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Abstract

Deterministic dynamic models with delayed feedback and state constraints arise in a variety of
applications in science and engineering. There is interest in understanding what effect noise has
on the behavior of such models. Here we consider a multidimensional stochastic delay differen-
tial equation with normal reflection as a noisy analogue of a deterministic system with delayed
feedback and positivity constraints. We obtain sufficient conditions for existence and uniqueness
of stationary distributions for such equations. The results are applied to an example from Inter-
net rate control and a simple biochemical reaction system.
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1 Introduction

1.1 Overview

Dynamical system models with delay are used in a variety of applications in science and engineering
where the dynamics are subject to propagation delay. Examples of such application domains include
packet level models of Internet rate control where the finiteness of transmission times leads to delay
in receipt of congestion signals or prices [25; 37], neuronal models where the spatial distribution
of neurons can result in delayed dynamics, epidemiological models where incubation periods result
in delayed transmission of disease [5], and biochemical reactions in gene regulation where lengthy
transcription and translation operations have been modeled with delayed dynamics [1; 4; 21].
There is an extensive literature, both theoretical and applied on ordinary delay differential equa-
tions. The book [13] by Hale and Lunel provides an introduction to this vast subject.

In some applications, the quantities of interest are naturally positive. For instance, rates and prices
in Internet models are positive, concentrations of ions or chemical species and proportions of a pop-
ulation that are infected are all naturally positive quantities. In deterministic differential equation
models for the delayed dynamics of such quantities, the dynamics may naturally keep the quantities
positive or they may need to be adapted to be so, sometimes leading to piecewise continuous delay
differential dynamics, see e.g., [25; 26; 27; 28; 29]. There is some literature, especially applied, on
the latter, although less than for unconstrained delay systems or naturally constrained ones.

Frequently in applications, noise is present in a system and it is desirable to understand its effect
on the dynamics. For unconstrained systems, one can consider ordinary delay differential equations
with an addition to the dynamics in the form of white noise or even a state dependent noise. There
is a sizeable literature on such stochastic delay differential equations (SDDE) [2; 7; 11; 15; 19; 20;
22; 23; 30; 34; 35; 36]. To obtain the analogue of such SDDE models with positivity constraints,
in general, it is not simply a matter of adding a noise term to the ordinary differential equation
dynamics, as this will frequently not lead to a solution respecting the state constraint, especially if
the dispersion coefficient depends on a delayed state.

As described above, there is natural motivation for considering stochastic differential equations
where all three features, delay, positivity constraints and noise, are present. However, there has been
little work on systematically studying such equations. One exception is the work of Kushner (see
e.g., [17]), although this focuses on numerical methods for stochastic delay differential equations
(including those with state constraints), especially those with bounded state space. We note that the
behavior of constrained systems can be quite different from that of unconstrained analogues, e.g.,
in the deterministic delay equation case, the addition of a positivity constraint can turn an equation
with unbounded oscillatory solutions into one with bounded periodic solutions, and in the stochastic
delay equation case, transient behavior can be transformed into positive recurrence.

Here we seek conditions for existence and uniqueness of stationary distributions for stochastic delay
differential equations with positivity constraints of the form:

X (t) = X (0) +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dW (s) + Y (t), t ≥ 0, (1)

where X (t) takes values in the closed positive orthant of some Euclidean space, τ ∈ [0,∞) is the
length of the delay period, Xs = {X (s+ u) : −τ ≤ u ≤ 0} tracks the history of the process over the
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delay period, W is a standard (multi-dimensional) Brownian motion noise source and the stochastic
integral with respect to W is an Itô integral, and Y is a vector-valued non-decreasing process which
ensures that the positivity constraints on X are enforced. In particular, the i th component of Y
can increase only when the i th component of X is zero. We refer to equations of the form (1) as
stochastic delay differential equations with reflection, where the action of Y is termed reflection (at
the boundary of the orthant).

This paper is organized as follows. Our assumptions on the coefficients b and σ for well-posedness
of (1), the rigorous definition of a solution of (1), and some properties of solutions are given in
Section 2.1. Our main result giving sufficient conditions for existence and uniqueness of stationary
distributions for (1) is stated in Section 2.2, and some examples of applications of the result are
given in Section 2.3. In preparation for Section 3, a useful a priori moment bound on solutions to
(1) is given in Section 2.4. Section 3 focuses on establishing sufficient conditions for existence of
stationary distributions. A general condition guaranteeing existence is described in Section 3.1. This
condition is in terms of uniform moment bounds, and it is fairly standard. Such bounds for second
moments are shown to hold in Sections 3.4 and 3.5, under certain conditions on b andσ. The results
of Sections 3.1, 3.4 and 3.5 are combined to give sufficient conditions for existence of a stationary
distribution in Section 3.6. Our proofs of the moment bounds use stochastic Lyapunov/Razumikhin-
type arguments applied to suitable functions of an overshoot process which is introduced in Section
3.2. For these arguments, the positive oscillation of a path, which is introduced in Section 3.3,
proves to be a useful refinement of the usual notion of oscillation of a path. While our main results
in Section 3 are new, we do use some results and adapt some techniques developed by Itô and
Nisio [15] and Mao [20] for stochastic delay differential equations without reflection. Conditions
for uniqueness of a stationary distribution are given in Section 4. Our proofs in that section are
an adaptation of methods developed recently by Hairer, Mattingly and Scheutzow [12] for proving
uniqueness of stationary distributions for stochastic delay differential equations without reflection.
An important new aspect of the results in [12] is that they enable one to obtain uniqueness of
stationary distributions for stochastic delay differential equations when the dispersion coefficient
depends on the history of the process over the delay period, in contrast to prior results on uniqueness
of stationary distributions for stochastic delay differential equations which often restricted to cases
where the dispersion coefficient depended only on the current state X (t) of the process [7; 17;
34; 36], with notable exceptions being [15; 30]. The important feature that distinguishes the
results of [12] from those of [15; 30] is that the authors of [12] obtain uniqueness of the stationary
distribution without requiring the existence of a unique random fixed point; see Section 4 for further
discussion of this point. Appendix A states some well-known facts about reflection, and Appendix B
covers some inequalities that appear frequently throughout this work.

1.2 Notation and Terminology

We shall use the following notation and terminology throughout this work.

For a real number a, we shall say that a is positive if a ≥ 0 and we shall say that a is strictly positive
if a > 0. For each strictly positive integer d, let Rd denote d-dimensional Euclidean space, and let
Rd
+ = {v ∈ R

d : vi ≥ 0 for i = 1, . . . , d} denote the closed positive orthant in Rd . When d = 1, we
suppress the d and write R for (−∞,∞) and R+ for [0,∞). For each i = 1, . . . , d, the i th component
of a column vector v ∈ Rd will be denoted by v i . For two vectors u, v ∈ Rd , the statement u≥ v will
mean that ui ≥ v i for each i = 1, . . . , d. For each r ∈ R, define r+ =max{r, 0} and r− =max{−r, 0}.
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For any real numbers r, s, δr,s denotes the Kronecker delta, i.e., it is one if r = s and zero otherwise.

Unless specified otherwise, we treat vectors v ∈ Rd as column vectors, i.e., v = (v1, . . . , vd)′. For

u, v ∈ Rd , u · v =
d
∑

i=1
ui v i denotes the dot product of u with v. Given v ∈ Rd , |v| = (v · v)

1
2 , the

Euclidean norm of v. Let Md×m denote the set of d × m matrices with real entries. For a given
matrix A∈Md×m, Ai

j denotes the entry of the i th row and the j th column, Ai denotes the i th row, and

A j denotes the j th column. The notation Id will denote the (d × d)-identity matrix. Given a d ×m

matrix A, |A| :=

 

d
∑

i=1

m
∑

j=1
(Ai

j)
2

!
1
2

denotes the Frobenius norm of A.

For any metric space E with metric ρ, we use B(x , r) (where x ∈ E and r > 0) to denote the open
ball {y ∈ E : ρ(x , y)< r} of radius r around x , and we useB(E) to denote the associated collection
of Borel sets of E. The set of bounded, continuous real-valued functions on E will be denoted by
Cb(E).
For any two metric spaces E1,E2, let C(E1,E2) denote the set of continuous functions from E1 into
E2. Here, E1 will often be a closed interval F ⊂ (−∞,∞), and E2 will often be Rd or Rd

+ for various
dimensions d.

For any integer d and closed interval I in (−∞,∞), we endow C(I ,Rd) and C(I ,Rd
+) with the

topologies of uniform convergence on compact intervals in I . These are Polish spaces. In the case of
C(I ,Rd

+), we useMI to denote the associated Borel σ-algebra. We shall also use the abbreviations
CI = C(I ,R+) and Cd

I = C(I ,Rd
+).

For a closed interval I in (−∞,∞), a1 ≤ a2 in I and a path x = (x1, . . . , xd)′ ∈ C(I ,Rd) we define
the oscillation of x over [a1, a2] by

Osc(x , [a1, a2]) :=
d

max
i=1

sup
s,t∈[a1,a2]

|x i(t)− x i(s)|, (2)

the modulus of continuity of x over I by

wI(x ,δ) :=
d

max
i=1

sup
s,t∈I
|s−t|<δ

|x i(t)− x i(s)|, δ > 0, (3)

and the supremum norm of x over I by

‖x‖I = sup
t∈I
|x(t)|.

Throughout this work, we fix τ ∈ (0,∞), which will be referred to as the delay. Define I = [−τ, 0]
and J= [−τ,∞). As a subset of the vector space C(I,Rd), Cd

I has norm

‖x‖ := ‖x‖I, x ∈ Cd
I ,

that induces its topology of uniform convergence on compact intervals. The associated Borel σ-
algebra isMI. For x ∈ Cd

J and t ≥ 0, define x t ∈ Cd
I by x t(s) = x(t + s) for all s ∈ I. It should be

emphasized that x(t) ∈ Rd
+ is a point, while x t ∈ Cd

I is a continuous function on I taking values in
Rd
+. For each t ∈ R+, we define the projection pt : Cd

J → C
d
I by pt(x) := x t for each x ∈ Cd

J .
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By a filtered probability space, we mean a quadruple (Ω,F , {Ft , t ≥ 0}, P), where F is a σ-algebra
on the outcome space Ω, P is a probability measure on the measurable space (Ω,F ), and {Ft , t ≥ 0}
is a filtration of sub-σ-algebras of F where the usual conditions are satisfied, i.e., (Ω,F , P) is a
complete probability space, and for each t ≥ 0, Ft contains all P-null sets of F and Ft+ := ∩

s>t
Fs =

Ft . Given two σ-finite measures µ,ν on a measurable space (Ω,F ), the notation µ ∼ ν will mean
that µ and ν are mutually absolutely continuous, i.e., for any Λ ∈ F , µ(Λ) = 0 if and only if
ν(Λ) = 0. By a continuous process, we mean a process with all paths continuous.

Given a positive integer m, by a standard m-dimensional Brownian motion, we mean a continuous
process {W (t) = (W 1(t), . . . , W m(t))′, t ≥ 0} taking values in Rm such that

(i) W (0) = 0 a.s.,

(ii) the coordinate processes, W 1, . . . , W m, are independent,

(iii) for each i = 1, . . . , m, positive integer n and 0 ≤ t1 < t2 < · · · < tn < ∞, the increments:
W i(t2)−W i(t1), W i(t3)−W i(t2), . . . , W i(tn)−W i(tn−1), are independent, and

(iv) for each i = 1, . . . , m and 0 ≤ s < t < ∞, W i(t)−W i(s) is normally distributed with mean
zero and variance t − s.

Given a function f : {1,2, . . . } → R and a ∈ (−∞,∞], the notation f (n)↗ a as n→∞ means that
lim

n→∞
f (n) = a and f (n)≤ f (n+ 1) for each n= 1, 2, . . ..

2 Stochastic Delay Differential Equations with Reflection

In this section, we define our assumptions and the notion of a solution to equation (1) precisely.
We state our main result and give some examples of its application. We also derive some useful
properties of solutions to (1).

2.1 Definition of a Solution

Recall from Section 1.2 that we are fixing a τ ∈ (0,∞), which will be referred to as the delay, and
we define I= [−τ, 0], J= [−τ,∞), Cd

I = C(I,Rd
+) and Cd

J = C(J,Rd
+). Furthermore, we fix positive

integers d and m, and functions b : Cd
I → R

d and σ : Cd
I →M

d×m that satisfy the following uniform
Lipschitz assumption. Although we do not need as strong an assumption as this for well-posedness
of (1), we will use this condition in proving uniqueness of stationary distributions. Accordingly, we
shall assume the following condition holds throughout this work.

Assumption 2.1. There exists a constant κL > 0 such that

|b(x)− b(y)|2+ |σ(x)−σ(y)|2 ≤ κL‖x − y‖2 for all x , y ∈ Cd
I . (4)

Remark. A simple consequence of the Lipschitz condition (4) is that there exist strictly positive
constants C1, C2, C3 and C4 such that for each x ∈ Cd

I ,

|b(x)| ≤ C1+ C2‖x‖, and (5)

|σ(x)|2 ≤ C3+ C4‖x‖2. (6)
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Definition 2.1.1. Given a standard m-dimensional Brownian motion martingale W = {W (t), t ≥ 0}
on a filtered probability space (Ω,F , {Ft , t ≥ 0}, P), a solution of the stochastic delay differential
equation with reflection (SDDER) associated with (b,σ) is a d-dimensional continuous process X =
{X (t), t ∈ J} on (Ω,F , P) that P-a.s. satisfies (1), where

(i) X (t) is F0-measurable for each t ∈ I, X (t) is Ft -measurable for each t > 0, and X (t) ∈ Rd
+

for all t ∈ J,

(ii) Y = {Y (t), t ≥ 0} is a d-dimensional continuous and non-decreasing process such that Y (0) =
0 and Y (t) is Ft -measurable for each t ≥ 0,

(iii)
∫ t

0
X (s) · dY (s) = 0 for all t ≥ 0, i.e., Y i can increase only when X i is at zero for i = 1, . . . , d.

The natural initial condition is an initial segment X0 = x ∈ Cd
I , or more generally, an initial distri-

bution µ on (Cd
I ,MI), i.e., P(X0 ∈ Λ) = µ(Λ) for each Λ ∈MI.

