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Abstract

In this paper, we prove that the spectral empirical process of Wigner matrices under sixth-

moment conditions, which is indexed by a set of functions with continuous fourth-order deriva-

tives on an open interval including the support of the semicircle law, converges weakly in finite

dimensions to a Gaussian process.
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1 Introduction and Main result

The random matrices theory originates from the development of quantum mechanics in the 1950’s.

In quantum mechanics, the energy levels of a system are described by eigenvalues of a Hermitian

operator on a Hilbert space. Hence physicists working on quantum mechanics are interested in the

asymptotic behavior of the eigenvalues and from then on, the random matrices theory becomes a

very popular topic among mathematicians, probabilitists and statisticians. The leading work, the

famous semi-circle law for Wigner matrices was found in [19].

A real Wigner matrix of size n is a real symmetric matrix Wn = (x i j)1≤i, j≤n whose upper-triangle en-

tries (x i j)1≤i≤ j≤n are independent, zero-mean real-valued random variables satisfying the following

moment conditions:

(1). ∀i, E|x ii |2 = σ2 > 0; (2). ∀i < j, E|x i j |2 = 1.

The set of these real Wigner matrices is called the Real Wigner Ensemble (RWE).

A complex Wigner matrix of size n is a Hermitian matrix Wn whose upper-triangle entries

(x i j)1≤i≤ j≤n are independent, zero-mean complex-valued random variables satisfying the follow-

ing moment conditions:

(1). ∀i, E|x ii |2 = σ2 > 0; (2). ∀i < j, E|x i j |2 = 1, and Ex2
i j = 0.

The set of these complex Wigner matrices is called the Complex Wigner Ensemble (CWE).

The empirical distribution Fn generated by the n eigenvalues of the normalized Wigner matrix

n−1/2Wn is called the empirical spectral distribution (ESD) of Wigner matrix. The semi-circle law

states that Fn a.s. converges to the distribution F with the density

p(x) =
1

2π

p

4− x2, x ∈ [−2,2].

Its various versions of convergence were later investigated. See, for example, [1], [2].

Clearly, one method of refining the above approximation is to establish the rate of convergence,

which was studied in [3], [10], [12], [13], [18], [5] and [8]. Although the exact convergence rate

remains unknown for Wigner matrices, Bai and Yao [6] proved that the spectral empirical process

of Wigner matrices indexed by a set of functions analytic on an open domain of the complex plane

including the support of the semi-circle law converges to a Gaussian process under fourth moment

conditions.

To investigate the convergence rate of the ESD of Wigner matrix, one needs to use f as step func-

tions. However, many evidences show that the empirical process associated with a step function can

not converge in any metric space, see Chapter 9 of [8]. Naturally, one may ask whether it is possible

to derive the convergence of the spectral empirical process of Wigner matrices indexed by a class of

functions under as less assumption on the smoothness as possible. This may help us to have deeper

understanding on the exact convergence rate of ESD to semi-circle law.

In this paper, we consider the empirical process of Wigner matrices, which is indexed by a set of

functions with continuous fourth-order derivatives on an open interval including the support of the

semicircle law. More precisely, let C4(U ) denote the set of functions f :U →C that has continuous
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fourth-order derivatives, where U is an open interval including the interval [−2,2], the support of

F(x). The empirical process Gn ¬ {Gn( f )} indexed by C4(U ) is given by

Gn( f )¬ n

∫ ∞

−∞
f (x)[Fn− F](d x), f ∈ C4(U ) (1.1)

In order to give a unified treatment for Wigner matrices, we define the parameter κ with values 1

and 2 for the complex and real Wigner matrices respectively. Also set β = E(|x12|2 − 1)2 − κ. Our

main result is as follows.

Theorem 1.1. Suppose

E|x i j |6 ≤ M for all i, j. (1.2)

Then the spectral empirical process Gn = {Gn( f ) : f ∈ C4(U )} converges weakly in finite dimensions

to a Gaussian process G := {G( f ) : f ∈ C4(U )} with mean function

EG( f ) =
κ− 1

4
[ f (2) + f (−2)]−

κ− 1

2
τ0( f ) + (σ

2− κ)τ2( f ) + βτ4( f ).

and covariance function

c( f , g) ¬ E[{G( f )−EG( f )}{G(g)−EG(g)}]

=
1

4π2

∫ 2

−2

∫ 2

−2

f ′(t)g ′(s)V (t, s)d tds

where

V (t.s) =

�

σ2− κ+
1

2
β ts

�

p

(4− t2)(4− s2)

+κ log





4− ts+
p

(4− t2)(4− s2)

4− ts−
p

(4− t2)(4− s2)





and

τl( f ) =
1

2π

∫ π

−π
f (2cosθ )eilθ dθ =

1

2π

∫ π

−π
f (2cosθ )cos(lθ )dθ

=
1

π

∫ 1

−1

f (2t)Tl(t)
1
p

1− t2
d t.

Here {Tl , l ≥ 0} is the family of Chebyshev polynomials.

Remark 1.2. In the definition of Gn( f ), θ =
∫

f (x)dF(x) can be regarded as a population param-

eter. The linear spectral statistic θ̂ =
∫

f (x)dFn(x) is then an estimator of θ . We remind the reader

that the center θ =
∫

f (x)dF(x), instead of E
∫

f (x)dFn(x), has its strong statistical meaning in

the application of Theorem 1.1. For example, in quantum mechanics, Wigner matrix is a discretized

version of a random linear transformation in a Hilbert space, and semicircular law is derived under

2393



ideal assumptions. Therefore, the quantum physicists may want to test the validity of the ideal as-

sumptions. Therefore, they may suitably select one or several f ’s so that θ ’s may characterize the

semicircular law. Using the limiting distribution of Gn( f ) = n(θ̂ − θ ), one may perform statistical

test of the ideal hypothesis. Obviously, one can not apply the limiting distribution of n(θ̂ − Eθ̂ ) to

the above test.

Remark 1.3. Checking the proof of Theorem 1.1, one finds that the proof still holds under the

assumption of bounded fourth moments of the off-diagonal entries is finite, if the approximation

Gn( fm) of Gn( f ) is of the desired order. Thus, the assumption of 6-th moment is only needed in

deriving the convergence rate of ‖Fn − F‖. Furthermore, the assumption of the fourth derivative

of f is also related to the convergence rate of ‖Fn − F‖. If the convergence rate of ‖Fn − F‖ is

improved and/or proved under weaker conditions, then the result of Theorem 1.1 would hold un-

der the weakened conditions. We conjecture that the result would be true if we only assume the

fourth moments of the off-diagonal elements of Wigner matrices are bounded and f have the first

continuous derivative.

Pastur and Lytova in [17] studied asymptotic distributions of n
∫

f (x)d(Fn(x)−EFn(x)) under the

conditions that the fourth cumulant of off-diagonal elements of Wigner matrices being zero and

the Fourier transform of f (x) having 5th moment, which implies that f has the fifth continuous

derivative. Moreover, they assume f is defined on the whole real line. These are stronger than our

conditions.

Remark 1.4. The strategy of the proof is to use Bernstein polynomials to approximate functions in

C4(U ). This will be done in Section 2. Then the problem is reduced to the analytic case, which has

been intensively discussed in Bai and Yao [6]. But the functions in [6] are independent of n and thus

one can choose fixed contour and then prove that the Stieltjes transforms tend to a limiting process.

