
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Vol. 15 (2010), Paper no. 60, pages 1863–1892.

Journal URL
http://www.math.washington.edu/~ejpecp/

Multivariate records based on dominance

Hsien-Kuei Hwang and Tsung-Hsi Tsai
Institute of Statistical Science

Academia Sinica
Taipei 115

Taiwan

Abstract

We consider three types of multivariate records in this paper and derive the mean and the vari-
ance of their numbers for independent and uniform random samples from two prototype regions:
hypercubes [0, 1]d and d-dimensional simplex. Central limit theorems with convergence rates
are established when the variance tends to infinity. Effective numerical procedures are also pro-
vided for computing the variance constants to high degree of precision .
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1 Introduction

While the one-dimensional records (or record-breakings, left-to-right maxima, outstanding ele-
ments, etc.) of a given sample have been the subject of research and development for more than
six decades, considerably less is known for multidimensional records. One simple reason being that
there is no total ordering for multivariate data, implying no unique way of defining records in higher
dimensions. We study in this paper the stochastic properties of three types of records based on the
dominance relation under two representative prototype models. In particular, central limit theorems
with convergence rates are proved for the number of multivariate records when the variance tends
to infinity, the major difficulty being the asymptotics of the variance.

Dominance and maxima. A point p ∈ Rd is said to dominate another point q ∈ Rd if p−q has only
positive coordinates, where the dimensionality d ≥ 1. Write q ≺ p or p � q. The nondominated
points in the set {p1, . . . ,pn} are called maxima. Maxima represent one of the most natural and
widely used partial orders for multidimensional samples when d ≥ 2, and have been thoroughly
investigated in the literature under many different guises and names (such as admissibility, Pareto
optimality, elites, efficiency, skylines, . . . ); see [1, 5] and the references therein.

Pareto records. A point pk is defined to be a Pareto record or a nondominated record of the se-
quence p1, . . . ,pn if

pk ⊀ pi for all 1≤ i < k.

Such a record is referred to as a weak record in [17], but we found this term less informative.

In addition to being one of the natural extensions of the classical one-dimensional records, the Pareto
records of a sequence of points are also closely connected to maxima, the simplest connection being
the following bijection. If we consider the indices of the points as an additional coordinate, then the
Pareto records are exactly the maxima in the extended space (the original one and the index-set)
by reversing the order of the indices. Conversely, if we sort a set of points according to a fixed
coordinate and use the ranks as the indices, then the maxima are nothing but the Pareto records
in the induced space (with one dimension less); see [17]. See also the recent paper [5] for the
algorithmic aspects of such connections.

More precisely, assume that p1, . . . ,pn are independently and uniformly distributed (abbreviated as
iud) in a specified region S and q1, . . . ,qn are iud in the region S × [0, 1]. Then the distribution of
the number of Pareto records of the sequence p1, . . . ,pn is equal to the distribution of the number
of maxima of the set {q1, . . . ,qn}. This connection will be used later in our analysis.

On the other hand, we also have, for any given regions, the following relation between the expected
number E[Xn] of Pareto records and the expected number E[Mn] of maxima of the same sample of
points, say p1, . . . ,pn,

E[Xn] =
∑

1≤k≤n

E[Mk]
k

;

see [5].
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Dominating records. Although the Pareto records are closely connected to maxima, their proba-
bilistic properties have been less well studied in the literature. In contrast, the following definition
of records has received more attention.

A point pk is defined to be a dominating record of the sequence p1, . . . ,pn if

pi ≺ pk for all 1≤ i < k.

This is referred to as the strong record in [17] and the multiple maxima in [21].

Let the number of dominating records falling in A ⊂ S be denoted by ZA. Goldie and Resnick [18]
showed that

E[ZA] =

∫

A

�

1−µ(Dx)
�−1 dµ(x),

where Dx = {y : y≺ x}. They also calculated all the moments of ZA and derived several other results
such as the probability of the event {ZA = 0} and the covariance Cov

�

ZA, ZB
�

.

In the special case when the pi ’s are iid with a common multivariate normal (non-degenerate)
distribution, Gnedin [16] proved that

λn := P{pn is a dominating record} � n−α(log n)(α−β)/2.

for some explicitly computable α > 1 and β ∈ {2,3, . . . , d}. See also [20] for finer asymptotic
estimates.

Chain records. Yet another type of record of multi-dimensional samples introduced in [17] is the
chain record

p1 ≺ pi1 ≺ pi2 ≺ · · · ≺ pik ,

where 1 < i1 < i2 < · · · < ik and there are no p j � pia with ia < j < ia+1 or ia < j ≤ n. See Figure 1
for an illustration of the three different types of records.

p1

p2

p3

p4

p5 p6

p7

p8

p1

p2

p3

p4

p5 p6

p7

p8

p1

p2

p3

p4

p5 p6

p7

p8

Figure 1: In this simple example, the dominating records are p1 and p7 (left), the chain records are p1,
p3 and p7 (middle), and the Pareto records are p1, p2, p3, p6 and p7 (right), respectively.
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Some known results and comparisons. If we drop the restriction of order, then the largest subset
of indices such that

pi1 ≺ pi2 ≺ · · · ≺ pik (1)

is equal to the number of maximal layers (maxima being regarded as the first layer, the maxima of
the remaining points being the second, and so on). Assuming that {p1, . . . ,pn} are iud in the hyper-
cube [0,1]d , Gnedin [17] proved that the number of chain records Yn is asymptotically Gaussian
with mean and variance asymptotic to

E[Yn]∼ d−1 log n, V[Yn]∼ d−2 log n;

see Theorem 4 for an improvement. The author also derived exact and asymptotic formulas for the
probability of a chain record P(Yn > Yn−1) and discussed some point-process scaling limits.

The behavior of the record sequence (1) in R2 are studied in Goldie and Resnick [19], Deuschel and
Zeitouni [10]. The position of the points converges in probability to a (or a set of) deterministic
curve(s). Deuschel and Zeitouni [10] also proved a weak law of large number for the longest
increasing subsequence, extending a result by Vershik and Kerov [24] to a non-uniform setting;
see also the breakthrough paper [3]. A completely different type of multivariate records based on
convex hulls was discussed in [23].

Chain records can in some sense be regarded as uni-directional Pareto records, and thus lacks the
multi-directional feature of Pareto records. The asymptotic analysis of the moments is in general
simpler than that for the Pareto records. On the other hand, it is also this aspect that the chain
records reflect better the properties exhibited by the one-dimensional records. Interestingly, the
chain records correspond to the “left-arm" (starting from the root by always choosing the subtree
corresponding to the first quadrant) of quadtrees; see [6, 11, 13] and the references therein.

DOMINANCE

MAXIMA RECORDS
Pareto
records

chain
records

dominating
records

. . .
maximal

layers

depth

Figure 2: A diagram illustrating the diverse notions defined on dominance; in particular, the Pareto
records can be regarded as a good bridge between maxima and multivariate records.

A summary of results. We consider in the paper the distributional aspect of the above three
types of records in two typical cases when the pi ’s are iud in the hypercube [0,1]d and in the d-
dimensional simplex, respectively. Briefly, hypercubes correspond to situations when the coordinates
are independent, while the d-dimensional simplex to that when the coordinates are to some extent
negatively correlated. The hypercube case has already been studied in [17]; we will discuss this
briefly by a very different approach. In addition to the asymptotic normality for the number of
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Pareto records in the d-dimensional simplex, our main results are summarized in the following
table, where we list the asymptotics of the mean (first entry) and the variance (second entry) in
each case.

XXXXXXXXXXXRecords
Models

Hypercube [0, 1]d d-dimensional simplex

Dominating records H(d)n , H(d)n −H(2d)
n (15), (16)

Chain records
1

d
log n,

1

d2 log n [17]
1

dHd
log n,

H(2)d

dH3
d

log n

Pareto records
1

d!

�

log n
�d ,
�

1

d!
+κd+1

�

�

log n
�d [17] md n(d−1)/d , vd n(d−1)/d

Maxima = Pareto records in [0, 1]d−1 [17] m̃d n(d−1)/d , ṽd n(d−1)/d

Here H(a)b =
∑b

i=1 i−a, κd is a constant (see [1]), md := d
d−1
Γ
�

1
d

�

, vd is defined in (3), m̃d := Γ( 1
d
),

ṽd is given in (4), and both (15) and (16) are bounded in n and in d; see Figure 3.