Remark. As a consequence of condition (i) and the continuity of the paths of X , {X t , t ≥ 0} is
adapted to {Ft , t ≥ 0}, and t → X t(ω) is continuous from R+ into Cd

I for each ω ∈ Ω. It follows
that the mapping F : R+ × Ω → Cd

I , where F(t,ω) = X t(ω), is progressively measurable, being
continuous in t and adapted (see Lemma II.73.10 of [32]). Continuity of σ now implies that
n

∫ t

0
σ(Xs)dW (s),Ft , t ≥ 0

o

is a continuous d-dimensional local martingale; also, condition (ii) and

continuity of b implies that {X (0) +
∫ t

0
b(Xs)ds + Y (t),Ft , t ≥ 0} is a continuous adapted process

that is locally of bounded variation. Therefore, {X (t), t ≥ 0} is a continuous semimartingale with
respect to {Ft , t ≥ 0}.

For notational convenience, given a continuous adapted stochastic process {ξ(t), t ≥ −τ} taking
values in Rd

+ and an m-dimensional Brownian motion W , all defined on some filtered probability
space (Ω,F , {Ft}, P), we define

I (ξ)(t) := ξ(0) +

∫ t

0

b(ξs)ds+

∫ t

0

σ(ξs)dW (s), t ≥ 0. (7)

For a solution X of the SDDER, X (t) = I (X )(t) + Y (t), t ≥ 0, where the regulator term, Y , has the
following explicit formula in terms of I (X ): for each i = 1, . . . , d,

Y i(t) = max
s∈[0,t]

�

�

I (X )
�i(s)

�−
, t ≥ 0.

In the notation of Appendix A, X = φ(I (X )) and Y = ψ(I (X )), because of the uniqueness of
solutions to the Skorokhod problem; thus, Y is a function of X (cf. (108)). Then as a consequence
of Proposition A.0.1(i), we have the following.

Proposition 2.1.1. For any 0≤ a < b <∞

Osc(X , [a, b])≤ Osc(I (X ), [a, b]). (8)
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Strong existence and uniqueness of a solution to (1) is a consequence of Assumption 2.1. We state
this as a proposition. The proof is fairly standard and so we just sketch it.

Proposition 2.1.2. Given a Brownian motion martingale {W (t), t ≥ 0} on a filtered probability space
(Ω,F , {Ft , t ≥ 0}, P) and an F0-measurable Cd

I -valued random element ξ, there exists a unique
solution X to the SDDER (1) with initial condition X0 = ξ and driving Brownian motion W. Let X x

denote the solution with X0 = x in Cd
I . Then the associated family

{Pt(x ,Λ) := P(X x
t ∈ Λ), t ≥ 0, x ∈ Cd

I ,Λ ∈MI}

of transition functions is Markovian and Feller continuous.

Sketch of proof. As a consequence of Proposition 2.1.1 and the uniform Lipschitz properties of b, σ
and φ, if X (t), X̃ (t), X †(t), X̃ †(t), t ≥−τ and Y (t), Y †(t), t ≥ 0 are continuous Rd

+-valued processes
such that X0 = X̃0, X †

0 = X̃ †
0 and (X |R+ , Y ) solves the Skorokhod problem for I (X̃ ) and (X † |R+ , Y †)

solves the Skorokhod problem for I (X̃ †), then for each T > 0 there exist constants KT , K ′T ≥ 0 such
that for all stopping times η,

E
h

‖X − X †‖2[0,T∧η]

i

≤ KT E
�

‖X0− X †
0‖

2
�

+ K ′T

∫ T

0

E
h

‖X̃ − X̃ †‖2[0,r∧η]

i

dr. (9)

By truncating the initial condition, we can reduce the proof of existence to the case where
E[‖ξ‖2] < ∞. Existence in this case then follows by a standard Picard iteration using (9) (see,
e.g., Chapter 10 of [6]). Gronwall’s inequality is used to prove uniqueness. Feller continuity fol-
lows from the standard argument that given a sequence of deterministic initial conditions {xn}∞n=1
such that lim

n→∞
xn = x ∈ Cd

I , the sequence of distributions {P(X xn
∈ ·)}∞n=1 on (Cd

J ,MJ) is tight, and

any weak limit point is the distribution of the solution X x . The Markov property for the transition
functions then follows from the uniqueness of solutions of (1).

Remark. It should be noted that global Lipschitz continuity is more than necessary to have a well-
defined and Feller continuous family of Markovian transition functions associated with (1). One can
obtain this same conclusion if the coefficients b and σ are continuous and obey (5) and (6), and
weak existence and uniqueness in law of solutions to (1) holds.

2.2 Main Result

We begin by defining a stationary distribution.

Definition 2.2.1. A stationary distribution for (1) is a probability measure π on (Cd
I ,MI) such that

π(Λ) = (πPt)(Λ) :=
∫

Cd
I

Pt(x ,Λ)π(d x) for all t ≥ 0 and Λ ∈MI.

It is well-known that (non-delayed) Ornstein-Uhlenbeck processes have (unique) stationary distri-
butions, and it is not hard to show that the reflected analogues also have stationary distributions.
The following condition for delayed systems is motivated by these facts.

Assumption 2.2. There exist positive constants B0, B1, B1,1, . . . , B1,d , B2,1, . . . , B2,d , C0, C2,1, . . . , C2,d ,
M, constants q1 ∈ (0,1], q2 ∈ (0,2], probability measures µ1

1, . . . ,µd
1 , µ1

2, . . . ,µd
2 on (I,B(I)), and

a measurable function ` : Cd
I → R

d
+, such that for each x ∈ Cd

I and i = 1, . . . , d, `i(x) ∈ x i(I) :=
{x i(s), s ∈ I} for each i, and
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(i) whenever x i(0)≥ M, we have

bi(x) ≤ B0− B1 x i(0)− B1,i`
i(x) + B2,i

∫ 0

−τ
|x(r)|q1µi

1(dr), (10)

(ii) whenever x i(0)≥ M, we have

�

�σi(x)
�

�

2 ≤ C0+ C2,i

∫ 0

−τ
|x(r)|q2µi

2(dr), (11)

(iii) for B1 :=min
i

B1,i and B̃2 :=

�

d
∑

i=1
B2

2,i

�
1
2

, we have

B1+ B1 >






τ

 

d
∑

i=1

(B1,iB2,i)
2

!
1
2

+ B̃2






δq1,1+







1

2

d
∑

i=1

C2,i + 4
p
τ

 

d
∑

i=1

C2,iB
2
1,i

!
1
2






δq2,2.

Remark. Note that parts (i) and (ii) restrict bi and σi only on {x ∈ Cd
I : x i(0)≥ M}, and the control

on bi is only one-sided. However, b and σ will always be required to satisfy the Lipschitz condition
(4), which implies the linear growth bounds (5) and (6). These restrict the growth of b and σ for

all x ∈ Cd
I , though, on

d
∪

i=1
{x ∈ Cd

I : x i(0)≥ M}, this growth control on b and |σ| is weaker than the

at-most-integral-linear growth imposed by parts (i) and (ii) of the above assumption.

It is well-known that reflected Brownian motion on the half-line with strictly negative drift has a
(unique) stationary distribution. The following assumption (which is distinct from Assumption 2.2)
is sufficient for a stationary distribution for (1) to exist and the form of this condition is motivated
by the aforementioned fact.

Assumption 2.3. There exist positive constants Ku, M, strictly positive constants Kd , Kσ, and a mea-
surable function ` : Cd

I → R
d
+, such that for each x ∈ Cd

I and i = 1, . . . , d, `i(x) ∈ x i(I), and whenever
x i(0)≥ M, we have:

(i) bi(x)≤ Ku1[0,M](`i(x))− Kd1[M ,∞)(`i(x)), and

(ii) |σi(x)|2 ≤ Kσ.

Remark. Assumption 2.3 requires bi and |σi| to be bounded above on the set {x ∈ Cd
I : x i(0)≥ M},

but this does not necessarily imply that they are bounded above on Cd
I . Also, note that unlike (iii)

of Assumption 2.2, Assumption 2.3 has no restrictions on the size of the constants M , Ku, Kd , Kσ
(beyond strict positivity of Kd and Kσ).

The following assumption is using in proving uniqueness of a stationary distribution.

Assumption 2.4. The diffusion matrix σσ′ is uniformly elliptic, i.e., there is a constant a > 0 such
that v′σ(x)(σ(x))′v ≥ a|v|2 for all x ∈ Cd

I and v ∈ Rd .
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We shall use the following consequence of Assumption 2.4 in our proofs.

Proposition 2.2.1. Under the Lipschitz condition (4) and Assumption 2.4, the dispersion coefficient
σ has a continuous bounded right inverse, i.e., there is a constant Cσ > 0 and a continuous function
σ† : Cd

I →M
m×d such that for all x ∈ Cd

I , σ(x)σ
†(x) = Id , and |σ†(x)| ≤ Cσ for all x ∈ Cd

I .

Proof. Under the assumptions of the proposition, since σσ′ is continuous and uniformly strictly
positive definite, it follows by standard arguments that (σσ′)−1 is a well-defined, continuous and
bounded function on Cd

I . Then σ† := σ′(σσ′)−1 is continuous and is a right inverse for σ. The
(uniform) boundedness of σ† follows from the fact that

|σ†v|2 = v′(σσ′)−1σσ′(σσ′)−1v = v′(σσ′)−1v ≤ Cσ|v|2,

where Cσ is a bound on the norm of (σσ′)−1.

Our main result is the following theorem.

Theorem 2.2.1. Under Assumption 2.1, if Assumption 2.4 and either Assumption 2.2 or 2.3 hold, then
there exists a unique stationary distribution for the SDDER (1).

Proof. The result follows from Theorems 3.6.1 and 4.3.1 below.

2.3 Examples

Example 2.3.1. Differential delay equations with linear or affine coefficients are used often in engi-
neering. We consider the following example of an SDDER with affine coefficients. For x ∈ CI, let

b(x) := b0− b1 x(0)−
n
∑

i=2

bi x(−ri) +
n′
∑

i=n+1

bi x(−ri), (12)

and

σ(x) := a0+
n′′
∑

i=1

ai x(−si), (13)

where 0≤ ri ≤ τ and 0≤ si ≤ τ for each i, n′ ≥ n≥ 1, n′′ ≥ 0, b0 ∈ R and b1, . . . , bn′ , a0, . . . , an′′ ≥ 0.
If a0 > 0 and

n
∑

i=1

bi >





n′
∑

i=n+1

bi





 

1+τ
n
∑

i=2

bi

!

+
1

2





n′′
∑

i=1

ai





2

+ 4
p
τ

n′′
∑

i=1

ai

n
∑

i=2

bi ,

then the one-dimensional SDDER associated with (b,σ) has a unique stationary distribution. This
follows from Theorem 2.2.1: the coefficients are clearly uniformly Lipschitz continuous, Assumption
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2.2 holds with M = 0, B0 = (b0)+, B1 = b1, B1,1 =
n
∑

i=2
bi , B2,1 =

n′
∑

i=n+1
bi , q1 = 1, q2 = 2, `(x) =

B−1
1,1

n
∑

i=2

bi x(−ri) if B1,1 > 0,

µ1 =

n′
∑

i=n+1

biδ{−ri}

B2,1
if B2,1 > 0, µ2 =

n′′
∑

i=1

aiδ{−si}

n′′
∑

i=1

ai

if C2,1 > 0, (14)

where for γ > 1 sufficiently small, by (111) and the Cauchy-Schwarz inequality, we may take

C0 = K(a0,γ, 2) and C2,1 = γ





n′′
∑

i=1

ai





2

,

and Assumption 2.4 holds because σ is uniformly positive definite when a0 > 0.

Example 2.3.2. Fix α,γ,ε, C > 0. For x ∈ CI, define

b(x) = α
�

1+ x(−τ)
C

�2 − γ, and σ(x) = ε
Ç

α
�

1+ x(−τ)
C

�2 + γ .

The SDDER associated with this pair (b,σ) is a noisy version of a simple model used in the study of
biochemical reaction systems [21]. In this model, a lengthy transcription/translation procedure leads
to delayed negative feedback in the deterministic dynamics.

It is straightforward to verify that b, σ satisfy the uniform Lipschitz Assumption 2.1. If x ∈ CI such

that x(−τ) ≥ C
q

2α
γ

, then b(x) ≤ −γ
2
. The dispersion coefficient is bounded by ε

p

α+ γ. Therefore,

Assumption 2.3 is satisfied with `(x) = x(−τ), Kd =
γ

2
, Ku = α, Kσ = ε2(α+ γ) and M = C

q

2α
γ

.

Also, σ is uniformly positive definite and so Assumption 2.4 holds. Therefore by Theorem 2.2.1, the
SDDER associated with this (b,σ) has a unique stationary distribution.

Example 2.3.3. Deterministic delay differential equations have been used in modeling the dynamics of
data transmission rates and prices in Internet congestion control [37]. In this context, the finiteness of
transmission times results in delayed congestion signals and leads to differential dynamics with delayed
negative feedback. There is a considerable body of work on obtaining sufficient conditions for stability
of equilibrium points (see e.g., [8; 26; 27; 28; 29; 38; 39; 41]) for such models. It is natural to ask
about the properties of noisy versions of these deterministic models and in particular to inquire about
the existence and uniqueness of stationary distributions for such models. Here, as an illustration, we
consider a noisy version of a model studied by Paganini and Wang [26], Peet and Lall [29], Papachris-
tadolou [27] and Papachristadolou, Doyle and Low [28]. This model has d links and d ′ sources. In the
deterministic model the dynamics are given by

dX (t) = b̂(X t)d t, (15)
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where the i th component of X (t) represents the price at time t that link i charges for the transmission
of a packet through it. The discontinuous drift b̂ is given for each i = 1, . . . , d and x ∈ Cd

I by

b̂i(x) =















−1+
d ′
∑

j=1
Ai j exp

�

−B j

d
∑

k=1
Ak jCk j x

k(−ri jk)

�

if x i(0)> 0,
 

−1+
d ′
∑

j=1
Ai j exp

�

−B j

d
∑

k=1
Ak jCk j x

k(−ri jk)

�

!+

if x i(0) = 0,

(16)

for some B1, . . . , Bd > 0 Ai j ≥ 0, Ck j > 0 and ri jk > 0 for all i, k ∈ {1, . . . , d} and j ∈ {1, . . . , d ′}. The
matrix A, which is related to routing in the network model, is assumed to have full row rank and to
be such that for each i, Ai j > 0 for some j, indicating that each source must use at least one link. The
solutions of (15) remain in the positive orthant by the form of b̂ (for the meaning of a solution with
such a discontinuous right hand side, see, e.g., [10]). Various authors (see e.g., [26; 27; 28; 29]) have
given sufficient conditions, principally in terms of smallness of the components of the gain parameter B,
for there to be a unique globally asymptotically stable equilibrium point for (16). We now consider a
noisy version of (16) and ask when it has a unique stationary distribution.

