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Abstract

In this paper we consider one-dimensional partial differential equations of parabolic
type involving a divergence form operator with a discontinuous coefficient and a
compatibility transmission condition. We prove existence and uniqueness result by
stochastic methods which also allow us to develop a low complexity Monte Carlo
numerical resolution method. We get accurate pointwise estimates for the derivatives
of the solution from which we get sharp convergence rate estimates for our stochastic
numerical method.
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1 Introduction

Given a finite time horizon T and a positive matrix-valued function a(x) which is
smooth except at the interface surfaces between subdomains ofRd, consider the parabolic
diffraction problem

∂tu(t, x)− 1

2
div(a(x)∇)u(t, x) = 0 for all (t, x) ∈ (0, T ]×Rd,

u(0, x) = f(x) for all x ∈ Rd,
Compatibility transmission conditions along the interfaces surfaces.

(1.1)

Suppose that 1
2div(a(x)∇) is a strongly elliptic operator. Existence and uniqueness of

continuous solutions with possibly discontinuous derivatives along the surfaces hold
true: see, e.g. Ladyzenskaya et al. [12, chap.III, sec.13]. Our first objective is to pro-
vide a probabilistic interpretation of the solutions which allows us to get pointwise
estimates for partial derivatives of the solution u(t, x). These estimates, which are in-
teresting in their own, allow us to complete our second objective, that is, to develop an
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Parabolic diffraction equations and discretization of SDEs with weighted local times

efficient stochastic numerical approximation method of this solution and to get sharp
convergence rate estimates.

For reasons which we will describe soon, in this paper we complete our program
when d = 1 only. Thus our results are first steps to address various multi-dimensional
problems where divergence form operators with a discontinuous coefficient arise and
stochastic simulations are used: for example, the numerical resolution of solute trans-
port equation in Geophysics (see, e.g., Salomon et al. [25] and references therein), the
numerical resolution of the Poisson-Boltzmann equation in Molecular Dynamics (see,
e.g., Bossy et al. [5] and references therein); another motivation comes from Neuro-
sciences, more precisely from an algorithm of identification of the magnetic permittivity
around the brain (see [6, 7]).

This algorithm actually solves an inverse problem: it consists in an iterative proce-
dure aimed to compute the permittivity such that the solution of a Maxwell equation
parametered by this permittivity fits with a good accuracy measurements obtained by
sensors located on the patient’s brain; this Maxwell equation depends on the values
taken at the locations of the sensors by the solution of a Poisson equation involving a
divergence form operator with discontinuous coefficients. Monte Carlo methods allow
one to obtain this small set of values without solving the Poisson equation in its whole
domain, which may significantly reduce the CPU time at each step of the iterative pro-
cedure.

Whatever is the dimension d, the theory of Dirichlet forms allows one to construct
Markov processes whose generators in suitable Sobolev spaces are 1

2div(a(x)∇) (see,
e.g., the monography by Fukushima et al. [11]). However such a process constructed
this way is expressed as the sum of a martingale and an abstract additive functional
with finite quadratic variation; equivalently, it satisfies a Lyons-Zheng decomposition
which involves its natural time reverse filtration and the logarithmic derivative of the
(unknown) fundamental solution of (1.1) (see, e.g., Roskosz [23] for details). It thus
seems difficult both to derive from these Markov processes, either poinwise estimates
on partial derivatives of the function u(t, x), or to develop an efficient stochastic numer-
ical resolution method for (1.1).

In the particular case of piecewise constant functions a(x), stochastic representa-
tions of u(t, x) can be obtained by the analysis of stochastic differential equations with
piecewise constant coefficients driven by multi-dimensional Brownian motions and the
local time of the distance of the soluton to the discontinuity surface of a(x), and the
use of diffeomorphisms which locally map the discontinuity surface into hyperplanes:
see Bossy et al. [5].

For more general discontinuous functions a but in the one dimensional case d = 1,
one can prove that 1

2∂x(a(x)∂x) is the generator of the stochastic process solution of a
stochastic differential equation (SDE) involving its own local time: see, e.g., Bass and
Chen [2], Étoré [8], Lejay [14], Martinez [16]. This new description is the starting point
for recent numerical studies: Lejay and Martinez [15] and Étoré [8, 9] proposed sim-
ulation methods for this solution based on approximations of a(x) and random walks
simulations, and they analyzed the convergence rates of these methods. Here we pro-
pose a simpler numerical method and we interpret the strong solution to (1.1) in terms
of the exact process.

To simplify the presentation, we now suppose that the function a(x) is discontinu-
ous at point 0 only. See the Section 8 for the case where a(x) has a finite number of
discontinuities.

Thus, let a(x) = (σ(x))2 be a real function on R which is right continuous at point 0
and differentiable on R− {0} with a bounded derivative. Consider the one-dimensional
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stochastic differential equation with weighted local time

dXt = σ(Xt)dBt + σ(Xt)σ
′
−(Xt)dt+

a(0+)− a(0−)

2a(0+)
dL0

t (X). (1.2)

Here L0
t (X) is the right-sided local time corresponding to the sign function defined as

sgn(x) := 1 for x > 0 and sgn(x) := −1 for x ≤ 0 (for properties of local times, see, e.g.,
Meyer [18]) and σ′− is the left derivative of σ. Under conditions weaker than those of
Theorem 3.3 below, equation (1.2) has a unique weak solution which is a strong Markov
process : see Le Gall [13]. For all real number x0 we thus may consider a probability
space (Ω,F ,Px0), a one-dimensional standard Brownian motion (Bt, t ≥ 0) on this space,
and a solution X := (Xt) to (1.2) satisfying X0 = x0, P

x0 − a.s. However, even simpler
than Lyons–Zheng decompositions, this Markov process is not easy to simulate because
of the difficulty to numerically approximate the local time process (L0

t (X)). This leads
us to apply a transformation which removes the local time of X (as Le Gall [13] did it
to construct a solution to (1.2); Lejay [14] also used this transformation). We thus get a
new stochastic differential equation without local time which can easily be discretized
by the standard Euler scheme. As the transformation is one-to-one and its inverse
is explicit, one then readily deduces an approximation X of X. Choosing X0 = X0

we then approximate u(t, x0) by Ex0f(Xt), the latter being computed by Monte Carlo
simulations of X.

Our results are two-fold. First, we use probabilistic techniques to show that, for a
wide class of functions f , the solution of the PDE (1.1) with d = 1 can be represented as

u(t, x0) := Ex0f(Xt), (1.3)

and to get pointwise estimates for partial derivatives of this solution. Second, owing to
these estimates, we prove a sharp convergence rate estimate for Ex0f(Xt) to u(t, x0).
This convergence rate is unknown in the literature because the SDE obtained by re-
moving the local time has discontinuous coefficients: whereas the convergence rates
of discretizations of SDEs are well established when the coefficients are smooth (see a
review in [27]) our estimates open the understanding of the discretization of SDEs with
discontinuous coefficients. To our knowledge, the only results in that direction are due
to Yan [28] who proves weak convergence of the Euler scheme for general SDEs with
discontinuous coefficients but does not precise convergence rates.

The paper is organized as follows. In Section 2 we construct our transformed Euler
discretization scheme for the SDE (1.2). In Section 3, we state our main results. Our
first results concern our stochastic representation of u(t, x) and pointwise estimates for
its partial derivatives. They are respectively proven in Sections (4) and (5). Our next
results describe the convergence rate of our transformed Euler scheme: we distinguish
the case where the initial function is flat around the discontinuity point 0 and the gen-
eral case where this assumption is no longer true. The corresponding proofs are in
Sections (6) and (7). We discuss possible extensions of our results in Section (8). In Ap-
pendix we remind technical results that we use in our proofs, namely, a representation
of the density of the first passage time at 0 of an elliptic diffusion, and a recent estimate
from [4] for the expected number of visits in small balls of Itô processes observed at
discrete times.

Notation.

For all left continuous function g we denote either by g−(x) or by g(x−) the left limit
of g at point x. When g is right continous, we denote either by g+(x) or by g(x+) the
right limit of g at point x.
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We denote by C`b(R) the set of all bounded continuous functions with bounded con-
tinuous derivatives up to order `.

In all the paper, for all integers 0 ≤ ` <∞ and 1 ≤ p ≤ ∞ we denote the Lp(R) norm
of the function g by ‖g‖p and we set

‖g‖`,p :=
∑̀
i=0

‖∂ixg‖p, (1.4)

where ∂ixg is the i-th derivative of g.
The positive real numbers denoted by C may vary from line to line; they only depend

on the functions f and σ, the point x0, and the time horizon T . This means that, in
particular, C does not depend on the discretization step hn of the Euler scheme and the
smoothing parameter δ introduced in Section 7. In addition, the quantifiers will make
it clear when C does not depend on the function f .

The expectation Ex0 refers to the probability measure Px0 under which X0 = X0 =

x0 a.s.

2 Our transformed Euler scheme

Suppose that a(0+)− a(0−) is strictly positive. Using the symmetric local time L̃ as
in [13] equation (1.2) writes

dXt = σ(Xt)dBt + σ(Xt)σ
′
−(Xt)dt+

a(0+)− a(0−)

a(0+) + a(0−)
dL̃0

t (X),

so that the hypotheses of Theorem 2.3 in [13] are well satisfied since

−1 < a(0+)−a(0−)
a(0+)+a(0−) < 1.

Therefore Girsanov’s theorem implies that the stochastic differential equation (1.2) has
a unique weak solution. To construct a practical discretization scheme for this SDE we
use a transformation which removes the local time. Set

β+ := 2a(0−)
a(0+)+a(0−) and β− := 2a(0+)

a(0+)+a(0−) , (2.1)

Denote by β the piecewise linear function β with slope β+ on R+ and slope β− on R−,
and by β−1 is inverse map:

β(x) := x (β−Ix≤ + β+Ix>) and β−1(x) := x
β−
Ix≤ + x

β+
Ix>. (2.2)

Set also
σ̃(x) := σ ◦ β−1(x) (β−Ix≤ + β+Ix>) , (2.3)

and
b̃(x) := σ ◦ β−1(x)σ′− ◦ β−1(x) (β−Ix≤ + β+Ix>) . (2.4)

Adapting in an obvious way the calculation in Le Gall [13, p.60] we apply Itô–Tanaka’s
formula (see, e.g., Revuz and Yor [22, Chap.VI]) to β(Xt). The process Y := β(X)

satisfies the SDE with discontinuous coefficients:

Yt = β(X0) +

∫ t

0

σ̃(Ys)dBs +

∫ t

0

b̃(Ys)ds. (2.5)

Remark 2.1. The above function β is not the single possible choice to get a stochastic
differential equation without local time. One can as well choose any linear by parts
function β such that

β′′(dx) = −2
a(0+)− a(0−)

2a(0+)
δ0(dx).

