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Abstract

In this paper, we provide a scheme for simulating one-dimensional processes generated by divergence
or non-divergence form operators with discontinuous coe�cients. We use a space bijection to
transform such a process in another one that behaves locally like a Skew Brownian motion. Indeed
the behavior of the Skew Brownian motion can easily be approached by an asymmetric random walk.
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1 Introduction

In this paper we provide a random walk based scheme for simulating one-dimensional processes generated
by operators of type

L =
ρ

2
∇

(
a∇

)
+ b∇. (1.1)

These operators appear in the modelisation of a wide variety of di�usion phenomena, for instance in �uid
mechanics, in ecology, in �nance (see [DDG05]). If a, ρ, and b are measurable and bounded and if a and
ρ are uniformly elliptic it can be shown that L is the in�nitesimal generator of a Markov process X. Note
that these operators contain the case of operators of type L = a

2∆ + b∇ whose interpretation in terms of
Stochastic Di�erential Equation is well known. In the general case there is still such an interpretation.
Indeed if we assume for simplicity that b = 0 it can be shown (see Section 4) that X solves

Xt = X0 +
∫ t

0

√
a(Xs)ρ(Xs)dWs +

∫ t

0

ρ(Xs)a′(Xs)
2

ds +
∑
x∈I

a(x+)− a(x−)
a(x+) + a(x−)

Lx
t (X), (1.2)

where I is the set of the points of discontinuity of a and Lx
t (X) is the symmetric local time of X in x.

For the coe�cients a, ρ, and b may be discontinuous, providing a scheme to simulate trajectories of X
is challenging: we cannot use the panel of Monte-Carlo methods available for smooth coe�cients (see
[KP92]). However, some authors have recently provided schemes to simulate X in the case of coe�cients
having some discontinuities.

In [Mar04] (see also [MT06]) M. Martinez treated the case of a coe�cient a having one point of
discontinuity. He applied an Euler scheme after a space transformation that allows to get rid of the
local time in (1.2). To estimate the speed of convergence of his method he needs a to be C6 outside
the point of discontinuity. The initial condition has to be C4 almost everywhere and to satisfy other
restrictive conditions.

In [LM06] (see also [Mar04]) A. Lejay and M. Martinez proposed a di�erent scheme. After a piecewise
constant approximation of the coe�cients and a di�erent space transformation, they propose to use an
exact simulation method of the Skew Brownian Motion (SBM). This one is based on the simulation of
the exit times of a Brownian motion. In general the whole algorithm is slow and costly but allows to
treat the case of coe�cients a, ρ and b being right continuous with left limits, and of class C1 except on
countable set of points, without cluster point. Besides the initial condition can be taken in H1, and the
algorithm is well adapted to the case of coe�cients being �at on large intervals outside their points of
discontinuity.

Here, under the same hypotheses on a, ρ and b, but with the initial condition in W1,∞ ∩ H1 ∩ C0 we
propose a new scheme based mostly on random walks.

Roughly the idea is the following: assume for simplicity that b = 0. First, like in [LM06], we replace a
and ρ by piecewise constant an and ρn in order to obtain Xn that is a good weak approximation of X
and that solves

Xn
t = Xn

0 +
∫ t

0

√
an(Xn

s )ρn(Xn
s )dWs +

∑
xn

i ∈In

a(xn
i +)− a(xn

i −)
a(xn

i +) + a(xn
i −)

L
xn

i
t (Xn),

where In is the set of the points of discontinuity of an. Second by a proper change of scale we transform
Xn into Y n that solves

Y n
t = Y n

0 + Wt +
∑

xn
k∈In

βn
k L

k/n
t (Y n),
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where the βn
k 's are explicitely known. Thus Y n behaves around each k/n like a SBM of parameter βn

k

(see Subsection 5.2 for a brief presentation of the SBM). That is, heuristically, Y n when in k/n moves up
with probability (βn

k +1)/2 and down with probability (βn
k −1)/2, and behaves like a standard Brownian

motion elsewhere. Thus a random walk on the grid {k/n : k ∈ Z} can re�ect the behaviour of Y n as was
shown in [Leg85]. We use this to �nally construct an approximation Ŷ n of Y n.

We obtain a very easy to implement algorithm that only requires simulations of Bernoulli random
variables. We estimate the speed of weak convergence of our algorithm by mixing an estimate of a weak
error and an estimate of a strong error. Indeed computing the strong error of the algorithm presents
di�culties we were not able to overcome. On the other hand computing directly the weak error without
using a strong error estimate would lead to more complicated computations without any improvement
of the speed of convergence: basically our approach relies on the Donsker theorem and we cannot get
better than an error in O(n−1/2). Moreover to make such computations we should require additionnal
smoothness on the data (see [Mar04]).

We �nally make numerical experiments: the proposed scheme appears to be satisfying compared to the
ones proposed in [Mar04] or [LM06].

Hypothesis. We make some assumptions from now till the end of the paper, for the sake of simplicity
but without loss of generality.

(A1) b = 0.

Indeed, as explained in [LM06] Section 2, if we can treat the case

L =
ρ

2
∇

(
a∇

)
, (1.3)

we can treat the case (1.1) for any measurable bounded b by de�ning the coe�cients ρ and a in (1.3) in
the following manner:

If ab := a expΨ and ρb := ρ exp−Ψ,

with Ψ(x) =
∫ x

0

h(y)dy and h(x) = 2
b(x)

ρ(x)a(x)
,

then
ρb

2
∇

(
ab∇

)
=

ρ

2
∇

(
a∇

)
+ b∇.

(A2) Let be G = (l, r) an open bounded interval of R. We will assume the process X starts from x ∈ G
and is killed when reaching {l, r}. >From a PDEs point of view this means the parabolic PDEs involving
L we will study are submitted to uniform Dirichlet boundary conditions. We could treat Neumann
boundary conditions (thanks to the results of [BC05] for instance) and, by localization arguments, the
case of an unbounded domain G (see [LM06]). But this assumption will make the material of the paper
simpler and clearer.

Outline of the paper. In Section 2 we de�ne precisely Divergence Form Operators (DFO) and recall
some of their properties. In Section 3 we speak of Stochastic Di�erential Equations involving Local Time
(SDELT): we state a general change of scale formula and recall some convergence results established
by J.F. Le Gall in [Leg85]. In Section 4 we link DFO and SDELT: a process generated by a DFO of
coe�cients a and ρ having countable discontinuities without cluster points is solution of a SDELT with
coe�cients determined by a and ρ. In Section 5 we present our scheme. In Section 6 we estimate the
speed of convergence of this scheme. Section 7 is devoted to numerical experiments.
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Some notations. For 1 ≤ p <∞ we denote by Lp(G) the set of measurable functions f on G such that

‖f‖p :=
( ∫

G

|f(x)|pdx
)1/p

<∞.

Let be 0 < T <∞ �xed. For 1 ≤ p, q <∞ we denote by Lq(0, T ; Lp(G)) the set of measurable functions
f on (0, T )×G such that

|||f |||p,q :=
( ∫ T

0

‖f‖qp dt
)1/q

<∞.

For u ∈ Lp(G) we denote by du
dx the �rst derivative of u in the distributional sense. It is standard to

denote by W1,p(G) the space of functions u ∈ Lp(G) such that du
dx ∈ Lp(G), and by W1,p

0 (G) the closure of
C∞c (G) in W1,p(G) equipped with the norm (‖u‖pp +

∥∥du
dx

∥∥p

p
)1/p. We denote by H1(G) the space W1,2(G),

and by H1
0(G) the space W1,2

0 (G).

For u ∈ L2(0, T ; L2(G)) we denote by ∂tu the distribution such that for all ϕ ∈ C∞c ((0, T ) × G), we
have, 〈∂tu, ϕ〉 = −

∫ T

0

∫
G

u∂tϕ. We still denote by du
dx the �rst derivative of u with respect to x in the

distributional sense.

We will classicaly denote by ‖.‖∞ and |||.|||∞,∞ the supremum norms.

For the use of probability we will denote by C0(G) the set of continuous bounded functions on G. The
symbol ∼= will denote equality in law.