By uniqueness of solutions, the solutions of the SDDER associated with σ ≡ 0 coincide with the solutions
of (15) when the drift b in (1) is defined by

bi(x) :=−1+
d ′
∑

j=1

Ai j exp

 

−B j

d
∑

k=1

Ak jCk j x
k(−ri jk)

!

, i = 1, . . . , d.

Allowing σ to be non-zero yields a noisy version of (16). For this noisy version, we assume that m ≥ d
and that σ : Cd

I →M
d×m is uniformly Lipschitz continuous and satisfies

a1|v|2 ≤ v′σ(x)σ(x)′v ≤ a2|v|2 for all x ∈ Cd
I and v ∈ Rd , (17)

for some 0 < a1 < a2 <∞. It is easily verified that b is uniformly Lipschitz continuous and for each
i = 1, . . . , d,

bi(x) ≤ −1+
d ′
∑

j=1

Ai j exp
�

−B jAi jCi j x
i(−ri ji)

�

≤ −
1

2
(18)

whenever
d ′
∑

j=1
Ai j exp

�

−B jAi jCi j x
i(−ri ji)

�

≤ 1
2
. The latter holds if

d ′

min
j=1

x i(−ri ji)≥
ln
�

2d ′
d ′

max
j=1

Ai j

�

min
j:Ai j 6=0

B jAi jCi j
.

(Recall that maxd ′
j=1 Ai j > 0 by assumption.) It follows that b,σ satisfy Assumptions 2.1, 2.3 and 2.4

with τ :=max
i, j,k

ri jk, `i(x) =
d ′

min
j=1

x i(−ri ji), Ku =max
i

d ′
∑

j=1
Ai j , Kd =

1
2
, Kσ = a2, Cσ =

1p
a1

and

M =
d

max
i=1

ln
�

2d ′
d ′

max
j=1

Ai j

�

min
j:Ai j 6=0

B jAi jCi j
.
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Then, by Theorem 2.2.1, the SDDER with these coefficients (b,σ) has a unique stationary distribution.
Thus, this noisy version of (16) has a unique stationary distribution without imposing additional re-
strictions on the parameters. This is in contrast to the known conditions for stability of the equilibrium
solution in the deterministic equation (16).

Our results can be similarly applied to a slightly modified and noisy version of the Internet rate control
model studied by Vinnecombe [38; 39] and Srikant et al. [8; 41] to yield existence and uniqueness of a
stationary distribution for such a model without the strong conditions on the parameters used to obtain
stability of the deterministic model. In particular, consider the deterministic delay model in equations
(2)–(5) of [41] with ni , mi ≥ 0 and replace xni

i (t) by xni
i (t) + c for some c > 0 (to prevent blowup of

the drift when x i reaches zero), replace xmi
i (t) by g(xmi

i (t)) where g(s) = s for s ≤ K and g(s) = K for
s ≥ K where K is a sufficiently large positive constant, and truncate the feedback functions fl with an
upper bound once the argument of these functions gets to a high level. Then with a dispersion coefficient
of the same form as in (17) above one can prove that the associated SDDER has a unique stationary
distribution by verifying that Assumptions 2.1, 2.2 and 2.4 hold.

2.4 Moment Bounds over Compact Time Intervals

Under Assumption 2.1, any solution X of the SDDER (1) satisfies the following supremum bound.

Lemma 2.4.1. For each p ∈ [2,∞), there exists a continuous function Fp : R+ × R+ → R+ that is
non-decreasing in each argument and such that

E
h

‖X‖p
[−τ,T]

i

≤ Fp(E[‖X0‖p], T ) for each T > 0. (19)

In fact,
Fp(r, s) = kp(s) + k̃p(s)r,

where the functions kp and k̃p are non-decreasing on (0,∞) and they depend only on p, the dimensions
d, m, and the linear growth constants C1, C2, C3, C4 from (5) and (6).

Sketch of proof. Inequality (110) and Proposition 2.1.1 can be used to obtain for any T > 0,

‖X‖p
[−τ,T] ≤ 2p−1 �‖X0‖p + (d Osc(I (X ), [0, T]))p

�

≤ 2p−1‖X0‖p + 22p−2dp





 

∫ T

0

|b(X t)|d t

!p

+ 2p sup
s∈[0,T]

�

�

�

�

�

∫ s

0

σ(X t)dW (t)

�

�

�

�

�

p

 .

The remainder of the proof follows from a standard argument (cf., Theorem 2.3 in Chapter 3 of
[19]) using the linear growth conditions (5) and (6), the Burkholder-Davis-Gundy inequalities and
a standard stopping argument allowing us to use Gronwall’s inequality.

3 Existence of a Stationary Distribution

In this section, we prove that either Assumption 2.2 or 2.3 (in addition to Assumption 2.1) is suffi-
cient to imply the existence of a stationary distribution for the SDDER (1). Throughout this section,
we assume that X is a solution of the SDDER (1) with a possibly random initial condition X0. When
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the initial condition for X is deterministic, we will sometimes use the notation X xo for the unique
solution with the initial condition xo. We begin in Section 3.1 by describing a general sufficient
condition for existence of a stationary distribution in terms of uniform (in t) moment bounds for
‖X t‖. We then use stochastic Lyapunov/Razumikhin-type arguments to verify that such bounds
hold for second moments under either Assumption 2.2 or Assumption 2.3. Lyapunov-type functions
are applied to an auxiliary process which we call the overshoot process and which we introduce in
Section 3.2. In Section 3.3 we develop some preliminary results on the “positive oscillation" of a
path. Sections 3.4 and 3.5 contain the key technical arguments for establishing the moment bounds
under Assumption 2.2 and Assumption 2.3, respectively. Loosely speaking, each of these assump-
tions implies that, for each i, the i th component of b has a term providing a push in the negative
direction (towards zero) on the set {x ∈ Cd

I : |x i(0)| ≥ M} for some M > 0. The two assumptions
are distinguished by differences in the size of this “restoring force" and on the additional terms com-
posing b and the assumptions on σ. Assumption 2.2 allows the additional terms in b to grow (in
a sufficiently controlled manner) but requires the negative push in bi(x) to be at least proportional
to a value lying in the range of x i . For Assumption 2.3, |σ| and the components of b are bounded
above and the negative push is strictly negative and bounded away from zero. In Section 3.6 we
combine the results of the preceding subsections to obtain the desired existence result.

Remark. Scrutiny of our proofs reveals that the results of this section still hold if Assumption 2.1
is replaced by the weaker assumptions that weak existence and uniqueness in law holds for (1),
and that the coefficients b and σ are continuous and satisfy the linear growth conditions (5) and
(6). As noted in the Remark following Proposition 2.1.2, under the latter conditions, the solutions
of (1) define a Feller continuous Markov process. As explained in Section 2, we have assumed the
stronger Assumption 2.1 throughout this paper because this assumption will be used critically in our
uniqueness proof.

3.1 Sufficient Conditions for Existence of a Stationary Distribution

A common method for showing the existence of a stationary distribution for a Markov process is to
exhibit a limit point of a sequence of Krylov-Bogulyubov measures [2; 7; 15; 30]. In light of that,
given xo ∈ Cd

I and T > 0, we define the probability measure Qxo
T on (Cd

I ,MI) by

Qxo
T (Λ) :=

1

T

∫ T

0

Pu(xo,Λ)du for all Λ ∈MI. (20)

Remark. The function u→ Pu(xo,Λ) is measurable as a consequence of the stochastic continuity of
the family {Pt(·, ·), t ≥ 0}, which follows from the continuity of the paths of X xo .

The following theorem gives sufficient conditions for the existence of a stationary distribution for
the SDDER (1). Although we only use this result with p = 2 in this work, we give the result for
general p > 0 as the proof is similar for all p.

Theorem 3.1.1. Fix xo ∈ Cd
I and assume that sup

t≥0
E[‖X xo

t ‖p] < ∞ for some p > 0. Then for any

sequence {Tn}∞n=1 in (0,∞) that increases to∞, the sequence {Qxo
Tn
}∞n=1 of probability measures is tight

and any weak limit point is a stationary distribution for the SDDER (1).
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Proof. By Markov’s inequality, for any T > 0 and a > 0,

Qxo
T

�

x ∈ Cd
I : |x(0)|> a

�

=
1

T

∫ T

0

P (|X xo(s)|> a) ds ≤
1

ap sup
t≥0

E [|X xo(t)|p] . (21)

The last term tends to zero as a→∞, independently of T .

Fix ε,λ > 0 and u ≥ τ, and recall the notation for the modulus of continuity from (3). The linear
growth condition (5) and Proposition 2.1.1 imply that for any δ > 0:

P
�

wI(X
xo
u ,δ)≥ λ

�

≤ P
�

δ
�

C1+ C2‖X xo‖[u−2τ,u]

�

≥
λ

2

�

+P






sup

u−τ≤s<t≤u
|s−t|<δ

max
i=1,...,d

�

�

�

�

�

∫ t

s

σi(X xo
r )dW (r)

�

�

�

�

�

≥
λ

2






. (22)

By Markov’s inequality,

sup
t≥τ

P
�

‖X xo‖[t−2τ,t] > a
�

≤
2

ap sup
t≥0

E
�

‖X xo
t ‖

p
�

,

which approaches zero as a→∞. This implies that there is δ(1)
ε,λ ∈ (0, λ

4C1
) such that

sup
u≥τ

P
�

δ
�

C1+ C2‖X xo‖[u−2τ,u]

�

≥
λ

2

�

<
ε

4
for all δ ∈ (0,δ(1)

ε,λ].

Since σ grows at most linearly, a standard time-change argument (see, e.g., Theorem 3.4.6 and
Problem 3.4.7 of [16], or V.1.7 of [31]) implies that there is δ(2)

ε,λ > 0 such that whenever δ ∈

(0,δ(2)
ε,λ] we have

sup
u≥τ

P






sup

u−τ≤s<t≤u
|s−t|<δ

max
i=1,...,d

�

�

�

�

�

∫ t

s

σi(X xo
r )dW (r)

�

�

�

�

�

≥
λ

2






<

ε

4
. (23)

It follows that

P
�

wI(X
xo
u ,δ)≥ λ

�

<
ε

2
whenever 0< δ < δε,λ := δ(1)

ε,λ ∧δ
(2)
ε,λ and u≥ τ.

For any T ≥ 2τ
ε
∨τ and 0< δ < δε,λ, on combining the above we have

Qxo
T

�

x ∈ Cd
I : wI(x ,δ)≥ λ

�

=
1

T

∫ τ

0

P
�

wI(X
xo
u ,δ)≥ λ

�

du+
1

T

∫ T

τ

P
�

wI(X
xo
u ,δ)≥ λ

�

du

< ε. (24)

Tightness of {Qxo
Tn
}∞n=1 follows from (21) and (24), by Theorem 7.3 of [3].

The fact that any weak limit point of {Qxo
Tn
}∞n=1 is a stationary distribution is a consequence of The-

orem 1.2 of [3] and the Feller continuity of the associated family {Pt(·, ·), t ≥ 0} of Markovian
transition functions.
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3.2 Overshoot Process

Let M̃ ≥ 0. For each i = 1, . . . , d, define the overshoot, Z i , of X i by

Z i(t) :=
�

X i(t)− M̃
�+

, for t ≥−τ. (25)

Part (iii) of Definition 2.1.1 implies that
∫ t

0
1{X i(s)>M̃}dY i(s) = 0 for each t ≥ 0. Thus, by (1) and

Tanaka’s formula for continuous semimartingales (see, e.g., Theorem 1.2 of Chapter VI in [31]), we
have that P-a.s., for all t ≥ 0,

dZ i(t) = 1{X i(t)>M̃}b
i(X t)d t + 1{X i(t)>M̃}σ

i(X t)dW (t) + d L i(t), (26)

where L i is a constant multiple of the local time of X i at M̃ , which can increase only when X i is at
M̃ and hence only when Z i is at zero.

The following consequence of Itô’s formula will be useful in Sections 3.4 and 3.5. For each t ≥ 0,

d(Z i(t))2 = 2Z i(t)bi(X t)d t + 2Z i(t)σi(X t)dW (t) + 2Z i(t)d L i(t) + 1{X i(t)>M̃}
�

�σi(X t)
�

�

2
d t

= 2Z i(t)bi(X t)d t + 2Z i(t)σi(X t)dW (t)+ 1{X i(t)>M̃}
�

�σi(X t)
�

�

2
d t, (27)

where we have used the facts that Z i(t) = 0 when X i(t) ≤ M̃ and L i can increase only when Z i is
at zero. Thus we have

d
�

|Z(t)|2
�

= 2(Z(t))′b(X t)d t + 2(Z(t))′σ(X t)dW (t) +
d
∑

i=1

1{X i(t)>M̃}
�

�σi(X t)
�

�

2
d t. (28)

3.3 Positive Oscillation

We now introduce the notion of the positive oscillation of a real-valued path over a given time
interval. This refinement of the oscillation of a path (2) is well suited to our problem, and it still
obeys an inequality analogous to (107).