From this table, we see clearly that the three types of records behave very differently, although they
coincide when d = 1. Roughly, the number of dominating records is bounded (indeed less than two
on average) in both models, while the chain records have a typical logarithmic quantity; and it is
the Pareto records that reflect better the variations of the underlying models.

d
3 4 5 6 72

0.1

0.4

0.7

1.0

1.3

1.6

E # of dominating records (hypercube)

E # of dominating records (d-dim simplex)

V # of dominating records (hypercube)

V # of dominating records (d-dim simplex)

Figure 3: The mean and the variance of the number of dominating records in low dimensional random
samples. In each model, the expected number approaches 1 very fast as d increases with the correspond-
ing variance tending to zero.

Organization of the paper. We derive asymptotic approximations to the mean and the variance
for the number of Pareto records in the next section. Since the expression for the leading coefficient
of the asymptotic variance is very messy, we then address in Section 3 the numerical aspect of this
constant. The tools we used turn out to be also useful for several other constants of similar nature,
which we briefly discuss. We then discuss the chain records and the dominating records.
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2 Asymptotics of the number of Pareto records

Assume d ≥ 2 throughout this paper. Let

Sd := {x : x i ≥ 0 and 0≤ ‖x‖ ≤ 1}

denote the d-dimensional simplex, where ‖x‖ := x1 + · · ·+ xd . Assume that p1, . . . ,pn are iud in
Sd . Let Xn denote the number of Pareto records of {p1, . . . ,pn}. We derive in this section asymptotic
approximations to the mean and the variance and a Berry-Esseen bound for Xn. The same method
of proof also applies to the number of maxima, denoted by Mn, which we will briefly discuss.

Let q1, . . . ,qn be iud in Sd × [0,1]. As discussed in Introduction, the distribution of Xn is equivalent
to the distribution of the number of maxima of {q1, . . . ,qn}.
For notational convenience, denote by an ' bn if an = bn+O

�

n−1/d
�

.

Theorem 1. The mean and the variance of the number of Pareto maxima Xn in random samples from
the d-dimensional simplex satisfy

E[Xn]' n1−1/d
∑

0≤ j≤d−2

�

d − 1

j

�

(−1) jΓ
�

j+ 1

d

�

d

d − 1− j
n− j/d

+ (−1)d−1 �log n+ γ
�

,

(2)

V[Xn] =
�

vd + o(1)
�

n1−1/d ,

where

vd :=
d

d − 1
Γ
�

1

d

�

+ 2d2(d − 1)
∑

1≤`<d

�

d

`

��

d − 2

`− 1

�

×
∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

∫ ∞

0

yd−`−1w`−1e−u(x+y)d−v(x+w)d
�

evxd
− 1
�

dw dy dx du dv

+ 2d2

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

wd−1e−uxd−v(x+w)d
�

evxd
− 1
�

dw dx du dv

− 2d2

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

yd−1e−u(x+y)d−vxd
dy dx du dv.

(3)

Proof. The method of proof is similar to that given in [1], but the technicalities are more involved.
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We start with the expected value of Xn. Let Gi = 1{qi is a maximum}.

E[Xn] = nE[G1]

= d!n

∫ 1

0

∫

Sd

�

1− z(1−‖x‖)d
�n−1

dxdz

' d!n

∫ 1

0

∫

Sd

e−nz(1−‖x‖)d dxdz

= dn

∫ 1

0

∫ 1

0

e−nz(1−y)d yd−1 dy dz (y 7→ ‖x‖)

= dn
∑

0≤ j<d

�

d − 1

j

�

(−1) j
∫ 1

0

∫ 1

0

e−nz yd
y j dy dz

=
∑

0≤ j<d

n(d−1− j)/d
�

d − 1

j

�

(−1) j
∫ 1

0

∫ nz

0

e−x x (1+ j−d)/dz−( j+1)/d dx dz

'
∑

0≤ j≤d−2

�

d − 1

j

�

(−1) jΓ
�

j+ 1

d

�

d

d − 1− j
n(d−1− j)/d

+ (−1)d−1 �log n+ γ
�

.

This proves (2).

For the variance, we start from the second moment, which is given by

E
�

X 2
n

�

= E[Xn] + n(n− 1)E
�

G1G2
�

.

Let A be the region in Rd × [0, 1] such that q1 and q2 are incomparable (neither dominating the
other). Write q1 = (x, u), q2 = (y, v), ‖x‖∗ := (‖x‖ ∧ 1) and

x∨ y :=
�

x1 ∨ y1, · · · , xd ∨ yd
�

.

Then by standard majorization techniques (see [1])

n(n− 1)E
�

G1G2
�

= n(n− 1)d!2

∫

A

�

1− u(1−‖x‖)d − v(1−




y




)d + (u∧ v)(1−




x∨ y






∗)
d
�n−2

dxdydu dv

' n2d!2

∫

A

e−n[u(1−‖x‖)d+v(1−‖y‖)d] dxdydu dv

+ n2d!2

∫

A

e−n[u(1−‖x‖)d+v(1−‖y‖)d]
�

en(u∧v)(1−‖x∨y‖∗)d − 1
�

dxdydu dv

' E
�

X 2
n

�

−Jn,0+
∑

1≤`<d

�

d

`

�

Jn,`+ Jn,d ,
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where

Jn,0 = 2n2d!2

∫ 1

0

∫ 1

v

∫

x≺y
x,y∈Sd

e−n[u(1−‖x‖)d+v(1−‖y‖)d] dxdydu dv,

Jn,` = n2d!2

∫ 1

0

∫ 1

0

∫

x i>yi ,1≤i≤`
x i<yi ,`<i≤d

x,y∈Sd

e−n[u(1−‖x‖)d+v(1−‖ y‖)d]
�

en(u∧v)(1−‖x∨y‖∗)d − 1
�

dxdydu dv,

Jn,d = 2n2d!2

∫ 1

0

∫ 1

v

∫

y≺x
x,y∈Sd

e−n[u(1−‖x‖)d+v(1−‖y‖)d]
�

en(u∧v)(1−‖x∨y‖∗)d − 1
�

dxdydu dz,

for 1≤ `≤ d − 1.

Consider first Jn,`, 1≤ ` < d. We proceed by four sets of changes of variables to simplify the integral
starting from

(

x i 7→ ξi , yi 7→ ξi(1−ηi), for 1≤ i ≤ `;
x i 7→ ξi(1−ηi), yi 7→ ξi , for ` < i ≤ d,

which leads to

Jn,` = (nd!)2
∫ 1

0

∫ 1

0

∫

Sd

∫

[0,1]d
e−n

h

u
�

1−
∑

ξi+
∑′′

ξiηi

�d
+v
�

1−
∑

ξi+
∑′
ξiηi

�d
i

×
�

en(u∧v)(1−
∑

ξi)d − 1
�
�
∏

ξi

�

dξdηdu dv,

where
∑

ξi :=
∑d

i=1 ξi ,
∏

ξi :=
∏d

i=1 ξi ,
∑′ x i :=

∑`
i=1 x i and

∑′′ x i :=
∑d

i=`+1 x i .

Next, by the change of variables

ξi 7→
1

d
− ξin

−1/d , ηi 7→ dηin
−1/d ,

we have

Jn,` = d!2

∫ 1

0

∫ 1

0

∫

Sd (n)

∫

[0,n1/d/d]d
e−
h

u
�
∑

ξi+
∑′′

ηi(1−dξi n
−1/d)

�d
+v
�
∑

ξi+
∑′
ηi(1−dξi n

−1/d)
�d
i

×
�

e(u∧v)(
∑

ξi)d − 1
�

∏
�

1− dξin
−1/d

�

dξdηdu dv,

where Sd(n) = {ξ : ξi ≤ n1/d/d and




ξ




> 0}.
We then perform the change of variables

ηi 7→ ηi

�

1− dξin
−1/d

�

,
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and obtain

Jn,` = (d!)2
∫ 1

0

∫ 1

0

∫

Sd (n)

∫

[0,n1/d/d]d
e−
h

u
�
∑

ξi+
∑′′

ηi

�d
+v
�
∑

ξi+
∑′
ηi

�d
i

×
�

e(u∧v)(
∑

ξi)d − 1
�

dξdηdu dv.

Finally, we “linearize” the integrals by the change of variables

x 7→
∑

ξi , y 7→
∑′′

ηi , w 7→
∑′

ηi ,

and get

Jn,` '
d · d!

(d − `− 1)!(`− 1)!
n1−1/d

∫ 1

0

∫ 1

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

yd−`−1w`−1e−u(x+y)d−v(x+w)d

×
�

e(u∧v)xd
− 1
�

dw dy dx du dv,

since the change of variables produces the factors

n1−1/d

(d − 1)!
,

yd−`−1

(d − `− 1)!
and

w`−1

(`− 1)!
.