2 On divergence form operators

For 0 < λ < Λ <∞ let us denote by Ell(λ, Λ) the set of functions f on G that are measurable and such
that

∀x ∈ G, λ ≤ f(x) ≤ Λ.

For ρ ∈ Ell(λ, Λ) let us de�ne the measure mρ(dx) := ρ−1(x)dx.

For any measure m with a bounded density with respect to the Lebesgue measure we then denote by
L2(G, m) the Hilbert space of functions in L2(G) equipped with the scalar product

(f, g) 7−→
∫

G

f(x)g(x)m(dx).

This is done in order that the operator we de�ne below is symmetric on L2(G, mρ).

De�nition 2.1 Let a and ρ be in Ell(λ, Λ) for some 0 < λ < Λ <∞. We call Divergence form operator
of coe�cients a and ρ, and we note L(a, ρ), the operator (L,D(L)) on L2(G, mρ) de�ned by

L =
ρ

2
d

dx

(
a

d

dx

)
,

and

D(L) = { u ∈ H1
0(G) , Lu ∈ L2(G)}.

Actually if a, ρ ∈ Ell(λ, Λ) the operator L(a, ρ) has su�cient properties to generate a continuous Markov
process. We sum up these properties in the next theorem.
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Theorem 2.1 Let a and ρ be in Ell(λ, Λ) for some 0 < λ < Λ <∞. Then we have:

i) The operator L(a, ρ) on L2(G, mρ) is closed and self-adjoint, with dense domain.

ii) This operator is the in�nitesimal generator of a strongly continuous semigroup of contraction (St)t≥0

on L2(G, mρ).

iii) Moreover (St)t≥0 is a Feller semigroup. Thus L(a, ρ) is the in�nitesimal generator of a Markov
process (Xt, t ≥ 0).

iv) The process (Xt, t ≥ 0) has continuous trajectories.

Proof. We give the great lines of the proof and refer the reader to [Lej00] and [Str82] for details.

We set (L,D(L)) = L(a, ρ). First it is possible to build a symmetric bilinear form E on L2(G, mρ) de�ned
by

E(u, v) =
∫

G

a

2
du

dx

dv

dx
dx, ∀(u, v) ∈ D(E)×D(E), and D(E) = H1

0(G),

that veri�es,

E(u, v) = −〈Lu, v〉L2(G,mρ) , ∀(u, v) ∈ D(L)×D(E).

Thus the resolvent of (L,D(L)) can be built and we get i). An application of the Hille-Yosida theorem
then leads to ii).

Further it is a classical result of PDEs that the semigroup (Pt)t≥0 has a density p(t, x, y) with respect to
the measure mρ such that

u(t, x) =
∫

G

p(t, x, y)f(y)ρ−1(y)dy (2.1)

is a continuous version of Ptf(x). Then for f in C0(G), Ptf belongs to C0(G). By the use of the maximum
principle it can be shown that (Pt)t≥0 is semi-markovian and we get iii).

Finally Aronson estimates on the density p(t, x, y) can be used to show for example that

∀ε > 0, ∀x ∈ G, lim
t↓0

1
t

∫
|y−x|>ε

p(t, x, y)ρ−1(y)dy = 0,

and thus we get iv) (see Proposition 2.9 in chapter 4 of [EK86]).

We have a consistency theorem.

Theorem 2.2 Let be 0 < λ < Λ < ∞. Let a and ρ be in Ell(λ, Λ) and (an, ρn) be a sequence of
Ell(λ, Λ)×Ell(λ, Λ).

Let us denote by S and X respectively the semigroup and the process generated by L(a, ρ) and by (Sn)
and (Xn) the sequences of semigroups and processes generated by the sequence of operators L(an, ρn).

Assume that

1
an

L2(G)−−−−⇀
n→∞

1
a
, and

1
ρn

L2(G)−−−−⇀
n→∞

1
ρ
.

Then for any T > 0 and any f ∈ L2(G) we have :
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i) The function Sn
t f(x) converges weakly in L2(0, T ; H1

0(G)) to Stf(x).

ii) The continuous version of Sn
t f(x) given by (2.1) with p replaced by pn converges uniformly on each

compact of (0, T )×G to the continuous version of Stf(x) given by (2.1).

iii)

(Xn
t , t ≥ 0) L−−−−→

n→∞
(Xt, t ≥ 0).

Proof. See in [LM06] the proofs of Propositions 3 and 4.

3 On SDE involving local time

First we introduce a new class of coe�cients. For 0 < λ < Λ < ∞ we denote by Coeff(λ, Λ) the set of
the elements f of Ell(λ, Λ) that verify:

i) f is right continuous with left limits (r.c.l.l.).
ii) f belongs to C1(G \ I), where I is a countable set without cluster point.

Let us also denote by M the space of all bounded measures ν on G such that |ν({x})| < 1 for all x in G.

De�nition 3.1 Let σ be in Coeff(λ, Λ) for some 0 < λ < Λ < ∞, and ν be in M. We call Stochastic
Di�erential Equation with Local Time of coe�cients σ and ν, and we note Sde(σ, ν), the following SDE

Xt = X0 +
∫ t

0

σ(Xs)dWs +
∫

R
ν(dx)Lx

t (X),

where Lx
t (X) is the symmetric local time of the unknown process X.

In [Leg85] J.F. Le Gall studied some properties of SDEs of the type Sde(σ, ν). We will recall here some
results of this work we will use in the sequel.

We will see below that σ ∈ Coeff(λ, Λ) and ν ∈ M is a su�cient condition to have a unique strong
solution to Sde(σ, ν). We �rst �x some additionnal notations.

For f in Coeff(λ, Λ) we denote by f ′(dx) the bounded measure corresponding to the �rst derivative of f
in the generalized sense. We denote by f(x+) and f(x−) respectively the right and left limits of f in x.
We will also denote by f ′(x) the r.c.l.l. density of the absolutely continuous part of f ′(dx) (that it is to
say we take for f ′(x) the right derivative of f in x).

For ν in M we denote by νc the absolutely continuous part of ν.

3.1 A change of scale formula

Let us de�ne the class of bijections we will use in our change of scale.

For 0 < λ < Λ <∞ we denote by T(λ, Λ) the set of all functions Φ on G that have a �rst derivative Φ′

that belongs to Coeff(λ, Λ). The assumption made on the bijection is minimal and we can then state a
very general change of scale formula.
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Proposition 3.1 Let σ be in Coeff(λ, Λ) for some 0 < λ < Λ <∞. Let

ν(dx) = b(x)dx +
∑
xi∈I

cxiδxi(dx),

be in M (i.e., b is measurable and bounded, and each |cxi | < 1).

Let Φ be in T(λ′,Λ′) for some 0 < λ′ < Λ′ <∞ and let J be the set of the points of discontinuity of Φ′.

Then the next statements are equivalent:

i) The process X solves Sde(σ, ν).

ii) The process Y := Φ(X) solves Sde(γ, µ) with

γ(y) = (σΦ′) ◦ Φ−1(y),

and

µ(dy) =
Φ′b + 1

2 (Φ′)′

(Φ′)2
◦ Φ−1(y)dy +

∑
xi∈I∪J

βxiδΦ(xi)(dy),

where,

βx =
Φ′(x+)(1 + cx)− Φ′(x−)(1− cx)
Φ′(x+)(1 + cx) + Φ′(x−)(1− cx)

,

with cx = 0 if x ∈ J \ I.

Remark 3.1 Note that γ obviously belongs to Coeff(λ′′,Λ′′) for some 0 < λ′′ < Λ′′ <∞, and that µ is
in M, so it makes sense to speak of Sde(γ, µ).

We can say that the class of SDE of type Sde(σ, ν) is stable by transformation by a bijection belonging
to T(λ, Λ) for some 0 < λ < Λ <∞.

Proof of Proposition 3.1. We prove i) ⇒ ii). The converse can be proven in the same manner quite
being technically more cumbersome.