For additional comments in this direction, see Étoré [8].
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Now denote by hn the step-size of the discretization, that is, hn := T
n . For all 0 ≤ k ≤

n set tnk := k hn. Let (Y
n

t ) be the Euler approximation of (Yt) defined by Y
n

0 = β(X0)

and, for all tnk ≤ t ≤ tnk+1,

Y
n

t = Y
n

tnk
+ σ̃(Y

n

tnk
)IY ntn

k
6=(Bt −Btnk ) + b̃(Y

n

tnk
)IY ntn

k
6=(t− t

n
k ). (2.6)

We then define our approximation of (Xt) by the transformed Euler scheme

X
n

t = β−1
(
Y
n

t

)
, 0 ≤ t ≤ T. (2.7)

3 Main Results

3.1 A probabilistic interpretation of the one-dimensional PDE (1.1)

Suppose that a(x) is smooth everywhere except along smooth discontinuity hyper-
surfaces Si. As stated in Ladyzenskaja et al. [12, chap.III, thm.13.1] 1, there exists a
unique solution u(t, x) to (1.1) with compatibility transmission conditions belonging to

the space V 1,1/2
2 ([0, T ]×Rd) (we refer to [12] for the definition of this Banach space); this

solution is continuous, twice continuously differentiable in space and once continuously
differentiable in time on (0, T ]× (Rd − ∪iSi).

For the sake of completeness and because of its importance in our analysis, we
will prove this existence and uniqueness theorem in the one-dimensional case by using
stochastic arguments essentially; this approach allows us to get the precise pointwise
estimates on partial derivatives of u(t, x) which are necessary to get sharp convergence
rate estimates for our transformed Euler scheme.

From now on we limit ourselves to the case d = 1 and we restrict the set of dis-
continuity points of a(x) = (σ(x))2 to {0} (extensions are discussed in Section 8). We
rewrite (1.1) and its transmission condition as

∂tu(t, x)− 1
2∂x(a(x)∂xu(t, x)) = 0, (t, x) ∈ (0, T ]× (R− {0}),

u(t, 0+) = u(t, 0−), t ∈ [0, T ],

u(0, x) = f(x), x ∈ R,
a(0+)∂xu(t, 0+) = a(0−)∂xu(t, 0−), t ∈ [0, T ]. (?)

(3.1)

Theorem 3.1. Suppose

∃λ > 0, Λ > 0, 0 < λ ≤ a(x) = (σ(x))2 ≤ Λ < +∞ for all x ∈ R. (3.2)

Suppose also that the function σ is of class C3
b (R− {0}) and is left and right continuous

at point 0. Suppose finally that the first derivative of the function σ has finite left and
right limits at 0. Let (Xt) be the solution to (1.2). Let the bounded function f be in the
set

W2 :=
{
g ∈ C2

b (R− {0}), g(i) ∈ L2(R) ∩ L1(R) for i = 1, 2,

a(0+)g′(0+) = a(0−)g′(0−)} .
(3.3)

Then the function
u(t, x) := Exf(Xt), (t, x) ∈ [0, T ]×R,

is the unique function in C1,2
b ([0, T ] × (R − {0})) and continuous on [0, T ] × R which

satisfies (3.1).

1In this reference the PDE is posed in a bounded domain but, under our hypothesis below on the initial
condition f , the result can easily be extended to PDEs posed in the whole Euclidian space.
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Remark 3.2. To prove the compatibility transmission condition (?) and to get unique-
ness of the solution to (3.1), it seems easy to adapt the standard proof of the stochastic
representations of solutions v(t, x) of parabolic equations with smooth coefficients (see,
e.g., Friedman [10]) which relies on the application of Itô’s formula to v(t,Xt). Here,
as the first space derivative of u(t, x) is discontinuous for all t, one would rather need
to apply a formula of Itô–Tanaka type. However the classical Itô–Tanaka’s formula can-
not be extended to functions which depend on time and space: see, e.g., Protter and
San Martin [24]. To circumvent this difficulty we will use a trick used in Peskir [21]
which, according to the author, is due to Kurtz.

3.2 Smoothness properties in L1(R) of the transition semigroup of (Xt)

The next theorem, which will be proven in Section 5, is interesting in its own right
from a PDE point of view since it provides accurate pointwise estimates on the deriva-
tives of the solution to (3.1) when a(x) is discontinuous. To the best of our knowledge,
these estimates are new because they are expressed in terms of ‖f ′‖γ,1 norms for rea-
sons which will be clear when we derive Theorem 3.5 below from Theorem 3.4.

Theorem 3.3. (i) Under the hypotheses on the function σ made in Theorem 3.1 the
probability distribution of Xt under Px has a density qX(x, t, y) which satisfies:

∃C > 0, ∀x ∈ R, ∀t > 0, Leb-a-e. y ∈ R− {0}, qX(x, t, y) ≤ C√
t

(3.4)

and

∃C > 0, ∀x ∈ R, ∀t ∈ (0, T ], ∀f ∈ L1(R), |u(t, x)| = |Exf(Xt)| ≤
C√
t
‖f‖1. (3.5)

(ii) Suppose in addition that the function σ is of class C4
b (R − {0}) and that its three

first derivatives have finite left and right limits at 0. Set

W4 :=
{
g ∈ C4

b (R− {0}), g(i) ∈ L2(R) ∩ L1(R) for i = 1, . . . , 4

a(0+)g′(0+) = a(0−)g′(0−) and a(0+)(Lg)′(0+) = a(0−)(Lg)′(0−)} ,
(3.6)

where

Lg(x) := σ(x)σ′−(x)∂xg−(x) +
1

2
a(x)∂2

xxg(x)Ix6=. (3.7)

Then, for all j = 0, 1, 2 and i = 1, . . . , 4 such that 2j + i ≤ 4,

∃C > 0, ∀x ∈ R, ∀t ∈ (0, T ], ∀f ∈ W4, |∂jt ∂ixu(t, x)| ≤ C√
t
‖f ′‖γ,1, (3.8)

where γ = 1 if 2j + i = 1 or 2, and γ = 3 if 2j + i = 3 or 4, and ‖ · ‖γ,1 is defined as
in (1.4).

3.3 Convergence rate of our transformed Euler scheme

Our next theorem states that the discretization error of the transformed Euler scheme
is of order 1/n1/2−ε for all 0 < ε < 1

2 when the function f belongs toW4. It significantly
improves the results announced in [17]. The precise error estimate (3.9) and the use of
the L1(R) norms of the derivatives of f are necessary to prove Theorem 3.5 below.

EJP 17 (2012), paper 27.
Page 6/32

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1905
http://ejp.ejpecp.org/


Parabolic diffraction equations and discretization of SDEs with weighted local times

Theorem 3.4. Under the hypotheses made on the function σ in Theorem 3.3-(ii), there
exists a positive number C such that, for all initial condition f in W4, all parameter
0 < ε < 1

2 , all n large enough, and all x0 in R,∣∣∣Ex0f(XT )− Ex0f(X
n

T )
∣∣∣ ≤ C‖f ′‖1,1h(1−ε)/2

n + C‖f ′‖1,1
√
hn + C‖f ′‖3,1h1−ε

n . (3.9)

We now relax the condition that the functions f and Lf satisfy the transmission
conditions in the definition (3.6) ofW4.

Theorem 3.5. Let f : R 7→ R be in the space

W :=
{
g ∈ C4

b (R− {0}), g(i) ∈ L2(R) ∩ L1(R) for i = 1, . . . , 4,
}
. (3.10)

Under the hypotheses on the function σ made in Theorem 3.3-(ii), there exists a positive
number C (depending on f ) such that, for all 0 < ε < 1

2 , all n large enough, and all x0 in
R, ∣∣∣Ex0f(XT )− Ex0f(X

n

T )
∣∣∣ ≤ Ch1/2−ε

n . (3.11)

Remark 3.6. When the coefficient a(x) is smooth, the convergence rate of the classical
Euler scheme is of order 1/n and the discretization error can even be expanded in terms
of powers of 1/n: for a survey, see, e.g., Talay [27]. Here the coefficients b̃ and σ̃ are
discontinuous; this explains that we are not able to prove better convergence rates as
1/n1/2−ε, Notice also that our Euler scheme (X

n

t ) converges weakly to (Xt) since (Y
n

t )

converges weakly to (Yt): see Yan [28].

Remark 3.7. One cannot let ε tend to 0 in (3.9) and (3.11) in spite of the fact that the
constants C do not depend on ε. A more precise statement would be that the absolute
value of the error is bounded by C

√
hn φ(n), where φ is a function which, as n tends to

infinity, tends to infinity more slowly than any power of n.

Theorems 3.4 and 3.5 are proven in Sections 6 and 7 respectively.

4 Proof of Theorem 3.1

In the calculations below we will use several times the two following observations.
First, for all function g of class C2

b (R − {0}) having a second derivative in the sense
of the distributions which is a Radon measure and satisfying the transmission condition

a(0+)g′(0+) = a(0−)g′(0−),

the Itô–Tanaka formula applied to g(Xt) and the definition (3.7) of L lead to

∀x ∈ R, ∀t > 0, Exg(Xt) = g(x) +

∫ t

0

ExLg(Xs)ds. (4.1)

Second, let σ+(x) be an arbitrary C3
b (R) extension of the function σ(x)Ix> which

satisfies, for a+(x) := (σ+(x))2,

0 < λ ≤ a+(x) ≤ Λ < +∞ for all x ∈ R.

Denote by (X+
t ) the unique strong solution to

dX+
t = σ+(X+

t )dBt + σ+(X+
t )(σ+)′(X+

t )dt.

Let τ0(X) be the first passage time of the process (Xt) at point 0:

τ0(X) := inf{s > 0 : Xs = 0}.
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Notice that τ0(X) = τ0(X+). Let rx0 (s) be the density under Px of τ0(X) ∧ T (see Ap-
pendix A.1). For all function φ such that E|φ(Xt)| is finite we have, for all x > 0,

Exφ(Xt) = Ex
[
φ(Xt)I{τ≥t}

]
+ Ex

[
φ(Xt)I{τ<t}

]
= Ex

[
φ(X+

t )I{τ≥t}
]

+

∫ t

0

E0φ(Xt−s)r
x
0 (s)ds

= Exφ(X+
t )− Ex

[
φ(X+

t )I{τ<t}
]

+

∫ t

0

E0φ(Xs)r
x
0 (t− s)ds

= Exφ(X+
t )−

∫ t

0

E0φ(X+
s )rx0 (t− s)ds+

∫ t

0

E0φ(Xs)r
x
0 (t− s)ds.

(4.2)

Of course, a similar representation holds true for all x < 0 provided the introduction of
a diffusion process X− obtained by smoothly extending σ(x)Ix<.

First step: smoothness and boundedness. In this paragraph we prove that the
function u(t, x) := Exf(Xt) is in C1,2

b ([0, T ] × (R − {0}). In the rest of this paragraph,
w.l.g. we limit ourselves to the case x > 0.