In the present case, the Berstein polynomials depend on n through increasing degrees and thus they

are not uniformly bounded on any fixed contour. Therefore, we cannot simply use the results of

Bai and Yao [6] and thus we have to choose a sequence of contours approaching to the real axes

so that the approximating polynomials are uniformly bounded on the corresponding contours. On

this sequence of contours, the Stieltjes transforms don’t have a limiting process. Our Theorem 1.1

cannot follow directly from [6]. We have to find alternative ways to prove the CLT.

Remark 1.5. It has been also found in literature that the so-called secondary freeness is proposed

and investigated in free probability. Readers of interest are referred to Mingo [14; 15; 16]. We

shall not be much involved in this direction in the present paper. As a matter, we only comment

here that both the freeness and the secondary freeness are defined on sequences of random matrices

(or ensembles) for which the limits of expectations of the normalized traces of all powers of the

random matrices and the limits of covariances of unnormalized traces of powers of the random

matrices exist. Therefore, for a single sequence of random matrices, the existence of these limits has

to be verified and the verification is basically equivalent to moment convergence method. Results

obtained in [14] is in some sense equivalent to those of [17].

The paper is organized as follows. The truncation and re-normalization step is in Section 3. We

derive the mean function of the limiting process in Section 4. The convergence of the empirical

processes is proved in Section 5.
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2 Bernstein polynomial approximation

It is well-known that if f̃ (y) is a continuous function on the interval [0,1], the Bernstein polynomials

f̃m(y) =

m
∑

k=0

�

m

k

�

yk(1− y)m−k f̃

�

k

m

�

converge to f̃ (y) uniformly on [0,1] as m→∞. Suppose f̃ (y) ∈ C4[0,1]. Taylor expansion gives

f̃

�

k

m

�

= f̃ (y) +

�

k

m
− y

�

f̃ ′(y) +
1

2

�

k

m
− y

�2

f̃ ′′(y)

+
1

3!

�

k

m
− y

�3

f̃ (3)(y) +
1

4!

�

k

m
− y

�4

f̃ (4)(ξy).

Hence

f̃m(y)− f̃ (y) =
y(1− y) f̃ ′′(y)

2m
+O

�

1

m2

�

. (2.1)

For the function f ∈ C4(U ), there exists a > 2 such that [−a, a] ⊂U . Make a linear transformation

y = K x + 1

2
, ε ∈ (0,1/2), where K = (1− 2ε)/(2a), then y ∈ [ε, 1− ε] if x ∈ [−a, a]. Define

f̃ (y)¬ f (K−1(y − 1/2)) = f (x), y ∈ [ε, 1− ε], and define

fm(x)¬ f̃m(y) =

m
∑

k=1

�

m

k

�

yk(1− y)m−k f̃

�

k

m

�

.

From (2.1), we have

fm(x)− f (x) = f̃m(y)− f̃ (y) =
y(1− y) f̃ ′′(y)

2m
+O

�

1

m2

�

.

Since h̃(y) ¬ y(1− y) f̃ ′′(y) has a second-order derivative, we can use Bernstein polynomial ap-

proximations once again to get

h̃m(y)− h̃(y) =

m
∑

k=1

�

m

k

�

yk(1− y)m−kh̃(
k

m
)− h̃(y)

= O

�

1

m

�

.

So, with hm(x) = h̃m(K x + 1

2
),

f (x) = fm(x)−
1

2m
hm(x) +O

�

1

m2

�

.
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Therefore, Gn( f ) can be split into three parts:

Gn( f ) = n

∫ ∞

−∞
f (x)[Fn− F](d x)

= n

∫

fm(x)[Fn− F](d x)−
n

2m

∫

hm(x)[Fn− F](d x)

+n

∫

�

f (x)− fm(x) +
1

2m
hm(x)
�

[Fn− F](d x)

= ∆1+∆2+∆3.

For ∆3, by Lemma 6.1 given in Appendix,

‖Fn− F‖= Op(n
−2/5).

Here and in the sequel, the notation Zn = Op(cn) means that for any ε > 0, there exists an M > 0

such that supnP(|Zn| ≤ Mcn) < ε. Similarly, Zn = op(cn) means that for any ε > 0, limnP(|Zn| ≤
εcn) = 0.

Taking m2 = [n3/5+ε0], for some ε0 > 0 and using integration by parts, we have that

∆3 = −n

∫

�

f (x)− fm(x) +
1

2m
hm(x)
�′�

Fn(x)− F(x)
�

d x

= Op(n
−ε0)

since
�

f (x)− fm(x) +
1

2m
hm(x)
�′
= O(m−2). From now on we choose ε0 = 1/20, and then m =

n13/40.

Note that fm(x) and hm(x) are both analytic. Following from the result proved in Section 5, replac-

ing fm by hm, we obtain that

∆2 =
O(∆1)

m
= op(1).

It suffices to consider ∆1 = Gn( fm). In the above, fm(x) and gm(y) are only defined on the real

line. Clearly, the two polynomials can be considered as analytic functions on the complex regions

[−a, a]× [−ξ,ξ] and [ε, 1− ε]× [−Kξ, Kξ], respectively.

Since g ∈ C4[0,1], there is a constant M , such that |g(y)| < M , ∀y ∈ [ε, 1− ε]. Noting that for

(u, v) ∈ [ε, 1− ε]× [−Kξ, Kξ],

|u+ iv|+ |1− u− iv| =
p

u2+ v2+
p

(1− u)2+ v2

≤ u

�

1+
v2

2u2

�

+ (1− u)

�

1+
v2

2(1− u)2

�

≤ 1+
v2

ε

we have, for y = K x + 1/2= u+ iv,

| fm(x)| = | f̃m(y)|=

�

�

�

�

�

n
∑

k=1

�

m

k

�

yk(1− y)m−k f̃

�

k

m

�

�

�

�

�

�

≤ M

�

1+
v2

ε

�m

.
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If we take |ξ| ≤ K/
p

m, then | f̃m(y)| ≤ M
�

1+ K2/(mε)
�m → MeK2/ε, as m → ∞. So f̃m(y) is

bounded when y ∈ [ε, 1 − ε] × [−K/
p

m, K/
p

m]. In other words fm(x) is bounded when x ∈
[−a, a]× [−1/

p
m, 1/
p

m]. Let γm be the contour formed by the boundary of the rectangle with

vertices (±a± i/
p

m). Similarly, we can show that hm(x), f ′m(x) and h′m(x) are bounded on γm.

3 Simplification by truncation and Preliminary formulae

3.1 Truncation

As proposed in [9], to control the fluctuations around the extreme eigenvalues under condi-

tion (1.2), we will truncate the variables at a convenient level without changing their weak limit.

Condition (1.2) implies the existence of a sequence ηn ↓ 0 such that

1

n2η4
n

∑

i, j

E

h

|x i j |4I|x i j |≥ηn

p
n

i

= o(1).

We first truncate the variables as x̂ i j = x i jI|x i j |≤ηn

p
n and normalize them to x̃ i j = ( x̂ i j − E x̂ i j)/si j,

where si j is the standard deviation of x̂ i j .