By the symmetric Itô-Tanaka formula we �rst get:

Yt = Φ(Xt) = Φ(X0) +
∫ t

0
(σΦ′)(Xs)dWs +

∫ t

0
(σ2bΦ′)(Xs)ds

+
∑

xi∈I
Φ′(xi+)+Φ′(xi−)

2 cxiL
xi
t (X)

+ 1
2

∫ t

0
[σ2(Φ′)′](Xs)ds +

∑
xi∈J

Φ′(xi+)−Φ′(xi−)
2 Lxi

t (X)

= Φ(X0) +
∫ t

0
(σΦ′) ◦ Φ−1(Ys)dWs

+
∫ t

0
[σ2(Φ′b + 1

2 (Φ′)′)] ◦ Φ−1(Ys)ds +
∑

xi∈I∪J KxiL
xi
t (X),

with Kx = cx(Φ′(x+) + Φ′(x−))/2 + (Φ′(x+)− Φ′(x−))/2.

We have then to express Lx
t (X) in function of L

Φ(x)
t (Y ) for x ∈ I ∪ J .
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Using Corollary VI.1.9 of [RY91] it can be shown that

L
Φ(x)±

t (Y ) = Φ′(x±)Lx±
t (X). (3.1)

Besides theorem VI.1.7 of [RY91] leads to (Lx+
t (X) − Lx−

t (X))/2 = cxLx
t (X) and combining with

(Lx+
t (X) + Lx−

t (X))/2 = Lx
t (X) we get

Lx+
t (X) = (1 + cx)Lx

t (X). (3.2)

In a similar manner we have (LΦ(x)+
t (Y )− L

Φ(x)−
t (Y ))/2 = KxLx

t (X) and we can get

KxLt(X) + L
Φ(x)
t (Y ) = L

Φ(x)+
t (Y ).

Then using (3.1) and (3.2) we get

L
Φ(x)
t (Y ) = (Φ′(x+)(1 + cx)−Kx)Lx

t (X),

and the formula is proved.

To prove the proposition below, Le Gall used in [Leg85] a space bijection that enters in the general setting
of Proposition 3.1.

Proposition 3.2 (Le Gall 1985) Let σ be in Coeff(λ, Λ) for some 0 < λ < Λ < ∞ and ν be in M.
There is a unique strong solution to Sde(σ, ν).

We need two lemmas.

Lemma 3.1 (Le Gall 1985) Let σ be in Coeff(λ, Λ) for some 0 < λ < Λ < ∞. There is a unique
strong solution to Sde(σ, 0).

Proof. See [Leg85].

The next lemma will play a great role for calculations in the sequel.

Lemma 3.2 Let ν be in M. There exists a function fν in Coeff(λ, Λ) (for some 0 < λ < Λ < ∞),
unique up to a multiplicative constant, such that:

f ′ν(dx) + (fν(x+) + fν(x−))ν(dx) = 0. (3.3)

Proof of Proposition 3.2. It su�ces to set

Φν(x) =
∫ x

0

fν(y)dy.

By Lemma 3.2 Φν obviously belongs to T(λ, Λ) for some 0 < λ < Λ <∞. By Proposition 3.1 and Lemma
3.2 we get that X solves Sde(σ, ν) if and only if Y := Φν(X) solves Sde

(
(σfν) ◦ Φ−1

ν , 0
)
. By Lemma

3.1 the proof is completed.

256



3.2 Convergence results

Le Gall proved the next consistency result for equations of the type Sde(σ, ν).

Theorem 3.1 (Le Gall 1985) Let be two sequences (σn) and (νn) for which there exist 0 < λ < Λ <∞,
0 < M <∞ and δ > 0 such that

(H1) σn ∈ Coeff(λ, Λ), ∀n ∈ N,

(H2) |νn({x})| ≤ 1− δ, ∀n ∈ N,∀x ∈ G.

(H3) |νn|(G) ≤M, ∀n ∈ N,

so that each νn is in M. Assume that there exist two functions σ and f in Coeff(λ′,Λ′) (for some
0 < λ′ < Λ′ <∞) such that

σn
L1

loc(R)−−−−−→
n→∞

σ and fνn

L1
loc(R)−−−−−→

n→∞
f,

and set:

ν(dx) = − f ′(dx)
f(x+) + f(x−)

. (3.4)

Let (Ω,F , (Ft)t≥0, Px) be a �ltered probability space carrying an adapted Brownian motion W . On this
space, for each n ∈ N let be Xn the strong solution of Sde(σn, νn), and let be X the strong solution of
Sde(σ, ν). Then:

E [ sup
0≤s≤t

|Xn
s −Xs| ] −−−−→

n→∞
0 and (Xn

t , t ≥ 0) L−−−−→
n→∞

(Xt, t ≥ 0).

Remark 3.2 In this theorem νn approaches ν in the sense that fνn tends to fν for the L1
loc convergence.

Note we can have νn ⇀ ν1, but fνn → fν2 for the L1
loc convergence, with ν1 6= ν2 (See [Leg85] p 65 for

an example). The theorem asserts that Xn tends to X that solves Sde(σ, ν2) and not Sde(σ, ν1) !

Le Gall also proved a Donsker theorem for solution to SDEs of the type Sde(σ, ν) for σ ≡ 1. Let be µ
in M and Y be the solution to Sde(1, µ).

We de�ne some coe�cients βn
k for all k ∈ Z, and all n ∈ N∗, by:

1− βn
k

1 + βn
k

= exp
(
− 2µc(]

k

n
,
k + 1

n
])

) ∏
k
n <y≤ k+1

n

(1− µ({y})
1 + µ({y})

)
=

fµ(k+1
n )

fµ( k
n )

. (3.5)

We de�ne a sequence (µn) of measures in M by

µn =
∑

βn
k δ k

n
, (3.6)

and a sequence (Y n) of processes such that each Y n solves Sde(1, µn).

Finally we de�ne for all n ∈ N∗ a sequence (τn
p )p∈N of stopping times by,
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τn
0 = 0

τn
p+1 = inf{t > τn

p : |Y n
t − Y n

τn
p
| = 1

n}.
(3.7)

We have the next theorem.

Theorem 3.2 (Le Gall 1985) In the previous context Sn
p := nY n

τn
p
de�nes a sequence of random walks

on the integers such that:

i)

Sn
0 = 0, ∀n ∈ N∗,

P[Sn
p+1 = k + 1|Sn

p = k] = 1
2 (1 + βn

k ), ∀n, p ∈ N∗,∀k ∈ Z,

P[Sn
p+1 = k − 1|Sn

p = k] = 1
2 (1− βn

k ), ∀n, p ∈ N∗,∀k ∈ Z.

ii)

The sequence of processes de�ned by Ỹ n
t := (1/n)Sn

[n2t], where b.c stands for the integer part of a non
negative real number, veri�es for all 0 < T <∞:

E|Ỹ n
t − Yt| −−−−→

n→∞
0, ∀t ∈ [0, T ] and (Ỹ n

t , t ≥ 0) L−−−−→
n→∞

(Yt, t ≥ 0).

4 Link between DFO and SDELT

This link is stated by the following proposition.

Proposition 4.1 Let a and ρ be in Coeff(λ, Λ) for some 0 < λ < Λ <∞. Let us denote by I the set of
the points of discontinuity of a. Then L(a, ρ) is the in�nitesimal generator of the unique strong solution
of Sde(

√
aρ, ν) with,

ν(dx) =
( a′(x)

2a(x)

)
dx +

∑
xi∈I

a(xi+)− a(xi−)
a(xi+) + a(xi−)

δxi
(dx). (4.1)

In [LM06] the authors proved the proposition above by the use of Dirichlet forms and Revuz measures.
We give here a more simple proof, based on smoothing the coe�cients and using the consistency theorems
of the two preceeding sections.

Proof of Proposition 4.1. As a and ρ are in Coeff(λ, Λ) the function
√

ρa is in Coeff(λ, Λ). Besides,
as |a− b|/|a+ b| < 1 for any a,b in R∗+, the measure ν de�ned by (4.1) is in M. The existence of a unique
strong solution X to Sde(

√
aρ, ν) follows from Proposition 3.2.

We then identify the in�nitesimal generator of X. We can build two sequences (an) and (ρn) of functions
in Coeff(λ, Λ) ∩ C∞(G), such that

an −−−−→
n→∞

a a.e. and ρn −−−−→
n→∞

ρ a.e.