Now by symmetry (of u and v), we have

∑

1≤`<d

�

d

`

�

Jn,` '
∑

1≤`<d

�

d

`

�

2d · d!

(d − `− 1)!(`− 1)!
n1−1/d

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

∫ ∞

0

yd−`−1w`−1

× e−u(x+y)d−v(x+w)d
�

evxd
− 1
�

dw dy dx du dv.

Proceeding in a similar manner for Jn,d , we deduce that

Jn,d = 2d!2

∫ 1

0

∫ 1

v

∫

Sd (n)

∫

[0,n1/d/d]d
e−
h

u(
∑

ξi)d+v(
∑

ξi+
∑

ηi)d
i

�

e(u∧v)(
∑

ξi)d − 1
�

dξdηdu dv.

By the change of variables x 7→
∑

ξi , w 7→
∑

ηi , we have

Jn,d '
2d!2

((d − 1)!)2
n1−1/d

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

wd−1e−uxd−v(x+w)d
�

e(u∧v)xd
− 1
�

dw dx du dv

= 2d2n1−1/d

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

wd−1e−uxd−v(x+w)d
�

evxd
− 1
�

dw dx du dv.

Similarly, for Jn,0, we get

Jn,0 = 2d!2

∫ 1

0

∫ 1

v

∫

Sd (n)

∫

[0,n1/d/d]d
e−
h

u(
∑

ξi+
∑

ηi)d+v(
∑

ξi)d
i

dξdηdu dv.

The change of variables x 7→
∑

ξi , y 7→
∑

ηi then yields

Jn,0 ' 2d2n1−1/d

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

yd−1e−u(x+y)d−vxd
dy dx du dv.

This completes the proof of the theorem.
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Remark. By the same arguments, we derive the following asymptotic estimates for the number of
maxima in Sd .

E[Mn]'
∑

0≤ j<d

�

d − 1

j

�

(−1) jΓ
�

j+ 1

d

�

n(d−1− j)/d ,

V[Mn] =
�

ṽd + o(1)
�

n1−1/d ,

where

ṽd = Γ
�

1

d

�

+
∑

1≤k<d

�

d

k

�

dd!

(d − k− 1)!(k− 1)!

×
∫ ∞

0

∫ ∞

0

∫ ∞

0

yd−k−1wk−1e−(x+y)d−(x+w)d
�

exd
− 1
�

dw dy dx

− 2d2

∫ ∞

0

∫ ∞

0

yd−1e−xd−(x+y)d dx dy.

(4)

Theorem 2. The number of Pareto records in iud samples from d-dimensional simplex is asymptotically
normal with a rate given by

sup
x

�

�

�

�

�

P





Xn−E[Xn]
p

V[Xn]
< x



−Φ(x)

�

�

�

�

�

= O
�

n−(d−1)/(4d)(log n)2+ n−1/d(log n)1/d
�

, (5)

where Φ(x) denotes the standard normal distribution.

Proof. Define the region

Dn :=
�

(x, z) : x ∈ Sd , z ∈ [0, 1] and z (1−‖x‖)d ≤
2 log n

n

�

.

Let X n denote the number of maxima in Dn and eXn the number of maxima of a Poisson process on
Dn with intensity d!n. Then

�

�

�

�

�

P





Xn−E[Xn]
p

V[Xn]
< x



−Φ(x)

�

�

�

�

�

≤

�

�

�

�

�

P





Xn−E[Xn]
p

V[Xn]
< x



− P





X n−E[Xn]
p

V[Xn]
< x





�

�

�

�

�

+

�

�

�

�

�

P





X n−E[Xn]
p

V[Xn]
< x



− P





eXn−E[Xn]
p

V[Xn]
< x





�

�

�

�

�

+

�

�

�

�

�

P





eXn−E[eXn]
p

V[eXn]
< y



−Φ(y)

�

�

�

�

�

+
�

�Φ(y)−Φ(x)
�

� ,

(6)

for x ∈ R, where

y = x

È

V[Xn]

V[eXn]
+
E[Xn]−E[eXn]
p

V[eXn]
.
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We prove that the four terms on the right-hand side of (6) all satisfy the O-bound in (5). For the
first term, we consider the probability

P
�

Xn 6= X n

�

≤ nP
�

q1 /∈ Dn and q1is a maximum
�

= nd!

∫

Sd×[0,1]−Dn

�

1− z(1−‖x‖)d
�n−1

dxdz

≤ nd!

∫

Sd×[0,1]−Dn

�

1−
2 log n

n

�n−1

dxdz

≤ O(n−1).

For the second term on the right-hand side of (6), we use a Poisson process approximation

sup
t

�

�

�P
�

X n < t
�

− P
�

eXn < t
�

�

�

�≤ O
��

�Dn

�

�

�

= O
�

n−1/d(log n)1/d
�

.

To bound the third term, we use Stein’s method similar to the proof for the case of hypercube given
in [1] and deduce that

sup
y

�

�

�

�

�

P





eXn−E[eXn]
p

V[eXn]
< y



−Φ(y)

�

�

�

�

�

= O

�

(E[eXn])1/2Qn

(V[eXn])3/4

�

= O
�

n−(d−1)/(4d) �log n
�2� ,

where Qn is the error term resulted from the dependence between the cells decomposed and

Qn = O
�

(log n)2
�

.

Finally, the last term in (6) is bounded above as follows.

�

�Φ(y)−Φ(x)
�

�= O









�

�

�

p

V[Xn]−
p

V[eXn]
�

�

�+
�

�E[Xn]−E[eXn]
�

�

p

V[eXn]









= O
�

n−(d+1)/(2d)
�

.

This proves (6) and thus (5).

The Berry-Esseen bound in (5) is expected to be non-optimal and one naturally anticipates an opti-
mal order of the form O(n−1/2−1/(2d)), but we were unable to prove this.

Remark. By defining

Dn :=
�

x : x ∈ Sd and (1−‖x‖)d ≤
2 log n

n

�

instead and by applying the same arguments, we deduce the Berry-Esseen bound for the number of
maxima in iud samples from Sd

sup
x

�

�

�

�

�

P





Mn−E[Mn]
p

V[Mn]
< x



−Φ(x)

�

�

�

�

�

= O
�

n−(d−1)/(4d) log n+ n−1/d(log n)1/d
�

.
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3 Numerical evaluations of the leading constants

The leading constants vd (see (3)) and ṽd (see (4)) appearing in the asymptotic approximations to
the variance of Xn and to that of Mn are not easily computed via existing softwares. We discuss in
this section more effective means of computing their numerical values to high degree of precision.
Our approach is to first apply Mellin transforms (see [12]) and derive series representations for the
integrals by standard residue calculation and then convert the series in terms of the generalized
hypergeometric functions

pFq(α1, . . . ,αp;β1, . . . ,βq; z) :=
Γ(β1) · · ·Γ(βq)

Γ(α1) · · ·Γ(αp)

∑

j≥0

Γ( j+α1) · · ·Γ( j+αp)

Γ( j+ β1) · · ·Γ( j+ βq)
·

z j

j!
.

The resulting linear combinations of hypergeometric functions can then be computed easily to high
degree of precision by any existing symbolic softwares even with a mediocre laptop.

The leading constant vd of the asymptotic variance of the d-dimensional Pareto records. We
consider the following integrals

Cd =
∑

1≤m<d

�

d

m

�

(d − 1)!
(m− 1)!(d − 1−m)!

×
∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

∫ ∞

0

yd−1−mwm−1e−u(x+y)d−v(x+w)d
�

evxd
− 1
�

dw dy dx du dv

+

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

wd−1e−uxd−v(x+w)d
�

evxd
− 1
�

dw dx du dv

−
∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

yd−1e−u(x+y)d−vxd
dy dx du dv

=: (d − 1)
∑

1≤m<d

�

d

m

��

d − 2

m− 1

�

Id,m+ Id,d − Id,0.

Then Cd is related to vd by vd =
d

d−1
Γ( 1

d
) + 2d2Cd . We start from the simplest one, Id,0 and use the

integral representation for the exponential function

e−t =
1

2πi

∫

(c)
Γ(s)t−s ds,

where c > 0, ℜ(t) > 0 and the integration path
∫

(c)
is the vertical line from c − i∞ to c + i∞.