Definition 3.3.1. Given a path x ∈ C([a1, a2],R), define the positive oscillation of x over [a1, a2] by

Osc+(x , [a1, a2]) = sup
a1≤s≤t≤a2

(x(t)− x(s)).

Note that there is no absolute value in the definition of Osc+, so that we have the following obvious
inequality:

Osc+(x , [a1, a2])≤ Osc(x , [a1, a2]), x ∈ C([a1, a2],R).

We also have the following inequalities: for all x ∈ Cd
I and i = 1, . . . , d,

Osc+(x i , I) ≤ ‖x i‖ ≤ ‖x‖, and (29)

‖x i‖ ≤ x i(−τ) +Osc+(x i , I). (30)

We have the following property of Osc+ when it is applied to a reflected path.

Lemma 3.3.1. Fix 0≤ t1 < t2 <∞. Suppose that x , y, z ∈ C([t1, t2],R) such that
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(i) z(t) = x(t) + y(t) ∈ [0,∞) for all t ∈ [t1, t2],

(ii) y(t1)≥ 0, y(·) is non-decreasing, and

(iii) y(·) can only increase when z is at zero, i.e.,
∫ t2

t1
z(s)d y(s) = 0.

Then,

Osc+(z, [t1, t2]) ≤ Osc+(x , [t1, t2]). (31)

Proof. By continuity of z and compactness of the triangle {(s, t) : t1 ≤ s ≤ t ≤ t2}, there exist
s, t ∈ [t1, t2] such that s ≤ t and Osc+(z, [t1, t2]) = z(t)− z(s). If s = t, then the inequality (31) is
clear. So we suppose that s < t. Then there are two cases to consider.

Case 1: Assume that y(s) = y(t). Then

z(t)− z(s) = x(t)− x(s) ≤ Osc+(x , [t1, t2]). (32)

Case 2: Suppose that y(s) < y(t). Then there is u ∈ [s, t] such that z(u) = 0, by (iii). Let
u′ = sup{v ≤ t : z(v) = 0}. Then u′ ∈ [u, t], z(u′) = 0 and z(v) > 0 for all v ∈ (u′, t]. Thus, y
cannot increase on (u′, t] by (iii), and so by continuity, y(u′) = y(t). Then we have that

z(t)− z(s) ≤ z(t) = z(t)− z(u′) = x(t)− x(u′) + y(t)− y(u′) = x(t)− x(u′)

≤ Osc+(x , [t1, t2]), (33)

where we have used the facts that z(s)≥ 0, z(u′) = 0 and y(t)− y(u′) = 0.

We will also use the following technical lemma.

Lemma 3.3.2. For each i = 1, . . . , d and M̂ ≥ 0, for any 0≤ t1 < t2 <∞, P-a.s.,

Osc+(X i , [t1, t2]) ≤ M̂ +

∫ t2

t1

1{X i(u)>M̂}
�

bi(Xu)
�+

du

+ sup
t1≤r<s≤t2

∫ s

r

1{X i(u)>M̂}σ
i(Xu)dW (u). (34)

Proof. Fix i ∈ {1, . . . , d}, M̂ ≥ 0, 0 ≤ t1 < t2 < ∞. In the definition of Z , set M̃ = M̂ , so that
Z i(·) := (X i(·)− M̂)+. Then,

Osc+(X i , [t1, t2]) ≤ M̂ +Osc+(Z i , [t1, t2]). (35)

The inequality (35) can be readily verified by considering s ≤ t in [t1, t2] such that the left hand side
above is equal to X i(t)− X i(s) and then considering the three cases: (a) X i(t) < M̂ , (b) X i(t) ≥ M̂
and X i(s)≥ M̂ , and (c) X i(t)≥ M̂ and X i(s)< M̂ . Thus, it suffices to estimate Osc+(Z i , [t1, t2]).

Since P-a.s., (26) holds and L i can increase only when Z i is zero, we may apply Lemma 3.3.1 to
obtain that P-a.s.:

Osc+(Z i , [t1, t2]) ≤ Osc+(I i , [t1, t2]), (36)
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where, for each t ≥ 0,

I i(t) := Z i(0) +

∫ t

0

1{X i(s)>M̂}b
i(Xs)ds+

∫ t

0

1{X i(s)>M̂}σ
i(Xs)dW (s), (37)

and

Osc+(I i , [t1, t2]) ≤
∫ t2

t1

1{X i(u)>M̂}(b
i(Xu))

+du+ sup
t1≤r<s≤t2

�
∫ s

r

1{X i(u)>M̂}σ
i(Xu)dW (u)

�

. (38)

Thus, (34) holds.

3.4 Bounded Second Moments when b and σ Satisfy an Integral Growth Condition

Throughout this subsection, we assume that the coefficients b,σ satisfy Assumption 2.2 (in addition
to Assumption 2.1) and we set M̃ = M + 1 in the definition of the overshoot process Z in (25).
The simple inequalities X i(·) ≤ Z i(·) + M̃ , for each i, reduce the problem of bounding the second
moment of ‖X t‖ to that of bounding the second moment of ‖Zt‖.

3.4.1 Uniform Bound on E
�

|X (t)|2
�

Theorem 3.4.1. Suppose that E[‖X0‖2]<∞. Then, sup
t≥−τ

E[|X (t)|2]<∞.

Our proof of this theorem uses stochastic Lyapunov/Razumikhin-type arguments similar to those
found in a theorem of Mao (Theorem 2.1 of [20]). We first prove two technical lemmas and then
the proof of the theorem is given. To simplify notation, in the following we let

Z (t) := E[|Z(t)|2] and I i(t) := 1{X i(t)>M} (39)

for i = 1, . . . , d and t ≥−τ.

Lemma 3.4.1. Suppose that E
�

‖X0‖2
�

< ∞. There exists a constant M1 > 0 such that whenever
t ≥ τ is such that

Z (t)≥ M1 and Z (r)≤Z (t) for all r ∈ [t − 2τ, t], (40)

then

E



2(Z(t))′b(X t) +
d
∑

i=1

I i(t)
�

�σi(X t)
�

�

2



< 0.

Remark. We will refer to the second inequality in (40) as the Razumikhin assumption.

Proof. Suppose that t ≥ τ is such that (40) holds. For each x ∈ Cd
I , there is an rx ∈ Id such that for

each i = 1, . . . , d,

− `i(x) = −x i(r i
x) ≤ −x i(0) +Osc+(x i , I). (41)
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We note that for each u ≥ 0 such that Z i(u) > 0, we have X i(u) > M̃ > M and so the inequalities
(10) and (11) hold with x = Xu. Then,

(Z(t))′b(X t)

≤ B0

d
∑

i=1

Z i(t)− (B1 + B1)
d
∑

i=1

Z i(t)X i(t) +
d
∑
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B1,i Z
i(t)Osc+(X i , [t −τ, t])

+
d
∑
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B2,i Z
i(t)

∫ 0

−τ
|X t(r)|q1µi

1(dr)

≤ B0

d
∑

i=1

Z i(t)− (B1 + B1)|Z(t)|2 +
d
∑

i=1

B1,i Z
i(t)M +

d
∑

i=1

B1,i Z
i(t)

∫ t

t−τ
I i(u)(bi(Xu))

+du

+
d
∑

i=1

B1,i Z
i(t) sup

t−τ≤r<s≤t

�

�

�

�

�

∫ s

r

I i(u)σi(Xu)dW (u)

�

�

�

�

�

+ |Z(t)|







d
∑

i=1

B2
2,i

 

∫ 0

−τ
|X t(r)|q1µi

1(dr)

!2






1
2

.

Here, Assumption 2.2(i) and the positivity of the coordinates of Z were used for the first inequality,
and the fact that X (s) ≥ Z(s) for all s ≥ −τ, Lemma 3.3.2 with M̂ = M and the Cauchy-Schwarz
inequality were used for the second inequality. Combining the above with parts (i) and (ii) of

Assumption 2.2, on taking expectations and setting B1 :=
d

max
i=1

B1,i we obtain

E



(Z(t))′b(X t) +
1

2

d
∑

i=1

I i(t)
�

�σi(X t)
�

�

2





≤
�

B0+MB1

�

E





d
∑

i=1

Z i(t)



− (B1+ B1)Z (t)

+E





d
∑

i=1

B1,i Z
i(t)

 

B0τ+ B2,i

∫ t

t−τ

∫ 0

−τ
|Xu(r)|q1µi

1(dr)du

!



+E





d
∑

i=1

B1,i Z
i(t) sup

t−τ≤r<s≤t

�

�

�

�

�

∫ s

r

I i(u)σi(Xu)dW (u)

�

�

�

�

�


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+E


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



|Z(t)|







d
∑

i=1

B2
2,i

 

∫ 0

−τ
|X t(r)|q1µi

1(dr)

!2






1
2









+
1

2
dC0+

1

2

d
∑

i=1

C2,i E





∫ 0

−τ
|X t(r)|q2µi

2(dr)



 . (42)

We now separately develop estimates for the second and third to the last lines in (42). For each i,

sup
t−τ≤r<s≤t

�

�

�

�

�

∫ s

r

I i(u)σi(Xu)dW (u)

�

�

�

�

�

≤ 2 sup
t−τ≤s≤t

�

�

�

�

�

∫ s

t−τ
I i(u)σi(Xu)dW (u)

�

�

�

�

�

. (43)

Part (ii) of Assumption 2.2, the assumption that E[‖X0‖2] < ∞ and Lemma 2.4.1 imply that for
each i,

¨
∫ s

t−τ
I i(u)σi(Xu)dW (u),Fs, s ≥ t −τ

«
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is a square-integrable martingale. Then, Doob’s submartingale inequality, the L2 isometry for
stochastic integrals, the independence of the coordinates of W and (11) imply that

E






sup

t−τ≤s≤t

�

�

�

�

�

∫ s

t−τ
I i(u)σi(Xu)dW (u)

�

�

�

�

�

2





≤ 4C0τ+ 4C2,i

∫ t

t−τ

∫ 0

−τ
E
�

|Xu(r)|q2
�

µi
2(dr)du. (44)

Then, using the Cauchy-Schwarz inequality and inequality (109), we have

E





d
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i=1

B1,i Z
i(t) sup

t−τ≤r<s≤t

�

�

�

�

�

∫ s
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I i(u)σi(Xu)dW (u)
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�

�

�

�


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≤ 4 (Z (t))
1
2







p

C0τ

 

d
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B2
1,i

!
1
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+

 

d
∑

i=1

C2,iB
2
1,i

∫ t

t−τ

∫ 0

−τ
E
�

|Xu(r)|q2
�

µi
2(dr)du

!
1
2






. (45)

For the second last line in (42), using the Cauchy-Schwarz inequality we obtain that

E









|Z(t)|







d
∑

i=1

B2
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∫ 0
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|X t(r)|q1µi

1(dr)

!2






1
2






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≤ (Z (t))
1
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
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d
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2,i E


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1(dr)

!2







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

1
2

. (46)

Inequality (111) implies that for any γ > 1 and s ≥ −τ there is a constant Kγ ≥ 0, which depends
on d and M̃ in addition to γ, such that

|X (s)|2 ≤ Kγ+ γ|Z(s)|2. (47)

Then Jensen’s inequality, the fact that each µi
1 is a probability measure, Fubini’s theorem, inequality

(109) and the Razumikhin assumption in (40) can be used to obtain, for each γ > 1 and each i,

E







 

∫ 0
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|X t(r)|q1µi

1(dr)
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
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
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K
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q1
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q1 |Zt(r)|2
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µi
1(dr)

!2
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E
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K
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q1
+ γ
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q1 |Zt(r)|2
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�
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1(dr)

≤ Cγ+ γ

∫ 0

−τ
(Z (t + r))q1µi

1(dr)

≤ Cγ+ γ(Z (t))q1 , (48)

where Cγ :=
�

K
γ

1
q1

�q1

. Thus, we obtain

E
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



|Z(t)|







d
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i=1
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|X t(r)|q1µi

1(dr)
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
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1
2









≤ B̃2 (Z (t))
1
2
�

Cγ+ γ(Z (t))q1
�

1
2 . (49)
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Continuing on from (42), by the Cauchy-Schwarz inequality, (29), (45), (49) and (109) we have
that

E



(Z(t))′b(X t) +
1

2

d
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i=1

I i(t)
�

�σi(X t)
�

�
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1
2 − (B1+ B1)Z (t)

+E





d
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i(t)
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|Xu(r)|q1µi

1(dr)du
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E[|Xu(r)|q2]µi

2(dr)du
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1
2

(Z (t))
1
2

+B̃2

�

Cγ (Z (t))
1
2 + γ (Z (t))
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2
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+
1

2
dC0+

1

2

d
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i=1

C2,i

∫ 0

−τ
E
�

|X t(r)|q2
�

µi
2(dr). (50)

We now examine the fifth last, third last and last lines in (50) more closely. By Hölder’s inequality,
Fubini’s theorem, (47), the Razumikhin assumption and Jensen’s inequality, we have for each γ > 1,

E




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∫ t

t−τ

∫ 0

−τ
|Xu(r)|q1µi

1(dr)du
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
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1(dr)du
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1(dr)du
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�

E[Kγ+ γ|Zu(r)|2]
�q1
µi

1(dr)du

≤ τ2
�

Kγ+ γZ (t)
�q1 . (51)

Therefore, by the Cauchy-Schwarz inequality and (109), we have
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B1,iB2,i Z
i(t)

∫ t

t−τ

∫ 0
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2
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1
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K
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2
γ + γ

q1
2 (Z (t))

q1
2

�

(Z (t))
1
2 . (52)

Similarly, Hölder’s inequality, Jensen’s inequality, (47), the Razumikhin assumption and (109) also
imply that for each γ > 1:
 

d
∑

i=1

C2,iB
2
1,i

∫ t
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d
∑
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and
∫ 0

−τ
E
�

|X t(r)|q2
�

µi
2(dr) ≤ K

q2
2
γ + γ

q2
2 (Z (t))

q2
2 . (54)

Continuing on from line (50), using inequalities (52), (53) and (54) we have

E



(Z(t))′b(X t) +
1

2
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∑

i=1

I i(t)
�

�σi(X t)
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�

2
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≤ K1(γ) + K2(γ) (Z (t))
1
2 + K3(γ) (Z (t))

1+q1
2 + K4(γ) (Z (t))

q2
2

+K5(γ) (Z (t))
2+q2

4 − (B1+ B1)Z (t), (55)

where K1, K2 are real-valued functions on (1,∞), and

K3(γ) = τ
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(B1,iB2,i)
2

!
1
2

γ
q1
2 + B̃2γ,

K4(γ) =
1

2
γ

q2
2

d
∑

i=1

C2,i and K5(γ) = 4
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d
∑

i=1

C2,iB
2
1,i

!
1
2

γ
q2
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By Assumption 2.2(iii), we can fix a γ > 1 sufficiently small such that B1+B1 > K3(γ)δq1,1+(K4(γ)+
K5(γ))δq2,2. For such a γ,

E



2(Z(t))′b(X t) +
d
∑

i=1

I i(t)
�

�σi(X t)
�

�

2



< 0

whenever Z (t) is large enough. Indeed, define the function f : R+→ R by

f (r) := K1(γ) + K2(γ)r
1
2 + K3(γ)r

1+q1
2 + K4(γ)r

q2
2 + K5(γ)r

2+q2
4 − (B1+ B1)r.