For any n in N we denote by Xn the process generated by L(an, ρn).

On one hand, by dominated convergence the hypotheses of Theorem 2.2 are ful�lled, and we have,
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(Xn
t , t ≥ 0) L−−−−→

n→∞
(X̃t, t ≥ 0), (4.2)

where the process X̃ is generated by L(a, ρ).

On the other hand we will show by Theorem 3.1 that

(Xn
t , t ≥ 0) L−−−−→

n→∞
(Xt, t ≥ 0). (4.3)

Thus taking in care (4.2) and (4.3) we will conclude that the in�nitesimal generator of X is L(a, ρ).

As an and ρn are C∞, (Ln, D(Ln)) = L(an, ρn) can be written,

Ln =
ρn

2

[
an′ d

dx
+ an d2

dx2

]
,

so it is standard to say that Xn solves

Xn
t = x +

∫ t

0

√
ρn(Xn

s )an(Xn
s )dWs +

∫ t

0

ρn(Xn
s )an′(Xn

s )
2

ds. (4.4)

As d〈Xn〉s = ρn(Xn
s )an(Xn

s )ds, by the occupation time density formula we can rewrite (4.4) and assert
that Xn solves,

Xn
t = x +

∫ t

0

√
ρn(Xn

s )an(Xn
s )dWs +

∫
R

νn(dx)Lx
t (Xn),

where νn(dx) = (an′(x)/2an(x))λ(dx).

Then elementary calculations show that the function fνn associated to νn by Lemma 3.2 is of the form
fνn(x) = K/an(x) with K a real number. This obviously tends to K/a(x) =: f(x) for the L1

loc(R)-
convergence. We then determine the measure ν associated to f by (3.4). First we check that νc(dx) =
(a′(x)/2(a(x))λ(dx). Second, the set {x ∈ G : ν({x}) 6= 0} is equal to I, and we have for all x ∈ I,

ν({x}) = −f(x+)− f(x−)
f(x+) + f(x−)

=
a(x+)− a(x−)
a(x+) + a(x−)

.

So the measure ν is equal to the one de�ned by (4.1). As it is obvious that

√
ρnan

L1
loc(R)−−−−−→

n→∞

√
ρa,

and that the hypotheses (H1)− (H3) of Theorem 3.1 are ful�lled, we can say that (4.3) holds. The proof
is completed.

5 Random walk approximation

5.1 Monte Carlo Approximation

From now the horizon 0 < T < ∞ is �xed. For any a, ρ ∈ Coeff(λ, Λ) and any initial condition f we
denote by (P)(a, ρ, f) the parabolic PDE
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(P)(a, ρ, f)


∂u(t,x)

∂t = Lu(t, x), for (t, x) ∈ [0, T ]×G,

u(t, l) = u(t, r) = 0 for t ∈ [0, T ],

u(0, x) = f(x) for x ∈ G,

with (L,D(L)) = L(a, ρ).

Let be 0 < λ < Λ <∞. From now till the end of this paper we assume that a and ρ are in Coeff(λ, Λ).
We denote by I = {xi}i∈I the set of the points of discontinuity of a (I = {0 ≤ i ≤ k1} ⊂ Z is �nite). We
set X to be the process generated by L(a, ρ).

We seek for a probabilistic numerical method to approximate the solution of (P)(a, ρ, f). By Theorem
2.1 and some standard PDEs re�nements we know that for all f ∈ L2(G), (P)(a, ρ, f) has a unique weak
solution u(t, x) in C([0, T ],L2(G, mρ))∩L2(0, T ; H1

0(G)). We know that Ex[f(Xt)] is a continuous version
of u(t, x).

Our goal is to build a process X̂n easy to simulate and such that

(X̂n
t , t ≥ 0) L−−−−→

n→∞
(Xt, t ≥ 0). (5.1)

Thus Ex[f(X̂n
t )]→ Ex[f(Xt)] for any t ∈ [0, T ], and the strong law of large numbers asserts that,

1
N

N∑
i=1

f(X̂n,(i)
t ) n→∞−−−−→

N→∞
u(t, x), (5.2)

where for each i, X̂n,(i) is a realisation of the random variable X̂n.

5.2 Skew Brownian Motion

The Skew Brownian Motion (SBM) of parameter β ∈ (−1, 1) starting from y, which we denote by Y β,y

is known to solve:

Y β,y
t = y + Wt + βLy

t (Y β,y), (5.3)

i.e. Y β,y solves Sde(1, βδ0) (see [HS81]).

It was �rst constructed by Itô and McKean in [IM74] (Problem 1 p115) by �ipping the excursions of a
re�ected Brownian motion with probability α = (β + 1)/2. On SBM see also [Wal78] . It behaves like a
Brownian motion except in y where its behaviour is pertubated, so that

P(Y β,y
t > y) = α, ∀t > 0. (5.4)

We denote by T (∆) the law of the stopping time τ = inf{t ≥ 0, |Wt| = ∆} where W is a standard
Brownian motion starting at zero. For the SBM Y β,0 and ∆ in R∗+ we de�ne the stopping time τ∆ =
inf{t ≥ 0, Y β,0

t ∈ {∆,−∆}}. Our approach relies on the following lemma.

Lemma 5.1 Let y and x be in R, ∆ in R∗+ and β in (−1, 1). Set α = (β + 1)/2. Then

i) Y β,y + x ∼= Y β,y+x, and ii) (τ∆, Y β,0
τ∆

) ∼= T (∆)⊗Ber(α).

Proof. This follows from the construction of the SBM by Itô and McKean in [IM74].
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5.3 Some possible approaches

Recently two methods have been proposed to build X̂n satisfying (5.1).

In [Mar04] M. Martinez proposed to use an Euler scheme. We know by Proposition 4.1 that X solves
Sde(

√
aρ, ν) with ν de�ned by (4.1). We have seen in the proof of Proposition 3.2 that if we de�ne

Φ(x) =
∫ x

0
fν(y) then Y = Φ(X) solves Sde(γ, 0) with γ in some Coeff(m,M). Thus an Euler scheme

approximation Ŷ n of Y can be built and by setting X̂n = Φ−1(Ŷ n) we get an approximation of X.
Because the coe�cient γ is not Lipschitz if a and ρ are not, evaluating the speed of convergence of such
a scheme is not easy.

In [LM06], A. Lejay and M. Martinez proposed to use the SBM. They �rst build a piecewise
constant approximation (an, ρn) of (a, ρ) in order that the process Xn generated by L(an, ρn) solves
Sde(

√
anρn, νn) with νn satisfying (νn)c = 0. Second by a proper bijection Φn ∈ T(m,M), they get

that Y n = Φn(Xn) solves Sde(1, µn) with µn =
∑

βkδyk
, i.e. Y n behaves locally like a SBM. Third

they proposed a scheme Ŷ n for Y n based on Lemma 5.1 and simulations of exit times of the SBM and
they �nally set X̂n = (Φn)−1(Ŷ n).

Our method can be seen as a variation of this last approach because it also deeply relies on getting such
a Y n and using Lemma 5.1. But we then use random walks instead of the scheme proposed in [LM06].

5.4 The basic idea of our approach

We focus on weak convergence and propose a three-step approximation scheme di�ering slightly from the
one proposed by Theorem 3.2.

We �x n ∈ N∗, and 1/n will be the spatial discretization step size.

STEP 1. We build (an, ρn) in Coeff(λ, Λ)× Coeff(λ, Λ) such that:

i) The functions an and ρn are piecewise constant. The points of discontinuity of either an and ρn

are included in some set In. We assume In = {xn
k}k∈In for In = {0 ≤ k ≤ kn

1 } ⊂ Z �nite and
xn

k < xn
k+1, ∀k ∈ In.

ii) For each xn
k ∈ In we have an(xn

k ) = a(xn
k ) and ρn(xn

k ) = ρ(xn
k ).

iii) Consider the function

Φn(x) =
kn,x−1∑

k=0

xn
k+1 − xn

k√
a(xn

k )ρ(xn
k )

+
x− xn

kn,x√
a(xn

kn,x
)ρ(xn

kn,x
)
, (5.5)

where the integer kn,x veri�es xn
kn,x
≤ x ≤ xn

kn,x+1.