Substituting this representation into Id,0, we obtain

Id,0 =
1

2πi

∫

(c)
Γ(s)

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

u−s(x + y)−ds yd−1e−vxd
dy dx du dv ds.
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Making the change of variables y 7→ x y yields

Id,0 =
1

2πi

∫

(c)
Γ(s)

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

u−s xd(1−s)(1+ y)−ds yd−1e−vxd
dy dx du dv ds

=
1

2πi

∫

(c)
Γ(s)

∫ 1

0

∫ 1

v

u−s

�
∫ ∞

0

yd−1(1+ y)−ds dy

��
∫ ∞

0

xd(1−s)e−vxd
dx

�

du dv ds

=
dΓ(d − 1)

2πi

∫

(c)

Γ(s)Γ(ds− d)Γ(1+ 1
d
− s)

Γ(ds)(ds− 1)
ds,

where 1 < c < 1+ 1
d
. Moving the integration path to the right, one encounters the simple poles at

s = 1+ 1
d
+ j for j = 0,1, . . . . Summing over all residues of these simple poles and proving that the

remainder integral tends to zero, we get

Id,0 = Γ(d − 1)
∑

j≥0

(−1) jΓ( j+ 1+ 1
d
)Γ(d j+ 1)

( j+ 1)!Γ(d j+ d + 1)
,

where the terms converge at the rate j−d−1+ 1
d . This can be expressed easily in terms of the general-

ized hypergeometric functions.

An alternative integral representation can be derived for Id,0 as follows.

Id,0 =
Γ(d − 1)
Γ(d)

∑

j≥0

Γ( j+ 1+ 1
d
)

Γ( j+ 2)
(−1) j

∫ 1

0

(1− x)d−1 xd j dx

=
Γ( 1

d
)

d − 1

∫ 1

0

(1− x)d−1 1− (1+ xd)−
1
d

xd
dx ,

which can also be derived directly from the original multiple integral representation and successive
changes of variables (first u, then x , then v, and finally y). In particular, for d = 2,

I2,0 =
p
π
�p

2− 1+ log 2+ log(
p

2− 1)
�

.

Now we turn to Id,d .

Id,d =

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

wd−1e−uxd−v(x+w)d
�

evxd
− 1
�

dw dx du dv.

By the same arguments used above, we have

Id,d =
Γ(d)
2dπi

∫

(c)

Γ(s)Γ(ds− d)Γ(1+ 1
d
− s)

Γ(ds)
I ′d,d ds,

where c > 1 and

I ′d,d :=

∫ 1

0

v−s

∫ 1

v

�

(u− v)s−1− 1
d − us−1− 1

d

�

du dv.
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To evaluate I ′d,d , assume first that 1
d
<ℜ(s)< 1, so that

I ′d,d =

∫ 1

0

v−s

∫ 1−v

0

us−1− 1
d du−

∫ 1

0

us−1− 1
d

∫ u

0

v−s dv du

=
d

d − 1

 

Γ(1− s)Γ(s− 1
d
)

Γ(1− 1
d
)

−
1

1− s

!

.

Now the right-hand side is well-defined for 1
d
<ℜ(s)< 2. Substituting this into Id,d , we obtain

Id,d =
Γ(d − 1)

2πi

∫

(c)

Γ(s)Γ(ds− d)Γ(1+ 1
d
− s)

Γ(ds)

 

Γ(1− s)Γ(s− 1
d
)

Γ(1− 1
d
)

−
1

1− s

!

ds,

where 1 < c < 1 + 1
d
. For computational purpose, we use the functional equation for Gamma

function
Γ(1− s)Γ(s) =

π

sinπs
,

so that

Id,d =
Γ(d − 1)

2πi

∫

(c)

πΓ(ds− d)

Γ(ds) sin(π(s− 1
d
))

 

π

Γ(1− 1
d
) sin(πs)

+
Γ(s− 1)

Γ(ds)Γ(s− 1
d
)

!

ds.

In this case, we have simples poles at s = j+1/d for both integrands and s = j for the first integrand
to the right of ℜ(s) = 1 for j = 2, 3, . . . . Thus summing over all the residues and proving that the
remainder integral goes to zero, we obtain

Id,d = Γ(d − 1)Γ( 1
d
)
∑

j≥2

Γ(d j− d)
jΓ(d j)

−Γ(d − 1)
∑

j≥2

(−1) jΓ( j− 1+ 1
d
)Γ(d j− d + 1)

Γ( j)Γ(d j+ 1)
.

A similar argument as that used for Id,0 gives the alternative integral representation

Id,d =
Γ( 1

d
)

d(d − 1)

 

−1+

∫ 1

0

�

1− t
1
d

�d−1
�

t
1
d−1(1+ t)−

1
d +
− log(1− t)− t

t2

�

dt

!

.

In particular, for d = 2,

I2,2 =
p
π
�

2−
p

2− 2 log2+ log(
p

2+ 1)
�

.

Now we consider Id,m for 1≤ m< d.

Id,m :=

∫ 1

0

∫ 1

v

∫ ∞

0

∫ ∞

0

∫ ∞

0

yd−1−mwm−1e−u(x+y)d−v(x+w)d
�

evxd
− 1
�

dw dy dx du dv,

which by the same arguments leads to

Id,m =
1

2πi

∫

(c)
Γ(s)

∫ 1

0

∫ 1

v

u−s

�
∫ ∞

0

yd−1−m(1+ y)−ds dy

�

×
∫ ∞

0

wm−1

�
∫ ∞

0

xd(1−s)
�

e−vxd ((1+w)d−1)− e−vxd (1+w)d
�

dx

�

dw du dv ds

=
dΓ(d −m)
2(d − 1)πi

∫

(c)

Γ(s)Γ(ds− d +m)Γ(1+ 1
d
− s)

Γ(ds)(ds− 1)
Wm(s)ds,
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where 1< c < 1+ 1
d

and

Wm(s) :=

∫ ∞

0

wm−1
�

�

(1+w)d − 1
�s−1− 1

d − (1+w)ds−d−1
�

dw

=
1

d

∫ 1

0

t−s(t−
1
d − 1)m−1

�

(1− t)s−1− 1
d − 1

�

dt

=
1

d

∑

0≤`<m

�

m− 1

`

�

(−1)m−1−`

 

πΓ(s− 1
d
)

Γ(1− `+1
d
)Γ(s+ `

d
) sin(π(s+ `

d
))
−

1

1− `
d
− s

!

,

for 1
d
<ℜ(s)< 2− (m− 1)/d. Note that each term has no pole at s = 1− `

d
. Thus

Id,m =
Γ(d −m)

d − 1

∑

0≤`<m

�

m− 1

`

�

(−1)m−1−` Id,m,`,

where

Id,m,` :=
1

2πi

∫

(c)

Γ(s)Γ(ds− d +m)Γ(1+ 1
d
− s)

Γ(ds)(ds− 1)

×

 

πΓ(s− 1
d
)

Γ(1− `+1
d
)Γ(s+ `

d
) sin(π(s+ `

d
))
−

1

1− `
d
− s

!

ds.

We then deduce that the integral equals the sum of the residues at s = j+ 1
d

and s = j+ 1− `
d

Id,m,` =−
Γ( `+1

d
)

d

∑

j≥1

Γ( j+ 1+ 1
d
)Γ(d j+m+ 1)

( j+ 1)Γ(d j+ d + 1)Γ( j+ 1+ `+1
d
)

+
1

d

∑

j≥1

(−1) jΓ( j+ 1+ 1
d
)Γ(d j+m+ 1)

( j+ 1)!Γ(d j+ d + 1)( j+ `+1
d
)

+ Γ( `+1
d
)
∑

j≥1

Γ( j+ 1− `
d
)Γ(d j+m− `)

j!Γ(d j+ d − `)(d j+ d − `− 1)

= I[1]d,m,`+ I[2]d,m,`+ I[3]d,m,`.

It follows that

Cd − Id,d + Id,0

= (d − 1)
∑

1≤m<d

�

d

m

��

d − 2

m− 1

�

Id,m

=
∑

1≤m<d

�

d

m

�

(d − 2)!
(m− 1)!

∑

0≤`<m

�

m− 1

`

�

(−1)m−1−`
�

I[1]d,m,`+ I[2]d,m,`+ I[3]d,m,`

�

=: C[1]d + C[2]d + C[3]d .
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For further simplification of these sums, we begin with C[2]d . Note first that

∑

0≤`<m

�

m− 1

`

�

(−1)m−1−` I[2]d,m,`

=
1

d

∑

j≥1

(−1) jΓ( j+ 1+ 1
d
)Γ(d j+m+ 1)

( j+ 1)!Γ(d j+ d + 1)

∑

0≤`<m

�

m− 1

`

�

(−1)m−1−` 1

j+ `+1
d

= (−1)m−1(m− 1)!
∑

j≥1

(−1) jΓ( j+ 1+ 1
d
)Γ(d j+ 1)

( j+ 1)!Γ(d j+ d + 1)
.

