An,1,

√
Nn,2An,2

) d−→
(
N1

(
0, σ2

1 − 1
)
, N2

(
0, σ2

2 − 1
))

mixing. (2.12)

Note that σ2
k − 1 = Var

(
U1,k/mk

)
, k = 1, 2. The above convergence follows from Theo-

rem 4.1 of May and Flournoy (2009).

The next corollary tells us that conditionally on Fn, the distribution of
√
n(

Nn,1
n −Z∞)

does not converge.

Corollary 2.10. Suppose m1 = m2 > 0, EUp1,1 < ∞ and EUp1,2 < ∞ for some p > 2. Let
E be an event such that, for ω ∈ E, there is a distribution Fω verifying

√
n
(Nn,1

n
− Z∞

)∣∣∣
Fn

d→ Fω. (2.13)

Then P(E) = 0.

Proof. Recall (2.11). Let ηn =
√
nZn(1− Zn)(An,1 −An,2). Note that Zn → Z∞ a.s.,

σ̃nξn
∣∣
Fn

d→ σ̃N(0, 1) a.s.

and that Zn, An,1 and An,2 are Fn-measurable. By (2.11) and (2.13), there exists an
event Ω0 with P(Ω0) = 1 such that

√
nZn(1 − Zn)(An,1 − An,2) converges on E ∩ Ω0. So

there exists a random variable η such that

ηn(ω)→ η(ω) ∀ω ∈ E ∩ Ω0.

Suppose P(E) > 0. Choose x such that P(η > x,E) > 0. Then it follows that

P(ηn ≤ x, η > x,E)→ P(η ≤ x, η > x,E) = 0.

So P(ηn ≤ x|η > x,E)→ 0. On the other hand, according to (2.12) we have

ηn =

√
nZn(1− Zn)√

Nn,1

√
Nn,1An,1 −

√
nZn(1− Zn)√

Nn,2

√
Nn,2An,2

d→ N(0, 1) mixing,

where N(0, 1) is independent of F∞. It follows that

lim
n

P(ηn ≤ x|η > x,E) = Φ(x) > 0.

We get a contradiction. The proof is completed.
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3 Unequal reinforcement mean case

Denote ρ = m1

m2
, and

ψn =
Yn,1
Y ρn,2

, ψ∞ = lim
n→∞

ψn.

It is obvious that Zn = ψn
1+ψn

and Z∞ = ψ∞
1+ψ∞

whenm1 = m2. In this section, we consider
the case of m1 6= m2. Without loss of generality, we assume that 0 < m1 < m2. May and
Flournoy (2009) proved that the limit ψ∞ exists almost surely with P(0 < ψ∞ <∞) = 1

when the reinforcement distributions µ1 and µ2 have bounded supports. Durham and
Yu (1990) proved a similar result, namely:

Nn,1
Nρ
n,2

converges almost surely to a finite limit η∞.

It is easily seen that

η∞ =
mρ

2

m1
ψ∞ a.s.

and

lim
n→∞

Nn,1
nρ

=
mρ

2

m1
ψ∞ a.s., lim

n→∞

Yn,1
nρ

= mρ
2ψ∞ a.s.

In a recent paper of Zhang et al. (2014), it is proved that the weakest condition for
P(0 < ψ∞ <∞) = 1 is that E[U1,k log+ U1,k] <∞, k = 1, 2, and a general multi-color RRU
is consider. We state the convergence result as the following theorem.

Theorem 3.1. Suppose E[U1,k log+ U1,k] <∞, mk > 0, k = 1, 2. Then the limit ψ∞ exists
almost surely and P(0 < ψ∞ <∞) = 1 both when m1 = m2 and m1 6= m2.

The following theorem is our main result on the Gaussian process approximation
for ψn. From the Gaussian approximation we are able to show that ψ∞ has no point
masses in (0,∞). And accordingly, all the limits of the sequences {Yn,1/Y ρn,2}, {Yn,1/nρ},
{Yn,1/|Yn|ρ}, {Nn,1/Nρn,2} and {Nn,1/nρ} have no point masses in [0,∞].