The set In satis�es Φn(In) = {k/n, k ∈ Z} ∩ Φn(G). From now we assume xn
k is the point of In such

that Φn(xn
k ) = k/n.

Remark 5.1 In fact the �rst thing to do is to construct the grid In satisfying iii). It is very easy and
only requires to know the coe�cients a and ρ (see point 1 of the algorithm in Subsection 5.5). Then an

and ρn can be constructed.

Remark 5.2 The sets I and In may have no common points.

We take Xn to be the process generated by L(an, ρn).
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Remark 5.3 It can be shown by Theorem 2.2 that Xn converges in law to X.

STEP 2. By Proposition 4.1 the process Xn solves Sde(
√

anρn, νn) with

νn =
∑

xn
k∈In

an(xn
k+)− an(xn

k−)
an(xn

k+) + an(xn
k−)

δxn
k
.

The function Φn de�ned by (5.5) belongs to T(1/Λ, 1/λ). The points of discontinuity of Φn′ are those in
In, and (Φn′)′ = 0, so by Proposition 3.1 the process Y n = Φn(Xn) solves

Y n
t = Y n

0 + Wt +
∑

xn
k∈In

βn
k L

k/n
t (Y n), (5.6)

where

βn
k =

√
a(xn

k )/ρ(xn
k )−

√
a(xn

k−1)/ρ(xn
k−1)√

a(xn
k )/ρ(xn

k ) +
√

a(xn
k−1)/ρ(xn

k−1)
. (5.7)

To write these coe�cients we have used the fact that an and ρn are r.c.l.l. and that for instance an(xn
k+) =

a(xn
k ) and an(xn

k−) = a(xn
k−1).

Remark 5.4 We have got Y n that solves Sde(1,
∑

βn
k δk/n) in a di�erent way than the one used by Le

Gall in Theorem 3.2. We now use his method to get Ỹ n that veri�es

E|Ỹ n
t − Y n

t | −−−−→
n→∞

0, ∀t ∈ [0, T ]. (5.8)

STEP 3. Like in (3.7) we de�ne a sequence (τn
p )p∈N of stopping times by,

τn
0 = 0, and τn

p+1 = inf{t > τn
p : |Y n

t − Y n
τn

p
| = 1/n}.

Thanks to the uniformity of the grid {k/n, k ∈ In} we have the following lemma.

Lemma 5.2 i) For all k ∈ Z and all p ∈ N, (Y n
τn

p +u−Y n
τn

p
, 0 ≤ u ≤ τn

p+1−τn
p ) knowing that {Y n

τn
p

= k/n}
has the same law as (Y βn

k ,0
t , 0 ≤ t ≤ τ1/n).

ii)
∀p ∈ N, σn

p := n2
(
τn
p − τn

p−1

) ∼= T (1),

and the σn
p 's are independent.

Proof. The statement i) follows simply from point i) of Lemma 5.1 and the comparison between (5.3) and
(5.6). From i), the strong Markov property, and point ii) of Lemma 5.1, we get that (τn

p −τn
p−1) ∼= T (1/n2),

and the statement ii) follows by scaling. Using again the Markov property we get the independence of
the σn

p 's.

Le Gall used this lemma in his proof of Theorem 3.2. Indeed it is obvious by the i) of Lemma 5.2 and
the ii) of Lemma 5.1 that Sn

p := nY n
τn

p
satis�es
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Sn
0 = 0,

P[Sn
p+1 = k + 1|Sn

p = k] = 1
2 (1 + βn

k ) =: αn
k , ∀p ∈ N∗,∀k ∈ In,

P[Sn
p+1 = k − 1|Sn

p = k] = 1
2 (1− βn

k ) = 1− αn
k , ∀p ∈ N∗,∀k ∈ In.

(5.9)

Moreover the ii) of Lemma 5.2 allows to show that Ỹ n
t := (1/n)Sn

[n2t] = Y n
τn
[n2t]

satis�es (5.8).

Thus the idea is to take

X̂n
t := (Φn)−1

( 1
n

Ŝn
[n2t]

)
, (5.10)

where Ŝn is a random walk on the integers de�ned by (5.9). The process X̂n is a random walk on the
grid In. In fact this grid is made in order that X̂n spends the same average time in each of its cells.
Combining remark 5.3 and theorem 3.2 we should have (5.1). To sum up this section we write our scheme
in the algorithm form. In the next section we will estimate the approximation error of our scheme.

5.5 The algorithm

Note that by construction (Φn)−1
(
k/n

)
= xn

k for all k ∈ In.

We de�ne a function ALGO in the next manner:

INPUT DATA: the coe�cients a and ρ, the starting point x, the precision order n and the �nal time t.

OUTPUT DATA: an approximation in law X̂n of X at time t.

1. Set xn
0 ← l.

while xn
k ≤ r

set xn
k ←

√
a(xn

k )ρ(xn
k )(1/n) + xn

k and k ← k + 1.

endwhile

2. Compute the αn
k = (1 + βn

k )/2 with βn
k de�ned by (5.7).

3. Set y ← Φn(x).

if (n y − bn yc) < 0.5

set s0 ← bn yc.
else

set s0 ← bn yc+ 1.

endif

4. for i = 0 to i = bn2 tc =: N

if xn
si
∈ R \ (l, r)

Return xn
si
.

endif

We have si = k for some k ∈ Ik. Simulate a realization B of Ber(αn
k ).

Then set si ← si + B.
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endfor

5. Return xn
sN
.

6 Speed of convergence

In this section we will prove the following theorem.

Theorem 6.1 Assume that a, ρ ∈ Coeff(λ, Λ) for some 0 < λ ≤ Λ <∞. Let be 0 < T <∞ and X the

process generated by L(a, ρ). For n ∈ N consider the process X̂n starting from x de�ned by,

∀t ∈ [0, T ], X̂n
t = ALGO(a, ρ, x, n, t).

For all f ∈W1,∞
0 (G)∩C0(G), all ε > 0, and all γ ∈ (0, 1/2) there exists a constant C depending on ε, γ,

T , λ, Λ, G, ‖a′‖∞, ‖ρ′‖∞ ‖f‖∞, ‖df/dx‖2, ‖df/dx‖∞, supi∈I 1/(xi+1 − xi), and the two �rst moments
of T (1) such that, for n large enough,

sup
(t,x)∈[ε,T ]×Ḡ

∣∣∣Exf(Xt)− Exf(X̂n
t )

∣∣∣ ≤ Cn−γ .

We have,

|Exf(Xt)− Exf(X̂n
t )| ≤ |Exf(Xt)− Exf(Xn

t )|+ |Exf(Xn
t )− Exf(X̂n

t )|

=: e1(t, x, n) + e2(t, x, n).
(6.1)

We will estimate e1(t, x, n) by PDEs techniques and e2(t, x, n) by very simple probabilistic techniques.

6.1 Estimate of a weak error

In this subsection we prove the following proposition.

Proposition 6.1 Assume f belongs to H1
0(G)∩C0(G). Let be u(t, x) and un(t, x) respectively the solutions

of (P)(a, ρ, f) and (P)(an, ρn, f), with an and ρn like in Subsection 5.4, Step 1. Then for all ε > 0 there
is a constant C1 depending on ε, T , λ, Λ, G, ‖f‖∞, ‖df/dx‖2, ‖a′‖∞, ‖ρ′‖∞, and supi∈I 1/(xi+1 − xi)
such that for n large enough,

sup
(t,x)∈[ε,T ]×Ḡ

|u(t, x)− un(t, x)| ≤ C1
1√
n

.

As we will see in Proposition 6.2, if we had I ⊂ In we could obtain an upper bound for |||u− un|||∞,∞
of the form K(‖a− an‖2∞ + ‖ρ− ρn‖∞). But this is not necessary the case (see Remark 5.2). However
it is possible to modify a and ρ in order to re�nd us in a situation close to this one, and we will do that
to prove Proposition 6.1.