Let F̂n and F̃n denote the ESDs of the Wigner matrices n−1/2( x̂ i j) and n−1/2( x̃ i j), and Ĝn and G̃n the

corresponding empirical process, respectively. First of all, by (1.2),

P(Gn 6= Ĝn) ¶ P(Fn 6= F̂n)¶ P( x̂ i j 6= x̃ i j)

¶

∑

i, j

P(|x i j| ≥ ηn

p
n)

¶ (ηn

p
n)−4
∑

i, j

E|x i j |4I|x i j |≥ηn

p
n = o(1).

Second, we compare G̃n( fm) and Ĝn( fm). Note that

max
i, j
|1− si j| ¶ max

i, j
|1− s2

i j|

= max
i, j

h

E(|x i j|2I|x i j |≥ηn

p
n) + |E(x i jI|x i j |≥ηn

p
n)|2
i

≤ (n−1η−2
n +Mη−6

n n−3)max
i, j
[E(|x i j |4I|x i j |≥ηn

p
n)]→ 0.

Therefore, there exist positive constants M1 and M2 so that

∑

i, j

E(|x i j |2|1− s−1
i j |

2)≤ M1

∑

i, j

(1− s2
i j)

2 ≤
M2

η4
nn2

∑

i, j

E(x4
i jI|x i j |≥ηn

p
n)→ 0.
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Since f (x) ∈ C4(U ) implies that fm(x) are uniformly bounded in x ∈ [−a, a] and m, we obtain

E|G̃n( fm)− Ĝn( fm)|2 ≤ ME







n
∑

j=1

|λ̃n j − λ̂n j |







2

≤ MnE

n
∑

j=1

|λ̃n j − λ̂n j |2

= MnE
∑

i, j

|n−1/2( x̃ i j − x̂ i j)|2

≤ M







∑

i, j

(E|x i j|2)|1− s−1
i j |

2+
∑

i, j

|E( x̂ i j)|2s−2
i j







= o(1),

where λ̃n j and λ̂n j are the jth largest eigenvalues of the Wigner matrices n−1/2( x̃ i j) and n−1/2( x̂ i j),

respectively.

Therefore, the weak limit of the variables (Gn( fm)) is not affected if we substitute the normalized

truncated variables x̃ i j for the original x i j .

From the normalization, the variables x̃ i j all have mean 0 and the same absolute second moments

as the original variables. But for the CWE, the condition Ex2
i j = 0 does no longer remain true after

these simplifications. Fortunately, we have the estimate E x̃2
i j = o
�

n−1η2
n

�

, which is good enough

for our purposes.

For brevity, in the sequel we still use x i j to denote the truncated and normalized variables x̃ i j .

3.2 Preliminary formulae

Recall that for a distribution function H, its Stieltjes transform sH(z) is defined by

sH(z) =

∫

1

x − z
dH(x), z ∈C.

The Stieltjes transform s(z) of the semicircle law F is given by s(z) = −1

2
(z − sgn(Im(z))

p

z2− 4)

for z with Im(z) 6= 0 which satisfies the equation s(z)2 + zs(z) + 1 = 0. Here and throughout the

paper,
p

z of a complex number z denotes the square root of z with positive imaginary part.

Define D = (n−1/2Wn − zIn)
−1. Let αk be the kth column of Wn with xkk removed and Wn(k) the

submatrix extracted from Wn by removing its kth row and kth column. Define Dk = (n
−1/2Wn(k)−

zIn−1)
−1. Let A∗ denote the complex conjugate and transpose of matrix or vector A. We shall use the
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following notations:

βk(z) = −
1
p

n
xkk + z + n−1α∗kDkαk,

δn(z) = −
1

n

n
∑

j=1

ǫk(z)

βk(z)
,

ǫk(z) =
1
p

n
xkk −

1

n
α∗kDkαk +Esn(z),

qk(z) =
1
p

n
xkk −

1

n

�

α∗kDk(z)αk − t rDk(z)
�

,

ωk(z) = −
1
p

n
xkk + n−1α∗kDkαk − s(z),

bn(z) = n[Esn(z)− s(z)].

The Stieltjes transform sn(z) of Fn has the representation

sn(z) =
1

n
t rD =

1

n
t r

�

Wnp
n
− zIn

�−1

= −
1

n

n
∑

k=1

1

βk(z)
= −

1

z +Esn(z)
+

δn(z)

(z +Esn(z))
. (3.2)

Throughout this paper, M may denote different constants on different occassions and εn a sequence

of numbers which converges to 0 as n goes to infinity.

4 The mean function

Let λex t(n
−1/2Wn) denote both the smallest and the largest eigenvalue of the matrix n−1/2Wn (de-

fined by the truncated and normalized variables). For η0 < (a− 2)/2, define

An = {|λex t(n
−1/2Wn)| ≤ 2+η0}.

Then, by Cauchy integral we have

∆1 = Gn( fm) =
1

2πi

∫ ∮

γm

fm(z)

z − x
n[Fn− F](d x)dz IAn

+

∫

fm(x)n[Fn− F](d x) IAc
n
.

Since P(Ac
n) = o(n−t) for any t > 0 (see the proof of Theorem 2.12 in [4]),

∫

fm(x)n[Fn− F](d x) IAc
n
→ 0
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in probability. It suffices to consider

∆ = −
1

2πi

∮

γm

fm(z)n[sn(z)− s(z)]IAn
dz. (4.3)

In the remainder of this section, we will handle the asymptotic mean function of∆. The convergence

of random part of ∆ will be given in Section 5.

To this end, write bn(z) = n[Esn(z)−s(z)] and b(z)¬ [1+s′(z)]s3(z)[σ2−1+(κ−1)s′(z)+βs2(z)].

Then we prove

E∆h = −
1

2πi

∮

γmh

fm(z)b(z)dz

−
1

2πi

∮

γmh

fm(z)[n(Esn(z)IAn
− s(z))− b(z)]dz+ o(1)

¬ R1+ R2+ o(1) (4.4)

∆v = −
1

2πi

∮

γmv

fm(z)n[sn(z)− s(z)]IAn
dz = op(1), (4.5)

where and in the sequel γmh denotes the union of the two horizontal parts of γm and γmv the union

of the two vertical parts. The limit of R1 is given in the following proposition.

Proposition 4.1. R1 tends to

EG( f ) =
κ− 1

4
[ f (2) + f (−2)]−

κ− 1

2
τ0( f ) + (σ

2− κ)τ2( f ) + βτ4( f )

for both the CWE and RWE.

Proof. Since fm(z) are analytic functions, by [6], we have

R1 = −
1

2πi

∮

γmh

fm(z)b(z)dz

≃
κ− 1

4
[ fm(2) + fm(−2)]−

κ− 1

2
τ0( fm) + (σ

2− κ)τ2( fm) + βτ4( fm),

where a ≃ b stands for a/b→ 1 as n→∞,

τl( fm) =
1

2π

∫ π

−π
fm(2cosθ )eilθ dθ .

As fm(t)→ f (t) uniformly on t ∈ [−a, a] as m→∞, it follows that

R1 −→
κ− 1

4
[ f (2) + f (−2)]−

κ− 1

2
τ0( f ) + (σ

2− κ)τ2( f ) + βτ4( f ).
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Since fm(z) is bounded on and in γm, in order to prove R2 → 0 as m→∞, it is sufficient to show

that

|bnA(z)− b(z)|= o(1) uniformly on γmh, (4.6)

where bnA = n(Esn(z)IAn
− s(z)).