Theorem 3.2. Suppose m2 > m1 > 0, EUp1,1 <∞ and EUp1,2 <∞ for some p > 2. Denote

σ2
k = E[(U1,k/mk)2], k = 1, 2. Let δ0 = min{ 1−ρρ , 12 −

1
p}. Then (possibly in an enlarged

probability space) there is standard Brownian motion B(y) such that for any 0 < δ < δ0,

ψ∞ − ψn =
σ1
√
m1

m
ρ/2
2

∫ ∞
nρ/ψ∞

dB(y)

y
+ o(n−

ρ(1+δ)
2 ) (3.1)

=− n−
ρ
2
σ1
√
m1ψ∞

m
ρ/2
2

W (n
ρ
/ψ∞)√

nρ/ψ∞
+ o(n−

ρ(1+δ)
2 ) a.s., (3.2)

where W (x) = −x
∫∞
x
y−1dB(y) is also a standard Brownian motion.

Furthermore, the Brownian motion B(y) can be constructed with a filtration of σ-
fields {Gn} and a non-decreasing sequence of stopping times {Tn} satisfying Properties
(a) and (c) in Theorem 2.1, and

Property (b′) Tn = nρ

ψ∞
+ o(nρ(1−δ)) a.s. for 0 < δ < δ0.

The proof of this theorem will be given in the last section. Next, we state several
corollaries. The first one is on the law of iterated logarithm and the central limit theo-
rem for ψn.
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Corollary 3.3. Under the conditions in Theorem 3.2,

lim sup
n→∞

nρ/2
(
ψn − ψ∞

)
√

2 log log n
=
σ1
√
m1ψ∞

m
ρ/2
2

a.s. (3.3)

and there exists a sequence {ζn} of standard normal random variables for which ζn is
independent of Fn and

n
ρ
2

(
ψn − ψ∞

)
=
σ1
√
m1ψn

m
ρ/2
2

ζn + o(n−ε) a.s. for some ε > 0. (3.4)

Hence

n
ρ
2

(
ψn − ψ∞

)∣∣∣
Fn

d−→ N
(

0,
σ2
1m1

mρ
2

ψ∞(ω)
)
a.s. (3.5)

and ψ∞ has no point masses in (0,∞).

Proof. (3.3) follows from (3.2) and the law of iterated logarithm of the Brownian motion.
(3.4) can be proved in the same way as proving Corollary 2.4.

Corollary 3.4. Under the conditions in Theorem 3.2,

n
ρ
2

(Nn,1
Nρ
n,2

− η∞
) d−→ N(0, 1) ·

√
η∞(2σ2

1 − 1) stably (3.6)

and 
n
ρ
2

(Nn,1
nρ − η∞

) d→ N(0, 1) ·
√
η∞(2σ2

1 − 1) stably, if ρ < 2/3,

n1−ρ
(Nn,1
nρ − η∞

)
→ −ρη2∞ a.s., if ρ > 2/3,

n
ρ
2

(Nn,1
nρ − η∞ + ρη2∞n

ρ−1) d→ N(0, 1) ·
√
η∞(2σ2

1 − 1) stably, if ρ = 2/3,

(3.7)

n1−ρ
(
1− Nn,2

n

)
→ η∞ a.s. (3.8)

Proof. For (3.6), let An,k be defined as in (2.10). Then

An,2 = O(
√
N−1n,2 log logNn,2) = O(

√
n−1 log log n) = o(n−

ρ
2−ε) a.s.,

An,1 = O(
√
N−1n,1 log logNn,1) = O(

√
n−ρ log log n) a.s..

Note that η∞ =
ψ∞m

ρ
2

m1
. It follows that

Nn,1
Nρ
n,2

− η∞ =− η∞ + ψn
mρ

2

m1

(1 +An,2)ρ

1 +An,1

=− η∞ + ψn
mρ

2

m1
(1−An,1 +O(A2

n,1))(1 +O(An,2))

=(ψn − ψ∞)
mρ

2

m1
− ψn

mρ
2

m1
An,1 + o(n−

ρ
2−ε)

=n−
ρ
2

{√ψnm
ρ
2

m1
σ1ζn − ψn

mρ
2

m1

√
nρ

Nn,1

(√
Nn,1An,1

)
+ o(n−ε)

}
a.s.