In view of the representation (4.2) with φ ≡ f and Theorem A.1 in Appendix, we
easily deduce the continuity of u(t, x) w.r.t. t and x. Notice that, in particular, the
second and third equalities in (3.1) are satisfied.

Next, to study the boundedness of the function ∂xu(t, x), we differentiate the flow of
(X+

t ):

∂xE
xf(X+

t )

= Ex
[
f ′(X+

t ) exp

(∫ t

0

(σ+)′(X+
s )dBs +

1

2

∫ t

0

{((σ+)′(X+
s ))2 + σ+(X+

s )(σ+)′′(X+
s )}ds

)]
.

Integrate by parts the stochastic integral in the right-hand side; there exists a bounded
continuous function G such that:

∂xE
xf(X+

t ) = Ex
[
f ′(X+

t ) exp(σ+(X+
t )− σ+(x) +

∫ t

0

G(X+
s )ds)

]
. (4.3)

Therefore

∃C > 0, ∀0 < t ≤ T, ∀x ∈ R, |∂xExf(X+
t )| ≤ C‖f ′‖∞.

We then consider the two last terms of the right-hand side of (4.2). In view of (4.1) we
are in a position to use the Lemma A.6 in Appendix with

H(s) = E0f(X+
s )− E0f(Xs)

and CH = C(||L+f ||∞+ ||Lf ||∞), where L+ is the infinitesimal generator of the process
(X+

t ), that is,

L+f(x) :=
1

2
a+(x)f ′′(x) +

1

2
(a+)′(x)f ′(x).

Therefore

∃C > 0, ∀0 < t ≤ T, ∀x 6= 0, |∂xu(t, x)| ≤ C‖f ′‖∞ + C‖f ′′‖∞.

We proceed similarly to prove that

∃C > 0, ∀0 < t ≤ T, ∀x 6= 0, |∂2
xxu(t, x)| ≤ C‖f ′‖∞ + C‖f ′′‖∞, (4.4)
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noticing that, from (4.3),

∃C > 0, ∀0 < t ≤ T, ∀x ∈ R, |∂2
xxE

xf(X+
t )| ≤ C‖f ′‖∞ + C‖f ′′‖∞,

and that we here can apply the Lemma A.6 in Appendix with α = 0.
We finally justify that ∂xu(t, x) has left and right limits when x tend to 0. Indeed,

let (xn)n≥0 a sequence of positive real number tending to 0. We deduce from (4.4) that
(∂xu(t, xn))n≥0 is a Cauchy sequence. Denote by M its limit. Let (x̄n)n≥0 be another
sequence of positive real numbers tending to 0. As

|M − ∂xu(t, x̄n)| ≤ |M − ∂xu(t, xn)|+ C|x̄n − xn|,

the sequence (∂xu(t, x̄n))n≥0 also tends to M , which shows that ∂xu(t, 0+) is well de-
fined. We similarly obtain that ∂xu(t, 0−) is also well defined.

Second step: u(t, x) satisfies the first equality in (3.1). In view of (4.1) we have,
for all 0 < t < T , 0 < ε < T − t and x in R,

u(t+ ε, x)− u(t, x) = Exf(Xt+ε)− Exf(Xt) =

∫ t+ε

t

ExLf(Xs)ds. (4.5)

Changing φ into Lf in (4.2) shows that ExLf(Xt) is a continuous function w.r.t. t. There-
fore ∂tu(t, x) is well defined for all 0 < t ≤ T and all x in R.

In addition, we have already reminded that in [13] the process (Xt) is shown to be
strong Markov. Therefore,

u(t+ ε, x)− u(t, x) = Exu(t,Xε)− u(t, x). (4.6)

Itô’s formula leads to

Exu(t,Xε)− u(t, x) = Exu(t,Xε)Iτ≥ε + Exu(t,Xε)Iτ<ε − u(t, x)

=

∫ ε

0

ExLu(t,Xs)ds Iτ≥ε − u(t, x) Px(τ0 ≤ ε)

+

∫ ε

0

E0u(t,Xs)r
x
0 (ε− s)ds.

Divide by ε the left and right-hand sides and observe that, for all x 6= 0,

Px − a.s., lim
ε↘0

1

ε

∫ ε

0

Lu(t,Xs)ds = Lu(t, x).

Applying Lebesgue’s Dominated Convergence theorem we deduce

lim
ε↘0

Exu(t,Xε)− u(t, x)

ε
= Lu(t, x)− u(t, x)rx0 (0) + lim

ε↘0

∫ ε
0
E0u(t,Xs)r

x
0 (ε− s)ds

ε
.

In view of the representation (A.4) of the density rx0 (s) in Appendix we have rx0 (0) = 0

and thus, again applying Lebesgue’s Dominated Convergence theorem, we have, for all
x 6= 0,

∂tu(t, x) = Lu(t, x). (4.7)

Third step: u(t, x) satisfies the transmission condition (?). In view of of the pre-
ceding first step, for all fixed t the second partial derivative w.r.t. x of u(t, x) is a Radon
measure. Thus we may apply the Itô-Tanaka formula to u(t,Xs) for 0 ≤ s ≤ ε and fixed
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time t. Our first step also ensures that the resulting Brownian integrals are martingales.
Therefore

E0u(t,Xε)−u(t, 0) = E0

∫ ε

0

Lu(t,Xs)ds+
1

2a(0+)
(a(0+)∂xu(t, 0+)−a(0−)∂xu(t, 0−))E0L0

ε(X).

(4.8)
Observe that the equality (4.6) holds true for x = 0 since it only results from the Markov
property of (Xt) and that, combined with (4.5) it leads to

E0u(t,Xε)− u(t, 0) =

∫ t+ε

t

E0Lf(Xs)ds.

Therefore we deduce from (4.8) that

(a(0+)∂xu(t, 0+)− a(0−)∂xu(t, 0−))E0L0
ε(X) = 2a(0+)

(∫ t+ε

t

E0Lf(Xs)ds−
∫ ε

0

E0Lu(t,Xs)ds

)
.

Since Lf and Lu(t, ·) are bounded functions, the compatibility transmission condition
(?) will be proved if we show that

lim inf
ε↘0

E0L0
ε(X)

ε
= +∞. (4.9)

To this end, set Φ(x) :=
∫ x

0

1

a(y)
dy. Observe that the condition (3.2) implies that Φ is

one-to-one. Similarly to what we did to get (4.1) we apply Itô-Tanaka’s formula to Φ(Xt)

and get

Φ(Xt) = Φ(x) +

∫ t

0

1

σ(Xs)
dBs +

(
a(0+)− a(0−)

2a(0−)a(0+)
+

1

2

(
1

a(0+)
− 1

a(0−)

))
L0
t (X)

= Φ(x) +

∫ t

0

1

σ(Xs)
dBs

= Φ(x) + β̃〈M〉t ,

where (β̃t) is the DDS Brownian Motion of the martingale Mt :=
(∫ t

0
1

σ(Xs)
dBs, t ≥ 0

)
.

Next, successively using the exercises 1.27 and 1.23 in [22, Chap.VI], one gets

L0
t (X) = L0

t

(
Φ−1

(
Φ(0) + β̃〈M〉

))
= L

Φ(0)
〈M〉t

(
Φ−1

(
β̃
))

= Φ−1′(0+) L0
〈M〉t

(
β̃
)
,

from which

E0L0
t (X) ≥ σ2(0+)E0L0

t
Λ2

(
β̃
)
≥
√

2

π

σ2(0+)

Λ

√
t.

The desired result (4.9) follows.

Last step: uniqueness. We finally prove that u(t, x) := Exf(Xt) is the unique solution
to (3.1) in the sense of Theorem 3.1. We adapt a trick due to Kurtz used in Peskir [21,
Sec.3].
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As, for all real number x, x∨0 = 1
2 (x+ |x|) and x∧0 = 1

2 (x−|x|), Itô–Tanaka’s formula
implies

d(Xt ∨ 0) =
1

2
dXt +

1

2
sgn(Xt)dXt +

1

2
dL0

t (X)

= IXt>dXt +
1

2
dL0

t (X),

d(Xt ∧ 0) =
1

2
dXt −

1

2
sgn(Xt)dXt −

1

2
dL0

t (X)

= IXt<dXt −
a(0−)

2a(0+)
dL0

t (X).

(We remind that we use the non-symmetric local time corresponding to sgn(x) = Ix>−
Ix≤.) Now, let U(t, x) be an arbitrary solution to (3.1). For all fixed t in [0, T ] the
function U(t − s, x) is of class C1,2

b ([0, t] × R − {0}) and its partial derivatives have left
and right limits when x tends to 0. Thus we may apply the classical Itô’s formula to
this function and the semimartingales (Xs ∨ 0) and (Xs ∧ 0). As the resulting Brownian
integrals are martingales we obtain:

ExU(0, Xt ∨ 0) = U(t, x ∨ 0)− Ex
∫ t

0

∂tU(t− s,Xs ∨ 0)ds

+ Ex
∫ t

0

∂xU(t− s,Xs ∨ 0) IXs> σ(Xs)σ
′(Xs)ds

+
1

2
Ex
∫ t

0

∂2
xxU(t− s,Xs) IXs> a(Xs)ds+

1

2
Ex
∫ t

0

∂xU(t− s, 0+)dL0
s(X).

Similarly,

ExU(0, Xt ∧ 0) = U(t, x ∧ 0)− Ex
∫ t

0

∂tU(t− s,Xs ∧ 0)ds

+ Ex
∫ t

0

∂xU(t− s,Xs ∧ 0) IXs< σ(Xs)σ
′(Xs)ds

+
1

2
Ex
∫ t

0

∂2
xxU(t− s,Xs) IXs< a(Xs)ds−

a(0−)

2a(0+)
Ex
∫ t

0

∂xU(t− s, 0−)dL0
s(X).

We finally use that U(t, x) = U(t, x ∨ 0) +U(t, x ∧ 0)−U(t, 0) and U(0, x) = f(x). In view
of the first equality in (3.1), it follows that

Exf(Xt) = U(t, x) +
1

2a(0+)
Ex
∫ t

0

(a(0+)∂xU(t− s, 0+)− a(0−)∂xU(t− s, 0−))dL0
s(X).

It now remains to use that, by hypothesis, U(t, x) satisfies the transmission condition (?).
That ends the proof.

5 Proof of Theorem 3.3

5.1 Part (i): Properties of the transition semigroup of (Xt)

In this subsection we closely follow a part of the proof of Aronson’s estimate (see,
e.g., Bass [3, chap.7, sec.4] and Stroock [26]). We detail the modifications of the classi-
cal calculations for the sake of completeness.