We first consider the case z ∈ γmh. Since

nEδn(z) = −E
n
∑

k=1

ǫk(z)

βk(z)
= −E

n
∑

k=1

ǫk(z)

z +Esn(z)− ǫk(z)
,

by the identity

1

u− ε =
1

u

�

1+
ε

u
+ ...+

εp

up
+

εp+1

up(u− ε)

�

,

we have

nEδn(z) = −E
n
∑

k=1

ǫk(z)

z +Esn(z)
−E

n
∑

k=1

ǫ2
k
(z)

[z +Esn(z)]
2

−E
n
∑

k=1

ǫ3
k
(z)

[z +Esn(z)]
3
−E

n
∑

k=1

ǫ4
k
(z)

[z +Esn(z)]
3βk(z)

¬ S1+ S2+ S3+ S4.

Now suppose z ∈ γmh. In order to analyze S1,S2,S3 and S4, we present some facts.

Fact 1.

|Esn(z)− s(z)| =
�

�

�

�

1

n
Et rD(z)− s(z)

�

�

�

�

=

�

�

�

�

∫

1

x − z
(EFn− F)(d x)

�

�

�

�

¶
1

v
‖EFn− F‖= O

�

1
p

nv

�

= O(n−
27

80 ).

where we have used Lemma 6.1. This implies

|Esn(z)|¶ |Esn(z)− s(z)|+ |s(z)|¶ O(
1
p

nv
) +M ¶ M .

Fact 2.

E|ǫk(z)|4 = E

�

�

�

�

1
p

n
xkk −

1

n
α∗kDk(z)αk +Esn(z)

�

�

�

�

4

¶ M[
1

n2
E|xkk|4+

1

n4
E|α∗kDk(z)αk − t rDk(z)|4

+
1

n4
E|t rDk(z)− t rD(z)|4+

1

n4
E|t rD(z)−Et rD(z)|4]

≤
M

n2v4
= Mn−

27

20 ,
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where we have used |t rD(z)− t rDk(z)| ¶ 1/v, E|t rD(z)− Et rD(z)|2l
¶ cn−2l v−4l(∆+ v)l (l ≥ 1)

which follows from the proof of (4.3) in [7], and

E|α∗kDk(z)αk − t rDk(z)|4 ¶ M
�

(E|x12|4 t rDk(z)D
∗
k(z))

2

+nηnE|x12|6 t r(Dk(z)D
∗
k(z))

2
�

¶ M

�

�

n

v2

�2

+
n2ηn

v4

�

=
Mn2

v4

which is derived from Lemma 6.2.

Fact 3.

From (3.2) we have

Esn(z) =
−z +
p

z2− 4+ 4Eδn(z)

2
, (4.7)

where

|Eδn(z)| = |
1

n
E

n
∑

k=1

ǫk(z)

βk(z)
|¶

1

nv

n
∑

k=1

E|ǫk(z)|¶
1

nv

n
∑

k=1

(E|ǫk(z)|4)
1

4

¶
M
p

nv2
= Mn−

7

40 .

Fact 4.
�

�

�

�

1

z +Esn(z)

�

�

�

�

=

�

�

�

�

Esn(z)

1−Eδn(z)

�

�

�

�

¶ M .

�

�

�

�

1

z +Esn(z)
−

1

z + s(z)

�

�

�

�

¶ M |Esn(z)− s(z)|

¶
M
p

nv
= Mn−

27

80 .

Now we can estimate S1,S2,S3 and S4. First, we prove S4→ 0. By |βk(z)|−1
¶ v−1, Facts 2 and 4,

|S4|=

�

�

�

�

�

E

n
∑

k=1

ǫ4
k
(z)

[z +Esn(z)]
3βk(z)

�

�

�

�

�

¶

n
∑

k=1

M

v
E|ǫk(z)|4 =

M

nv5
= Mn−

3

16 .

Similarly, for S3, we have

|S3|=

�

�

�

�

�

E

n
∑

k=1

ǫ3
k
(z)

[z +Esn(z)]
3

�

�

�

�

�

¶ M

n
∑

k=1

|Eǫk(z)|3 = Mn ·
1

n3/2v3
= Mn−

1

80 .

For S1, we will prove that

S1 = s2(z)[1+ s′(z)]|+ o(1), uniformly on γmh.

By (4.7) and Fact 3, we have

1

z +Esn(z)
=

z −
p

z2− 4(1−Eδn(z))

2(1−Eδn(z))
=−s(z)(1+ o(1)), (4.8)
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where the o(1) is uniform for z ∈ γmh.

Thus, we have

S1 = −
n
∑

k=1

Eǫk(z)

z +Esn(z)
=

1

n

n
∑

k=1

E
1+ 1

n
α∗

k
D2

k
(z)αk

βk(z +Esn(z))

=
1

n

n
∑

k=1

1+ 1

n
Et rD2

k
(z)

(z +Esn(z))
2
+

1

n

n
∑

k=1

E
(1+ 1

n
α∗

k
D2

k
(z)αk)ǫk(z)

βk(z+Esn(z))
2

= S11+ S12.

Using the fact
�

�

�

�

1+ 1

n
α∗

k
D2

k
(z)αk

βk(z)

�

�

�

�

≤
1

v
,

and Fact 2, for z ∈ γmh, we obtain

|S12| ≤
M

nv

n
∑

k=1

E|ǫk(z)| ≤
M

nv
· n · n−1/2v−1 ≤ Mn−7/20. (4.9)

To estimate S11, we use Lemma 6.1 and the fact that ‖(n− 1)F k
n−1− nFn‖ ≤ 1. For all z ∈ γmh,

�

�

�

�

1

n
Et rD2

k(z)− s′(z)

�

�

�

�

=

�

�

�

�

�

∫

( n−1

n
EF k

n−1− F)(d x)

(x − z)2

�

�

�

�

�

¶ M v−2‖
n− 1

n
EF k

n−1− F‖ ≤ M v−2n−1/2 ≤ Mn−7/40. (4.10)

By (4.8) and (4.10), for all z ∈ γmh,

|S11− s2(z)(1+ s′(z))|= o(1).

Finally we deal with

S2 = −
n
∑

k=1

Eǫ2
k
(z)

[z +Esn(z)]
2
=−s2(z)(1+ o(1))

n
∑

k=1

Eǫ2
k(z).

By the previous estimate for Eǫk(z), it follows that

|Eǫk(z)|2 =
1

n2

�

E(t rD(z)− t rDk(z))
�2
¶

M

n2v
.

Eǫ2
k(z) = E[ǫk(z)−Eǫk(z)]

2+O(
1

n2v
)

= E
h 1
p

n
xkk −

1

n
[α∗kDk(z)αk − t rDk(z)]

−
1

n
[t rDk(z)−Et rDk(z)]

i2

+O(
1

n2v
)

=
σ2

n
+

1

n2
E[α∗kDk(z)αk − t rDk(z)]

2 (4.11)

−
1

n2
E[t rDk(z)−Et rDk(z)]

2+O(
1

n2v
).
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By the proof of (4.3) in [7], we have

1

n2
E|t rDk(z)−Et rDk(z)|2 ¶

M

n2v4

�

1
p

n
+ v

�

=
M

n2v3
.