The proof of (3.6) is completed by noting that
ψnm

ρ
2

m1
→ η∞ a.s., Nn,1nρ → η∞ a.s.,

√
Nn,1An,1

d→
N(0, σ2

1 − 1) mixing, and ζn is a standard normal random variable which is independent
of Fn.

EJP 19 (2014), paper 86.
Page 11/19

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3432
http://ejp.ejpecp.org/


Gaussian approximation for reinforced urn

For (3.7), it is sufficient to note that

Nn,1
nρ

=
Nn,1
Nρ
n,2

(
1− Nn,1

n

)ρ
=
Nn,1
Nρ
n,2

(
1− ρNn,1

n
+O

(Nn,1
n

)2)
=
Nn,1
Nρ
n,2

− ρNn,1
Nρ
n,2

Nn,1
nρ

nρ−1 +O(n2(ρ−1))

=
Nn,1
Nρ
n,2

− ρη2∞nρ−1 + o(nρ−1) a.s.

(3.8) is obvious because 1− Nn,2
n =

Nn,1
n ∼ η∞n

ρ

n a.s. The proof is now completed.

Finally, we give the functional central limit theorem.

Corollary 3.5. Define Wn(t) = n
ρ
2 tρ(ψ[nt] − ψ∞), t > 0. Then

Wn(t)
d→ σ1

√
η∞B∞(tρ) stably (3.9)

in the Skorokhod topological space D(0,∞), where B∞(t) is a standard Brownian mo-
tion which is independent of F∞. In particular,

lim
n→∞

P

(
max0≤l≤n l

ρ(ψl − ψn)

σ1
√
Nn,1

≥ x

)
= e−2x

2

, x > 0. (3.10)

Proof. The proof of (3.9) is similar to that of (2.3) by noting that η∞ = ψ∞m1

mρ2
. For (3.10),

it is sufficient to see that

max
0≤l≤n

lρ(ψ∞ − ψn)

nρ/2
= sup

0<t≤1
(Wn(t)− tρWn(1))

and Nn,1 ∼ η∞nρ a.s..

4 Concluding Remark

We approximated Zn−Z∞ and ψn−ψ∞ by a kind of Gaussian process
∫∞
t
y−1dB(y),

which is a tail stochastic integral with respect to a Brownian motion, with time t stop-
ping at a random variable nH or n/ψ∞, where H2 = (1 +ψ∞)(σ

2
1/ψ∞+σ2

2). But this does
not mean that

∫∞
nH

y−1dB(y) and
∫∞
n/ψ∞

y−1dB(y) are Gaussian random variables and
their distributions are unknown because the mixing distribution of ψ∞ is unknown. For
deriving the asymptotic distributions, the approximations (2.6) and (3.4) seem more
powerful than (2.1) and (3.1) because the process for approximation is independent
of other random variables considered. (2.1) and (3.1) are helpful for establishing the
strong convergence such as the law of the iterated logarithm.

This paper only considers the two-color urn model. Berti et al. (2010, 2011) de-
rived the almost-sure central limit theorems for the multi-color RRU. However, it is also
assumed that the reinforcement means are equal. The strong convergence and asymp-
totic normality for a general multi-color reinforced urn model are studied recently by
Zhang, et al. (2014). It is expected to approximate the urn components after being suit-
ably normalized by a multi-dimensional Gaussian process. The Skorokhod embedding
method used in this paper does not work for the multi-dimensional case. Though strong
approximations for multi-dimensional martingales can be found in literature, for exam-
ple, Monrad and Philipp (1991), Eberlein (1986) and Zhang (2004), the martingales
concerning to the reinforced urn model usually do not satisfied a condition that the
asymptotic conditional variability is Fk-measurable for some fixed k (cf. (A.5)), which
is needed in the approximation theorems for multi-dimensional martingales. A new
approach is needed for approximating the multi-color reinforced urn models.
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A Proof of the main results

Recall |Yn| = Yn,1 + Yn,2, E[Xn,k|Fn−1] = P(Xn,k = 1|Fn−1) =
Yn−1,k

|Yn−1| , Zn =
Yn,1
|Yn| ,

ψn =
Yn,1
Y ρn,2

, ρ = m1

m2
. Denote

Qn =
1

m1
log Yn,1 −

1

m2
log Yn,2.