We start with observing that, owing to the condition transmision satisfied by fonc-
tions inW2, integrating by parts leads to

∀φ ∈ C1
b (R),

∫
φ(x) Lf(x) dx = −

∫
φ′(x) a(x) f ′(x) dx; (5.1)

EJP 17 (2012), paper 27.
Page 11/32

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v17-1905
http://ejp.ejpecp.org/


Parabolic diffraction equations and discretization of SDEs with weighted local times

similarly, in view of Theorem 3.1, Ptf(x) satisfies the transmission condition (?), two
successive integrations by parts lead to

∀t > 0, ∀φ ∈ W2,

∫
φ(x) L(Ptf)(x) dx =

∫
Lφ(x) (Ptf)(x) dx. (5.2)

Next, setting Ptf(x) := Exf(Xt) we have

‖Ptf‖∞ = ‖Pt/2(Pt/2f)‖∞ = sup
‖g‖1≤1

∣∣∣∣∫ Pt/2(Pt/2f)(x) g(x)dx

∣∣∣∣ .
An obvious approximation argument shows that all function g such that ‖g‖1 ≤ 1 can be
approximated in L1(R) norm by a sequence of functions in

T1 := {φ ∈ C(R)∩C∞(R−{0}) with compact support, ‖φ‖1 ≤ 1, a(0+)φ′(0+) = a(0−)φ′(0−)}.

Therefore

‖Ptf‖∞ = sup
‖g‖∈T1

∣∣∣∣∫ Pt/2(Pt/2f)(x) g(x)dx

∣∣∣∣ .
In view of Theorem 3.1, Psf and Psg satisfy the condition transmission (?) for all 0 <

s < T . Therefore (5.2) implies that, for all 0 < s < t < T ,

d

ds

∫
Pt−sf(x) Psg(x) dx = −

∫
L(Pt−sf)(x) Psg(x) dx+

∫
Pt−sf(x) LPsg(x) dx = 0,

from which ∫
Ptf(x) g(x) dx =

∫
f(x) Ptg(x) dx,

from which

‖Ptf‖∞ = sup
‖g‖∈T1

∣∣∣∣∫ Pt/2g(x) Pt/2f(x) dx

∣∣∣∣
≤ ‖Pt/2f‖2 sup

‖g‖∈T1
‖Pt/2g‖2.

It thus remains to prove:

∃C > 0, ∀g ∈ T1, ∀0 < t ≤ T, ‖Pt/2g‖2 ≤
C

t1/4
, (5.3)

since a density argument and the linearity of the operator Pt would then also lead to

‖Pt/2f‖2 ≤
C

t1/4
‖f‖1.

We observe that, in view of (5.1) and (3.2),

d

dt
‖Ptg‖22 = 2

∫
Ptg(x) L(Ptg)(x) dx ≤ −2λ

∫
|(Ptg)′(x)|2dx.

As in the proof of Aronson’s estimates we apply Nash’s inequality (see, e.g., Stroock [26])

∃C1 > 0, ∀φ ∈ H1(R), ‖φ‖62 ≤ C1‖φ′‖22 ‖φ‖41,

where H1(R) is the Sobolev space of functions in L2(R) with derivative in the sense of
the distributions also in L2(R). We get

d

dt
‖Ptg‖22 ≤ −2C1λ‖Ptg‖62,

from which (5.3) follows.
We thus have proven (3.5). Notice that, by choosing f as a smooth approximation of

the indicator function of an open interval not including 0, the preceding inequality im-
plies that the probability distribution of Xt under Px has a density and that this density,
denoted by qX(x, t, y), satisfies (3.4). We thus have proven the part (i) of Theorem 3.3.
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5.2 Part (ii): Estimates for time partial derivatives of u(t, x)

In all this subsection, all the constants C do not depend on the function f inW4. The
calculation is directed by the need to get bounds in terms of ‖ · ‖`,1 norms of f rather
than in ‖ · ‖∞ norms of its derivatives.

Proposition 5.1. There exists C > 0 such that, for all t ∈ (0, T ],

sup
x 6=0
|∂tu(t, x)| ≤ C√

t
‖f ′‖1,1. (5.4)

Proof. As above, w.l.g. we may and do consider x > 0. We start from (4.2) and write

u(t, x) = Exf(X+
t ) + v(t, x), (5.5)

where

v(t, x) := −
∫ t

0

E0f(X+
s )rx0 (t− s)ds+

∫ t

0

E0f(Xs)r
x
0 (t− s)ds. (5.6)

We have

v(t, x) =

∫ t

0

∫ t−s

0

(
E0Lf(Xξ)− E0L+f(X+

ξ )
)
dξ rx0 (s)ds, (5.7)

and thus

∂tv(t, x) =

∫ t

0

(
E0Lf(Xs)− E0L+f(X+

s )
)
rx0 (t− s)ds. (5.8)

Successively using inequality (3.5) and the Lemma A.5 in Appendix we obtain

|∂tv(t, x)| ≤ C
(
‖L+f‖1 + ‖Lf‖1

) ∫ t

0

1√
s
rx0 (t− s)ds

≤ C√
t

(
‖L+f‖1 + ‖Lf‖1

)
.

We now use the following well known estimate (see, e.g., Friedman [10]): for all t > 0,
the probability density qX

+

(x, t, y) of X+
t under Px satisfies

∃C > 0, ∃ν > 0, ∀0 < t ≤ T, qX
+

(x, t, y) ≤ C√
t

exp
(
− (y−x)2

νt

)
. (5.9)

From the Itô formula and the preceding inequality we have

sup
x∈R
|∂tExf(X+

t )| ≤ C√
t
‖L+f‖1.

In view of (5.5) we thus are in a position to obtain (5.4).

As already noticed, the representation (A.4) of rx0 (s) shows that rx0 (0) = 0. Thus,
from the equality (4.1) with g ≡ Lf (remember that f belongs to W4) and the above
calculations, we may deduce

∂2
ttu(t, x) = ∂2

ttE
xf(X+

t ) +

∫ t

0

∂t
(
E0Lf(Xt−s)− E0L+f(X+

t−s)
)
rx0 (s)ds

= ∂2
ttE

xf(X+
t ) +

∫ t

0

(
E0L(Lf)(Xs)− E0L+(L+f)(X+

s )
)
rx0 (t− s)ds.

We have shown the following proposition:

Proposition 5.2. There exists C > 0 such that, for all t ∈ (0, T ],

sup
x 6=0
|∂2
ttu(t, x)| ≤ C√

t
‖f ′‖3,1.
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5.3 Part (ii) (cont.): Estimates for space partial derivatives of u(t, x)

The objective of this subsection is to prove estimates for the four first spatial deriva-
tives of u(t, x). As in the preceding subsection, all the constants C do not depend on the
function f inW4.

Proposition 5.3. There exists C > 0 such that, for all t ∈ (0, T ],

sup
x6=0
|∂xu(t, x)| ≤ C√

t
‖f ′‖1,1. (5.10)

Proof. As above w.l.g. we consider x > 0.
In view of (4.3) and the Gaussian estimate (5.9) we have

‖∂xExf(X+
t )‖∞ ≤

C√
t
‖f ′‖1. (5.11)

Therefore it suffices to prove

sup
x6=0
|∂xv(t, x)| ≤ C

(
‖L+f‖1 + ‖Lf‖1

)
. (5.12)

In view of (5.7) this inequality results from Lemma A.6 applied to the function

H(s) :=

∫ s

0

(
E0L+f(X+

ξ )− E0Lf(Xξ)
)
dξ,

noticing that, in view of (3.5), we may choose

CH := C
(
‖L+f‖1 + ‖Lf‖1

)
.

Corollary 5.4. There exists C > 0 such that, for all t in (0, T ],

sup
x6=0
|∂2
xxu(t, x)| ≤ C√

t
‖f ′‖1,1.

Proof. It suffices to use ∂tu(t, x) = Lu(t, x) for all t in (0, T ] and all x 6= 0, and to use the
estimates in Propositions 5.1 and 5.3.

Proposition 5.5. There exists C > 0 such that, for all t ∈ (0, T ],

sup
x 6=0
|∂3
x3u(t, x)| ≤ C√

t
‖f ′‖3,1. (5.13)

Proof. Since

∂x∂tu(t, x) = ∂x

{
1

2
∂x(a(t, x)∂xu(t, x))

}
for all x 6= 0,

it suffices to prove

sup
x 6=0
|∂x∂tu(t, x)| ≤ C√

t
‖f ′‖3,1. (5.14)

As in the proof of Proposition 5.3 we fix x > 0 and start from equality (5.5):

u(t, x) = Exf(X+
t ) + v(t, x).

Proceeding as in the proof of (5.11) we first get

‖∂x∂tExf(X+
t )‖∞ = ‖∂xExL+f(X+

t )‖∞ ≤
C√
t
‖f ′‖3,1.
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Second, to estimate ∂x∂tv(t, x) we use (5.8) and proceed as in the proof of Proposi-
tion 5.3. In particular, we apply Lemma A.6 to the function

H̃(s) := E0Lf(Xs)− E0L+f(X+
s ),

noticing that, in view of (3.5) and (4.1) (with g ≡ Lf ), one has

|H̃ ′(s)| ≤ C√
s
‖f ′‖3,1,

so that we may choose CH̃ := C‖f ′‖3,1 and α = 1
2 .

As
∂t∂tu(t, x) = L ◦ Lu(t, x) in (0, T ]× (R− {0}),

Propositions 5.2, 5.3, 5.4 and 5.5 imply the following corollary.

Corollary 5.6. There exists C > 0 such that, for all t ∈ (0, T ],

sup
x 6=0
|∂4
x4u(t, x)| ≤ C√

t
‖f ′‖3,1.

6 Convergence rate of our Euler scheme (I): Proof of Theorem 3.4

6.1 Error decomposition

For all k ≤ n set
θnk := T − tnk .

The proof of Theorem 3.4 proceeds as follows. Since u(0, x) = f(x) and u(T, x) =

Exf(XT ) for all x, the discretization error at time T can be decomposed as follows:

εx0

T =
∣∣∣Ex0f ◦ β−1(YT )− Ex0f ◦ β−1

(
Y
n

T

)∣∣∣
=

∣∣∣∣∣
n−1∑
k=0

(Ex0u(T − tnk , β−1(Y
n

tnk
))− Ex0u(T − tnk+1, β

−1(Y
n

tnk+1
)))

∣∣∣∣∣ , (6.1)

and thus

εx0

T ≤

∣∣∣∣∣
n−2∑
k=0

Ex0

{
u(θnk , β

−1(Y
n

tnk
))− u(θnk+1, β

−1(Y
n

tnk
))

+u(θnk+1, β
−1(Y

n

tnk
))− u(θnk+1, β

−1(Y
n

tnk+1
))
}∣∣∣

+
∣∣∣Ex0u(θn1 , β

−1(Y
n

tnn−1
))− Ex0u(0, β−1(Y

n

T ))
∣∣∣ .

(6.2)

Let us check that the last term in the right-hand side can be satisfyingly bounded
from above. As u(0, x) = f(x) for all x, we have∣∣∣Ex0u(θn1 , β

−1(Y
n

tnn−1
))− Ex0u(0, β−1(Y

n

T ))
∣∣∣ ≤ ∣∣∣Ex0u(θn1 , β

−1(Y
n

tnn−1
))− Ex0u(0, β−1(Y

n

tnn−1
))
∣∣∣

+
∣∣∣Ex0f(β−1(Y

n

tnn−1
))− Ex0f(β−1(Y

n

T ))
∣∣∣ .