Proposition 6.2 Let be f ∈ H1
0(G)∩C0(G). Let be a1, ρ1, a2, ρ2 ∈ Coeff(λ, Λ), and I1 and I2 respectively

the set of points of discontinuity of a1 and ρ1 and a2 and ρ2. Assume I1 ⊂ I2. Let be u1(t, x) the weak

solution of (P)(a1, ρ1, f) and u2(t, x) the weak solution of (P)(a2, ρ2, f). There exists a constant C̃1

depending on T , λ, Λ, G, ‖f‖∞, and ‖df/dx‖2, such that,

|||u1 − u2|||∞,∞ ≤ C̃1

(
‖a1 − a2‖2∞ + ‖ρ1 − ρ2‖∞

)
.
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We need a lemma asserting some standard estimates.

Lemma 6.1 i) Let be f ∈ H1
0(G). Let be u(t, x) the weak solution of (P)(a, ρ, f). Then ∂tu is in

L2(0, T ; L2(G)) and more precisely,

|||∂tu|||2,2 ≤
Λ
2

∥∥∥∥ df

dx

∥∥∥∥
2

. (6.2)

ii) Let be f ∈ L2(G). Let be u(t, x) the weak solution of (P)(a, ρ, f). Then du
dx is in L2(0, T ; L2(G)) and

more precisely, ∣∣∣∣∣∣∣∣∣∣∣∣du

dx

∣∣∣∣∣∣∣∣∣∣∣∣
2,2

≤ 1
λ
‖f‖2 . (6.3)

Proof. i)Step 1. Assume �rst that a and ρ are C∞(G) and that f is C∞c (G) so that u(t, x) is itself
C∞((0, T ) × G). As u(t, x) is a weak solution of (P)(a, ρ, f), and u, Lu and ∂tu are C∞, using ∂tu as a
test function and integrating by parts with respect to x, we get∫ T

0

∫
G

|∂tu|2mρ(dx)dt =
∫ T

0

∫
G

∂tu Lu mρ(dx)dt = −1
2

∫ T

0

∫
G

a
du

dx

d(∂tu)
dx

dx dt.

Then using Fubini's theorem, interverting the partial derivatives, integrating by parts with respect to t
and then again with respect to x, we get

2
∫ T

0

∫
G

|∂tu|2 mρ(dx)dt =
1
2

∫
G

a

∣∣∣∣du(0, x)
dx

∣∣∣∣2 dx− 1
2

∫
G

a

∣∣∣∣du(T, x)
dx

∣∣∣∣2 dx,

which leads to (6.2).

Step 2. In the general case, with a and ρ in Coeff(λ, Λ), and f in H1
0(G), we use a regularization

argument, Theorem 2.2, Step 1, a compactness argument and an integration by parts with respect to t,
to exhibit a function w ∈ L2(0, T ; L2(G)) satifying:

∀ϕ ∈ C∞c ((0, T )×G),
∫ T

0

∫
G

wϕ = −
∫ T

0

∫
G

u∂tϕ, and |||w|||2,2 ≤
Λ
2

∥∥∥∥ df

dx

∥∥∥∥
2

.

That is ∂tu is in L2(0, T ; L2(G)) and veri�es (6.2).

ii) Thanks to point i) and because Lu(t, .) ∈ L2(G) we can write∫ T

δ

〈∂tu, u〉L2(G,mρ) dt =
∫ T

δ

〈Lu, u〉L2(G,mρ) dt, (6.4)

for all δ > 0. As u is in C1([δ, T ],L2(G, mρ))dt and we have (see [Bre83]),

2 〈∂tu, u〉L2(G,mρ) =
d

dt
‖u‖2L2(G,mρ) , ∀t ∈ [δ, T ], (6.5)

using an integration by part with respect to x in the right hand side of (6.4), and making δ tend to 0 we
get,

λ

2

∣∣∣∣∣∣∣∣∣∣∣∣du

dx

∣∣∣∣∣∣∣∣∣∣∣∣2
2,2

≤ 1
2

(
‖u(0, .)‖2L2(G,mρ) − ‖u(T, .)‖2L2(G,mρ)

)
,

which leads to (6.3).
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Proof of Proposition 6.2. Step 1. We introduce the following norm on
C(0, T ; L2(G)) ∩ L2(0, T ; H1

0(G)):

|v|G,T :=
(

sup
t∈[0,T ]

‖v(t, .)‖22 +
∣∣∣∣∣∣∣∣∣∣∣∣dv

dx

∣∣∣∣∣∣∣∣∣∣∣∣2
2,2

)1/2

.

We have the following estimate:

|||v|||∞,∞ ≤ K|v|G,T , (6.6)

where the constant K depends only on T and G (see [LSU68], II.�.3 inequality (3) p 74 with r =∞ and
q =∞).

We set v := u2 − u1. Our goal is now to estimate |v|G,T .

Step 2. Set (L2, D(L2)) = L(a2, ρ2). Elementary computations show that, v(t, x) is a weak solution to

∂tv(t, x) = L2v(t, x) +
ρ2(x)

2
d

dx

(
(a2(x)− a1(x))

du1(t, x)
dx

)
+ (

ρ2(x)
ρ1(x)

− 1)∂tu1(t, x),

that is to say for all ϕ ∈ C∞c ((0, T )×G) we have,

−
∫ T

0

∫
G

v∂tϕmρ2(dx)dt = −
∫ T

0

∫
G

a2
dv
dx

dϕ
dx dx dt

+
∫ T

0

∫
G

[
ρ2
2

d
dx ((a2 − a1)du1

dx ) + (ρ2
ρ1
− 1)∂tu1

]
ϕmρ2(dx)dt.

(6.7)

We take v as a test function in (6.7). Using (6.5) with v, integration by parts, ab ≤ (λ/2)a2 + (2/λ)b2

and a1, ρ2 ∈ Coeff(λ, Λ) we �nally get,

|v|G,T ≤
κ′

κ

( ∫ T

0

∫
G

(a1 − a2)2
(du1

dx

)2

dxdt +
∫ T

0

∫
G

( 1
ρ1
− 1

ρ2

)
∂tu1vdxdt

)
, (6.8)

where κ = min(1/Λ, λ/4) and κ′ = max(1/λ, 1).

Step 3. As f ∈ C0(G) and the semigroup (S1
t )t≥0 and (S2

t )t≥0 generated respectively by (L1, D(L1)) =
L(a1, ρ1) and (L2, D(L2)) are Feller, we can consider that

∀t ∈ [0, T ], ‖v(t, .)‖∞ ≤ ‖u2(t, .)‖∞ + ‖u1(t, .)‖∞ ≤ 2 ‖f‖∞ .

Thus |||v|||∞,∞ ≤ 2 ‖f‖∞; besides f ∈ H1
0(G) thus using point i) of Lemma 6.1 and Hölder inequality we

get,

∫ T

0

∫
G

( 1
ρ1
− 1

ρ2
)∂tu1vdxdt ≤ 2

∥∥∥ 1
ρ1
− 1

ρ2

∥∥∥
∞
‖f‖∞ |||∂tu1|||1,1

≤ 2
λ2

√
T |G| ‖ρ1 − ρ2‖∞ ‖f‖∞ |||∂tu1|||2,2 .

≤ Λ
λ2

√
T |G| ‖f‖∞

∥∥∥ df
dx

∥∥∥
2
‖ρ1 − ρ2‖∞ .

(6.9)

To �nish we have,

∫ T

0

∫
G

(a1 − a2)2(
du1

dx
)2dxdt ≤ ‖a1 − a2‖2∞

∣∣∣∣∣∣∣∣∣∣∣∣du1

dx

∣∣∣∣∣∣∣∣∣∣∣∣2
2,2

,
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and point ii) of Lemma 6.1 completes the proof because f ∈ L2(G).

Note that the fact that I1 ⊂ I2 allows to consider the quantities ‖ρ1 − ρ2‖∞ and ‖a1 − a2‖∞.

We are then ready to prove Proposition 6.1.

Proof of Proposition 6.1. The idea is to build a bijection φn such that the points of discontinuity of
a ◦ φn and ρ ◦ φn are included in In.