Then

∆Qn = Qn −Qn−1 =
1

m1
Xn,1 log

(
1 +

Un,1
Yn−1,1

)
− 1

m2
Xn,2 log

(
1 +

Un,2
Yn−1,2

)
=

[
Xn,1

Un,1/m1

Yn−1,1
−Xn,2

Un,2/m2

Yn−1,2

]
+

[
− 1

m1
Xn,1f

( Un,1
Yn−1,1

)
+

1

m2
Xn,2f

( Un,2
Yn−1,2

)]
:=∆Q(1)

n + ∆Q(2)
n , (A.1)

where f(x) = x− log(1 + x) satisfying 0 ≤ f(x) ≤ x2 for x ≥ 0.

Proof of Theorem 2.1. Let g(x) = em1x

1+em1x
. Then g(Qn) = Zn and g′(Q∞) = m1Z∞(1 −

Z∞). According to the Taylor expansion, it is sufficient to show that B(t) and Tn can be
constructed such that

Q∞ −Qn =
H

m1

∫ ∞
nH

dB(x)

x
+ o(λn) a.s.. (A.2)

Recall m1 = m2. It is easily shown that |Yn|/n → m1 a.s.. According to Theorem 3.1,

Zn → Z∞ = ψ∞
1+ψ∞

∈ (0, 1) a.s., which implies that Yn,k ≈ n a.s., k = 1, 2. So, for ∆Q
(2)
n

in (A.1) we have

∞∑
l=1

λ−1l E[|∆Q(2)
l |
∣∣Fl−1] ≤ C

∞∑
l=1

λ−1l

(
E
[
Xl,1

U2
l,1

Y 2
l−1,1

∣∣∣Fl−1

]
+ E
[
Xl,2

U2
l,2

Y 2
l−1,2

∣∣∣Fl−1

])

= C

∞∑
l=1

λ−1l

(
Yl−1,1
|Yn−1|

σ2
1

Y 2
l−1,1

+
Yl−1,2
|Yn−1|

σ2
2

Y 2
l−1,2

)
≤ C

∞∑
l=1

λ−1l l−2 <∞,

which implies that
∑∞
l=n+1 |∆Q

(2)
l | = o(λn) a.s..

For ∆Q
(1)
n , we use the truncation method. Let Ũn,k =

Un,k
mk

, Un,k = Ũn,kI{Ũn,k ≤ n
1
p },

σ2
n,k = EU

2

n,k, mn,k = E[Un,k], k = 1, 2, mn = mn,1 −mn,2, and

∆M (1)
n = m1n

(
Xn,1

Un,1
Yn−1,1

−Xn,2
Un,2
Yn−1,2

)
,

∆Mn = ∆M (1)
n − E[∆M (1)

n |Fn−1] = ∆M (1)
n − m1nmn

|Yn−1|
.

Then {∆Mn,Fn} is a sequence of martingale differences. Note that

∞∑
n=1

P
(Un,k
mk

> n
1
p

)
≤ E

(U1,k

mk

)p
<∞, k = 1, 2.

From the Borel-Cantelli lemma, it follows that

P(∆Q(1)
n 6=

1

m1n
∆Mn i.o.) = 0.
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Also,

∞∑
l=n+1

1

m1l
|E[∆M

(1)
l |Fl−1]| =

∞∑
l=n+1

|ml|
|Yl−1|

≤C
∞∑

l=n+1

1

l

2∑
k=1

E[|Ũ1,k|I{Ũ1,k > l
1
p }] ≤ Cn

1
p−1

2∑
k=1

E[|Ũ1,k|p] = o(λn).