Since f ′′ is in L1(R), f ′ is bounded and thus f ◦ β−1 is Lipschitz. In view of inequal-
ity (5.4) we deduce∣∣∣Ex0u(θn1 , β

−1(Y
n

tnn−1
))− Ex0u(0, β−1(Y

n

T ))
∣∣∣ ≤ C‖f ′‖1,1√hn. (6.3)
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The rest of this section is devoted to the analysis of∣∣∣∣∣
n−2∑
k=0

Ex0(Tk − Sk)

∣∣∣∣∣ ,
where the time increment Tk is defined as

Tk := u(θnk , β
−1(Y

n

tnk
))− u(θnk+1, β

−1(Y
n

tnk
)) (6.4)

and the space increment is defined as

Sk := u(θnk+1, β
−1(Y

n

tnk+1
))− u(θnk+1, β

−1(Y
n

tnk
)). (6.5)

In all the calculation below, we use the following notations: given some real number
r(n) depending on n, and two positive numbers µ and ν,

r(n) = Q1

(
hνn

(tnk )µ

)
means ∃C > 0, ∀n ≥ 1, ∀0 ≤ k ≤ n, |r(n)| ≤ C hνn

(tnk )µ
‖f ′‖1,1, (6.6)

and

r(n) = Q3

(
hνn

(tnk )µ

)
means ∃C > 0, ∀n ≥ 1, ∀0 ≤ k ≤ n, |r(n)| ≤ C hνn

(tnk )µ
‖f ′‖3,1. (6.7)

We briefly sketch our methodology to study the convergence rate of our Euler scheme.
We then distinguish two cases. On the one hand, when Y

n

tnk
and Y

n

tnk+1
are simultane-

ously positive or negative, we use a Taylor expansion of u(tnk+1, ·) around (tnk , Y
n

tnk
) and

then apply accurate estimates of the derivatives of u(t, x) for t in (0, T ] and x 6= 0. On
the other hand, we combine two tricks: first, we prove that Y

n

tnk
and Y

n

tnk+1
have opposite

signs with small probability when Y
n

tnk
is large enough; second, when Y

n

tnk
is small, we

explicit the expansion of u(tnk+1, ·) around 0 and use Theorem 3.1; these two calculations
allow us to cancel the lower order term in the expansion. We emphasize that using the
transmission condition (?) is natural: it results from the construction of the approxi-
mation scheme by means of the function β−1 whose derivatives are discontinuous at
0.

We again emphasize that the use of estimate (3.9) is made necessary to prepare the
proof of Theorem 3.5 which relies on approximations of functions f inW by sequences
of functions inW4.

In all the sequel x0 is arbitrarily fixed.

6.2 A preliminary estimate on our Euler scheme

Lemma 6.1. Under Px0 , for all k ≥ 1, the random variable Y
n

tk
has a density pntnk

w.r.t. Lebesgue’s measure. The function pntnk belongs to C∞(R). In addition, there exist
Ck(n) > 0 and λk(n) > 0 such that

pntnk (y) ≤ Ck(n) exp
(
− (y−β(x0))2

λk(n)

)
. (6.8)

Proof. To prove existence and smoothness of the density pntnk , we aim to apply the clas-

sical Lemma 2.1.5 in Nualart [19]. Denote by µntnk (dy) the law of Y
n

tk
. Conditionnally to

the past up to time tk−1, the law of Y
n

tk
is Gaussian. Therefore, for all integer α, there

exists Cα(n) > 0 such that ∣∣ ∫
R

dα

dyα
φ(y)µntnk (dy)

∣∣ ≤ Cα(n)‖φ‖∞

for all test function φ in C∞(R) with compact support. Inequality (6.8) is deduced by
induction.
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The preceding lemma implies that, for all j = 0, 1, 2 and i = 1, . . . , 4 such that 2j+ i ≤
4, for all k ∈ {1, . . . , n}, the random variable ω 7→ ∂jt ∂

i
xu
(
T − tnk , β−1

(
Y
n

tk

)
(ω)
)

is well-

defined for Px0 almost every ω. In particular, we have for all k ∈ {1, . . . , n},

Ex0∂tu
(
T − tnk , β−1

(
Y
n

tk

))
− Ex0Lu

(
T − tnk , β−1

(
Y
n

tk

))
= 0. (6.9)

6.3 Estimate for the time increment Tk

Remember the definition (6.4) of Tk and that θnk = T − tnk . We have{
u(θnk , β

−1(Y
n

tnk
))− u(θnk+1, β

−1(Y
n

tnk
))
}
IY ntn

k
>

= hn∂tu(θnk+1, β
−1(Y

n

tnk
))IY ntn

k
> + h2

n

∫
[0,1]2

∂2
ttu(θnk+1 + α1α2hn, β

−1(Y
n

tnk
))α1 dα1dα2 IY ntn

k
>

=: T+
k +R+

k .

Similarly,{
u(θnk , β

−1(Y
n

tnk
))− u(θnk+1, β

−1(Y
n

tnk
))
}
IY ntn

k
<

= hn∂tu(θnk+1, β
−1(Y

n

tnk
))IY ntn

k
< + h2

n

∫
[0,1]2

∂2
ttu(θnk+1 + α1α2hn, β

−1(Y
n

tnk
))α1 dα1dα2 IY ntn

k
<

=: T−k +R−k .

In view of Theorem 3.3 we have

Ex0 |R+
k +R−k | ≤

C√
θnk+1

‖f ′‖3,1 h2
n.

From the preceding we deduce

Ex0Tk = Ex0∂tu(θnk+1, β
−1(Y

n

tnk
))hn +Q3

(
h2
n√
θnk+1

)
. (6.10)

6.4 Expansion of the space increment Sk

Let Sk be defined as in (6.5). Set

4k+1B := Btnk+1
−Btnk ,

4k+1Y
n

:= σ̃(Y
n

tnk
)4k+1B + b̃(Y

n

tnk
)hn,

4]k+1X
n

:= σ(X
n

tnk
)4k+1B + σσ′−(X

n

tnk
)hn.

We emphasize that, due to the dissymmetry of the definition β−1, 4]k+1X
n

does not

coincide with X
n

tnk+1
−Xn

tnk
when X

n

tnk+1
and X

n

tnk
have opposite signs, which explains the

two notations 4 and 4]. However the definitions (2.4) and (2.6) imply

4k+1Y
n

β+
I[Y ntn

k
>] +

4k+1Y
n

β−
I[Y ntn

k
≤] = 4]k+1X

n
. (6.11)

We need to introduce the four following events:
Ω++
k := [Y

n

tnk
> 0 and Y

n

tnk+1
> 0],

Ω−−k := [Y
n

tnk
≤ 0 and Y

n

tnk+1
≤ 0],

Ω+−
k := [Y

n

tnk
> 0 and Y

n

tnk+1
≤ 0],

Ω−+
k := [Y

n

tnk
≤ 0 and Y

n

tnk+1
> 0].

(6.12)
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In view of the definition of the function β−1 in Section 2 we have

On Ω++
k , β−1(Y

n

tnk+1
) =

1

β+
Y
n

tnk+1
= β−1(Y

n

tnk
) +

1

β+
4k+1Y

n
.

Therefore

SkIΩ++
k

=
4k+1Y

n

β+
∂xu(θnk+1, β

−1(Y
n

tnk
)) IΩ++

k
+

1

2

(4k+1Y
n
)2

(β+)2
∂2
xxu(θnk+1, β

−1(Y
n

tnk
)) IΩ++

k

+
1

6

(4k+1Y
n
)3

(β+)3
∂3
x3u(θnk+1, β

−1(Y
n

tnk
)) IΩ++

k

+
(4k+1Y

n
)4

(β+)4

∫
[0,1]4

∂4
x4u(θnk+1, β

−1(Y
n

tnk
) + α1α2α3α44k+1Y

n
)α1α2α3 dα1 . . . dα4 IΩ++

k

=: S++1
k + S++2

k + S++3
k + S++4

k .

Similarly,

SkIΩ−−k
=
4k+1Y

n

β−
∂xu(θnk+1, β

−1(Y
n

tnk
)) IΩ−−k

+
1

2

(4k+1Y
n
)2

(β−)2
∂2
xxu(θnk+1, β

−1(Y
n

tnk
)) IΩ−−k

+
1

6

(4k+1Y
n
)3

(β−)3
∂3
x3u(θnk+1, β

−1(Y
n

tnk
)) IΩ−−k

+
(4k+1Y

n
)4

(β−)4

∫
[0,1]4

∂4
x4u(θnk+1, β

−1(Y
n

tnk
) + α1α2α3α44k+1Y

n
)α1α2α3 dα1 . . . dα4 IΩ−−k

=: S−−1
k + S−−2

k + S−−3
k + S−−4

k .

We now use that Ω++
k ∪Ω−−k = Ω− (Ω+−

k ∪Ω−+
k ) and notice that Ω+−

k ∪Ω−+
k belongs

to the σ-field generated by (Bt) up to time tnk+1. In view of (6.11) we get

Ex0(S++1
k + S−−1

k ) = Ex0

[
σσ′ ◦ β−1(Y

n

tnk
)∂xu(θnk+1, β

−1(Y
n

tnk
))
]
hn

− Ex0

[
4]k+1X

n
∂xu(θnk+1, β

−1(Y
n

tnk
)) IΩ+−

k ∪Ω−+
k

]
.

Proceeding similarly and expliciting the conditional expectation of (4]k+1X
n
)2 w.r.t. the

past of (Bt) up to time tnk , we obtain

Ex0(S++2
k + S−−2

k ) =
1

2
Ex0

[
a ◦ β−1(Y

n

tnk
)∂2
xxu(θnk+1, β

−1(Y
n

tnk
))
]
hn

− 1

2
Ex0

[
(4]k+1X

n
)2∂2

xxu(θnk+1, β
−1(Y

n

tnk
)) IΩ+−

k ∪Ω−+
k

]
,

and, since Ex0(4k+1B)3 = 0,

Ex0(S++3
k + S−−3

k ) =
1

2
Ex0

[
a ◦ β−1(Y

n

tnk
)σσ′ ◦ β−1(Y

n

tnk
)∂3
x3u(θnk+1, β

−1(Y
n

tnk
))
]
h2
n

− 1

6
Ex0

[
(4]k+1X

n
)3∂3

x3u(θnk+1, β
−1(Y

n

tnk
)) IΩ+−

k ∪Ω−+
k

]
+Q3

(
h2
n√
θnk+1

)
.