Thus

C[2]d =
∑

1≤m<d

�

d

m

�

(d − 2)!
(m− 1)!

∑

0≤`<m

�

m− 1

`

�

(−1)m−1−` I[2]d,m,`

= (d − 2)!
∑

1≤m<d

�

d

m

�

(−1)m−1
∑

j≥1

(−1) jΓ( j+ 1+ 1
d
)Γ(d j+ 1)

( j+ 1)!Γ(d j+ d + 1)

= (1+ (−1)d)

 

Id,0−
Γ(1+ 1

d
)

d(d − 1)

!

.

Accordingly, C[2]d = 0 for odd values of d.

For the other two sums containing I[1]d,m,` and I[3]d,m,`, we use the identity

∑

`<m<d

(N +m)!(−1)m

m!(d −m)!(m− 1− `)!
=
(−1)d N !

(d − 1− `)!

��

N + 1+ `
d

�

−
�

N + d

d

��

.

Then

C[1]d =
∑

1≤m<d

�

d

m

�

(d − 2)!
(m− 1)!

∑

0≤`<m

�

m− 1

`

�

(−1)m−1−` I[1]d,m,`

= (d − 2)!
∑

0≤`≤d−2

d!

`!
(−1)`

Γ( `+1
d
)

d

∑

j≥1

Γ( j+ 1+ 1
d
)

( j+ 1)Γ(d j+ d + 1)Γ( j+ 1+ `+1
d
)

×
∑

`<m<d

Γ(d j+m+ 1)(−1)m

m!(d −m)!(m− 1− `)!

=
(−1)d

d(d − 1)

∑

0≤`≤d−2

�

d − 1

`

�

(−1)`Γ( `+1
d
)
∑

j≥1

Γ( j+ 1+ 1
d
)

( j+ 1)Γ( j+ 1+ `+1
d
)





�d j+`+1
d

�

�d j+d
d

�

− 1



 .

Note that
�d j+`+1

d

�

�d j+d
d

�

− 1= O( j−1) (0≤ `≤ d − 2),

for large j, so that the series is absolutely convergent.
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Similarly,

C[3]d =
∑

1≤m<d

�

d

m

�

(d − 2)!
(m− 1)!

∑

0≤`<m

�

m− 1

`

�

(−1)m−1−` I[3]d,m,`

=
(−1)d

d − 1

∑

0≤`≤d−2

�

d − 1

`

�

(−1)`−1Γ( `+1
d
)
∑

j≥1

Γ( j+ 1− `
d
)

j!(d j+ d − `− 1)





�d j
d

�

�d j+d−`−1
d

�

− 1



 .

Since vd =
d

d−1
Γ( 1

d
)+2d2Cd , we obtain, by converting the series representations into hypergeomet-

ric functions, the following approximate numerical values of vd .

v2 ≈ 2.8612635493 1117882531 14379,

v3 ≈ 3.2252436444 0557689660 59392,

v4 ≈ 3.9779727442 1945529292 64760,

v5 ≈ 4.8452739171 6261142226 50057,

v6 ≈ 5.7634995321 9656864812 77416,

v7 ≈ 6.7086512250 8659036364 34742,

v8 ≈ 7.6695504435 2466504704 24808,

v9 ≈ 8.6403279742 0828724931 00067,

v10 ≈ 9.6176475521 1375573944 20940,

v11 ≈ 10.5994978766 5695163098 76869,

v12 ≈ 11.5846078314 6040977794 37163.

In particular, v2 has a closed-form expression

v2 =
2

3

p
π
�

2π2− 9− 12 log2
�

.

The leading constant ṽd of the asymptotic variance of the d-dimensional maxima. Let

Jd,0 := 2d2

∫ ∞

0

∫ ∞

0

yd−1e−xd−(x+y)d dx dy,

and

Jd,k :=
dd!

(d − k− 1)!(k− 1)!

∫ ∞

0

∫ ∞

0

∫ ∞

0

yd−k−1wk−1e−(x+y)d−(x+w)d
�

exd
− 1
�

dw dy dx .

Then (see (4))

ṽd = Γ
�

1

d

�

+
∑

1≤k<d

�

d

k

�

Jd,k − Jd,0.
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Consider first Jd,0. By expanding (1 + xd)−1− 1
d , interchanging and evaluating the integrals, we

obtain

Jd,0 = 2Γ
�

1

d

�
∫ 1

0

(1− x)d−1

(1+ xd)1+
1
d

dx

= 2d!
∑

j≥0

Γ( j+ 1+ 1
d
)Γ(d j+ 1)

Γ( j+ 1)Γ(d j+ d + 1)
(−1) j ,

the general terms converging at the rate O( j−d− 1
d ). The convergence rate can be accelerated as

follows.

Jd,0 = 2Γ
�

1+
1

d

�
∫ 1

0

x
1
d−1(1− x

1
d )d−1(1+ x)−1− 1

d dx

= 2Γ
�

1+
1

d

�

∑

r≥0

2−r−1− 1
d

∫ 1

0

(1− x)r x
1
d−1(1− x

1
d )d−1 dx

= Γ
�

1+
1

d

�

2−
1
d

∑

0≤`<d

�

d − 1

`

�

(−1)`Γ
�

`+ 1

d

�

∑

j≥0

Γ( j+ 1+ 1
d
)

Γ( j+ 1+ `+1
d
)

2− j ,

the convergence rate being now exponential. In terms of the generalized hypergeometric functions,
we have

Jd,0 = Γ
�

1

d

�

2−
1
d

∑

0≤`<d

�

d − 1

`

�

(−1)`

`+ 1 2F1

�

1+
1

d
, 1; 1+

`+ 1

d
;

1

2

�

.

The integrals Jd,k can be simplified as follows.

Jd,k+1 = d2(d − 1)
�

d − 2

k

�
∫ ∞

0

(exd
− 1)

∫ ∞

x

e−yd

×
∫ ∞

x

(y − x)d−2−k(z− x)ke−zd
dz dy dx

= 2d2(d − 1)
�

d − 2

k

�
∫ ∞

0

e−yd

∫ y

0

e−zd

×
∫ z

0

(exd
− 1)(y − x)d−2−k(z− x)k dx dz dy

= 2(d − 1)Γ
�

1

d

��

d − 2

k

�
∫ 1

0

(1− x)k
∫ 1

0

(1− xz)d−2−kzk+1

×

 

1

(1+ zd − xdzd)1+
1
d

−
1

(1+ zd)1+
1
d

!

dz dx

= J ′d,k+1+ J ′′d,k+1.
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By the same proof used for Jd,0, we have

J ′′d,k+1 =−2(d − 1)Γ
�

1

d

��

d − 2

k

�
∫ 1

0

(1− x)k

×
∫ 1

0

(1− xz)d−2−kzk+1(1+ zd)−1− 1
d dz dx

= (−1)k+12−
1
d Γ
�

1

d

�

∑

k< j<d

�

d − 1

j

�

(−1) j

j+ 1 2F1

�

1+
1

d
, 1; 1+

j+ 1

d
;

1

2

�

.

Similarly,

J ′d,k+1 = 2(d − 1)Γ
�

1

d

��

d − 2

k

�
∫ 1

0

(1− x)k

×
∫ 1

0

(1− xz)d−2−kzk+1(1+ zd − xdzd)−1− 1
d dz dx

= 2Γ
�

1

d

�

(d − 1)!
∑

0≤ j≤d−2−k

(−1) j

j!(d − 2− k− j)!

×
∑

0≤`≤k

(−1)`

`!(k− `)!
·

3F2(1+
1
d
, k+ j+2

d
, 1; 1+ `+ j+1

d
, 1+ k+ j+2

d
;−1)

(`+ j+ 1)(k+ j+ 2)
.

Thus we obtain the following numerical values for the limiting constant ṽd of V[Mn]/n(d−1)/d

ṽ2 ≈ 0.68468 8927950036 1741809957,

ṽ3 ≈ 1.48217 3187340583 6860111369,

ṽ4 ≈ 2.35824 3761202486 9374228054,

ṽ5 ≈ 3.27773 9005979491 2668480858,

ṽ6 ≈ 4.22231 0945077067 7999834338,

ṽ7 ≈ 5.18220 766861607848517 29967,

ṽ8 ≈ 6.15196 290237747445508 28039,

ṽ9 ≈ 7.12835 136584336052793 29089,

ṽ10 ≈ 8.10938 232211584982527 77117,

ṽ11 ≈ 9.09377 746978668089694 70616,

ṽ12 ≈ 10.0806 864651973308113 16376.