Hence, we conclude that

∞∑
l=n+1

∆Ql =

∞∑
l=n+1

1

m1l
∆Ml + o(λn)

=
1

m1

( ∞∑
l=n

1

l(l + 1)
Ml −

Mn

n

)
+ o(λn) a.s.

For the martingale Mn =
∑n
l=1 ∆Ml, we have

E[(∆Mn)2|Fn−1] =
( m1n

|Yn−1|

)2(EU2

n,1

Zn−1
+

EU
2

n,2

1− Zn−1
−m2

n

)
, (A.3)

E[|∆Mn|4|Fn−1] ≤
2∑
k=1

(
m1n

Yn−1,k

)4

EU
4

n,k ≤ C(ω)

2∑
k=1

EU
4

n,k. (A.4)

By the Skorokhod embedding theorem (cf. Theorem A.1 of Hall and Heyde (1980,page
269)), (possibly in an enlarged probability space) there is a standard motion B(x) with
a filtration {Gn} and a sequence of nonnegative stopping times τ1, τ2, · · · with the fol-
lowing properties

(i) Mn = B(Tn), where Tn =
∑n
i=1 τi;

(ii) Fn ⊂ Gn, τn is Gn measurable, E[τn|Gn−1] = E[(∆Mn)2|Fn−1] and E[τ rn|Gn−1] ≤
CrE[(∆Mn)2r|Fn−1] for any r ≥ 1;

(iii) Conditionally on Gn, B(Tn + x)−B(Tn), x ≥ 0, is also a standard Brownian motion.

Now, we verify that the Brownian motionB(x) and the stopping time Tn are desirable
for Property (b) and (A.2). At first, we assume the following approximation for the
conditional variance.

E[(∆Mn))2|Fn−1] = H(ω) + o(n
2
p−1) a.s. (A.5)

From (A.5) it follows that

n∑
i=1

E[τn|Gi−1] = nH(ω) + o(n
2
p ) a.s.

On the other hand, by (ii) and (A.4) we have that

∞∑
n=1

E

[( τn
n2/p

)2∣∣Gn−1] ≤ C ∞∑
n=1

∑2
k=1 EU

4

n,k

n4/p
≤ C

2∑
k=1

E[(U1,k/mk)
p] <∞.

By the law of large numbers for martingales, it follows that

n∑
i=1

(τi − E[τi|Gi−1]) = o(n
2
p ) a.s..
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Hence

Tn =

n∑
i=1

τi = nH + o(n
2
p ) a.s.

and Property (b) is verified. Then it follows from the path properties of a Browian
motion (cf. Theorem 1.2.1 of Csörgő and Révész (1981)) that

B(Tn)−B(nH) = o

(√
n

2
p

(
log

n

n2/p
+ log log n

))
= o(nλn) a.s.

So
∞∑

l=n+1

∆Ql =
1

m1

( ∞∑
l=n

1

l(l + 1)
B(Tl)−

B(Tn)

n

)
+ o(λn)

=
1

m1

( ∞∑
l=n

1

l(l + 1)
B(lH)− B(nH)

n

)
+

∞∑
l=n

1

l(l + 1)
o(lλl) + o(λn)

=
1

m1

(∫ ∞
n

B(xH)

x2
dx− B(nH)

n

)
+ o(λn)

=
1

m1

(
H

∫ ∞
nH

B(x)

x2
dx− B(nH)

n

)
+ o(λn)

=
H

m1

∫ ∞
nH

dB(x)

x
+ o(λn) a.s..

Finally, we verify (A.5). Note that E[U
2

n,k] → σ2
k, |Yn|/n → m1 a.s., k = 1, 2 and

Zn → Z∞ a.s.. (A.5) is obvious for p = 2 by (A.3).
For 2 < p < 4, we still have Corollary (2.4) due to the approximation for the case of

p = 2. Hence
Zn − Z∞ = O(

√
n−1 log logn) = o(n

2
p−1) a.s.