All of the exponents for r are at most one. By the choice of γ, the constant in front of the highest
degree term is strictly negative and this implies that lim

r→∞
f (r) = −∞. Thus, there exists a constant

M1 > 0 such that r ≥ M1 implies that f (r)< 0.

Lemma 3.4.2. Suppose that E[‖X0‖2] <∞. Let M1 be defined as in the previous lemma and assume
that t ≥ τ is such that (40) holds. Then there exists an h∗ > 0 such that

Z (t + s) < Z (t), for each s ∈ (0, h∗]. (56)

Proof. Let ηn = t ∨ inf{s ≥−τ : |X (s)| ≥ n} for each integer n> 0. We have from equality (28) that
for each n> 0 and h≥ 0,

|Z((t + h)∧ηn)|2− |Z(t)|2 =

∫ (t+h)∧ηn

t

 

2(Z(s))′b(Xs) +
d
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2(Z(s))′σ(Xs)dW (s). (57)
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By the definition of ηn, the stochastic integral with respect to W in the above has zero mean since

it defines a square integrable martingale as a function of h. Since E

�

sup
s∈[−τ,t+h]

|Z(s)|2
�

< ∞ by

Lemma 2.4.1 with p = 2, and b and σ satisfy the linear growth bounds (5) and (6), we can take
expectations in (57) and apply the dominated convergence theorem to conclude that

Z (t + h)−Z (t) = E


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∫ t+h

t

 

2(Z(s))′b(Xs) +
d
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1{X i(s)>M̃}
�

�σi(Xs)
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2

!

ds



 . (58)

Define the continuous function f : R+→ [0, 1] by f (r) = (r −M)+− (r − M̃)+. Since M̃ = M + 1,

1(M̃ ,∞)(r) ≤ f (r) ≤ 1(M ,∞)(r) for all r ≥ 0. (59)

Then by (58), (59), dominated convergence and Lebesgue’s differentiation theorem we have

lim
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I i(t)
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�σi(X t)
�

�

2



 . (60)

Here we used the fact that the integrand in the second last line is a continuous function of s, and the
fact that f (X i(t))≤ 1(M ,∞)(X i(t)) = I i(t). According to Lemma 3.4.1, the last line above is strictly
negative under the assumption (40).

If there is no h∗ > 0 such that Z (t + s) < Z (t) for each s ∈ (0, h∗], then we can construct a
sequence {hn}∞n=1 of positive numbers decreasing to zero such that Z (t+hn)≥Z (t) for all n. Then

lim
h→0+

Z (t+h)−Z (t)
h

≥ 0, which is a contradiction to (60). Therefore there is an h∗ > 0 such that (56)

holds.

Proof of Theorem 3.4.1. By Lemma 2.4.1, the continuity of Z and the dominated convergence the-
orem, Z (s) is continuous as a function of s ≥ 0. Let M1 > 0 be as in Lemma 3.4.1. Then
M2 := sup

s∈[−τ,τ]
Z (s) + M1 is finite. If there is a t1 > τ such that Z (t1) > M2, then since

sup
s∈[−τ,τ]

Z (s) < M2, the time t := inf{s ≥ −τ : Z (s) > M2} is in (τ, t1). We also have Z (t) = M2 by

continuity, and thus Z (r) ≤ Z (t) for all r ∈ [t − 2τ, t]. Since M2 ≥ M1, Lemma 3.4.2 implies that
there is an h∗ > 0 such that Z (s) < Z (t) = M2 for all s ∈ (t, t + h∗]. However, this last conclusion
contradicts the definition of t. Thus, there cannot be such a t1 and consequently sup

s≥−τ
Z (s) ≤ M2.

This in turn implies that

sup
s≥−τ

E[|X (s)|2] ≤ sup
s≥−τ

2
�

Z (s) + dM̃2
�

≤ 2M2+ 2dM̃2. (61)
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3.4.2 Uniform Bound on E[‖X t‖2]

Theorem 3.4.2. Suppose that E[‖X0‖2]<∞. Then, sup
t≥0

E
�

‖X t‖2
�

<∞.

Proof. Recall that we are assuming that Assumption 2.2 holds and that the overshoot process Z is
defined by (25) with M̃ = M + 1. For each t ≥ τ, by (30), (36)-(38), (43), (110) and (10) with M̃
in place of M̂ and M , we have
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d
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2�

. (62)

Using (110) and the Cauchy-Schwarz inequality, we have for each i = 1, . . . , d,

 

B0τ+ B2,i
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!

, (63)

and by a similar argument to that used for (44), by (11) we have for each i:
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!

. (64)

By Hölder’s inequality, E [|X (s)|p] ≤ E
�

|X (s)|2
�

p
2 for all s ≥ −τ and 0 < p ≤ 2. Then, by Theorem

3.4.1 and the fact that r
p
2 ≤ 1+ r for all r ≥ 0 and 0 < p ≤ 2, there is a constant K > 0 such that

sup
s≥−τ

E[|X (s)|p] ≤ K for all 0 < p ≤ 2. On combining the above and taking expectations in (62), we
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obtain for all t ≥ τ:

E
�
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C2,iτK

!

,

where we have used the facts that |Z(s)| ≤ |X (s)| for all s ≥−τ, 0< q1 ≤ 1 and 0< q2 ≤ 2. The last
line above is independent of t ≥ τ and so we have

sup
t≥τ

E
�

‖X t‖2
�

≤ 2

�

sup
t≥τ

E
�

‖Zt‖2
�

+ dM̃2

�

<∞. (65)

Combining this with the hypothesis of the theorem and the fact that

E
�

‖X t‖2
�

≤ 2E
�

‖X0‖2+ ‖Xτ‖2
�

for each t ∈ [0,τ],

yields the desired result.

3.5 Bounded Second Moments when b and σ Satisfy a Boundedness Assumption

Throughout this subsection, we assume that the coefficients b and σ satisfy Assumption 2.3 (in
addition to Assumption 2.1) and we set M̃ = M in the definition of the overshoot process Z . In
Theorem 3.5.1 below, for each i = 1, . . . , d, we show that E[exp(αX i(t))] is bounded uniformly in
t ≥ 0, for some α > 0, provided that suitable initial bounds hold. In turn, this will be used to bound
E[‖X t‖2] uniformly for all t ≥ 0.

3.5.1 Uniform Bound on an Exponential Moment of X i(t)

The following theorem depends on some technical lemmas that are deferred until after the proof of
the theorem.

Theorem 3.5.1. Suppose that E[exp(κ‖X0‖)] <∞ for each κ > 0. Then there exists α > 0 such that
sup
t≥0

E[exp(αX i(t))]<∞ for each i = 1, . . . , d, and consequently, sup
t≥−τ

E[|X (t)|p]<∞ for all p > 0.

Proof. Fix i ∈ {1, . . . , d}. Let f : R+ → R+ be a twice continuously differentiable non-decreasing
function such that f (r) = 0 for r ≤ M , f (r) ≤ exp(αr) for M ≤ r ≤ M + 1, and f (r) = exp(αr) for
r ≥ M + 1. Then there exist positive constants C ′ and C ′′, depending on α, such that

f ′(r) ≤ C ′+α f (r) and f ′′(r) ≤ C ′′+α2 f (r) for all r ∈ R+.
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Then the fact that Y i can increase only when X i is at zero, the form of f , and Lemma 3.5.1 below
imply that for any γ > 0, the differential of f (X i(t)) satisfies

d( f (X i(t)))

= f ′(X i(t))bi(X t)d t + f ′(X i(t))σi(X t)dW (t) +
1

2
f ′′(X i(t))|σi(X t)|2d t

≤ (C ′+α f (X i(t)))
�

(Ku+ Kd)e
γM exp

�

−γX i(t) + γOsc+(X i
t , I)
�

− Kd

�

d t

+ f ′(X i(t))σi(X t)dW (t) + (C ′′+α2 f (X i(t)))Kσd t

≤ f ′(X i(t))σi(X t)dW (t) +
�

−Kdα+α
2Kσ
�

f
�

X i(t)
�

d t + (C ′′Kσ − C ′Kd)d t

+(Ku+ Kd)e
γM
�

C ′ exp(−γX i(t)) +αexp
�

(α− γ)X i(t)
��

exp(γOsc+(X i
t , I))d t.

Set α= Kd

2Kσ
, β =

K2
d

2Kσ
and γ= 2α. Then

d( f (X i(t))) ≤ f ′(X i(t))σi(X t)dW (t)−
β

2
f
�

X i(t)
�

d t + C(1+ exp(γOsc+(X i
t , I)))d t,

where C > 0 is an appropriately chosen constant (depending on α). Therefore,

d
�

eβ t f
�

X i(t)
��

≤
β

2
eβ t f

�

X i(t)
�

d t + eβ t f ′
�

X i(t)
�

σi(X t)dW (t)

+Ceβ t(1+ exp(γOsc+(X i
t , I)))d t. (66)

Since Lemma 3.5.3 implies that for each t ≥ 0,

E
h

e2β t
�

f ′
�

X i(t)
��2 �

�σi(X t)
�

�

2
i

≤ 2Kσe2β t
�

(C ′)2+α2E
�

exp
�

2αX i(t)
���

<∞,

we have E
h

∫ t

0
eβs f ′

�

X i(s)
�

σi(Xs)dW (s)
i

= 0, which in turn implies that on taking expectations
in (66) we have

eβ t E
�

f
�

X i(t)
��

≤
β

2

∫ t

0

eβsE
�

f
�

X i(s)
��

ds+ C

∫ t

0

eβs
�

1+ E
�

exp(γOsc+(X i
s , I))

��

ds

≤
β

2

∫ t

0

eβsE
�

f
�

X i(s)
��

ds+ C
eβ t

β
(1+ K(γ)),

where K(·) is defined in Lemma 3.5.4 below. Gronwall’s inequality now implies that

eβ t E
�

f
�

X i(t)
��

≤ C
eβ t

β
(1+ K(γ)) +

C

2
(1+ K(γ))

∫ t

0

e
β

2
(t−s)eβsds,

and thus for all t ≥ 0,

E
�

f
�

X i(t)
��

≤
2C(1+ K(γ))

β
.

The form of f then implies that

sup
t≥0

E
�

exp
�

αX i(t)
��

≤ exp (α(M + 1)) +
2C(1+ K(γ))

β
. (67)
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By considering the Taylor expansion of exp(αr), we can see that for each r ∈ R+ and positive integer
n, rn ≤ n!

αn exp(αr), and thus it follows from (67), the hypothesis of the theorem and Hölder’s
inequality that for each p > 0 and i = 1, . . . , d,

sup
t≥−τ

E[(X i(t))p] < ∞.

3.5.2 Supporting Lemmas

We now prove the additional lemmas used in the proof of Theorem 3.5.1. We will again use the
notation I from (39).

Lemma 3.5.1. For each γ > 0 and each x ∈ Cd
I with x i(0)≥ M, we have

bi(x) ≤ (Ku+ Kd)e
γM exp

�

−γx i(0) + γOsc+(x i , I)
�

− Kd . (68)

Proof. Let x ∈ Cd
I with x i(0) ≥ M . Since `i(x) ∈ x i(I), there is rx ∈ I such that `i(x) = x i(rx), and

thus x i(0)≤ x i(rx) +Osc+(x i , I) = `i(x) +Osc+(x i , I) by the definition of Osc+. Therefore,

0 ≤ `i(x)− x i(0) +Osc+(x i , I). (69)

From Assumption 2.3(i), it follows that for each γ > 0,

bi(x) ≤ Ku1[0,M](`
i(x))− Kd1[M ,∞)(`

i(x))≤ (Ku+ Kd)1[0,M](`
i(x))− Kd

≤ (Ku+ Kd)e
γM exp

�

−γx i(0) + γOsc+(x i , I)
�

− Kd . (70)

Lemma 3.5.2. For each t ≥ 0 and i = 1, . . . , d, define the process






ξt,i(s) := exp





∫ (t−τ)++s

(t−τ)+
I i(u)σi(Xu)dW (u)



 , s ≥ 0







.

Then, there exists a function K : (0,∞)×R+→ R+ independent of t and i, which can be chosen to be
non-decreasing in each coordinate, such that for each p > 0 and T ≥ 0,

E
h

‖ξt,i‖p
[0,T]

i

∨ E
h

‖(ξt,i)−1‖p
[0,T]

i

≤ K(p, T ).
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Proof. By Hölder’s inequality, it suffices to prove this result for p > 1. Fix i, t and consider q ∈ R
satisfying |q| > 1. Since

∫ (t−τ)++s

(t−τ)+ I i(u)|σi(Xu)|2du ≤ Kσs for all s ≥ 0, by Novikov’s condition for
exponential martingales, the process







χq(s) :=
�

ξt,i(s)
�q

exp



−
q2

2

∫ (t−τ)++s

(t−τ)+
I i(u)

�

�σi(Xu)
�

�

2
du



 ,F(t−τ)++s, s ≥ 0







is a martingale. Thus, for any stopping time η, for each s ≥ 0,

E
h

�

ξt,i(s ∧η)
�q
i

≤ E
�

χq(s ∧η)
�

exp

�

q2

2
Kσs

�

= exp

�

q2

2
Kσs

�

.