Hence we neglect this item. In order to estimate the expectation in (4.11), we introduce the

notation αk = (x1k, x2k, ..., xk−1k, xk+1k, ..., xnk)
∗
¬ (x i) and Dk(z) ¬ (di j). Note that αk and Dk(z)

are independent.

E[α∗kDk(z)αk − t rDk(z)]
2

= E







∑

i 6= j

di j x̄ i x j +
∑

i

dii(|x i |2− 1)







2

= E







∑

i 6= j

∑

s 6=t

di jdst x̄ i x j x̄s x t





+E





∑

i

d2
ii(|x i|2− 1)2





= E( x̄1)
2
E(x2)

2
E







∑

i 6= j

d2
i j





+E|x1|2E|x2|2E







∑

i 6= j

di jd ji







+E(|x1|2− 1)2E





∑

i

d2
ii



 .

Here we need to consider the difference between the CWE and RWE.

For the RWE, all the original and truncated variables have the properties: Ex i j = 0 and E|x i j |2 =
Ex2

i j = 1. So

E[α∗kDk(z)αk − t rDk(z)]
2 = 2E







∑

i 6= j

d2
i j





+E(|x1|2− 1)2E





∑

i

d2
ii





= 2E







∑

i, j

d2
i j





+ [E(|x1|2− 1)2− 2]E





∑

i

d2
ii



 .

For the CWE, the truncated variables have the properties: Ex i j = 0,E|x i j |2 = 1 and Ex2
i j =

o
�

n−1η−2
n

�

. Note that |
∑

i, j

d2
i j|¶ t r(Dk(z)D

∗
k
(z))¶ n/v2 and

∑

i |d2
ii |¶ n/v2. So

E[α∗kDk(z)αk − t rDk(z)]
2

= E







∑

i j

di jd ji





+
�

E(|x1|2− 1)2− 1
�

E





∑

i

d2
ii



+ o

�

1

nv2η4
n

�

.

We introduce the parameters κ with values 1 and 2 for the CWE and RWE, and β = E(|x1|2−1)2−κ,

which allow us to have the following unified expression,

E[α∗kDk(z)αk − t rDk(z)]
2 = κE







∑

i j

di jd ji





+ βE





∑

i

d2
ii



+ o

�

1

nv2η4
n

�

.
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Hence

Eǫ2
k(z) =

σ2

n
+

1

n2



κE[t rD2
k(z)] + βE





∑

i

d2
ii



+ o

�

1

nv2η4
n

�


+
M

n2v3
,

which combined with

E

�

�

�

�

1

n
t rD2

k(z)− s′(z)

�

�

�

�

2

¶
1

v4
(‖F k

n−1− Fn‖+ ‖Fn− F‖)2

¶
M

v4

�

1

n
+

1

n
2

5
−η

�2

¶ Mn−
3

20
+2η

and

E|d2
ii − s2(z)| ¶ E|[Dk(z)]ii + s(z)||[Dk(z)]ii − s(z)|

¶ M

�

1

v
+ 1

�

E|[Dk(z)]ii − s(z)|¶
M

v

�

E|[Dk(z)]ii − s(z)|2
�1/2

¶
M

v

�

1

nv4

� 1

2

=
M
p

nv3
,

gives

|S2+ s2(z)[σ2+ κs′(z) + βs2(z)]|¶
M
p

nv3
.

Summarizing the estimates of Si , i = 1, ..., 4, we have obtained that

|nEδn(z) + s2(z)[σ2− 1+ (κ− 1)s′(z) + βs2(z)]|¶
M
p

nv3

Note that

bn(z) = n[Esn(z)− s(z)] =
2sgn(Im(z))nEδn(z)
p

z2− 4(1−Eδn(z)) +
p

z2− 4

=
sgn(Im(z))nEδn(z)
p

z2− 4
(1+ o(1)).

and that

s′(z) = −
s(z)

z + 2s(z)
= −

s(z)

sgn(Im(z))
p

z2− 4
.

The second equation is equivalent to

sgn(ℑ(z))
p

z2− 4
= s(z)(1+ s′(z)).

From the above two equations, we conclude

|bn(z)− b(z)|= o(1), uniformly on γmh.
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Then, (4.6) is proved by noticing that |bn(z)− bnA(z)| ≤ nv−1P(Ac
n)≤ o(n−t) for any fixed t.

Now, we proceed the proof of (4.5). We shall find a set Qn such that P(Qc
n) = o(n−1) and

∮

γmv

fm(z)n(sn(z)IQn
− s(z))dz = op(1). (4.12)

By continuity of s(z), there are positive constants Ml and Mu such that for all z ∈ γmv, Ml ≤
|z + s(z)| ≤ Mu. Define Bn = {min

k
|βk(z)|IAn

> ε}, where ε= Ml/4. So

P(Bc
n) = P(min

k
|βk(z)|IAn

¶ ε)¶

n
∑

k=1

P(|βk(z)|IAn
¶ ε)

¶

n
∑

k=1

P(|βk(z)− z − s(z)|IAn
¾ ε) + nP(Ac

n)

¶
1

ε4

n
∑

k=1

E

�

|βk(z)− z − s(z)|4IAn

�

+ nP(Ac
n)

¶ M
h 1

n2
E|xkk|4+

1

n4
E

�

|α∗kDk(z)αk − t rDk(z)|4IAn

�

+E
�

|
1

n
t rDk(z)− s(z)|4IAn

�i

+ nP(Ac
n).

Let Ank = {|λex t(n
−1/2Wnk)| ≤ 2+ η0}. It is trivially obtained that An ⊆ Ank (see [11]). Noting the

independence of IAnk
and αk, we have

n−4
E

�

|α∗kDk(z)αk − t rDk(z)|4IAn

�

≤ n−4
E

�

[Ek|α∗kDk(z)αk − t rDk(z)|4]IAnk

�

≤ Mn−4
E

�

[
�

E|x12|4 t rDk(z)D
∗
k(z)
�2
+E|x12|8 t r
�

Dk(z)D
∗
k(z)
�2
]IAnk

�

≤ Mn−2,

where Ek denotes the expectation taken only about αk. Therefore

P(Bc
n)≤ M
�

n−2+ n−2+ (n−2/5+η)4
�

+ nP(Ac
n)≤ Mn−8/5+4η.

This gives P(Bc
n) = o(n−1) as n→∞. Define Qn ¬ An ∩ Bn, we have P(Qn)→ 1, as n→∞.

Similar to (4.7), we have for z ∈ γmv,

Esn(z)IQn
=−

P(Qn)

z +Esn(z)IQn

+
δnQ(z)

z +Esn(z)IQn

, (4.13)

where

δnQ(z) =
1

n

n
∑

k=1

E
ǫkQ(z)IQn

βk(z)

ǫkQ(z) =
1
p

n
xkk −

1

n
α∗kDk(z)αk +Esn(z)IQn

.
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Similar to (4.7), we have

Esn(z)IQn
=−

1

2

�

z − sgn(Im(z))
Æ

z2− 4(P(Qn)−δnQ(z))
�

.

Therefore,

bnQ(z) = n(Esn(z)IQn
− s(z))

=
2n[P(Qc

n) +δnQ(z)]

sgn(Im(z))[
p

z2− 4(P(Qn)−δnQ(z)) +
p

z2− 4]
.