Step 1. We build a piecewise linear bijection φn such that φ−1
n (I) ⊂ In in the following manner:

We �rst de�ne a projection πn : G→ In by,

πn(x) =


xn

kn,x
if (x− xn

kn,x
)/(xn

kn,x+1 − xn
kn,x

) < 1/2,

xn
kn,x+1 if (x− xn

kn,x
)/(xn

kn,x+1 − xn
kn,x

) ≥ 1/2.

Then we set

φn(x) =



x0−l
πn(x0)−l (x− l) + l if x ∈ [l, πn(x0)[,

xi+1−xi

πn(xi+1)−πn(xi)
(x− πn(xi)) + xi if x ∈ [πn(xi), πn(xi+1)[,

for 0 < i < k1 − 1,

r−xk1
r−πn(xk1 ) (x− πn(xk1)) + xk1 if x ∈ [πn(xk1), r].

Note that we then have for all i ∈ I, φn(πn(xi)) = xi.

Step 2. We set ũn(t, x) := u(t, φn(x)). If a and ρ are smooth simple computations show that ũn(t, x)
solves (P)(ãn, ρ̃n, f ◦ φn) with,

ãn(x) =
a ◦ φn(x)

φ′n(x)
, and ρ̃n(x) = ρ ◦ φn(x).

It can be shown that this is still the case for a and ρ in Coeff(λ, Λ), using a regularization argument and
again Theorem 2.2.

We also de�ne ūn(t, x) to be the solution of (P)(ãn, ρ̃n, f).

Step 3. For all (t, x) ∈ [ε, T ]× Ḡ, we have,

|u(t, x)− un(t, x)| ≤ |u(t, x)− u(t, φn(x))|+ |||ũn − ūn|||∞,∞ + |||ūn − un|||∞,∞ .

The points of discontinuity of ãn and ρ̃n belong to In. So by Proposition 6.2 there is a constant C̃1 not
depending on n such that

|||ūn − un|||∞,∞ ≤ C̃1

(
‖ãn − an‖2∞ + ‖ρ̃n − ρn‖∞

)
. (6.10)

Besides, as for each n the semigroup (S̃n
t )t≥0 generated by L(ãn, ρ̃n) is Feller, we have

|||ũn − ūn|||∞,∞ ≤ ‖f − f ◦ φn‖∞ ≤
∥∥∥∥ df

dx

∥∥∥∥
2

√
‖id− φn‖∞. (6.11)

267



Finally, we know that u(t, x) is continuous on [0, T ]× Ḡ and of class C1 on each [ε, T ]× (xi, xi+1) (see in
[LRU68] Theorems 6 and 7). So if x and φn(x) belong to the same interval (xi, xi+1) we have,

|u(t, x)− u(t, φn(x))| ≤ sup
(t,x)∈[ε,T ]×(xi,xi+1)

|du

dx
(t, x)| · |x− φn(x)|.

Let us set

M = sup
i∈I

sup
(t,x)∈[ε,T ]×(xi,xi+1)

|du

dx
(t, x)|.

If for instance x ∈ (xi−1, xi) and φn(x) ∈ (xi, xi+1) we have,

|u(t, x)− u(t, φn(x))| ≤ |u(t, x)− u(t, xi)|+ |u(t, xi)− u(t, φn(x))| ≤ 2M ‖id− φn‖∞ . (6.12)

We will see below that ‖id− φn‖∞ → 0 as n → ∞, so for n large enough we are always at least in the
last situation.

Step 4. By construction (see point 1 of the algorithm) the grid In satis�es |xn
k+1 − xn

k | ≤ Λ/n, for all
k ∈ In.

So elementary computations show that

‖id− φn‖∞ ≤
3Λ
n

and
∥∥∥∥1− 1

φ′n

∥∥∥∥
∞
≤ 2Λ sup

i∈I

1
xi+1 − xi

.
1
n

.

As we have said above, for n large enough (6.12) is valid and we then have,

|u(t, x)− u(t, φn(x))| ≤ 6MΛ
1
n

. (6.13)

It remains to evaluate ‖ãn − an‖∞ and ‖ρ̃n − ρn‖∞. On each (xi, xi+1), a is of class C1 and a′ is r.c.l.l.,
so it makes sense to speak of ‖a′‖∞. Moreover each φn([xn

k , xn
k+1)) is included in some [xi, xi+1] that

contains xn
k , so we have,

‖ãn − an‖∞ ≤ supk∈In supx∈[xn
k ,xn

k+1)
|a(φn(x))/φ′n(x)− an(x)|

≤ ‖a′‖∞ supx∈[xn
k ,xn

k+1)
|φn(x)− xn

k |+ Λ supx∈[xn
k ,xn

k+1)
|1− 1

φ′n(x) |.

In addition |φn(x)− xn
k | ≤ |φn(x)− x|+ |x− xn

k | ≤ 4Λ/n, for all x ∈ [xn
k , xn

k+1), and we can get a similar
bound for |1− 1

φ′n(x) | so �nally there exists K1 such that

‖ãn − an‖∞ ≤ K1
1
n

. (6.14)

In a similar manner we get K2 such that,

‖ρ̃n − ρn‖∞ ≤ K2
1
n

. (6.15)

Thus, combining (6.10), (6.11), (6.13), (6.14) and (6.15), we complete the proof.
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6.2 Estimate of a strong error

Proposition 6.3 In the context of Subsection 5.4, for all γ ∈ (0, 1/2) there exist a constant C2 depending
on T , γ and the two �rst moments of T (1) such that,

∀n ∈ N∗, ∀t ∈ [0, T ], E|Y n
τn
[n2t]
− Y n

t | ≤ C2n
−γ .

Note that in all this subsection we drop any reference to the starting point x in the notation of the
expectation. Indeed the calculations we make are uniform with respect to this variable.

The proof of Proposition 6.3 will follow from two simple lemmas.

For all γ ∈ (0, 1/2), all T > 0, and for any process Y let us introduce the notation

Mγ
T (Y ) := sup

s 6=t, s,t∈[0,T ]

|Yt − Ys|
|t− s|γ

.

Lemma 6.2 Let (µn) be a sequence in M and let be (Y n) the sequence of processes such that each Y n

solves Sde(1, µn). Assume there exist two positive constants m and M such that,

∀n ∈ N, fµn ∈ Coeff(m,M). (6.16)

Then for all γ ∈ (0, 1/2), all k ∈ N∗ such that 0 < γ < 1/2−1/(2k), and all T > 0, there exists a positive

constant Cγ,T
k , not depending on n, which veri�es,

∀n ∈ N,
(
E[(Mγ

T (Y n))2k]
)1/2k

≤ Cγ,T
k <∞. (6.17)

Proof. We have to use the Kolmogorov-�entsov theorem. Let be γ ∈ (0, 1/2) and k ∈ N∗ such that
0 < γ < 1/2− 1/(2k). For all n ∈ N let us de�ne

Fn(x) :=
∫ x

0

fµn(y)dy,

and

hn := fµn ◦ F−1
n

Let us evaluate E|Y n
t − Y n

s |2k for n ∈ N and t, s > 0. We have

E|Y n
t − Y n

s |2k = E|F−1
n (Zn

t )− F−1
n (Zn

s )|2k, (6.18)

where Zn := Fn(Y n) is solution of Sde(hn, 0) by the virtue of Proposition 3.1.

By (6.16) we have that ||(F−1
n )′||∞ ≤ 1/m, so a simple use of the mean value theorem leads from (6.18)

to,

E|Y n
t − Y n

s |2k ≤ 1
m2k

E|Zn
t − Zn

s |2k =
1

m2k
E|

∫ t

s

hn(Y n
r )dWr|2k.

Using now the Burkholder-Davis-Gundy inequality and the majoration part of (6.16) we get

E|Y n
t − Y n

s |2k ≤ 1
m2k

Ck E
( ∫ t

s

h2
n(Y n

r )ds
)k

=
(M

m

)2k

Ck(t− s)1+(k−1),
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where Ck is a constant not depending on n. The constant
(

M
m

)2k

Ck does not depend on n and we have

2k > 1. Thus, having a look at the proof of the Kolmogorov-�entsov theorem (see [RY91] for instance),
and identifying each Y n with its γ-Hölder modi�cation we can say that there is a positive constant Cγ,T

k ,
such that (6.17) holds.