In addition, in view of Theorem 3.3 we have

Ex0 |S++4
k + S−−4

k | ≤ Ch2
n√

θnk+1

‖f ′‖3,1.
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To summarize the calculations of this subsection, we have obtained

Ex0Sk = Ex0Lu(θnk+1, β
−1(Y

n

tnk
))hn

+ Ex0

[
(Sk −4]k+1X

n
)∂xu(θnk+1, β

−1(Y
n

tnk
))) IΩ+−

k ∪Ω−+
k

−1

2
(4]k+1X

n
)2∂2

xxu(θnk+1, β
−1(Y

n

tnk
)) IΩ+−

k ∪Ω−+
k

−1

6
(4]k+1X

n
)3∂3

x3u(θnk+1, β
−1(Y

n

tnk
)) IΩ+−

k ∪Ω−+
k

]
+Q3

(
h2
n√
θnk+1

)
=: Ex0Lu(θnk+1, β

−1(Y
n

tnk
))hn + Ex0Rk +Q3

(
h2
n√
θnk+1

)
.

(6.13)

We now estimate the remaining term Ex0Rk.

6.5 Estimate for Ex0Rk: localization around 0

Arbitrarily fix 0 < ε < 1
2 . We aim to show

|Ex0Rk| ≤
Ch1−2ε

n√
θnk
‖f ′‖1,1Px0

[
|Y ntnk+1

| ≤ h1/2−ε
n

]
+
Ch

3/2(1−ε)
n√
θnk+1

‖f ′‖3,1Px0

[
|Y ntnk | ≤ h

1/2−ε
n

]
.

(6.14)
To get this precise estimate we need to use the transmission condition (?) in equa-

tion (3.1). This explains that we localize on the event where Y
n

tnk
is close to 0. We start

with checking that we may neglect the complementary event.
Define Γ(y) by

Γ(y) :=
−y − b̃(y)hn

σ̃(y)
.

Observe that

Ω+−
k =

[
0 < Y

n

tnk
≤ h1/2−ε

n and Y
n

tnk+1
≤ −h1/2−ε

n

]
∪
[
0 < Y

n

tnk
≤ h1/2−ε

n and − h1/2−ε
n ≤ Y ntnk+1

≤ 0
]

∪
[
Y
n

tnk
≥ h1/2−ε

n and 4k+1B ≤ Γ(Y
n

tnk
)
]
.

Notice that

Px0

[
Y
n

tnk
≥ h1/2−ε

n and 4k+1B ≤ Γ(Y
n

tnk
)
]
≤ C exp(− 1

Cn
−ε),

and, similarly,

Px0

[
0 ≤ Y ntnk ≤ h

1/2−ε
n and Y

n

tnk+1
≤ −h1/2−ε

n

]
≤ C exp(− 1

Cn
−ε).

We proceed analogously on the event Ω−+
k . This leads us to limit ourselves to consider

the events
Ω+−∗
k :=

[
0 < Y

n

tnk
≤ h1/2−ε

n and − h1/2−ε
n ≤ Y ntnk+1

≤ 0
]

and
Ω−+∗
k :=

[
−h1/2−ε

n ≤ Y ntnk ≤ 0 and 0 ≤ Y ntnk+1
≤ h1/2−ε

n

]
.

Notice that, on these events, equality (6.11) implies that |4]k+1X
n| ≤ Ch

1/2−ε
n . There-

fore, in view of the estimates (3.8) one has∣∣∣Ex0

[
(4]k+1X

n
)2∂2

xxu(θnk+1, β
−1(Y

n

tnk
)) IΩ+−∗

k ∪Ω−+∗
k

]∣∣∣ ≤ Ch1−2ε
n√
θnk+1

‖f ′‖1,1Px0

[
|Y ntnk | ≤ h

1/2−ε
n

]
,
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and

∣∣∣Ex0

[
(4]k+1X

n
)3∂3

x3u(θnk+1, β
−1(Y

n

tnk
)) IΩ+−∗

k ∪Ω−+∗
k

]∣∣∣ ≤ Ch
3/2(1−2ε)
n√
θnk+1

‖f ′‖3,1Px0

[
|Y ntnk | ≤ h

1/2−ε
n

]
.

Therefore, to show (6.14) it suffices to show∣∣∣Ex0

[
(Sk −4]k+1X

n
∂xu(θnk+1, β

−1(Y
n

tnk
))) IΩ+−∗

k ∪Ω−+∗
k

]∣∣∣
≤ Ch1−2ε

n√
θnk+1

‖f ′‖1,1Px0

[
|Y ntnk | ≤ h

1/2−ε
n

]
.

(6.15)

6.6 Proof of (6.15): expansion around 0

On the event Ω+−∗
k we have that Y

n

tnk+1
and Y

n

tnk
are close to 0. On this event, we

also have that Y
n

tnk+1
is negative and Y

n

tnk
is positive, so that β−1(Y

n

tnk+1
) = 1

β−
Y
n

tnk+1
and

β−1(Y
n

tnk
) = 1

β+
Y
n

tnk
. As u(t, x) is continuous at point 0, we get

Ex0

[
(Sk −4]k+1X

n
∂xu(θnk+1, β

−1(Y
n

tnk
))) IΩ+−∗

k

]
=

1

β−
Ex0

[
Y
n

tnk+1
∂xu(θnk+1, 0−) IΩ+−∗

k

]
− 1

β+
Ex0

[
Y
n

tnk
∂xu(θnk+1, 0+) IΩ+−∗

k

]
− Ex0

[
4]k+1X

n
∂xu(θnk+1, 0+) IΩ+−∗

k

]
+ Ex0

[(
(β−1(Y

n

tnk+1
))2

∫
[0,1]2

∂2
xxu(θnk+1, α1α2β

−1(Y
n

tnk+1
))α1 dα1dα2

−(β−1(Y
n

tnk
))2

∫
[0,1]2

∂2
xxu(θnk+1, α1α2β

−1(Y
n

tnk
))α1 dα1dα2

−4]k+1X
n
β−1(Y

n

tnk
)

∫ 1

0

∂2
xxu(θnk+1, α1β

−1(Y
n

tnk
)) dα1

)
IΩ+−∗

k

]
.

The absolute value of the last expectation in the right-hand side can be bounded from
above by

Ch1−2ε
n√
θnk+1

‖f ′‖1,1Px0

[
|Y ntnk | ≤ h

1/2−ε
n

]
since

on Ω+−∗
k , |β−1(Y

n

tnk+1
)|+ |β−1(Y

n

tnk
)| ≤ Ch1/2−ε

n .

In addition, in view of (6.11) the sum of the three first terms in the right-hand side
reduces to

Ex0

[
Y
n

tnk+1
IΩ+−∗

k

(
1

β−
∂xu(θnk+1, 0−)− 1

β+
∂xu(θnk+1, 0+)

)]
,

so that now are in a position to use the transmission condition (?) in equation (3.1). Re-
membering the definition (2.1) of β+ and β− we deduce that the preceding expression is
null. We may proceed similarly as above on the event Ω−+∗

k . We thus have proven (6.15),
which ends the proof of (6.14).
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6.7 Summing up

Gather the expansions (6.10) and (6.13). Use equality (6.9) and the inequalities
(6.14), (6.3). It follows:

εx0

T ≤
n−2∑
k=0

Ch1−2ε
n√
θnk
‖f ′‖1,1Px0

[
|Y ntnk+1

| ≤ h1/2−ε
n

]
+

n−2∑
k=0

Ch
3/2(1−2ε)
n√
θnk+1

‖f ′‖3,1Px0

[
|Y ntnk | ≤ h

1/2−ε
n

]
+ C‖f ′‖1,1

√
hn + C‖f ′‖3,1hn.

To deduce (3.9) it now remains to apply Theorem A.9 in Appendix to the Itô process
(Y

n

t ).

7 Convergence rate of our transformed Euler scheme (II): Proof
of Theorem 3.5

7.1 Approximation procedure for functions f in W

We have not been able to extend the estimates in Theorem 3.3 to all functions f in
W. We thus approximate f in W by functions fδ in W4. This approximation will be
studied in the L1(R)-norm for a reason explained in remark 7.1 below.

Let f be in W. For all 0 < δ < 1 define the approximating function fδ in W4 as
follows: 

fδ(x) = f(x) for x ∈ (−∞,−2δ),

fδ(x) = f(0) for x ∈ (−δ, δ],
fδ(x) = f(x) for x ∈ (2δ,+∞),

and 
f

(i)
δ (−2δ) = f (i)(−2δ), i = 1, . . . , 4,

fδ(−δ) = fδ(δ) = f(0),

f
(i)
δ (−δ) = f

(i)
δ (δ) = 0, i = 1, . . . , 4,

f
(i)
δ (2δ) = f (i)(2δ), i = 1, . . . , 4.

In addition, for all x in [δ, 2δ] set

fδ(x) := f(0) + (f(2δ)− f(0)) p0

(
x−δ
δ

)
+ δf (1)(2δ)p1

(
x−δ
δ

)
+ δ2f (2)(2δ)p2

(
x−δ
δ

)
+ δ3f (3)(2δ)p3

(
x−δ
δ

)
+ δ4f (4)(2δ)p4

(
x−δ
δ

)
,

and, for all x in [−2δ,−δ],

fδ(x) := f(0) + (f(−2δ)− f(0))p0

(
− δ+xδ

)
− δf (1)(−2δ)p1

(
− δ+xδ

)
+ δ2f (2)(−2δ)p2

(
− δ+xδ

)
− δ3f (3)(−2δ)p3

(
− δ+xδ

)
+ δ4f (4)(−2δ)p4

(
− δ+xδ

)
,

where the polynomial functions (pj)0≤j≤4 are defined on [0, 1] and are solutions of the
following interpolation problem:{

p
(i)
j (0) = 0 for i = 0, . . . , 4,

p
(i)
j (1) = εij for i = 0, . . . , 4,
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where εij denotes the Kronecker symbol. Easy calculations lead to

p0(x) :=

∫ x
0
y4(1− y)4dy∫ 1

0
y4(1− y)4dy

= 70x9 − 315x8 + 540x7 − 420x6 + 126x5,

p1(x) := x5(1− x)(35x3 − 120x2 + 140x− 56),

p2(x) := 1
2x

5(1− x)2(15x2 − 35x+ 21),

p3(x) := 1
6x

5(1− x)3(5x− 6),

p4(x) := 1
24x

5(1− x)4.

As, for all i = 1, . . . , 4,

‖p(i)
j

(
· − δ
δ

)
‖L1([δ,2δ]) + ‖p(i)

j

(
−δ + ·

δ

)
‖L1([−2δ,−δ]) ≤ Cδ1−i,

one has 

‖f − fδ‖1 =
∫ 2δ

−2δ
|f(y)− f(0) + f(0)− fδ(y)|dy ≤ Cδ2,

‖f ′ − f ′δ‖1 ≤ Cδ,
‖f ′′ − f ′′δ ‖1 ≤ C,
‖f (3) − f (3)

δ ‖1 ≤
C
δ ,

‖f (4) − f (4)
δ ‖1 ≤

C
δ2 ,

(7.1)

where the constant C here depends on f .