We shall prove that bnQ(z) is uniformly bounded for all z ∈ γmv . Noticing that |z2 − 4| > (a − 2)2

and the fact P(Qc
n) = o(1), we only need to show that

nδnQ(z) is uniformly bounded for z ∈ γmv . (4.14)

Rewrite

nδnQ(z) =

n
∑

k=1

EǫkQIQn

z +Esn(z)IQn

+

n
∑

k=1

Eǫ2
kQ
IQn

βk(z)[z +Esn(z)IQn
]
.

At first we have

EǫkQIAnk
=

1

n
E

h

t rD(z)IQn
P(Ank)− t rDk(z)IAnk

i

=
1

n
E

�

IQn

βk

P(Ank)− t rDk(z)(IQc
nAnk
+ IQn

P(Ac
nk
))

�

= O(1/n).

Here, the result follows from facts that 1/βk is uniformly bounded when Qn happens, 1

n
Dk(z) is

bounded when Ank happens and P(Qc
n) = o(1/n). From this and the facts that Esn(z)IQn

→ s(z)

uniformly on γmv and

E|ǫkQ|IQc
nAnk
≤

1

n
E

h

t rD(z)IQn
P(Qc

nAnk)− t rDk(z)IQc
nAnk

i

= O(1/n),

we conclude that the first term in the expansion of nδnQ(z) is bounded.

By similar argument, one can prove that the second term of the expansion of nδnQ(z) is uniformly

bounded on γmv . Therefore, we have

Proposition 4.2.
∮

γmv
fm(z)n(Esn(z)IQn

− s(z))dz→ 0 in probability as n→∞.

Therefore, to complete the proof of (4.5), we only need to show that

Proposition 4.3.
∮

γmv
fm(z)n(sn(z)IQn

−Esn(z)IQn
)dz→ 0 in probability as n→∞.

We postpone the proof of Proposition 4.3 to the next section.
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5 Convergence of ∆−E∆

Let Fk = (x i j , k+1≤ i, j ≤ n) for 0≤ k ≤ n and Ek(·) = E(·|Fk). Based on the decreasing filtration

(Fk) , we have the following well known martingale decomposition

n[sn(z)−Esn(z)] = t rD(z)−Et rD(z)

=

n
∑

k=1

(Ek−1−Ek)(t rD(z)− t rDk(z))

=

n
∑

k=1

(Ek−1−Ek)
1+ n−1α∗

k
D2

k
(z)αk

n−1/2 xkk − z − n−1α∗
k
Dk(z)αk

=−
n
∑

k=1

(Ek−1−Ek)
d

dz
log

�

1
p

n
xkk − z −

1

n
α∗kDk(z)αk

�

.

This decomposition gives

∆−E∆

=
1

2πi

n
∑

k=1

(Ek−1−Ek)

∮

γm

fm(z)
d

dz
log

�

1
p

n
xkk − z −

1

n
α∗kDk(z)αk

�

dz

= −
1

2πi

n
∑

k=1

(Ek−1−Ek)

∮

γm

f ′m(z) log

�

1
p

n
xkk − z −

1

n
α∗kDk(z)αk

�

dz

= −
1

2πi

n
∑

k=1

(Ek−1−Ek)

∮

γm

f ′m(z) log

�

1+
qk(z)

−z − n−1 t rDk(z)

�

dz

= R31+ R32+ R33

where qk(z) =
1p
n

xkk − 1

n

�

α∗
k
Dk(z)αk − t rDk(z)

�

and

R31 = −
1

2πi

n
∑

k=1

(Ek−1−Ek)

∮

γmh

f ′m(z) log

�

1+
qk(z)

−z − n−1 t rDk(z)

�

dz

R32 = −
1

2πi

n
∑

k=1

IAnk
(Ek−1−Ek)

∮

γmv

f ′m(z) log

�

1+
qk(z)

−z − n−1 t rDk(z)

�

dz

R33 = −
1

2πi

n
∑

k=1

IAc
nk
(Ek−1−Ek)

∮

γmv

f ′m(z) log

�

1+
qk(z)

−z − n−1 t rDk(z)

�

dz.

At first, we note that

P(R33 6= 0)≤ P(
⋃

Ac
nk
)≤ P(Ac

n)→ 0.

Next, we note that R32 is a sum of martingale differences. Thus, we have

E|R32|2 ≤
‖ f ′m‖2n−

13

40

π2

n
∑

k=1

sup
z∈γmv

EIAnk

�

�

�

�

qk(z)

z + n−1 t rDk(z)

�

�

�

�

2

=
‖ f ′m‖2

π2n
53

40

n
∑

k=1

sup
z∈γmv

EIAnk

�

�

�

�

σ2+ 2

n
t rDk(z)Dk(z̄)

z + n−1 t rDk(z)

�

�

�

�

2

. (5.15)

2408



When z ∈ γmv and Ank happens, we have |n−1 t rDk(z)Dk(z̄)| ≤ η−2
0 . Also, z+n−1 t rDk(z)→ z+ s(z)

uniformly. Further, |z + s(z)| has a positive lower bound on γmv . These facts, together with (5.15),

imply that

R32→ 0, in probability.

The proof of Proposition 4.3 is the same as those for R32→ 0 and R33→ 0. We omit the details.

Note that when z ∈ γmh

Eqk(z) = 0, E
qk(z)

z + n−1 t rDk(z)
= 0.

Taylor expansion of the log function implies

R31 =
1

2πi

n
∑

k=1

∮

γmh

(Ek−1−Ek)
h qk(z)

z + n−1 t rDk(z)

+O

�

qk(z)

−z − n−1 t rDk(z)

�2
i

f ′m(z)dz

=
1

2πi

n
∑

k=1

∮

γmh

Ek−1

qk(z)

z + n−1 t rDk(z)
f ′m(z)dz+ op(1)

¬
1

2πi

n
∑

k=1

Ynk + op(1),

where op(1) follows from the following Condition 5.1. Clearly Ynk ∈ Fk−1 and EkYnk = 0. Hence

{Ynk, k = 1,2, ..., n} is a martingale difference sequence and
∑n

k=1 Ynk is a sum of a martingale

difference sequence. To save notation, we still use Gn( fm) to denote 1

2πi

∑n

k=1 Ynk from now on. In

order to apply CLT to Gn( fm), we need to check the following two conditions:

Condition 5.1 Conditional Lyapunov condition. For some p > 2,

n
∑

k=1

Ek|Ynk|p −→ 0 in Probability.

Condition 5.2. Conditional covariance. Note that Ynk are complex, we need to show that

U2 =
∑n

k=1EkY 2
nk

converges to a constant limit to guarantee the convergence to complex normal.

For simplicity, we may consider two functions f , g ∈ C4(U ) and show that Covk[Gn( fm), Gn(gm)]

converges in probability, where fm and gm denote their Bernstein polynomial approximations. That

is,

Covk[Gn( fm), Gn(gm)]→ C( f , g) in probability.

The proof of condition 5.1 with p = 3.

n
∑

k=1

Ek|Ynk|3 =
n
∑

k=1

Ek

�

�

�

�

�

∮

γmh

Ek−1

qk(z)

z + n−1 t rDk(z)
f ′m(z)dz

�

�

�

�

�

3

.
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Since f ′m(z) is bounded on γmh, it suffices to prove

n
∑

k=1

E

�

�

�

�

qk(z)

z + n−1 t rDk(z)

�

�

�

�

3

≤ εn uniformly on γmh.