Now ξt,i and (ξt,i)−1 are local submartingales and so there is a sequence of stopping times {ηn}
tending to infinity as n → ∞ and such that for each n, the stopped processes, ξt,i(· ∧ ηn) and
(ξt,i(· ∧ηn))−1 are submartingales. Setting q = p and q =−p for p > 1, using Doob’s inequality we
obtain for each T ≥ 0,

E

�

sup
u∈[0,T]

(ξt,i(u∧ηn))
q

�

≤ CpE
�

(ξt,i(T ∧ηn))
q
�

≤ Cp exp

�

p2

2
KσT

�

,

for a constant Cp depending only on p and which can be chosen to be increasing with p. Letting
n→∞ and using monotone convergence completes the proof.

The following is an analogue of Lemma 2.4.1 for exponential moments in the case thatσi is bounded
on {x ∈ Cd

I : x i(0)≥ M}. Although this result can be viewed as a delayed and constrained analogue
to Theorem 4.7 of [18], we include a proof for completeness. Scrutiny of our proof reveals that the
result does not need Assumption 2.3 (i), although the proof uses Assumption 2.3 (ii) and the linear
growth condition (5).

Lemma 3.5.3. If E
�

exp(κ‖X0‖)
�

<∞ for each κ > 0, then for each T ≥ 0 and κ > 0,

E
�

‖exp(κ|X (·)|)‖[−τ,T]

�

<∞.

Proof. Fix κ > 0. For each positive integer n, define the stopping time ηn := inf{t ≥ 0 : ‖X‖[−τ,t] ≥
n}, with the convention that inf; =∞. Convexity of the exponential function implies that for each
T ≥ 0,

E
h





exp(κ|X (·)|)






[−τ,T∧ηn]

i

≤
1

d

�

E
�

exp(κd‖X 1‖[−τ,T∧ηn])
�

+ · · ·+ E
�

exp(κd‖X d‖[−τ,T∧ηn])
��

. (71)

Since X i(t)≤ M + Z i(t) for each t ≥−τ and i = 1, . . . , d, we have

E
�

exp(κd‖X i‖[−τ,T∧ηn])
�

≤ eκdM
�

E
�

exp(κd‖Z i
0‖)
�

+ E
�

‖exp(κdZ i(·))‖[0,T∧ηn]

��

. (72)
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Since (26) holds with M̃ = M , as in the proof of Lemma 3.3.2, we can use Lemma 3.3.1 to conclude
that

Osc+(Z i , [0, T ∧ηn]) ≤
∫ T

0

1{‖X‖[−τ,t]<n}|b(X t)|d t + sup
0≤s≤T∧ηn

∫ s

0

I i(t)σi(X t)dW (t)

+ sup
0≤s≤T∧ηn

∫ s

0

−I i(t)σi(X t)dW (t), (73)

where I i(t) is given by (39). The linear growth condition (5) and Jensen’s inequality imply that
for any β > 0 and each T > 0,

exp

 

β

∫ T

0

1{‖X‖[−τ,t]<n}|b(X t)|d t

!

≤
1

T

∫ T

0

exp
�

Tβ1{‖X‖[−τ,t]<n}(C1+ C2‖X t‖)
�

d t

≤
1

T

∫ T

0





exp
�

Tβ(C1+ C2|X (·)|)
�







[−τ,t∧ηn]
d t. (74)

Then (73)–(74) (with β = κd/λ) together with inequality (112) (with n = 4 and a1 =
κd
∫ T

0
1{‖X‖[−τ,t]<n}|b(X t)|d t) imply that for any λ ∈ (0, 1), T > 0 and i = 1, . . . , d:

E
�

‖exp(κdZ i(·))‖[0,T∧ηn]

�

≤ E



exp

 

κd

 

Z i(0) +

∫ T

0

1{‖X‖[−τ,t]<n}|b(X t)|d t

+ sup
s∈[0,T∧ηn]

∫ s

0

I i(t)σi(X t)dW (t) + sup
s∈[0,T∧ηn]

∫ s

0

−I i(t)σi(X t)dW (t)

!!



≤
1−λ

3
E
�

exp
�

3κd

1−λ
‖X0‖

��

+λE





1

T

∫ T

0













exp
�

T
κd

λ
(C1+ C2|X (·)|)

�












[−τ,t∧ηn]
d t





+
1−λ

3
E

�

sup
s∈[0,T]

exp

�

3κd

1−λ

∫ s

0

I i(t)σi(X t)dW (t)

��

+
1−λ

3
E

�

sup
s∈[0,T]

exp

�

−3κd

1−λ

∫ s

0

I i(t)σi(X t)dW (t)

��

. (75)

Lemma 3.5.2 (with t = 0) along with (71), (72) and (75) now imply that for each T > 0 and
λ ∈ (0,1),

e−κdM E
�

‖exp(κ|X (·)|)‖[−τ,T∧ηn]

�

≤ E[exp(κd‖X0‖)] +
1−λ

3
E
�

exp
�

3κd

1−λ
‖X0‖

��

+
λ

T
exp
�

TκdC1

λ

�
∫ T

0

E

















exp
�

TκdC2

λ
|X (·)|

�












[−τ,t∧ηn]



 d t

+
2(1−λ)

3
K
�

3κd

1−λ
, T
�

. (76)
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If T ∈
�

0, 1
2dC2

i

, we can set λ= T dC2 ∈
�

0, 1
2

�

and then we obtain for each T ∈
�

0, 1
2dC2

i

,

E
�

‖exp(κ|X (·)|)‖[−τ,T∧ηn]

�

≤ K0(κ) + K1(κ)

∫ T

0

E
h





exp (κ|X (·)|)






[−τ,t∧ηn]

i

d t, (77)

where

K0(κ) = eκdM
�

E[exp(κd‖X0‖)] +
1

3
E
�

exp
�

6κd‖X0‖
��

+
2

3
K
�

6κd,
1

2dC2

��

,

K1(κ) = deκdM C2 exp
�

κC1

C2

�

.

Inequality (77) is obvious for T = 0. Our assumptions imply that K0(κ) < ∞ and K1(κ) > 0.
Therefore, since





exp(κ|X (·)|)






[−τ,t∧ηn]
≤ exp(κ(‖X0‖+ n)), (78)

so that the expectation on the left of (77) is finite, Gronwall’s inequality implies that

E

�

‖exp(κ|X (·)|)‖�
−τ, 1

2dC2
∧ηn

�

�

≤ K0(κ)exp
�

K1(κ)
1

2dC2

�

. (79)

The monotone convergence theorem can then be applied to obtain for each κ > 0,

E

�

‖exp(κ|X (·)|)‖�
−τ, 1

2dC2

�

�

≤ K0(κ)exp
�

K1(κ)
1

2dC2

�

. (80)

The above procedure can be iterated to obtain a finite bound on E
�

‖exp(κX (·))‖[−τ,T]

�

for any

T ≥ 0, κ > 0. Indeed, for each k ≥ 1, set T (k) = k
2dC2

. Fix k ≥ 1 and assume that

E
�

‖exp(κ|X (·)|)‖[−τ,T (k)]

�

<∞ for each κ > 0. (81)

We can show that this holds with k+1 in place of k by applying the above procedure with 0 replaced
by T (k), ηn replaced with η(k)n := inf{t ≥ T (k) : ‖X‖[−τ,t] ≥ n}, K1(κ) unchanged, and K0(κ) replaced

with K(k)0 (κ) which is given by the expression for K0(κ) with ‖X‖[−τ,T (k)] in place of ‖X0‖. Then,

E
h

‖exp(κ|X (·)|)‖[−τ,T (k+1)]
i

≤ K(k)0 (κ)exp
�

K1(κ)
1

2dC2

�

. (82)

By induction, (81) holds for all k. Since T (k)→∞ as k→∞, the proof is complete.

Lemma 3.5.4. Fix a possibly random X0. Suppose that γ > 0 and E[exp(2γ‖X0‖)] < ∞. Then for
each i ∈ {1, . . . , d} and t ≥ 0,

E
�

exp
�

γOsc+(X i
t , I)
��

≤ K(γ) := eγ(M+Ku)(E[exp(2γ‖X0‖)])
1
2 (K(4γ,τ))

1
2 , (83)

where K(·, ·) is specified in Lemma 3.5.2.
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Proof. Lemma 3.3.2 with M̂ = M and Assumption 2.3 imply that P-a.s. for any t ≥ 0,

exp(γOsc+(X i
t , I)) ≤ eγ(M+τKu) exp(γOsc+(X i

0, I))exp

 

sup
(t−τ)+≤s≤t

γ

∫ s

(t−τ)+
σi(Xu)I i(u)dW (u)

!

×exp

 

sup
(t−τ)+≤s≤t

γ

∫ s

(t−τ)+
−I i(u)σi(Xu)dW (u)

!

≤ eγ(M+τKu)
�

E
�

exp(2γ‖X0‖)
��

1
2 (K(4γ,τ))

1
2 , (84)

which is finite by assumption. Here we have used the Cauchy-Schwarz inequality twice, Lemma
3.5.2, and (29) to obtain the second inequality.

3.5.3 Uniform Bound on E[‖X t‖2]

Lemma 3.5.5. Assume sup
t≥−τ

E[|X (t)|2]<∞ and E[‖X0‖2]<∞. Then sup
t≥0

E[‖X t‖2]<∞.

Proof. After replacing B0 by Ku, setting B2,i = C2,i = 0 for each i, and using the hypothesis of the
lemma in place of Theorem 3.4.1, the proof is identical to the proof of Theorem 3.4.2.

Combining Theorem 3.5.1 with p = 2 and Lemma 3.5.5 yields the following. Recall for this that we
are assuming that Assumption 2.3 holds.

Corollary 3.5.1. Suppose E
�

exp
�

κ‖X0‖
��

<∞ for all κ > 0. Then sup
t≥0

E
�

‖X t‖2
�

<∞.

3.6 Existence Theorem

The following is obtained by combining the results from Section 3.1 and either Section 3.4 or Section
3.5.

Theorem 3.6.1. If either Assumption 2.2 or 2.3 holds (in addition to Assumption 2.1), then there
exists a stationary distribution for the SDDER (1).

Proof. For each xo ∈ Cd
I , the hypotheses on the initial conditions of either Theorem 3.4.2 or Corol-

lary 3.5.1 are met, so that sup
t≥0

E[‖X xo
t ‖2]<∞. The result now follows from Theorem 3.1.1.

4 Uniqueness of Stationary Distributions

Throughout this section, we assume that Assumption 2.4 holds (in addition to Assumption 2.1). We
will prove uniqueness of any stationary distribution for the SDDER. For this proof, we adapt to equa-
tions with reflection a clever asymptotic coupling argument recently introduced by Hairer, Mattingly
and Scheutzow [12] for stochastic delay differential equations without reflection. Of particular note
is the fact that this argument applies to equations with a dispersion coefficient that depends on the
history of the process over the delay period. Most previous work on proving uniqueness of stationary
distributions relied on showing the mutual equivalence of distributions of X t at some time t > 0 for
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all starting states, and then applying either Doob’s theorem (see Theorem 4.2.1 in [7]) as in [30], or
the techniques of Döblin (see, e.g., [24]) as in [17; 34]. However, these arguments cannot be easily
extended to situations where σ depends on past states, because of the potential for reconstruction
of the initial condition from the quadratic variation process (see [30; 36]). In [12], this potential
difficulty is avoided by use of a different ergodic argument (see Theorem 1.1 of [12]). The main
idea of this argument is to introduce a change of probability measure under which, with strictly
positive probability, two solutions of the SDDER starting from different initial conditions are driven
towards one another as time goes to infinity.

Although our general line of argument is very similar to that in [12], there are some differences
due to the presence of reflection in the dynamics and we also provide more details for some steps.
We begin in Section 4.1 by stating an abstract uniqueness result proved in [12]. The key technical
section is Section 4.2 where the novel asymptotic coupling introduced in [12] is adapted to our
setting. The uniqueness result is then stated and proved in Section 4.3.

4.1 An Abstract Uniqueness Result

A key element for our proof is the following proposition, which is adapted to our situation from
Corollary 2.2 of [12]. Before stating it, we introduce some notation. Denote the space of sequences
{xn}∞n=0 in Cd

I by (Cd
I )
∞, and endow this with the product topology and associated Borel σ-algebra.

For x ∈ Cd
I , let P x

∞ denote the probability measure on (Cd
I )
∞ that is the distribution of the sequence

{Xnτ}∞n=0 when X is a solution of (1) started from x . Recall that the symbol ∼ between two prob-
ability measures means that they are mutually absolutely continuous. The following proposition
follows immediately from Corollary 2.2 of [12] by setting A= Cd

I there.

Proposition 4.1.1. Assume that there is a family
¦

P̃ x ,y , (x , y) ∈ Cd
I ×C

d
I

©

of probability measures on
(Cd
I )
∞× (Cd

I )
∞ such that for each x , y ∈ Cd

I ,

(i) P̃ x ,y(· × (Cd
I )
∞)∼ P x

∞(·) and P̃ x ,y((Cd
I )
∞× ·)∼ P y

∞(·),

(ii) for each x , y ∈ Cd
I ,

P̃ x ,y
�

�

{xn}∞n=0, {yn}∞n=0

�

∈ (Cd
I )
∞× (Cd

I )
∞ : lim

n→∞
‖xn− yn‖= 0

�

> 0,

and

(iii) for each Borel set Γ in (Cd
I )
∞×(Cd

I )
∞, the mapping (x , y)→ P̃ x ,y(Γ) is measurable on Cd

I ×C
d
I .

Then there exists at most one stationary distribution for the SDDER (1).