Remark 7.1. Our final error estimates highly depend on the fact that the family (fδ)

approximates f at a good rate in L1(R) norm. This explains that ‖f‖1 is involved in
these error estimates. When the error estimates are expressed in terms of ‖f‖∞ or
‖f‖L2(R) the convergence rates are lower than those obtained here: see the Section 8
below for additional comments.

7.2 Error analysis

The function f now belonging toW, we consider the function fδ as in Subsection 7.1.
We have

εx0

T =
∣∣∣Ex0f(XT )− Ex0f(X

n

T )
∣∣∣

≤ |Ex0f(XT )− Ex0fδ(XT )|+
∣∣∣Ex0fδ(XT )− Ex0fδ(X

n

T )
∣∣∣

+
∣∣∣Ex0fδ(X

n

T )− Ex0f(X
n

T )
∣∣∣

≤ I1(δ) + I2(δ) + I3(δ).

Estimate for I1(δ). In view of estimate (3.4) we have

I1(δ) ≤
∫
R

|f − fδ|(y)qX(x0, T, y)dy

≤ Cδ
∫ 2δ

−2δ

qX(x0, T, y)dy

≤ Cδ2.
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Estimate for I2(δ). Using Theorem 3.4 and inequality (7.1) we have

I2(δ) ≤ C‖f ′δ‖1,1h1/2−ε
n + C‖f ′δ‖1,1

√
hn + C‖f ′δ‖3,1h1−ε

n

≤ Ch1/2−ε
n + C

h1−ε
n

δ2
.

Notice that the constant C here depends on f because of the smoothing procedure.

Estimate for I3(δ). Let χ be a C∞(R) function with support in [−2, 2] such that χ(y) ≥ 1

for all |y| ≤ 1 and χ(i)(0) = 0 for all i in {1, . . . , 4}. Observe that χ belongs to W2. The
function χδ(y) := χ(y/2δ) also is a function in W2 with support in [−4δ, 4δ]. For all
|y| ≤ 2δ, one has χδ(y) ≥ 1 and thus χδ ≥ I[−δ,δ]. As, in addition,

‖χ′δ‖1,1 ≤
C

δ
and ‖χ′δ‖3,1 ≤

C

δ3
,

Theorem 3.4 and inequality (3.4) lead to

Px0 [|X̄n
T | ≤ 2δ] ≤ Ex0χδ(X̄

n
T )

≤ |Ex0χδ
(
X̄n
T

)
− Ex0χδ(XT )|+ Ex0χδ(XT )

≤ Ch1/2−ε
n ‖χ′δ‖1,1 + C

√
hn‖χ′δ‖1,1 + Ch1−ε

n ‖χ′δ‖3,1 +

∫ 4δ

−4δ

χδ(y)qX(x0, T, y)dy

≤ Ch
1/2−ε
n

δ
+ C

h1−ε
n

δ3
+

C√
T
‖χ‖∞δ.

Thus

I3(δ) ≤ C δ Px0 [|X̄n
T | ≤ 2δ] ≤ Ch1/2−ε

n + C
h1−ε
n

δ2
+ Cδ2.

Global estimate. Gathering the preceding estimates we obtain

εx0

T ≤ Ch
1/2−ε
n + C

h1−ε
n

δ2
+ Cδ2.

Choose δ of the type hαn. The optimal value for α is α = 1
4 . The desired result follows.

8 Extensions and conclusion

Some extensions of our results can readily be obtained.
In the case where a(x) has a finite number of discontinuities, one can split the real

line into intervals whose boundary points are the discontinuity points of a(x) and intro-
duce transmission conditions at each of these points. One can also construct an explicit
transformation β removing the local time of (Xt) at these discontinuity points. Thus one
can readily extend our transformed Euler Scheme. All the results in Section 3 still hold
true provided straightforward modifications in the calculations made in Section 6.

Now consider the equation
∂tv(t, x)− Lv(t, x)− b(x)

∂

∂x
v(t, x) = 0 for all (t, x) ∈ (0, T ]×R,

v(0, x) = f(x) for all x ∈ R,
Compatibility transmission conditions at the discontinuity points of a(x).

(8.1)

If the bounded function b is smooth enough (e.g. b is in C6
b (R)), one can represent the

solution of (8.1) by means of a SDE similar to (1.2) except that the drift term involves
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b(Xt), a new modified Euler scheme can easily be constructed, and all our results re-
main true.

Another easy extension concerns the norm of f used in the convergence rate esti-
mates.

Under the hypothesis of Theorem 3.4 (that is, the initial function f belongs to W4)
one can prove that there exists a positive number C (depending on f ) such that

∣∣∣Ex0f(XT )− Ex0f(X
n

T )
∣∣∣

≤ C
(
h1/2−ε
n ‖f ′‖1,∞ + h1/2−ε

n ‖f ′‖1,∞ + h1−ε
n ‖f ′‖3,∞

)
+ C

√
hn‖f ′‖∞.

(8.2)

When one wants to use directly (8.2) to study the case where f is not inW4 (f belongs
to W, say), it appears that the approximation procedure in Section 7.1 leads to bounds
which explode more rapidly than ours in terms of the smoothing parameter δ:

εx0

T ≤ C
(
δ + δPx0

[
|Xn

T | ≤ 2δ
]

+ h1/2−ε
n +

h1−ε
n

δ3

)
,

where C now depends on the L∞(R) norms ‖f (i)‖∞ (0 ≤ i ≤ 4) of f . Choose δ of the
type hαn. For α = 1/4 the right-hand side becomes

εx0

T ≤ Ch
1
8 +

1/2−ε
4

n .

Of course, one also gets error estimates in terms of L∞(R− I) norms and L1(I) norms
of f , where I is a suitably chosen interval around 0.

Other issues to address in the future are: first, to extend to the multi-dimensional
case our probabilistic interpretation of parabolic diffraction problems in terms of Markov
processes which can easily be simulated, and to prove that the transition densities of
these processes satisfy Aronson’s estimates; second, to construct a Euler type scheme
whose simulation has a weak complexity and to extend our error analysis to a multidi-
mensional setting, that is, when the divergence form operator writes

L :=
1

2
div [a(x)∇] ,

and the matrix valued function a(x) is discontinuous along hypersurfaces. In the case of
discontinuity hypersurfaces with smooth boundary, a suitable parametrization (partition
of unity) allows one to locally and diffeomorphicly map the boundary into a hyperplane,
and thus to reduce the problem to an one-dimensional framework. This method was
followed by Bossy et al. [5] to construct a stochastic representation of the Poisson–
Boltzmann equation with piecewise constant function a(x) and prove the convergence
of the related Walk on Spheres algorithm. Mutis mutandis such geometrical transfor-
mations should make it possible to extend our numerical method and convergence rate
analysis techniques. However the technicalities are heavy and will be addressed in a
future work.

A Appendix

A.1 First passage times of elliptic diffusions

In this section we gather properties of first passage time densities of one dimen-
sional uniformly elliptic diffusion processes. These properties were applied above to
the density rx0 (s) of the first passage time before time T at point 0 of the process (Xt)

(see Subsection 4).
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Let γ and µ be smooth real valued functions such that, for all real number Z0, there
exists a unique real valued solution (Zt)t≥0 to the SDE

Zt = Z0 +

∫ t

0

µ(Zs)ds+

∫ t

0

γ(Zs)dBs. (A.1)

Suppose also that γ is bounded from below by a strictly positive constant.
Let τ0 be the first passage time of the process Z at point 0:

τ0(Z) := inf{s > 0 : Zs = 0}.

Our first objective is to explicit the density of τ0(Z). To this end we introduce the
Lamperti transform S of the process Z, that is,

S(x) :=

∫ x

0

1

γ(z)
dz. (A.2)

Set

Q(z) :=
µ ◦ S−1(z)

γ ◦ S−1(z)
− 1

2
γ′ ◦ S−1(z).

Itô’s formula shows that

S(Zt) = S(Z0) +

∫ t

0

Q(S(Zs))ds+Bt.

We need some more material and notation. For x < 0 let (R
−S(x)
t ) be a Bessel(3)

process

R
−S(x)
t :=

√
(−S(x) +W

(1)
t )2 + (W

(2)
t )2 + (W

(3)
t )2, (A.3)

where (W
(1)
t ,W

(2)
t ,W

(3)
t ) is a three dimensional Brownian motion. Set

g(z) := Q′(z) +Q2(z),

Ψ(s, x) := E

[
exp

{
−1

2

∫ s

0

g( θ−ss R−xsθ
s−θ

)dθ

}]
.

Finally, let (βθ(s, T, ξ), s ≤ θ ≤ T ) be a standard Brownian bridge connecting the time-
space points (s, 0) and (T, ξ), that is,

βθ(s, T, ξ) := ξ
θ − s
T − s

+Bθ−s −
θ − s
T − s

BT−s.

Set

ρ0(s, ξ) := E

[
exp

(
− 1

2

∫ T

s

g(βθ(s, T, ξ))dθ

)]
,

H(z) :=

∫ x

0

Q(y)dy,

p(s, z) :=
1√
2πs

exp
(
− z

2

2s

)
,

ρ(T − s, x) := exp(−H(x))

∫ +∞

−∞
exp(H(ξ))ρ0(s, ξ)p(T − s, ξ)dξ,

κ(s, z) :=
z√

2πs3
exp

(
− z

2

2s

)
.
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Theorem A.1 (Pauwels [20]). Suppose that there exists k ∈ N such that µ is of class
Ck+1
b (R) and γ is of class Ck+2

b (R). Suppose also

∃λ > 0, ∀x ∈ R, γ(x) ≥ λ.

Let T > 0 and x < 0. Under Px the first passage time of (Zt) at point 0 before time T ,
τ0(Z) ∧ T , has a smooth density rx0 (s) which is of class Ck((0, T ]× (−∞, 0)) and satisfies

rx0 (s) = Ψ(s, S(x))ρ(T − s, S(x))κ(s, S(x)). (A.4)

Corollary A.2. For x > 0 consider the diffusion

−S(Zt) = −S(x)−
∫ t

0

Q(S(Zs))ds+Bt.

The formula analogous to (A.4) is obtained by everywhere changing S(x) into −S(x)

and Q(z) into −Q(−z).

Below we need the following (crude) estimates on the function Ψ and its derivatives:

Proposition A.3. Under the hypotheses of Theorem A.1 with k ≥ 2, there exists C > 0

such that, for all 0 < s ≤ T and all x < 0,

|Ψ(s, x)| ≤ C,

|∂xΨ(s, x)|+
∣∣∂2
xxΨ(s, x)

∣∣ ≤ C,
|∂sΨ(s, x)| ≤ C(1 + |x|),∣∣∂2
sxΨ(s, x)

∣∣ ≤ C(1 + |x|).