For all z ∈ γmh, by Lemma 6.2, we have

E

�

�

�

�

qk(z)

z + n−1 t rDk(z)

�

�

�

�

3

(5.16)

≤ ME









n−3/2
E|xkk|3+ 1

n3 {
�

t rDk(z)Dk(z̄)
�3/2

+ t r([Dk(z)Dk(z̄)]
3/2)}

|z + n−1 t rDk(z)|3









≤
M

n3/2v3
,

where we have used the facts that
�

�

�

�

1

n
t r(Dk(z)Dk(z̄))

z + 1

n
t rDk(z)

�

�

�

�

<
1

v
,

�

t rDk(z)Dk(z̄)
�3/2

≤
1

v

�

t rDk(z)Dk(z̄)
�

.

Then the above gives

n
∑

k=1

E

�

�

�

�

�

qk(z)

z + 1

n
t rDk(z)

�

�

�

�

�

3

≤
M
p

nv3
= Mn−1/80 uniformly on γmh.

The proof of Condition 5.2.

The conditional covariance is

Covk[Gn( fm), Gn(gm)] = −
1

4π2

∮ ∮

γmh×γmh

n
∑

k=1

Ek

�

Ek−1

qk(z)

z1+ n−1 t rDk(z1)

�

×
�

Ek−1

qk(z)

z2+ n−1 t rDk(z2)

�

f ′m(z1)g
′
m(z2)dz1dz2.

For z ∈ γmh, since

E|[D(z)]kk − s(z)|2 = E

�

�

�

�

�

�

1

1p
n

xkk − z − 1

n
α∗

k
Dk(z)αk

−
1

−z − s(z)

�

�

�

�

�

�

2

= E

�

�

�

�

�

�

1p
n

xkk − 1

n
α∗

k
Dk(z)αk + s(z)

[z + s(z)][ 1p
n

xkk − z − 1

n
α∗

k
Dk(z)αk]

�

�

�

�

�

�

2

≤
M

v2

�

E|ǫk(z)|2+ |Esn(z)− s(z)|2
�

≤
M

v2





�

1

n2v4

� 1

2

+

�

1
p

nv

�2


 =
M

nv4
= Mn−

7

20 .
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we obtain

E

�

�

�

�

�

1

z + 1

n
t rDk(z)

−
1

z + s(z)

�

�

�

�

�

2

≤
1

v2
E

�

�

�

�

1

n
t rDk(z)− s(z)

�

�

�

�

2

=
1

v2
E

�

�

�

�

�

1

n

∑

i

[Dk(z)]ii − s(z)

�

�

�

�

�

2

≤
M

nv6
= Mn−1/40.

Therefore

Covk[Gn( fm), Gn(gm)]

= −
1

4π2

∮ ∮

γmh×γmh

s(z1)s(z2)

n
∑

k=1

Ek[Ek−1qk(z1)Ek−1qk(z2)] f
′
m(z1)g

′
m(z2)dz1dz2

+op(1)

= −
1

4π2

∮ ∮

γmh×γmh

s(z1)s(z2)Γ(z1, z2) f
′
m(z1)g

′
m(z2)dz1dz2

−
1

4π2

∮ ∮

γmh×γmh

s(z1)s(z2)[Γn(z1, z2)−Γ(z1, z2)] f
′
m(z1)g

′
m(z2)dz1dz2+ op(1)

= Q1+Q2+ op(1).

where

Γ(z1, z2) = σ
2− κ+

1

2
βs(z1)s(z2)−

κ

s(z1)s(z2)
log[1− s(z1)s(z2)],

Γn(z1, z2) =

n
∑

k=1

Ek[Ek−1qk(z1)Ek−1qk(z2)],

A(z1, z2) = s(z1)s(z2)Γ(z1, z2) f
′
m(z1)g

′
m(z2)

For Q1, we have

Q1 = −
1

4π2

∮ ∮

γmh×γmh

A(z1, z2)dz1dz2

= −
1

4π2

∫ 2

−2

∫ 2

−2

[A(t−1 , t−2 )− A(t−1 , t+2 )− A(t+1 , t−2 ) + A(t+1 , t+2 )]d t1d t2

=
1

4π2

∫ 2

−2

∫ 2

−2

f ′m(t)g
′
m(s)V (t, s)d tds

→
1

4π2

∫ 2

−2

∫ 2

−2

f ′(t)g ′(s)V (t, s)d tds
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since f ′m(t)→ f ′(t), g ′m(t)→ g ′(t) uniformly on [−2,2].

For Q2, since s(z1)s(z2) f
′
m(z1)g

′
m(z2) is bounded on γmh×γmh, in order to prove Q2→ 0 in probabil-

ity, it is sufficient to prove that Γn(z1, z2) converges in probability to Γ(z1, z2) uniformly on γmh×γmh.

Decompose Γn(z1, z2) as

Γn(z1, z2) =

n
∑

k=1

Ek[Ek−1qk(z1)Ek−1qk(z2)]

=

n
∑

k=1

Ek

h x2
kk

n
+

1

n2
Ek−1[α

∗
kDk(z1)αk − t rDk(z1)]

×Ek−1[α
∗
kDk(z2)αk − t rDk(z2)]

i

= σ2+
κ

n2

n
∑

k=1

∑

i, j>k

[Ek−1Dk(z1)]i j[Ek−1Dk(z2)] ji

+
β

n2

n
∑

k=1

Ek

∑

i>k

[Ek−1Dk(z1)]ii[Ek−1Dk(z2)]ii

¬ σ2+S1+S2.

Since E|[Dk(z)]ii − s(z)|2 ≤ M/(nv4) uniformly on γmh,

E|Ek[Ek−1Dk(z1)]ii[Ek−1Dk(z2)]ii − s(z1)s(z2)| ≤
M

nv4

uniformly on γmh× γmh. Hence

E|S2−
β

2
s(z1)s(z2)| ≤

M

nv4

In the following, we consider the limit of S1. As proposed in [6], we use the following decomposi-

tion. Let

e j = (0, . . . , 1, . . . , 0)′n−1, j = 1,2, . . . , k− 1, k+ 1, . . . , n

whose jth (or ( j − 1)th) element is 1, the rest being 0, if j < k (or j > k). Then

D−1
k
(z) =

1
p

n
Wn(k)− zIn−1 =

∑

i, j 6=k

1
p

n
x i jeie

′
j − zin−1

zDk(z) + I =
∑

i, j 6=k

1
p

n
x i jeie

′
j Dk(z)

We introduce the matrix

Dki j =

�

1
p

n
[Wn(k)−δi j(x i jeie

′
j + x jie je

′
i)]− zIn−1

�−1

where δi j = 1 for i 6= j and δii = 1/2, such that Dki j is a perturbation of Dk and independent of x i j .
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From the formula A−1− B−1 =−B−1(A− B)A−1, we have

Dk − Dki j =−Dki j

1
p

n
δi j(x i jeie

′
j + x jie je

′
i)Dk.