Lemma 6.3 There exists a constant K depending on T and the two �rst moments of T (1) such that:

∀n ∈ N∗, ∀t ∈ [0, T ], E|τn
[n2t] − t|2 ≤ K

1
n2

. (6.19)

Proof. First we notice that if t < 1/n2 then (6.19) holds with K = 1. We then assume now that
t ≥ 1/n2. For all t ∈ [0, T ] and with the σn

p de�ned in Lemma 5.2 we set σn,t
p := tσn

p . Let T1
∼= T (1).

Using,

(v1 + . . . + vk)2 ≤ k(v2
1 + . . . + v2

k), (6.20)

we get

E|τn
[n2t] − t|2 ≤ 2E

∣∣τn
[n2t] −

1
[n2t]

[n2t]∑
p=1

σn,t
p

∣∣2 + 2E
∣∣ 1
[n2t]

[n2t]∑
p=1

σn,t
p − t

∣∣2. (6.21)

We have (τn
p − τn

p−1) ∼= T (1/n2) so we get,

E
∣∣τn

[n2t] −
1

[n2t]

∑[n2t]
p=1 σn,t

p

∣∣2 = E
∣∣∣ ∑[n2t]

p=1 (τn
p − τn

p−1)
( [n2t]−n2t

[n2t]

)∣∣∣2
≤ 1

[n2t]

∑[n2t]
p=1 E(τn

p − τn
p−1)

2

≤ E(T 2
1 ) 1

n4 .

(6.22)

For the second term of (6.21), as ET1 = 1 (see [Bre68] for instance) and the σn
p 's are independent, we

have

E
∣∣ 1
[n2t]

∑[n2t]
p=1 σn,t

p − t
∣∣2 = t2

[n2t]2 E
∣∣ ∑[n2t]

p=1 (σn
p − 1)

∣∣2
= t2

[n2t]2

∑[n2t]
p=1 V(σn

p )

≤ 2TV(T1) 1
n2 .

(6.23)

Taking in account (6.22), (6.23) and (6.21) we complete the proof.

Proof of Proposition 6.3. Let be γ ∈ (0, 1/2), k ∈ N∗ such that 0 < γ < 1/2 − 1/(2k), and n ∈ N∗.
By the Hölder inequality we have for p and q conjugate

∀t ∈ [0, T ], E|Y n
τn
[n2t]
− Y n

t | ≤ [E
(
Mγ

T (Y n)
)p]1/p.[E|τn

[n2t] − t|γq]1/q. (6.24)
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Let us �x q = 2/γ. We have 1 < p < 4/3. Each Y n solves Sde(1, µn) with µn =
∑

k∈In βn
k δk/n with the

βn
k de�ned by (5.7). The function fµn is unique up to a multiplicative constant. If we impose fµn(l) = 1

then simple calculations show that

fµn(x) =
∏

k
n≤x,k∈In

1− βn
k

1 + βn
k

=

√
ρ(xn

kn,x
)√

a(xn
kn,x

)
.

Thus each fµn is in Coeff(
√

Λ/λ,
√

λ/Λ) and by Lemma 6.2, there exists Cγ,T
k verifying (6.17).

As p < 2k by Jensen inequality there exists Kγ uniform in n such that

∀n ∈ N∗, [E(Mγ
T (Y n)p)]1/p < Kγ <∞. (6.25)

By Lemma 6.3 there exists K such that

∀n ∈ N∗,∀t ∈ [0, T ], [E|τn
[n2t] − t|γq]1/q = [E|τn

[n2t] − t|2]1/q ≤ K n−2/q = K n−γ . (6.26)

Combining (6.24), (6.25) and (6.26) we can complete the proof.

6.3 Proof of Theorem 6.1

Combining the two preceeding subsections we can �nally prove Theorem 6.1.

Proof of Theorem 6.1. We have e1(t, x, n) = |u(t, x)− un(t, x)| where u(t, x) and un(t, x) are those of
Proposition 6.1.

Moreover, by construction, X̂n of Theorem 6.1 is distributed as X̃n := (Φn)−1(Ỹ n) with the Ỹ n of
Subsection 5.4 and Proposition 6.3, that lives in the same probality space as Y n. So, as

∥∥∇(Φn)−1
∥∥
∞ ≤

1/Λ, we have,

e2(t, x, n) = |Ex[f(X̃n
t )− f(Xn

t )]| ≤
∥∥∥∥ df

dx

∥∥∥∥
∞

Ex |X̃n
t −Xn

t | ≤

∥∥∥ df
dx

∥∥∥
∞

Λ
Ex |Ỹ n

t − Y n
t |.

Thus using Propositions 6.1 and 6.3 we complete the proof.

7 Numerical experiments

Example 1. We take a and ρ to be

a(x) =
{

1 if x < 0,
5 if x ≥ 0,

and ρ(x) =
{

1 if x < 0,
1/5 if x ≥ 0.

Then by Proposition 4.1, the process X generated by L(a, ρ) solves
Sde(1, 2/3 δ0), i.e. X is distributed as the simple SBM Y x,β of parameter β = 2/3.

We know the exact density p(t, x, y) of the transition probability of Y x,β (see [Wal78]). For x = 0 we
have:
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Figure 1: Approximated density p(t, x, y) for X with t = 1 and x = 0 (with 50000 particles), together
with the exact density (represented by the ∗-line).

√
2πt p(t, 0, y) =

 (β + 1) exp{−y2/2t} if y ≥ 0,

(1− β) exp{−y2/2t} if y < 0.

We simulate N = 50000 random variables X̂n
t = ALGO(a, ρ, x, n, t) with x = 0, t = 1 and the precision

order n = 20. We plot on the same graph (Figure 1) the histogram we get and the exact p(1, 0, y).

Example 2. We take ρ ≡ 1 and the coe�cient a represented by Figure 2. We plot a histogram
approximating p(t, x, y) for x = 0 at three successive times, t = 1, t = 2 and t = 3.5. We used N = 10000
particules and took n = 20 (Figure 3).

Example 3. We take the same n, a and ρ as in example 2. For f ∈ W1,∞
0 (G) ∩ C0(G), we know

−60 −40 −20 0 20 40 60
60

80
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120

140

160

180

200

Figure 2: Graph of a.
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Figure 3: Approximation of p(t, x, y) for x = 0 at times t = 1, t = 2 and t = 3.5 (with N=10000
particules).

(Subsection 5.1) that if each X̂n,(i) is a realisation of X̂n starting at x, the quantity (1/N)
∑N

i=1 f [X̂n,(i)]
approaches u(t, x), the solution of (P)(a, ρ, f).

We then consider that G = (−100, 100) and take f(x) = sin(π (x + 100)/200). We take x = −10. We
compute usto(t, x) := (1/N)

∑N
i=1 f [X̂n,(i)

t ], with N = 10000, for t belonging to a time grid that is a
discretisation of [0, 4]. We use a deterministic algorithm to compute an approximation udet(t, x) of u(t, x)
for t ∈ [0, 4]. We plot usto(t, x) and udet(t, x) on the same graph (Figure 4).

Example 4. We wish to compare our scheme with the one proposed by Lejay and Martinez in [LM06].
In order to do that we take ρ ≡ 1 and a de�ned by

a(x) =
{

2 + sin(x) if x < 0,
5 + sin(x + π) if x ≥ 0.

We take t = 1, x = 0.5, n = 10 and N = 10000. We plot a histogram of the values of X̂n
1 approximating

p(1, 0.5, y) on Figure 5. We plot on the same �gure the histogram obtained in [LM06] for the same
parameters. Note that in [LM06] the authors also compared their histogram with the one obtained by
the Euler Scheme of M. Martinez in [Mar04].

Acknowledgement: The author would like to thank Antoine Lejay for his encouragements and
constructive remarks.
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Figure 4: Graphs of usto(t, x) and udet(t, x) (represented by the ∗-line) for x = −10 and t ∈ [0, 4].
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Figure 5: Approximation of p(t, x, y) in example 4 by our algorithm together with the one by Lejay and
Martinez (represented by the dashed line).
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