Proof. For the sake of completeness we sketch here the easy proof.
The first inequality results from the boundedness of g.
The second inequality results from the boundedness of g and g′ and the following

estimates derived from (A.3):

|∂xRxt | =
|x+W

(1)
t |√

(x+W
(1)
t )2 + (W

(2)
t )2 + (W

(3)
t )2

≤ 1,

and

|∂2
xxR

x
t | =

(W
(2)
t )2 + (W

(3)
t )2

((x+W
(1)
t )2 + (W

(2)
t )2 + (W

(3)
t )2)3/2

≤ 1√
(W

(2)
t )2 + (W

(3)
t )2

,

from which

Ex|∂2
xxR

x
t | ≤

C√
t
.

To obtain the third inequality we use the change of variable γ = sθ
s−θ to get

Ψ(s, x) = E

[
exp

{
−1

2

∫ ∞
0

g
(
− s
s+γR

−x
γ

) s2

(s+ γ)2
dγ

}]
.

It then remains to differentiate w.r.t. s and to observe that ER−xγ ≤ C(|x|+√γ).
Similar arguments lead to the last inequality. The shortest way seems to differentiate

w.r.t. x the expression just obtained ∂sΨ(s, x), keeping in mind that |∂xRxt | ≤ 1.

Concerning the function ρ, we have the following result:
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Proposition A.4. Under the hypotheses of Theorem A.1 with k ≥ 2, there exists C > 0

such that, for all 0 ≤ s ≤ T and all x in R,

|ρ(T − s, x)| ≤ C exp(C|x|),

|∂xρ(T − s, x)|+ |∂2
xxρ(T − s, x)| ≤ C exp(C|x|),

|∂sρ(T − s, x)|+ |∂2
sxρ(T − s, x)| ≤ C exp(C|x|).

Proof. The two first inequalities result from the boundedness of the function Q and its
first derivative. Let us now turn to the proof of the last inequality. We have

|∂sρ(T − s, x)| =
∣∣∣∣∫ +∞

−∞
exp (H(ξ)−H(x)) ∂sρ0(s, ξ)p(T − s, ξ)dξ

+

∫ +∞

−∞
exp (H(ξ)−H(x)) ρ0(s, ξ)∂tp(T − s, ξ)dξ

∣∣∣∣
≤ C exp(−H(x))

∫ +∞

−∞
exp(H(ξ))p(T − s, ξ)dξ

+
1

2
exp(−H(x))

∣∣∣∣∫ +∞

−∞
exp(H(ξ))ρ0(s, ξ)∂2

ξξp(T − s, ξ)dξ
∣∣∣∣ .

Integrating by parts two times the last integral w.r.t. ξ leads to

|∂sρ(T − s, x)| ≤ C exp(C|x|).

The same arguments lead to

|∂2
sxρ(T − s, x)| ≤ C exp(C|x|).

We are now in a position to prove the Lemmas A.5 and A.6 that we used in Sec-
tion 5.3.

Lemma A.5. Under the hypotheses of Theorem A.1 with k ≥ 2, for all 0 ≤ α < 1 there
exists C > 0 such that

∀0 ≤ t ≤ T, ∀x 6= 0,

∫ t

0

1

sα
rx0 (t− s, x)ds ≤ C

tα
. (A.5)

Proof. In view of the definition of the Lamperti transform S and the estimates for Ψ and
ρ in Propositions A.3 and A.4, it suffices to prove

∀c > 0, ∃C > 0, J :=

∫ t

0

exp(c x)

sα
κ(t− s, x)ds ≤ C

tα
. (A.6)

From the definition of κ, we see that

exp(c x)κ(t− s, x) ≤ exp(c x) exp
(
− x2

4(t−s)

) x√
2π(t− s)3

exp
(
− x2

4(t−s)

)
≤ C exp(c x) exp

(
− x2

4T

) x√
2π(t− s)3

exp
(
− x2

4(t−s)

)
≤ C x√

2π(t− s)3
exp

(
− x2

4(t−s)

)
.
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Consequently, in order to prove (A.6), it suffices to obtain

I(t) :=

∫ t

0

1

sα
x√

2π(t− s)3
exp

(
− x2

4(t−s)

)
ds ≤ C

tα
.

Notice that

I( t2 ) ≤ C
∫ t/2

0

1

sα
1

t− s
ds ≤ C

tα
.

In addition, as κ(s, x) is the density of the first passage time of x by a Brownian motion
starting at 0 at time 0,

I(t)− I( t2 ) ≤ C

tα

∫ t

t/2

x√
(t− s)3

exp(− x2

4(t−s) )ds =
C

tα

∫ t/2

0

x√
s3

exp(−x
2

4s )ds

≤ C

tα
P0(inf{s > 0;Ws = x√

2
} ≤ t).

We thus have proven (A.6).

Lemma A.6. There exists C̃ > 0 such that, for all 0 ≤ α < 1, and all function H bounded
on [0, T ], continuously differentiable on (0, T ], satisfying H(0) = 0 and

|H ′(s)| ≤ CH
sα

for all s ∈ (0, T ],

it holds

∀t ∈ (0, T ], ∀x 6= 0,

∣∣∣∣∂x ∫ t

0

rx0 (t− s)H(s)ds

∣∣∣∣ ≤ CH C̃,

and

∀t ∈ (0, T ], ∀x 6= 0,

∣∣∣∣∂2
xx

∫ t

0

rx0 (t− s)H(s)ds

∣∣∣∣ ≤ CH C̃

(
1 +

1

tα

)
.

Proof. W.l.g. we again suppose x < 0.
We use Theorem A.1 to represent the density rx0 and observe that

∂xκ(t− s, x) = 2∂s

[
1√

2π(t− s)
exp

(
− x2

2(t− s)

)]
= 2∂sp(t− s, x).

Therefore, in view of the definition of Ψ and ρ in Theorem A.1 we have 2

∂x

∫ t

0

r
S−1(x)
0 (t− s)H(s)ds = ∂x

[∫ t

0

Ψ(t− s, x)ρ(T − t+ s, x)κ(t− s, x)H(s)ds

]
=

∫ t

0

∂x[Ψ(t− s, x)ρ(T − t+ s, x)]κ(t− s, x)H(s)ds

+ 2

∫ t

0

Ψ(t− s, x)ρ(T − t+ s, x)H(s)∂sp(t− s, x)ds

=

∫ t

0

∂x[Ψ(t− s, x)ρ(T − t+ s, x)]κ(t− s, x)H(s)ds

− 2√
2πt

Ψ(t, x)ρ(T − t, x)H(0) exp

(
−x

2

2t

)
− 2

∫ t

0

∂s[Ψ(t− s, x)ρ(T − t+ s, x)H(s)]p(t− s, x)ds

=: A1 +A2 +A3.

2The inequality below for |∂x[Ψ(t− s, x)ρ(T − t+ s, x)]| justifies our derivations under the integral sign.
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As H(0) = 0 we have A2 = 0.
Now, in view of the estimates for Ψ and ρ in Propositions A.3 and A.4, we have, for

all t in (0, T ] and s in (0, t),

|∂x[Ψ(t− s, x)ρ(T − t+ s, x)]| ≤ C exp(C|x|).

We deduce from inequality (A.6) that, for some possibly new constant C̃,

|A1| ≤ CH C̃.

Similarly,

|∂s [Ψ(t− s, x)ρ(T − t+ s, x)H(s)]| ≤ CH exp(C|x|)
(
C +

1

sα

)
.

As for some positive constants C̃ and ε,

exp(C|x| − x2

4(t−s) ) ≤ C̃ exp(− εx2

4(t−s) ) for all x ∈ R and 0 ≤ s < t ≤ T,

we deduce that for some possibly new constant C̃,

|A3| ≤ CH C

∫ t

0

exp(C|x|)√
2π(t− s)

(
1 +

1

sα

)
exp

(
− x2

2(t− s)

)
ds

≤ CH C̃.

We now turn to the bound for
∣∣∣∂2
xx

∫ t
0
rx0 (t− s)H(s)ds

∣∣∣. From the above we have

∂2
xx

∫ t

0

r
S−1(x)
0 (t− s)H(s)ds =

∫ t

0

∂2
xx[Ψ(t− s, x)ρ(T − t+ s, x)]κ(t− s, x)H(s)ds

− 2

∫ t

0

∂x∂s[Ψ(t− s, x)ρ(T − t+ s, x)H(s)]p(t− s, x)ds

+ 2

∫ t

0

∂s[Ψ(t− s, x)ρ(T − t+ s, x)H(s)]κ(t− s, x)ds.

It then remains to proceed as we did it to bound A3 from above, noticing that (A.6)
implies that

∀C > 0, ∃C̃, ∀0 < t ≤ T, ∀x 6= 0,

∫ t

0

exp(C|x|)|H ′(s)|κ(t− s, x)ds ≤ CHC̃

tα
.

A.2 Estimate for the number of visits of small balls by the Euler scheme

In this subsection we recall a result from Bernardin et al. [4] which was essential to
estimate the remaining terms in the above error expansion.

Let (Ω,F , (Ft),P) be a filtered probability space satisfying the usual conditions. Let
(Wt) be a m-dimensional standard Brownian motion on this space. Given two progres-
sively measurable processes (bt) and (σt) taking values respectively in Rd and in the
space of real d×m matrices, Xt is the Rd valued Itô process

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs. (A.7)

Suppose:
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Hypothesis A.7. There exists a positive number K ≥ 1 such that, P-a.s.,

∀t ≥ 0, ‖bt‖ ≤ K, (A.8)

and

∀0 ≤ s ≤ t, 1

K2

∫ t

s

ψ(s)ds ≤
∫ t

s

ψ(s)‖σsσ∗s‖ds ≤ K2

∫ t

s

ψ(s)ds (A.9)

for all positive locally integrable map ψ : R+ → R+.

Notice that (A.9) is satisfied when (σt) is a bounded continuous process.
Consider functions f satisfying the following hypotheses:

Hypothesis A.8.

1. f is positive and increasing,

2. f belongs to C1([0, T );R+),

3. fα is integrable on [0, T ) for all 1 ≤ α < 2,

4. There exists 1 < ν < 1 + η, where η := 1
4K4 , such that∫ T

0

f2ν−1(s)f ′(s)
(T − s)1+η

sη
ds < +∞. (A.10)

The function t→ 1√
T−t satisfies the conditions A.8: one can choose ν = 1 + 1

8K4 .

Theorem A.9. Let (Xt) be as in (A.7). Suppose that the hypotheses A.7 and A.8 are
satisfied. Then there exists C > 0, depending only on ν, K and T , such that, for all
ξ ∈ Rd and 0 < ε < 1/2, there exists h0 > 0 satisfying

∀h ≤ h0, h

Nh∑
k=0

f(kh)P(‖Xph − ξ‖ ≤ h1/2−ε) ≤ Ch1/2−ε, (A.11)

where Nh := bT/hc − 1.

Remark A.10. In [4] the statement of the preceding theorem claims that h0 depends
on ε. In fact the proof shows that one only needs that

exp(− 1

hε
) ≤ Ch3/2−ε.
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