In particular, ṽ2 =
p
π(2 log2− 1); see [2].

Yet another constant in [8]. A similar but simpler integral to (4) appeared in [8], which is of the
form

Kd :=

∫ ∞

0

∫ ∞

0

∫ ∞

0

(u+w)d−2e−(u+x)d+xd−(w+x)d dx du dw,
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(this Kd is indeed their Kd−1). By Mellin inversion formula for e−t , we obtain

Kd =
1

2πi

∫

(c)
Γ(s)

∫ ∞

0

∫ ∞

0

∫ ∞

0

(u+w)d−2(u+ x)−dse−(w+x)d+xd
dx du dw ds

=
1

2dπi

∫

(c)
Γ(s)Γ(1+ 1

d
− s)

×
∫ ∞

0

∫ ∞

0

(u+w)d−2(1+ u)−ds
�

(1+w)d − 1
�s−1− 1

d du dw ds.

Expanding the factor (u+w)d−2, we obtain Kd =
∑

0≤m≤d−2

�d−2
m

�

Kd,m, where

Kd,m :=
1

2dπi

∫

(c)
Γ(s)Γ(1+ 1

d
− s)

�
∫ ∞

0

um(1+ u)−ds du

�

×
�
∫ ∞

0

wd−2−m
�

(1+w)d − 1
�s−1− 1

d

�

dw

=
1

2dπi

∫

(c)
Γ(s)Γ(1+ 1

d
− s)B(m+ 1, ds−m− 1)Um(s)ds. (7)

Here

Um(s) :=

∫ ∞

0

wd−2−m
�

(1+w)d − 1
�s−1− 1

d dw

=
1

d

∫ 1

0

t−s(1− t)s−1− 1
d

�

t−
1
d − 1

�d−2−m
dt

=
1

d

∑

0≤`≤d−2−m

�

d − 2−m

`

�

(−1)d−2−m−`B(1− s− `
d
, s− 1

d
).

Thus we obtain

Kd =
1

d2

∑

0≤m≤d−2

�

d − 2

m

�

∑

0≤`≤d−2−m

�

d − 2−m

`

�

(−1)d−2−m−`m!Γ( `+1
d
)

×
∑

j≥0

 

Γ( j+ 1− `
d
)Γ(d j+ d − `−m− 1)

j!Γ(d j+ d − `)
−
Γ( j+ 1+ 1

d
)Γ(d j+ d −m)

Γ( j+ 1+ `+1
d
)Γ(d j+ d + 1)

!

.
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This readily gives, by converting the above series into hypergeometric functions, the numerical
values of the first few Kd ,

K2 ≈ 0.3071428473 5694402518 48954,

K3 ≈ 0.2128824684 7322099693 80676,

K4 ≈ 0.1949467028 2303318190 40460,

K5 ≈ 0.2072321512 9967145854 93769,

K6 ≈ 0.2433117024 5183672554 88428,

K7 ≈ 0.3074456566 0789322242 37300,

K8 ≈ 0.4112701058 9038583873 59349,

K9 ≈ 0.5757168456 6724364328 08087,

K10 ≈ 0.8361582236 7711600233 16115,

K11 ≈ 1.2517963251 1407086480 31485,

K12 ≈ 1.9220104035 1884736012 85304.

These are consistent with those given in Chiu and Quine (1997). In particular, K2 =
1
4

p
π log 2.

Further simplification of this formula can be obtained as above, but the resulting integral expression
is not much simpler than

Γ( 1
d
)

d4

∫ 1

0

∫ 1

0

�

u−
1
d + v−

1
d − 2

�d−2
u−1− 1

d v−1− 1
d
�

u−1+ v−1− 1
�−1− 1

d du dv.

4 Asymptotics of the number of chain records

We consider in this section the number of chain records of random samples from d-dimensional
simplex; the tools we use are different from [17] and apply also to chain records for hypercube
random samples, which will be briefly discussed. For other types of results, see [17].

4.1 Chain records of random samples from d-dimensional simplex

Assume that p1, . . . ,pn are iud in the d-dimensional simplex Sd . Let Yn denote the number of chain
records of this sample. Then Yn satisfies the recurrence

Yn
d
= 1+ YIn

(n≥ 1), (8)

with Y0 := 0, where

P(In = k) = πn,k = d
�

n− 1

k

�
∫ 1

0

tkd(1− td)n−1−k(1− t)d−1 dt,

for 0≤ k < n. An alternative expression for the probability distribution πn,k is

πn,k =
�

n− 1

k

�

∑

0≤ j<d

�

d − 1

j

�

(−1) j
Γ(n− k)Γ

�

k+ j+1
d

�

Γ
�

n+ j+1
d

� ,
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which is more useful from a computational point of view.

Let
(z+ 1) · · · (z+ d)− d!= z

∏

1≤`<d

(z−λ`),

where the λ`’s are all complex (6∈ R), except when d is even (in that case, −d − 1 is the unique real
zero among {λ1, . . . ,λd−1}). Interestingly, the same equation also arises in the analysis of random
increasing k-trees (see [9]), in some packing problem of intervals (see [4]), and in the analysis of
sorting and searching problems (see [7]).

Theorem 3. The number of chain records Yn for random samples from d-dimensional simplex is asymp-
totically normally distributed in the following sense

sup
x∈R

�

�

�

�

�

P





Yn−µs log n

σs

p

log n
< x



−Φ(x)

�

�

�

�

�

= O
�

(log n)−1/2
�

, (9)

where µs := 1/(dHd) and σs :=
Æ

H(2)d /(dH3
d). The mean and the variance are asymptotic to

E[Yn] =
Hn

dHd
+ c1+O(n−ε), (10)

V[Yn] =
H(2)d

dH3
d

Hn+ c2+O(n−ε), (11)

respectively, for some ε > 0, where

c1 =
1

dHd

∑

1≤`<d

�

ψ

�

−
λ`

d

�

−ψ
�

`

d

��

,

c2 =
1

6
+

π2

6d2H2
d

−
2H(3)d

3H3
d

+
(H(2)d )

2

2H4
d

+
1

d2H2
d

∑

1≤`<d

�

ψ′
�

−
λ`

d

�

−ψ′
�

`

d

��

+
c1H(2)d

H2
d

−
2d!

Hd

∑

j≥1

(d j+ 1) · · · (d j+ d)(Hd j+d −Hd j)

((d j+ 1) · · · (d j+ d)− d!)2
.

Here ψ(x) denotes the derivative of logΓ(x).

The error terms in (10) and (11) can be further refined, but we content ourselves with the current
forms for simplicity.

Expected number of chain records. We begin with the proof of (10). Consider the mean µn :=
E[Yn]. Then µ0 = 0 and, by (8),

µn = 1+
∑

0≤k<n

πn,kµk (n≥ 1). (12)

Let f̃ (z) := e−z
∑

n≥0µnzn/n! denote the Poisson generating function of µn. Then, by (12),

f̃ (z) + f̃ ′(z) = 1+ d

∫ 1

0

f̃ (tdz)(1− t)d−1 dt.

1884



Let f̃ (z) =
∑

n≥0 µ̃nzn/n!. Taking the coefficients of zn on both sides gives the recurrence

µ̃n+ µ̃n+1 =
d!

(dn+ 1) · · · (dn+ d)
µ̃n (n≥ 1).

Solving this recurrence using µ̃1 = 1 yields

µ̃n = (−1)n−1
∏

1≤ j<n

�

1−
d!

(d j+ 1) · · · (d j+ d)

�

(n≥ 1).

It follows that for n≥ 1

µn =
∑

1≤k≤n

�

n

k

�

µ̃k =
∑

1≤k≤n

�

n

k

�

(−1)k−1
∏

1≤ j<k

�

1−
d!

(d j+ 1) · · · (d j+ d)

�

. (13)

This is an identity with exponential cancelation terms; cf. [17]. In the special case when d = 2, we
have an identity

µn =
Hn+ 2

3
.

No such simple expression is available for d ≥ 3 since there are complex-conjugate zeros; see (14).

Exact solution of the general recurrence. In general, consider the recurrence

an = bn+
∑

0≤k<n

πn,kak (n≥ 1),

with a0 = 0. Then the same approach used above leads to the recurrence

ãn+1 =−
�

1−
d!

(dn+ 1) · · · (dn+ d)

�

ãn+ b̃n+ b̃n+1,

which by iteration gives

ãn+1 =
∑

0≤k≤n

(−1)k
�

b̃n−k + b̃n−k+1

�
∏

0≤ j<k

�

1−
d!