4.2 Asymptotic Coupling of a Pair of Processes

We assume that an m-dimensional Brownian motion martingale {W (t), t ≥ 0} is given on a filtered
probability space (Ω,F , {Ft , t ≥ 0}, P). For each λ > 0, consider the system of SDDERs

dX (t) = b(X t)d t +σ(X t)dW (t) + dY (t), (85)

dX̃λ(t) = b(X̃λt )d t +λ(X (t)− X̃λ(t))d t +σ(X̃λt )dW (t) + dỸ λ(t), (86)
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where P-a.s., (X (t), X̃λ(t)) ∈ R2d
+ for all t ≥−τ, and where (Y, Ỹ λ) is a continuous adapted process

such that P-a.s., Y (0) = Ỹ λ(0) = 0 and Y i (resp. Ỹ λ,i) can increase only when X i (resp. X̃λ,i) is
zero. We allow random F0-measurable initial conditions for X0 and X̃λ0 . This is a 2d-dimensional
system with globally Lipschitz coefficients, and thus Proposition 2.1.2 implies that there exists a
unique strong solution for any pair of initial conditions. Consider such a solution pair (X , X̃λ), and
let Uλ(t) := X (t)− X̃λ(t) for t ≥−τ. Then, for t ≥ 0,

dUλ(t) =
�

b(X t)− b(X̃λt )
�

d t −λUλ(t)d t +
�

σ(X t)−σ(X̃λt )
�

dW (t) + d
�

Y − Ỹ λ
�

(t). (87)

The following lemma is a modified version of Lemma 3.5 of [12], where here we have equations
with reflection and we give the result for all q > 4 rather than just for q = 8. Inequality (97) is the
reason that this lemma remains true in the reflected case. Our proof of this lemma is very similar to
that in [12], but for completeness, we provide the details. We have also extracted Lemma 4.2.2 as
a separate preliminary result. In [12] the analogous result for q = 4 is included within the proof of
their Lemma 4.2.1.

Lemma 4.2.1. For each α > 0 and q > 4, there exist λ > 0 and K > 0 depending only on α, q,τ,κL
such that

E

�

sup
t≥0

eαt‖Uλt ‖
q

�

≤ KE
�

‖Uλ0 ‖
q
�

.

Before proving this lemma, we give two propositions and a preliminary lemma. The first proposition
is a simple stochastic variation of constants formula.

Proposition 4.2.1. Assume that on some filtered probability space (Ω,F , {Ft}, P),
{ξ(t), t ≥ 0} is a continuous adapted process satisfying the following stochastic differential equation:

dξ(t) = γξ(t)d t + dχ(t), (88)

for some γ ∈ R and some continuous semimartingale {χ(t), t ≥ 0}. Then

ξ(t) = eγtξ(0) +

∫ t

0

eγ(t−s)dχ(s), t ≥ 0, (89)

and thus for each 0≤ s ≤ t,

ξ(t) = eγ(t−s)ξ(s) +

∫ t

s

eγ(t−r)dχ(r).

Proof. It is straight-forward to verify that the right member of (89) satisfies (88). By the uniqueness
of solutions for this equation given the initial state ξ(0), the result follows.

The next proposition is a slight generalization of Lemma 3.4 in [12] to the case where W is m-
dimensional, and specializes to the case where h is continuous. The proof of the proposition is
nearly identical to that in [12], and so we omit it. In brief, this proof uses the representation
Vβ(t) = e−β t

∫ t

0
eβsh(s)dW (s), the Burkholder-Davis-Gundy inequality, an integration by parts and

estimates on Vβ on the segments
h

kT
N

, (k+1)T
N

i

, k = 0, . . . , N − 1, for sufficiently large integers N .
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Proposition 4.2.2. Suppose that {h(s), s ≥ 0} is a continuous adapted process taking values inM1×m,
and assume that for each β > 0 we have an adapted continuous real-valued process {Vβ(t), t ≥ 0}
satisfying the stochastic differential equation

dVβ(t) = −βVβ(t)d t + h(t)dW (t), t ≥ 0, (90)

with the initial condition Vβ(0) = 0. Then for each T > 0 and p > 2, there exists a function νT,p :
R+→ R+ satisfying lim

β→∞
νT,p(β) = 0 such that for any stopping time η,

E

�

sup
0≤t≤T∧η

|Vβ(t)|p
�

≤ νT,p(β)E

�

sup
0≤t≤T∧η

|h(t)|p
�

.

For p = 4, the next lemma is implicitly proved in Lemma 3.5 of [12]. We state and prove this result
for general p > 2 here since the result may be of independent interest; however, our proof for the
general case uses the same line of argument as in [12].

Lemma 4.2.2. For each λ > 0, let ζλ be a continuous process defined on the time interval [−τ,∞),
taking values in [0,∞) such that ζλ(t) ∈ F0 for all t ∈ [−τ, 0], ζλ(t) ∈ Ft for all t ≥ 0, and

ζλ(t) = ζλ(0) +

∫ t

0

kλ(s)ds+

∫ t

0

`λ(s)dW (s) + vλ(t) for all t ≥ 0, (91)

where kλ,`λ and vλ are continuous adapted processes taking values in R, M1×m and (−∞, 0], respec-
tively, and vλ is a non-increasing process satisfying vλ(0) = 0. Suppose that there are strictly positive
constants K1, K2 and K3 such that for each λ > 0, P-a.s. for all s ∈ [0,∞),

kλ(s) ≤ −λK1ζ
λ(s) + K2‖ζλs ‖, (92)

|`λ(s)| ≤ K3‖ζλs ‖. (93)

Then for each p ∈ (2,∞) and α > 0, there are positive constants λ and C (depending only on
p,τ,α, K1, K2, K3) such that

E

�

sup
t≥0

eαt‖ζλt ‖
p

�

≤ C E
�

‖ζλ0‖
p
�

. (94)

Proof. Fix p > 2, α > 0 and κ > 2α/p such that eκpτ/2 > 2 · 3p−1. For each λ > 0 let

ξλ(t) = eκtζλ(t) for all t ∈ [−τ,∞). (95)

Then for all t ≥ 0:

dξλ(t) = κξλ(t)d t + eκt dζλ(t)

= −βξλ(t)d t + eκt k̃λ(t)d t + eκt`λ(t)dW (t) + eκt dvλ(t),
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where β = −κ+λK1 and k̃λ(t) = λK1ζ
λ(t) + kλ(t) for all t ≥ 0. It follows from Proposition 4.2.1

(with γ=−β) that for any 0≤ s ≤ t,

ξλ(t) = e−β(t−s)ξλ(s) +

∫ t

s

e−β(t−r)eκr k̃λ(r)dr

+

∫ t

s

e−β(t−r)eκr`λ(r)dW (r) +

∫ t

s

e−β(t−r)eκr dvλ(r)

≤ e−β(t−s)ξλ(s) + K2

∫ t

s

e−β(t−r)eκr‖ζλr ‖dr + Vβ(t)− Vβ(s),

≤ e−β(t−s)ξλ(s) + K2eκτ
∫ t

s

e−β(t−r)‖ξλr ‖dr + Vβ(t)− Vβ(s),

where Vβ(t) =
∫ t

0
e−β(t−r)eκr`λ(r)dW (r) for all t ≥ 0, and we have used the fact that vλ is non-

increasing together with (92) for the first inequality above.

Fix an integer n ≥ 0. For each positive integer m, let ηλm = inf{r ≥ nτ : |ξλ(r)| ≥ m}. Then by
applying Proposition 4.2.2 with {Fnτ+t , t ≥ 0}, Vβ(·+nτ)−Vβ(nτ), W (·+nτ)−W (nτ) and ηλm in
place of {Ft , t ≥ 0}, Vβ(·), W (·) and η, respectively, and then using (93), we obtain the following:

E



 sup
r∈[nτ,ηλm∧(n+1)τ]

|Vβ(r)− Vβ(nτ)|p


 ≤ ντ,p(β)E



 sup
r∈[nτ,ηλm∧(n+1)τ]

|eκr`λ(r)|p




≤ ντ,p(β)E



 sup
r∈[nτ,ηλm∧(n+1)τ]

epκr K p
3 ‖ζ

λ
r ‖

p





≤ ντ,p(β)K
p
3 epκτE



 sup
r∈[nτ,ηλm∧(n+1)τ]

‖ξλr ‖
p



 ,

whenever λ is sufficiently large that β > 0. Let

Γ(λ, n, m) = E



 sup
r∈[nτ,ηλm∧(n+1)τ]

‖ξλr ‖
p



 .

On combining the above with (110) and the fact that ξλ takes values in [0,∞), for all λ sufficiently
large that β > 0, we obtain that

Γ(λ, n, m) ≤ 3p−1

�

E
�

‖ξλnτ‖
p
�

+
K p

2 epκτΓ(λ, n, m)

β p + ντ,p(β)K
p
3 epκτΓ(λ, n, m)

�

.

Now by choosing λ sufficiently large (depending only on p,τ,α,κ, K1, K2, K3) we can guarantee that
β > 0 and that β is sufficiently large that

3p−1K p
2 epκτ

β p ≤
1

4
and 3p−1ντ,p(β)K

p
3 epκτ ≤

1

4
.

Fix such a λ. Then for all n, m,

Γ(λ, n, m)≤ 2 · 3p−1E
�

‖ξλnτ‖
p
�

.

442



(We note that by the definition of ηλm, this holds even if Γ(λ, n, m) is infinite, since this will only
occur when the right hand side above is also infinite.) Now, on letting m → ∞, we obtain by
monotone convergence that

E

�

sup
r∈[nτ,(n+1)τ]

‖ξλr ‖
p

�

≤ 2 · 3p−1E
�

‖ξλnτ‖
p
�

.

It follows that for each integer n≥ 0,

E
�

‖ξλnτ‖
p
�

≤ 2n3n(p−1)E
�

‖ξλ0‖
p
�

.

Then,

E

�

sup
t≥0

eαt |ζλ(t)|p
�

≤ E

�

sup
t≥0

eκpt/2|ζλ(t)|p
�

≤
∞
∑

n=1

E

�

sup
t∈[(n−1)τ,nτ]

eκpt/2|ζλ(t)|p
�

≤
∞
∑

n=1

E
�

e−κ(n−1)pτ/2‖ξλnτ‖
p
�

≤
∞
∑

n=1

e−κ(n−1)pτ/22n3n(p−1)E
�

‖ξλ0‖
p
�

≤ C1E
�

‖ξλ0‖
p
�

≤ C1E
�

‖ζλ0‖
p
�

,

where C1 =
∑∞

n=1 e−κ(n−1)pτ/22n3n(p−1) is finite by the choice of κ. The desired result then follows
by the observation that

E

�

sup
t≥0

eαt‖ζλt ‖
p

�

≤ eατ
�

E

�

sup
t≥0

eαt |ζλ(t)|p
�

+ E
�

‖ζλ0‖
p
�

�

.

Proof of Lemma 4.2.1. Fix α > 0 and q > 4. Let p = q/2. From equation (87), we have by Itô’s
formula that

d|Uλ(t)|2 = −2λ|Uλ(t)|2d t + 2
�

Uλ(t)
�′ �

b(X t)− b(X̃λt )
�

d t

+2
�

Uλ(t)
�′�
σ(X t)−σ(X̃λt )

�

dW (t) + 2
�

Uλ(t)
�′

d
�

Y − Ỹ λ
�

(t)

+
�

�σ(X t)−σ(X̃λt )
�

�

2
d t. (96)

The constraints on where Y and Ỹ λ can increase and the positivity of X and X̃λ imply that for each
0≤ s ≤ t,

∫ t

s

(Uλ(r))′d(Y − Ỹ λ)(r) =
d
∑

i=1

∫ t

s

Uλ,i(r)d
�

Y i − Ỹ λ,i
�

(r)

= −
d
∑

i=1

�
∫ t

s

X i(r)dỸ λ,i(r) +

∫ t

s

X̃λ,i(r)dY i(r)

�

≤ 0. (97)

The Lipschitz continuity condition (4) on b and σ implies that for any x , y ∈ Cd
I ,

2(x(0)− y(0))′(b(x)− b(y)) + |σ(x)−σ(y)|2 ≤ (1+κL)‖x − y‖2. (98)
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Thus, on setting ζλ(t) = |Uλ(t)|2 for t ∈ [−τ,∞), we see that the hypotheses of Lemma 4.2.2 are
satisfied with

kλ(s) = −2λζλ(s) + 2(Uλ(s))′(b(Xs)− b(X̃λs )) + |σ(Xs)−σ(X̃λs )|
2,

`λ(s) = 2(Uλ(s))′(σ(Xs)−σ(X̃λs )),

and K1 = 2, K2 = 1+ κL and K3 = 2
p

1+κL . The desired result then follows immediately from
Lemma 4.2.2.

From this point on, we shall fix a λ > 0 such that the result of Lemma 4.2.1 holds for α= 4 and q = 8
there. For two segments x , y ∈ Cd

I , let (X x , X̃ x ,y) be the unique strong solution to (85)–(86) with
the initial condition (X0, X̃λ0 ) ≡ (x , y). Recall that we are assuming that Assumptions 2.1 and 2.4
hold. Then by Proposition 2.2.1, there is a continuous inverse σ† for σ that is uniformly bounded
by some finite constant Cσ. For each integer n≥ 1 and x , y ∈ Cd

I , define the stopping time

ηx ,y,n := inf

¨

t ≥ 0 :

∫ t

0

λ2
�

�σ†(X̃ x ,y
s )(X

x(s)− X̃ x ,y(s))
�

�

2
ds ≥ n

«

.

Lemma 4.2.3. For each x , y ∈ Cd
I ,

P
�

limsup
t→∞

|X x(t)− X̃ x ,y(t)|= 0
�

= 1 and lim
n→∞

P
�

ηx ,y,n =∞
�

= 1.

Proof. Fix x , y ∈ Cd
I . Let Uλ(t) = X x(t)− X̃ x ,y(t) for all t ∈ [−τ,∞) and let Υ := sup

t≥0
et‖Uλt ‖

2.

Then by Lemma 4.2.1, E[Υ4] ≤ K‖x − y‖8. Thus, Υ < ∞ P-a.s., and the first conclusion of the
lemma follows immediately.