From the above, we get

zDk(z) = −I +
∑

i, j 6=k

n−1/2 x i jeie
′
j Dki j(z)

−
∑

i, j 6=k

n−1/2 x i jeie
′
j Dki j(z)n

−1/2δi j(x i jeie
′
j + x jie je

′
i)Dk(z)

= −I +
∑

i, j 6=k

n−1/2 x i jeie
′
j Dki j(z)− s(z)

n− 3/2

n

∑

i 6=k

eie
′
i Dk(z)

−
∑

i, j 6=k

δi j

�

n−1|x i j |2([Dki j(z)] j j − s(z)) + n−1(|x i j|2− 1)s(z)
�

×eie
′
j Dk(z)

−
∑

i, j 6=k

n−1δi j x
2
i j[Dki j] jieie

′
j Dk(z).

Therefore

z1

∑

i, j>k

[Ek−1Dk(z1)]i j[Ek−1Dk(z2)] ji

= −
∑

i>k

[Ek−1Dk(z2)]ii

+n−1/2
∑

i, j,l>k

x il[Ek−1Dkil(z1)]l j[Ek−1Dk(z2)] ji

−s(z1)
n− 3/2

n

∑

i, j>k

[Ek−1Dk(z1)]i j[Ek−1Dk(z2)] ji

−
∑

i, j>k

l 6=k

δilEk−1

��

|x il |2− 1

n
s(z1) +

|x il |2

n
[Dkil(z1)l l − s(z1)]

�

[Dk(z1)]i j

�

×[Ek−1Dk(z2)] ji

−
1

n

∑

i, j>k

l 6=k

δilEk−1 x2
il[Dkil(z1)]l i[Dk(z1)]l j[Ek−1Dk(z2)] ji

= T1+ T2+ T∗ + T3+ T4.

First note that the term T∗ is proportional to the term of the left hand side. We now evaluate the

contributions of the remaining four terms to the sum S1.

The term T1→ s(z2) in L2 since

E

�

�

�

�

�

n−2
∑

k

∑

i>k

([Ek−1Dk(z2)]ii − s(z2))

�

�

�

�

�

2

≤
M

nv4
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by

E|[Dk(z)]ii − s(z)|2 ≤
M

nv4
.

The terms T3 and T4 are negligible. The calculations are lengthy but simple. We omit all the details.

T2 can not be ignored. We shall simplify it step by step. Split T2 as

T2 =
∑

i, j,l>k

Ek−1

x l jp
n
[Dkil(z1)]l j[Ek−1Dk(z2)] ji

=
∑

i, j,l>k

Ek−1

x ilp
n
[Dkil(z1)]l j[Ek−1(Dk − Dkil)(z2)] ji

+
∑

i, j,l>k

Ek−1

x ilp
n
[Dkil(z1)]l j[Ek−1Dkil(z2)] ji

= T2a + T2b.

Again, T2b can be shown to be ignored. As for the remaining term T2a, we have

ET2a

= n−2
∑

i, j,l>k

x il[Ek−1Dkil(z1)]l j[Ek−1(Dk − Dkil)(z2)] ji

= −n−1
∑

i, j,l>k

[Ek−1Dkil(z1)]l j[Ek−1Dkil(z2)δil(x
2
il eie
′
l + |x il |2el e

′
i)Dk(z2)] ji

= J1+ J2,

where

E|J1| = n−1
∑

i, j,l>k

E|x2
il |[Ek−1Dkil(z1)]l j[Dkil(z2)] ji[Dk(z2)]l i|

≤ n−1
� ∑

i, j1,, j2,l>k

E|x il |4|[Ek−1Dkil(z1)]l j1
|2|[Dkil(z2)] j2 i |2

×
∑

i,l>k

E|(Dk(z2))l i|2
�1/2

≤ Mn1/2v−3.

Hence, the contribution of this term is negligible.

Finally, we have

J2 = −
∑

i, j,l>k

Ek−1

|x il |2

n
[Dki j(z1)]l j[Ek−1Dki j(z2)] jl[Dk(z2)]ii

≃ −s(z2)
∑

i, j,l>k

Ek−1

1

n
[Dkil(z1)]l j[Ek−1Dkil Dkil(z2)] jl

= −
n− k

n
s(z2)
∑

j,l>k

[Ek−1Dk(z1)]l j[Ek−1Dk(z2)] jl +O(n1/2v−3),
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where the last approximation follows from

�

�

�

�

�

�

∑

i, j,l>k

[Dkil(z1)]l j[Ek−1Dkil(z2)] jl − (n− k)
∑

j,l>k

[Ek−1Dk(z1)]l j[Ek−1Dk(z2)] jl

�

�

�

�

�

�

≤ Mn3/2v−3.

Let us define

Xk =
∑

i, j>k

[Ek−1Dk(z1)]i j[Ek−1Dk(z2)] ji

Summarizing the estimations of all the terms Ti , we have proved that

z1Xk =−s(z1)Xk − (n− k)s(z2)Xk

n− k

n
+ rk,

where the residual term rk is of order O(
p

nv−3) uniformly in k = 1, ..., n and z1, z2 ∈ γm. By

z1+ s(z1) =−1/s(z1), the above identity is equivalent to

Xk = (n− k)s(z1)s(z2) +
n− k

n
s(z1)s(z2)Xk − s(z1)rk.

Consequently,

1

n2

n
∑

k=1

Xk =
1

n

n
∑

k=1

n−k

n
s(z1)s(z2)

1− n−k

n
s(z1)s(z2)

+
1

n2

n
∑

k=1

s(z1)rk

1− n−k

n
s(z1)s(z2)

,

which converges in probability to

s(z1)s(z2)

∫ 1

0

t

1− ts(z1)s(z2)
d t =−1−
�

s(z1)s(z2)
�−1

log
�

1− s(z1)s(z2)
�

.

As a conclusion, Γn(z1, z2) converges in probability to

Γ(z1, z2) = σ
2− κ−

κ

s(z1)s(z2)
log
�

1− s(z1)s(z2)
�

+
1

2
βs(z1)s(z2).

The proof of Condition 5.2 is then complete.

Although we have completed the proof of Theorem 1.1, we summarize the main steps of the proof

for reader’s convenience.

Proof of Theorem 1.1. In Section 2, the weak convergence of Gn( f ) is reduced to that of Gn( fm).

Then in Section 4, we show that this is equivalent to the weak convergence of

∆=−
1

2πi

∮

γm

fm(z)n[sn(z)− s(z)]dz.

The weak convergence of ∆ is proved in Section 5, where we also calculate the covariance function

of the limiting process. The mean function of the limiting process is obtained in Section 4.
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6 Appendix

Lemma 6.1. Under condition (1.2), we have

‖EFn− F‖ = O(n−1/2),

‖Fn− F‖ = Op(n
−2/5),

‖Fn− F‖ = O(n−2/5+η) a.s., for any η > 0.

This follows from Theorems 1.1, 1.2 and 1.3 in [5].

Lemma 6.2. For X = (x1, ..., xn)
T i.i.d. standardized (complex) entries with Ex i = 0 and E|x i |2 = 1,

and C is an n× n matrix (complex), we have, for any p ¾ 2

E|X ∗CX − t rC |p ¶ Kp

�

(E|x1|4 t rCC∗)p/2+E|x1|2p t r(CC∗)p/2
�

.

This is Lemma 2.7 in [7].
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