(d(n− j) + 1) · · · (d(n− j) + d)

�

,

by defining b0 = b̃0 = 0. Then we obtain the closed-form solution

an =
∑

1≤k≤n

�

n

k

�

ãk.

A similar theory of “d-analogue” to that presented in [13] can be developed (by replacing 2d/ jd

there by d!/((d j+ 1) · · · (d j+ d))).

However, this type of calculation becomes more involved for higher moments.
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Asymptotics of µn. We now look at the asymptotics of µn. To that purpose, we need a better
expression for the finite product in the sum-expression (13).

In terms of the zeros λ j ’s of the equation (z+ 1) · · · (z+ d)− d!, we have

∏

1≤ j<n

�

1−
d!

(d j+ 1) · · · (d j+ d)

�

=

∏

1≤ j<n

�

d j
∏

1≤`<d(d j−λ`)
�

∏

1≤ j<n

�

(d j+ 1) · · · (d j+ d)
�

=
1

n

∏

1≤`<d

Γ
�

n− λ`
d

�

Γ
�

1+ `
d

�

Γ
�

n+ `
d

�

Γ
�

1− λ`
d

�

=: φ(n).

(14)

The zeros λ j ’s are distributed very regularly as showed in Figure 4.

−1.25 −1 −0.75 −0.5 −0.25

−0.5

−0.3

0.3

0.5

Figure 4: Distributions of the zeros of (z+1) · · · (z+d)−d!= 0 for d = 3, . . . , 50. The zeros approach,
as d increases, to the limiting curve |z−z(z+ 1)1+z|= 1 (the blue innermost curve).

Now we apply the integral representation for the n-th finite difference (called Rice’s integrals; see
[14]) and obtain

µn =−
1

2πi

∫
1
2
+i∞

1
2
−i∞

Γ(n+ 1)Γ(−s)
Γ(n+ 1− s)

φ(s)ds.

Note that φ(s) is well defined and has a simple pole at s = 0. The integrand then has a double pole
at s = 0; standard calculation (moving the line of integration to the left and summing the residue of
the pole encountered) then leads to

µn =
1

dHd

 

Hn+
∑

1≤`<d

�

ψ

�

−
λ`

d

�

−ψ
�

`

d

��

!

+O
�

n−ε
�

,
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where the O-term can be made more explicit if needed. Note that to get this expression, we used
the identity

(z+ 1) · · · (z+ d)− d!

z
=
∑

1≤ j≤d

d!Γ(z+ d − j+ 1)
(d − j+ 1)!Γ(z+ 1)

.

The probability generating function. Let Pn(y) := E[yYn]. Then P0(y) = 1 and for n≥ 1

Pn(y) = y
∑

0≤k<n

πn,kPk(y).

The same procedure used above leads to

Pn(y) =
∑

0≤k≤n

�

n

k

�

(−1)k
∏

0≤ j<k

�

1−
d!y

(d j+ 1) · · · (d j+ d)

�

= 1+ (y − 1)
∑

1≤k≤n

�

n

k

�

(−1)k−1
∏

1≤ j<k

�

1−
d!y

(d j+ 1) · · · (d j+ d)

�

(n≥ 0).

Let now |y − 1| be close to zero and

(z+ 1) · · · (z+ d)− d!y =
∏

1≤`≤d

�

z−λ`(y)
�

.

Note that the λ`’s are analytic functions of y . Let λd(y) denote the zero with λd(1) = 0. Then we
have

Pn(y) = 1−
y − 1

2πi

∫ 1−ε+i∞

1−ε−i∞

Γ(n+ 1)Γ(−s)
Γ(n+ 1− s)

φ(s, y)ds,

where ε > 0 and

φ(s, y) =
Γ
�

s− λd (y)
d

�

Γ(s+ 1)Γ
�

1− λd (y)
d

�

∏

1≤`<d

Γ
�

s− λ`(y)
d

�

Γ
�

1+ `
d

�

Γ
�

s+ `
d

�

Γ
�

1− λ`(y)
d

� .

Note that for y 6= 1, φ(0, y) = 1− y . When y ∼ 1, the dominant zero is λd(y), and we then deduce
that

Pn(y) =Q(y)nλd (y)/d +O(|1− y|n−ε),

where

Q(y) :=
d(y − 1)

λd(y)Γ(1+
λd (y)

d
)

∏

1≤`<d

Γ
�

λd (y)−λ`(y)
d

�

Γ
�

1+ `
d

�

Γ
�

λd (y)+`
d

�

Γ
�

1− λ`(y)
d

� .

By writing (z+ 1) · · · (z+ d)− d!y = 0 as

(1+ z) · · ·
�

1+
z

d

�

− 1= y − 1,

and by Lagrange’s inversion formula, we obtain

λd(y) =
y − 1

Hd
−

H2
d −H(2)d

2H3
d

(y − 1)2+O
�

|y − 1|3
�

.
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From this we then get Q(1) = 1+O(|y − 1|) and

λd(e
η) =

η

Hd
+

H(2)d

2H3
d

η2−
2Hd H(3)d − 3(H(2)d )

2

6H5
d

η3+O(|η|4),

for small |η|. This is a typical situation of the quasi-power framework (see [15, 22]), and we
deduce (10), (11) and the Berry-Esseen bound (9). The expression for c2 is obtained by an ad-hoc
calculation based on computing the second moment (the expression obtained by the quasi-power
framework being less explicit).

When d = 2, a direct calculation leads to the identity

V[Yn] =
5

27
Hn+

2π2

27
+

H(2)n

9
−

26

27
−

2

9

∑

j≥1







2 j− 1

j2
�n+ j

n

�

−
2 j

( j+ 1
2
)2
�n+ j+ 1

2
n

�






,

for n≥ 1, which is also an asymptotic expansion. This is to be contrasted with E[Yn] = (Hn+ 2)/3.

4.2 Chain records of random samples from hypercubes

In this case, we have, denoting still by Yn the number of chain records in iud random samples from
[0,1]d ,

Yn
d
= 1+ YIn

(n≥ 1),

with Y0 = 0 and

P(In = k) =
�

n− 1

k

�
∫ 1

0

tk(1− t)n−1−k (− log t)d−1

(d − 1)!
dt.

Let Pn(y) := E[yYn]. Then the Poisson generating function P̃(z, y) := e−z
∑

n≥0 Pn(y)zn/n! satisfies

P̃(z, y) +
∂

∂ z
P̃(z, y) = y

∫ 1

0

P̃(tz, y)
(− log t)d−1

(d − 1)!
dt,

with P̃(0, y) = 1. We then deduce that

Pn(y) = 1+
∑

1≤k≤n

�

n

k

�

(−1)k
∏

1≤ j≤k

�

1−
y

jd

�

.

Consequently, by Rice’s integral representation [14],

Pn(y) =
1

2πi

∫ 1−ε+i∞

1−ε−i∞

Γ(n+ 1)Γ(−s)

Γ(n+ 1− s)Γ(s+ 1)d
∏

1≤`≤d

Γ(s+ 1− y1/d e2`πi/d)

Γ(1− y1/d e2`πi/d)
ds.

If |y − 1| is close to zero, we deduce that

Pn(y) =
ny1/d−1

Γ(y1/d)1/d
∏

1≤`<d

Γ(y1/d(1− e2`πi/d))

Γ(1− y1/d e2`πi/d)

�

1+O(n−ε)
�

.

A very similar analysis as above then leads to a Berry-Esseen bound for Yn as follows.
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Theorem 4. The number of chain records Yn for iud random samples from the hypercube [0, 1]d

satisfies

sup
x∈R

�

�

�

�

�

P





Yn−µh log n

σh

p

log n
< x



−Φ(x)

�

�

�

�

�

= O
�

(log n)−1/2
�

,

where µh = σh := 1/d. The mean and the variance are asymptotic to

E[Yn] =
1

d
log n+ γ+

1

d

∑

1≤`<d

ψ(1− e2`πi/d) +O(n−ε),

V[Yn] =
1

d2 log n+
γ

d
−
π2

6d

+
1

d2

∑

1≤`<d

�

ψ
�

1− e2`πi/d
�

+
�

1− 2e2`πi/d
�

ψ′
�

1− e2`πi/d
��

+O(n−ε),

for some ε > 0.

The asymptotic normality (without rate) was already established in [17].

In the special case when d = 2, more explicit expressions are available

E[Yn] =
Hn+ 1

2
, V[Yn] =

Hn+H(2)n − 2

4
,

for n≥ 1.

5 Dominating records in the d-dimensional simplex

We consider the mean and the variance of the number of dominating records in this section.