Then by the bound on σ† and the fact that ‖Uλt ‖
2 ≤ e−tΥ for each t ≥ 0, we have

∫ ∞

0

λ2
�

�σ†(X̃ x ,y
s )U

λ(s)
�

�

2
ds ≤ λ2C2

σ

∫ ∞

0

�

�Uλ(s)
�

�

2
ds ≤ λ2C2

σ

∫ ∞

0

e−sΥds ≤ λ2C2
σΥ.

Therefore,

P
�

ηx ,y,n =∞
�

≥ P

�
∫ ∞

0

λ2
�

�σ†(X̃ x ,y
s )U

λ(s)
�

�

2
ds < n

�

≥ P
�

λ2C2
σΥ< n

�

, (99)

which increases to one as n→∞ since Υ<∞, P-a.s.

4.3 Uniqueness Theorem

Theorem 4.3.1. Under Assumption 2.4 (in addition to Assumption 2.1), there exists at most one
stationary distribution for the SDDER (1).

Given the results of the previous section, our proof of the uniqueness theorem has the same general
structure as the proof of Theorem 3.1 in [12], although we include a few more details, especially
with regard to certain measurability properties.
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Proof. We verify the hypotheses of Proposition 4.1.1. Define the function N : Cd
I ×C

d
I → {1,2, . . . }

by

N(x , y) := inf
�

n≥ 1 : P(ηx ,y,n =∞)≥
1

2

�

,

which is finite valued by Lemma 4.2.3. The following maps are measurable:

Cd
J ×C

d
J 3 (ω, ω̃)→

∫ k

0

λ2
�

�σ†(ω̃s)(ω(s)− ω̃(s))
�

�

2
ds, k = 1,2, . . . .

It follows that for each n= 1, 2, . . .,

Γn :=

(

(ω, ω̃) :

∫ k

0

λ2
�

�σ†(ω̃s) (ω(s)− ω̃(s))
�

�

2
ds < n for k = 1,2, . . .

)

is in MJ ⊗MJ. Then Feller continuity of the Markovian transition functions implies that the map
(x , y)→ P(ηx ,y,n =∞) = P((X x , X̃ x ,y) ∈ Γn) is measurable for each n, and so the measurability of
N(·, ·) follows. Henceforth, we abbreviate

ηx ,y := ηx ,y,N(x ,y).

For each x , y ∈ Cd
I , let v x ,y(t) = 1{t≤ηx ,y}λσ

†(X̃ x ,y
t )

�

X x(t)− X̃ x ,y(t)
�

for t ≥ 0. Define the process

W̃ x ,y(t) :=W (t) +

∫ t

0

v x ,y(s)ds, t ≥ 0.

By construction of ηx ,y and v x ,y ,
∫ ∞

0

|v x ,y(s)|2ds ≤ N(x , y),

so by Novikov’s condition (see, e.g., Proposition VIII.1.15 of [31]),

ρx ,y(t) := exp

�

−
∫ t

0

(v x ,y(s))′ dW (s)−
1

2

∫ t

0

|v x ,y(s)|2ds

�

, t ≥ 0,

defines a uniformly integrable martingale. Let ρx ,y(∞) denote the P-a.s. strictly positive limit of
ρx ,y(t) as t → ∞. It then follows from Girsanov’s theorem (see, e.g., Section 1 of Chapter VIII
of [31]) that the probability measure Qx ,y , defined by Qx ,y(A) = EP[ρx ,y(∞)1A] for all A ∈ F ,
is equivalent to P, and under Qx ,y , W̃ x ,y is a Brownian motion {Ft}-martingale. Let X̄ x ,y be the
unique solution under Qx ,y to the SDDER

dX̄ (t) = b(X̄ t)d t +σ(X̄ t)dW̃ x ,y(t) + dȲ (t), (100)

with initial condition X̄0 = y . Then, P-a.s.,

dX̄ x ,y(t) = b(X̄ x ,y
t )d t + 1{t≤ηx ,y}λ

�

X x(t)−X̃ x ,y(t)
�

d t +σ(X̄ x ,y
t )dW (t) + dȲ (t), (101)
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where W is a Brownian motion under P. For (101), we used the facts that σσ† = Id and

P
�

σ†(X̄ x ,y
t ) = σ

†(X̃ x ,y
t ) for all t ∈ [0,ηx ,y]∩ [0,∞)

�

≥ P
�

X̄ x ,y(t) = X̃ x ,y(t) for all t ∈ [−τ,ηx ,y]∩ [−τ,∞)
�

= 1. (102)

The equality above follows by a very similar proof to that for the strong uniqueness of solutions for
the SDDER with Lipschitz coefficients using Gronwall’s inequality.

Since uniqueness in law holds for solutions of (85), the distribution of X̄ x ,y under Qx ,y is the same
as that of the solution X y to (85) under P with initial condition X0 = y . Then, since Qx ,y ∼
P, the distribution of X̄ x ,y under P and the distribution of X y under P are mutually absolutely
continuous. Thus, if we let P̃ x ,y be the probability measure on (Cd

I )
∞ × (Cd

I )
∞ that is the law of

�

{X x
nτ}
∞
n=0, {X̄ x ,y

nτ }∞n=0

�

under P, then P̃ x ,y satisfies condition (i) of Proposition 4.1.1.

On the set {ηx ,y =∞}, we have X̄ x ,y = X̃ x ,y P-a.s. by (102). Thus, on {ηx ,y =∞}, by Lemma 4.2.3
we have P-a.s.:

lim
t→∞
|X x(t)− X̄ x ,y(t)| = lim

t→∞
|X x(t)− X̃ x ,y(t)|= 0. (103)

Therefore,

P̃ x ,y
�

({xn}∞n=0, {yn}∞n=0) ∈ (C
d
I )
∞× (Cd

I )
∞ : lim

n→∞
‖xn− yn‖= 0

�

≥ P(ηx ,y =∞)

≥
1

2
, (104)

so that P̃ x ,y also satisfies condition (ii) of Proposition 4.1.1.

All that remains to be shown is the measurability property (iii) in Proposition 4.1.1. This will
follow from the measurability of (x , y)→ P̄ x ,y (B) for each Borel measurable set B ⊂ C(R+,Cd

I )×
C(R+,Cd

I ), where P̄ x ,y is the law of (X x
· , X̄ x ,y

· ) under P. We establish the latter below.

By a monotone class argument, it suffices to prove that for each k = 1, 2, . . ., 0≤ t1 < t2 < . . .< tk <

∞, and g1, . . . , gk in Cb(C2d
I ), the mapping (x , y) → E

h

g1(X x
t1

, X̄ x ,y
t1
) · · · gk(X x

tk
, X̄ x ,y

tk
)
i

is measur-
able. For the proof of this, let A0 := {0≤ ηx ,y < t1}, Ak := {tk ≤ ηx ,y}, and for each j = 1, . . . , k−1
let A j := {t j ≤ ηx ,y < t j+1}.Then, Ω is the disjoint union of A0, . . . , Ak and

E
h

g1(X
x
t1

, X̄ x ,y
t1
) · · · gk(X

x
tk

, X̄ x ,y
tk
)
i

=
k
∑

j=0

E







 

j
∏

i=1

gi(X
x
t i

, X̄ x ,y
t i
)

!

1A j
E













k
∏

i= j+1

gi(X
x
t i

, X̄ x ,y
t i
)







�

�

�

�

Fηx ,y












, (105)

where we have used the convention that
0
∏

i=1
ai =

k
∏

i=k+1
ai = 1 for any real numbers ai .

For each x̌ , x̂ ∈ Cd
I , let P x̌ , x̂ denote the law induced on C(R+,C2d

I ) by the pair of strong solutions
to (85) with the two initial conditions x̌ , x̂ and the same driving Brownian motion W . Then, by
the strong uniqueness for this pair, P-a.s., on {ηx ,y < ∞}, the law of (X x

ηx ,y+·, X̄ x ,y
ηx ,y+·) under P
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conditioned on Fηx ,y is given by PX x
ηx ,y ,X̄ x ,y

ηx ,y . Let hk( x̌ , x̂ , t) ≡ 1 for all ( x̌ , x̂ , t) ∈ Cd
I ×C

d
I × [0,∞].

For j = 0,1, . . . , k− 1, define the measurable real-valued functions h j on Cd
I ×C

d
I × [0,∞) by

h j( x̌ , x̂ , t) := EP x̌ , x̂







k
∏

i= j+1

gi
�

w̌(t i − t), ŵ(t i − t)
�






, for t < t j+1,

and h j( x̌ , x̂ , t) = 0 for t ≥ t j+1, where (w̌, ŵ) denotes a generic point in C(R+,C2d
I ). From the

above and using the fact (see (102)) that P-a.s., X̄ x ,y(·) and X̃ x ,y(·) agree on [−τ,ηx ,y]∩ [−τ,∞),
we see that the right hand side of (105) is equal to

k
∑

j=0

E





 

j
∏

i=1

gi(X
x
t i

, X̃ x ,y
t i
)

!

1A j
h j(X

x
ηx ,y , X̃ x ,y

ηx ,y ,ηx ,y)





=
k
∑

j=0

E P̂ x ,y





 

j
∏

i=1

gi(wt i
, w̃t i
)

!

1B j
h j(wη, w̃η,η)



 , (106)

where for each x , y ∈ Cd
I , P̂ x ,y is the law of (X x(·), X̃ x ,y(·)) under P,

η(w, w̃) := inf

¨

t ≥ 0 :

∫ t

0

λ
�

�σ†(w̃s)(w(s)− w̃(s))
�

�

2
ds ≥ N(w0, w̃0)

«

,

and B j is defined in the same manner as A j , but with η in place of ηx ,y . The desired measurability
in (x , y) of the expression in (106) then follows directly from the Feller continuity of the transition
functions associated with {(X x

· , X̃ x ,y
· ) : x , y ∈ Cd

I }, since the fact that N(·, ·) is measurable can be
used to show that η is a stopping time with respect to

¦

F̃t := σ
�

(ws, w̃s) : 0≤ s ≤ t
�

, t ≥ 0
©
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A Reflection

To ensure that a solution of (1) remains positive, we have employed Skorokhod’s well-known map-
ping for constraining a continuous real-valued function to be positive by means of reflection at the
origin. This mapping was applied to each component.

For each positive integer d, define C+(R+,Rd) := {x ∈ C(R+,Rd) : x(0) ∈ Rd
+}.

Definition A.0.1. Given a path x ∈ C+(R+,Rd), we say that a pair (z, y) of functions in C+(R+,Rd)
solves the Skorokhod problem for x with (normal) reflection if

(i) z(t) = x(t) + y(t) for all t ≥ 0 and z(t) ∈ Rd
+ for each t ≥ 0,
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(ii) for each i = 1, . . . , d, y i(0) = 0 and y i is non-decreasing,

(iii) for each i = 1, . . . , d,
∫ t

0
z i(s)d y i(s) = 0 for all t ≥ 0, i.e., y i can increase only when z i is at

zero:

The path z is called the reflection of x , and the path y is called the regulator of x .

We summarize some basic facts about the Skorokhod problem in the next proposition.

Proposition A.0.1. For each path x ∈ C(R+,Rd), there exists a unique solution (z, y) to the Skorokhod
problem for x. Thus there exists a pair of functions (φ,ψ) : C+(R+,Rd) → C+(R+,R2d) defined by
(φ(x),ψ(x)) = (z, y). The pair (φ,ψ) satisfies the following:

(i)

Osc(φ(x), [a, b]) ≤ Osc(x , [a, b]). (107)

(ii) There exists a constant K` > 0 such that for any x , y ∈ C+(R+,Rd), we have for each t ≥ 0,

‖ψ(x)−ψ(y)‖[0,t] ≤ K`‖x − y‖[0,t], and

‖φ(x)−φ(y)‖[0,t] ≤ K`‖x − y‖[0,t].

Proof. These properties follow from the well-known construction of y:

y i(t) = max
0≤s≤t

�

x i(s)
�−

, i = 1, . . . , d. (108)

For more details, see [9; 14; 40]. We note that K` ≤ 2, but we keep the notation K` for convenience.

B Useful Inequalities

For referencing purposes, we state here several inequalities that are used in this paper.

For any a1, a2 ≥ 0, we have the inequality

(a1+ a2)
q ≤ aq

1 + aq
2, for all q ∈ [0, 1], (109)

which is obvious if a1 = a2 or if either is 0, and if a1 > a2 > 0 then (a1+ a2)q − aq
1 ≤ qaq−1

1 a2 < aq
2.

The following is a well-known fact that follows from the convexity of power functions. For any
p > 1, a1, . . . , an ∈ R, we have

|a1+ · · ·+ an|p ≤ np−1(|a1|p + · · ·+ |an|p). (110)

Sometimes np−1 is too big for our needs, and we will use the following alternative, which can
be proved with standard optimization techniques. For any γ > 1, and a, q ≥ 0, there is a K =
K(a,γ, q)≥ 0 such that

(a+ t)q ≤ K + γtq for all t ≥ 0. (111)
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Convexity of the exponential function implies that for any integer n ≥ 2, numbers a1, a2, . . . , an ∈
R+, and λ ∈ (0,1), we have

exp
�

λa1+
1−λ
n− 1

a2+ · · ·+
1−λ
n− 1

an

�

≤ λexp(a1) +
1−λ
n− 1

exp(a2) + · · ·+
1−λ
n− 1

exp(an),

which then implies that

exp(a1+ a2+ · · ·+ an) ≤ λexp
�

1

λ
a1

�

+
1−λ
n− 1

exp
�

n− 1

1−λ
a2

�

+ · · ·+
1−λ
n− 1

exp
�

n− 1

1−λ
an

�

. (112)

We now state Gronwall’s inequality. For a proof, see for example [6], p. 250 and p. 262.

Proposition B.0.2. Fix T > 0. Assume that f , g are Borel measurable, integrable functions defined on
[0, T] and taking values in R+. Suppose that there is a K > 0 such that

f (t)≤ g(t) + K

∫ t

0

f (s)ds, for all t ∈ [0, T].

Then

f (t)≤ g(t) + K

∫ t

0

eK(t−s)g(s)ds, for all t ∈ [0, T].

If g is constant, then f (t)≤ geK t .
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