On the other hand,

Yn,1 + Yn,2
m1n

− 1 =

∑2
k=1

∑n
i=1Xi,k(Ui,k − E[Ui,k])

m1n

=O(
√
n−1 log log n) = o(n

2
p−1)) a.s.

and

|mn| ≤
2∑
k=1

E[U1,k/mkI{U1,k/mk > n
1
p }] = o(n

1
p−1),

σ2
k − E[U

2

n,k] = E[(U1,k/mk)
2I{U1,k/mk > n

1
p }] = o(n

2
p−1), k = 1, 2.

(A.5) follows by (A.3). The proof is now completed.

Proof of Theorem 3.2. Let g(x) = em1x. Then g(Qn) = ψn and g′(Q∞) = m1ψ∞. Accord-
ing to the Taylor expansion, it is sufficient to show that B(t) and Tn can be constructed
such that

Q∞ −Qn =
σ1√

m1m
ρ
2ψ∞

∫ ∞
nρ/ψ∞

dB(y)

y2
+ o(n−

ρ(1+δ)
2 ) a.s.. (A.6)

Recall (A.1) and note that Yn−1,2 ∼ m2n, Yn−1,1 ∼ ψ∞Y
ρ
n,2 ∼ ψ∞(m2n)ρ a.s.. It can be

shown that for 0 < δ1 ≤ 1/2 and δ1 < (1−ρ)/ρ,
∞∑
l=1

l
ρ(1+δ1)

2 E
[
Xl,kf

( Ul,k
Yl−1,k

)∣∣∣Fl−1

]
≤
∞∑
l=1

l
ρ(1+δ1)

2
Yl−1,k
|Yl−1|

EU2
l,k

Y 2
l−1,k

≤ c
∞∑
l=1

lρ(1+δ1)/2

l · lρ
<∞,
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which implies
∑∞
l=n+1Xl,kf

( Ul,k
Yl−1,k

)
= o(n−

ρ(1+δ1)
2 ) a.s., k = 1, 2. Also, for the martingale

differences Xl,2
Ul,2/m2

Yl−1,2
− 1
|Yl−1| , we have

∞∑
l=1

(l
ρ(1+δ1)

2 )2E
[(
Xl,2

Ul,2/m2

Yl−1,2
− 1

|Yl−1|

)2∣∣∣Fl−1

]
≤
∞∑
l=1

(l
ρ(1+δ1)

2 )2
Yl−1,2
|Yl−1|

EU2
l,2/m2

2

Y 2
l−1,2

≤ c
∞∑
l=1

lρ(1+δ1)

l2
<∞ a.s.,

which implies
∑∞
l=n+1

(
Xl,2

Ul,2/m2

Yl−1,2
− 1
|Yl−1|

)
= o(n−

ρ(1+δ1)
2 ) a.s.. Similarly, we can show

that
∑∞
l=n+1

(
Xl,1

Ul,1/m2

Yl−1,1
− 1
|Yl−1|

)
= o(n−

ρ
2 log n) a.s. It follows that

Q∞ −Qn =

∞∑
l=n+1

(
Xl,1

Ul,1/m1

Yl−1,1
− 1

|Yl−1|

)
+ o(n−

ρ(1+δ1)
2 ) a.s.

and
Q∞ −Qn = o(n−

ρ
2 log n) a.s. (A.7)

Define

∆Mn =

√
ρm2(m2n)ρ/2nρ/2

σ1

(
Xn,1

Un,1/m1

Yn−1,1
− 1

|Yn−1|

)
. (A.8)

Then

Q∞ −Qn =
σ1√
ρm2m

ρ
2

∞∑
l=n+1

∆Ml

lρ
+ o(n−

ρ(1+δ1)
2 ) a.s. (A.9)

and

E[(∆Mn)2|Fn−1] =
ρm2(m2n)ρnρ

|Yn−1|Yn−1,1
− ρm2(m2n)ρnρ

σ2
1 |Yn−1|2

.