Let Zn denote the number of dominating records of n iud points p1, . . . ,pn in the d-dimensional
simplex Sd .

Theorem 5. The mean and the variance of the number of dominating records for iud random samples
from the d-dimensional simplex are given by

E[Zn] =
∑

1≤k≤n

(d!)kΓ(k)d

Γ(dk+ 1)
, (15)

V[Zn] = 2
∑

2≤k≤n

(d!)kΓ(k)d

Γ(dk+ 1)
H(d)k−1+

∑

1≤k≤n

(d!)kΓ(k)d

Γ(dk+ 1)
−

 

∑

1≤k≤n

(d!)kΓ(k)d

Γ(dk+ 1)

!2

, (16)

respectively. The corresponding expressions for iud random samples from hypercubes are given by H(d)n
and H(d)n −H(2d)

n , respectively.
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Proof.

E[Zn] =
∑

1≤k≤n

P
�

pk is a dominating record
�

=
∑

1≤k≤n

(d!)k
∫

Sd

 

∏

1≤i≤d

x i

!k−1

dx

=
∑

1≤k≤n

(d!)k

k

∏

1≤ j<d

Γ(k)Γ( jk+ 1)
Γ(( j+ 1)k+ 1)

.

Thus, we obtain (15). For large n and bounded d, the partial sum converges to the series

E[Zn]→
∑

k≥1

(d!)kΓ(k)d

Γ(dk+ 1)
,

at an exponential rate. For large d, the right-hand side is asymptotic to

E[Zn] = 1+O

�

(d!)2

(2d)!

�

= 1+O
�

4−d
p

d
�

,

by Stirling’s formula.

Similarly, for the second moment, we have

E[Z2
n]−E[Zn] = 2

∑

2≤k≤n

∑

1≤ j<k

P
�

p j and pk are both dominating records
�

= 2
∑

2≤k≤n

∑

1≤ j<k

(d!)k
∫

Sd

∫

y≺x

�
∏

yi

� j−1�∏
x i

�k− j−1
dydx

= 2
∑

2≤k≤n

(d!)k
∫

Sd







∑

1≤ j<k

∫

y≺x

�
∏

(yi/x i)
� j−1

dy







�
∏

x i

�k−2
dx

= 2
∑

2≤k≤n

(d!)kH(d)k−1

∫

Sd

�
∏

x i

�k−1
dx

= 2
∑

2≤k≤n

(d!)kΓ(k)d

Γ(dk+ 1)
H(d)k−1,

and we obtain (16).

For large n, the right-hand side of (16) converges to

2
∑

k≥2

(d!)kΓ(k)d

Γ(dk+ 1)
H(d)k−1+

∑

k≥1

(d!)kΓ(k)d

Γ(dk+ 1)
−

 

∑

k≥1

(d!)kΓ(k)d

Γ(dk+ 1)

!2

at an exponential rate, which, for large d, is asymptotic to 3
p
πd 4−d . This explains the curves

corresponding to Zn in Figure 3.

The proof for the dominating records in hypercubes is similar and omitted.

1890



Acknowledgements

We thank the referees and Alexander Gnedin for helpful comments.

References

[1] Z.-D. Bai, L. Devroye, H.-K. Hwang and H.-T. Tsai, Maxima in hypercubes, Random Structures
Algorithms 27 (2005), 290–309. MR2162600

[2] Z.-D. Bai, H.-K. Hwang, W.-Q. Liang and T.-H. Tsai, Limit theorems for the number of maxima
in random samples from planar regions, Electron. J. Probab. 6 (2001), no. 3, 41 pp. (elec-
tronic). MR1816046

[3] J. Baik, P. Deift and K. Johansson, On the distribution of the length of the longest increasing
subsequence of random permutations, J. Amer. Math. Soc. 12 (1999), 1119–1178. MR1682248

[4] Yu. Baryshnikov and A. Gnedin, Counting intervals in the packing process, Ann. Appl. Probab.
11 (2001), 863–877. MR1865026

[5] W.-M. Chen, H.-K. Hwang and T.-H. Tsai, Maxima-finding algorithms for multidimensional
samples: A two-phase approach, preprint, 2010.

[6] H.-H. Chern, M. Fuchs and H.-K. Hwang, Phase changes in random point quadtrees, ACM
Trans. Algorithms 3 (2007), no. 2, Art. 12, 51 pp. MR2335295

[7] H.-H. Chern, H.-K. Hwang and T.-H. Tsai, An asymptotic theory for Cauchy-Euler differential
equations with applications to the analysis of algorithms, J. Algorithms 44 (2002), 177–225.
MR1933199

[8] S. N. Chiu and M. P. Quine, Central limit theory for the number of seeds in a growth model in
Rd with inhomogeneous Poisson arrivals, Ann. Appl. Probab. 7 (1997), 802–814. MR1459271

[9] A. Darrasse, H.-K. Hwang, O. Bodini and M. Soria, The connectivity-profile of random increas-
ing k-trees, preprint (2009); available at arXiv:0910.3639v1.

[10] J.-D. Deuschel and O. Zeitouni, Limiting curves for iid records, Ann. Probab. 23 (1995), 852–
878. MR1334175

[11] L. Devroye, Universal limit laws for depths in random trees, SIAM J. Comput. 28 (1999), 409–
432. MR1634354

[12] P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: harmonic sums,
Theoret. Comput. Sci. 144 (1995), 3–58. MR1337752

[13] P. Flajolet, G. Labelle, L. Laforest and B. Salvy, Hypergeometrics and the cost structure of
quadtrees, Random Structures Algorithms 7 (1995), 117–144. MR1369059

[14] P. Flajolet and R. Sedgewick, Mellin transforms and asymptotics: finite differences and Rice’s
integrals, Theoret. Comput. Sci. 144 (1995), 101–124. MR1337755

1891

http://www.ams.org/mathscinet-getitem?mr=2162600
http://www.ams.org/mathscinet-getitem?mr=1816046
http://www.ams.org/mathscinet-getitem?mr=1682248
http://www.ams.org/mathscinet-getitem?mr=1865026
http://www.ams.org/mathscinet-getitem?mr=2335295
http://www.ams.org/mathscinet-getitem?mr=1933199
http://www.ams.org/mathscinet-getitem?mr=1459271
http://www.ams.org/mathscinet-getitem?mr=1334175
http://www.ams.org/mathscinet-getitem?mr=1634354
http://www.ams.org/mathscinet-getitem?mr=1337752
http://www.ams.org/mathscinet-getitem?mr=1369059
http://www.ams.org/mathscinet-getitem?mr=1337755


[15] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, Cambridge,
2009. MR2483235

[16] A. Gnedin, Records from a multivariate normal sample, Statist. Prob. Lett. 39 (1998) 11–15.
MR01649331

[17] A. Gnedin, The chain records, Electron. J. Probab. 12 (2007), 767–786. MR2318409

[18] C. M. Goldie and S. Resnick, Records in a partially ordered set, Ann. Probab 17 (1989), 678–
699. MR985384

[19] C. M. Goldie and S. Resnick, Many multivariate records, Stoch. Process. Appl. 59 (1995), 185–
216. MR1357651

[20] E. Hashorva and J. Hüsler, On asymptotics of multivariate integrals with applications to
records, Stoch. Models 18 (2002), 41–69. MR1888285

[21] E. Hashorva and J. Hüsler, Multiple maxima in multivariate samples, Stoch. Prob. Letters 75
(2005), 11–17. MR2185605

[22] H.-K. Hwang, On convergence rates in the central limit theorems for combinatorial structures,
European J. Combin. 19 (1998), 329–343. MR1621021

[23] M. Kałuszka, Estimates of some probabilities in multidimensional convex records, Appl. Math.
(Warsaw) 23 (1995), 1–11. MR1330054

[24] A. M. Vershik and S. V. Kerov, Asymptotic behavior of the Plancherel measure of the sym-
metric group and the limit form of Young tableaux, Soviet Math. Dokl. 233 (1977), 527–531.
MR0480398

1892

http://www.ams.org/mathscinet-getitem?mr=2483235
http://www.ams.org/mathscinet-getitem?mr=1649331
http://www.ams.org/mathscinet-getitem?mr=2318409
http://www.ams.org/mathscinet-getitem?mr=985384
http://www.ams.org/mathscinet-getitem?mr=1357651
http://www.ams.org/mathscinet-getitem?mr=1888285
http://www.ams.org/mathscinet-getitem?mr=2185605
http://www.ams.org/mathscinet-getitem?mr=1621021
http://www.ams.org/mathscinet-getitem?mr=1330054
http://www.ams.org/mathscinet-getitem?mr=480398