Next, we first show that

E[(∆Mn)2|Fn−1] =
ρ

ψ∞
nρ−1(1 + o(n−ρδ1)) a.s. (A.10)

From (A.7) and the Taylor expansion, we conclude that

Yn,1
(Yn,2)ρ

− ψ∞ = em1Qn − em1Q∞ = o(n−
ρ
2 log n) a.s.

On the other hand,

Yn,2
m2n

=1− 1

m1

Yn,1
n

+

2∑
k=1

∑n
l=1Xl,k(Ul,k/mk − E[Ul,k/mk])

n

=1− 1

m1

ψ∞(Yn,2)ρ

n
+ o(n−

ρ
2−1 log n) +O(n−

1
2 (log log n)

1
2 )

=1−O(nρ−1) + o(n−ρδ1) = 1 + o(n−ρδ1) a.s.

It follows that

|Yn|
m2n

=
Yn,2
m2n

+
Yn,1
m2n

= 1 + o(n−ρδ1) and
Yn,1

(m2n)ρ
− ψ∞ = o(n−ρδ1) a.s.

(A.10) is verified. From (A.10), it follows that

n∑
l=1

E[(∆Mn)2|Fn−1] =
nρ

ψ∞

(
1 + o(n−ρδ1)

)
a.s.
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On the other hand, for 0 < δ2 <
1
2 −

1
p ,

∞∑
n=1

E[|∆Mn|p|Fn−1]

(nρ(1−δ2))p/2
≤C

∞∑
n=1

nρp

np(1−δ2)ρ/2

Yn−1,1
Y pn−1,1|Yn−1|

≤C
∞∑
n=1

1

np(1−δ2)ρ/2

1

n1−ρ
<∞.

So, similarly as in the proof of Theorem 2.1, by the Skorokhod embedding theorem,
the standard motion B(x), the filtration {Gn} and the stopping times {Tn} can be con-
structed such that Mn = B(Tn) and

Tn =

n∑
l=1

E[(∆Ml)
2|Fl−1] + o(nρ(1−δ2)) =

1

ψ∞
nρ + o(nρ(1−δ1∧δ2)).

Denote δ0 = min{(1−ρ)/ρ, 1/2 − 1/p}. It is remained to verify (3.1). By the Properties (b′)
and the path properties of a Brownian motion, we have for any 0 < δ < δ0,

Mn −B
( nρ
ψ∞

)
= o
(
n
ρ(1−δ)

2

)
a.s.

Hence

∞∑
l=n+1

∆Ml

lρ
=

∞∑
l=n

(
1

lρ
− 1

(l + 1)ρ

)
Ml −

Mn

nρ

=

∞∑
l=n

(
1

lρ
− 1

(l + 1)ρ

)
B
( lρ

ψ∞

)
− B(n

ρ
/ψ∞)

nρ

+

∞∑
l=n

o(lρ(1−δ)/2)

l1+ρ
+
o(nρ(1−δ)/2)

nρ

=

∫ ∞
n

ρB(x
ρ
/ψ∞)

x1+ρ
dx− B(n

ρ
/ψ∞)

nρ
+ o(n−

ρ(1+δ)
2 )

=
1

ψ∞

∫ ∞
nρ/ψ∞

B(x)

x2
dx− B(n

ρ
/ψ∞)

nρ
+ o(n−

ρ(1+δ)
2 )

=
1

ψ∞

∫ ∞
nρ/ψ∞

dB(x)

x
dx+ o(n−

ρ(1+δ)
2 ) a.s.

(A.6) is now proved by noting that (A.9), (A.7) and ρm2 = m1. And hence (3.1) is
verified.

Remark A.1. Using the truncation method as in the proof of Theorem 2.1, we can
proved that (3.1) remains true under the assumption of only finite second moments if

n−
ρ(1+δ)

2 is replaced by n−
ρ
2 (log log n)

1
2 . This implies that the law of iterated logarithm

(3.3) remains true when EU2
1,1 <∞ and EU2

1,2 <∞.
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