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Abstract

The Zhao-Woodroofe condition has been introduced in [19] and it is a necessary and
sufficient condition for the existence of a martingale approximation of a causal sta-
tionary process. Here, a nonadapted version is given and the convergence of Cesaro
averages is replaced by a convergence of a subsequence. The nonadapted version is
of a different form than in other cases, e.g. of Wu-Woodroofe or Maxwell-Woodroofe
conditions ([10], [18], [15]).
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1 Introduction

Let (Ω,A, µ) be a probability space and T : Ω → Ω a bijective, bimeasurable and
measure preserving mapping. For a measurable function f the sequence (f ◦ T i) is
strictly stationary and every strictly stationary sequence of random variables can be
represented in this way.

Denote

Sn(f) =

n∑
i=1

f ◦ T i.

By (Fi) we will denote an increasing filtration where T−1(Fi) = Fi+1, Pi will denote
the orthogonal projection onto L2(Fi)	L2(Fi−1), i.e. Pif = E(f |Fi)−E(f |Fi−1). If f is
F0-measurable, we say that the process (f ◦ T i) is adapted (to the filtration (Fi)).

Definition 1.1. We say that a function f (process (f ◦ T i)) has a martingale approx-
imation with respect to a filtration (Fi)+∞i=−∞ if there exists a martingale difference
sequence (m ◦ T i)i∈Z such that P0m = m and ||Sn(f −m)||22 = o(n).

Because the CLT holds for stationary sequences of L2 martingale differences, this
condition guarantees a CLT for (f ◦ T i) (if µ is ergodic, the limit law is normal and for
µ non ergodic it can be mixture of normal laws). Since 1969, the date of publication
of Gordin’s paper [4], martingale approximations have been an important tool in the
research of limit theorems for stationary processes. Conditions for a martingale ap-
proximation can be found in many articles. Most of the results published before 1980
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can be found in [6], for more recent results see e.g. (the list being very incomplete)
[14], [10], [1], [2], [3], [19], [11], [5], [17].

In 2004, Wu and Woodroofe ([18]) showed that for an L2 process (f ◦ T i) adapted
to a filtration (Fi), there exists a triangular array of martingale differences mn ◦ T i
(P0mn = mn) satisfying

‖Sn(f −mn)‖2 = o(σn)

if and only if
‖E(Sn(f)|F0)‖2 = o(σn);

we denote σn = ‖Sn(f)‖2 → ∞. The condition of Wu and Woodroofe, however, implies
neither a martingale approximation, nor a CLT. In [8], Klicnarová and Volný found an
L2 process (f ◦ T i) such that ‖Sn(f)‖2/

√
n→ 1, ‖E(Sn(f)|F0)‖2 = O(

√
n/ log n), and the

CLT does not take place, hence there is no martingale approximation.
It is thus a natural problem to find a supplementary condition which implies a mar-

tingale approximation. Such a condition has been found by Zhao and Woodroofe in [19].
They introduced the plus-norm

||f ||2+ = lim sup
n→+∞

1

n
||Sn(f)||22

and a condition which we call Zhao-Woodroofe’s condition (ZW):

Definition 1.2. Let the process (f ◦ T i) be adapted. We say that it (or, the function f )
satisfies Zhao-Woodroofe’s condition (ZW) if

lim
m→+∞

1

m

m∑
k=1

||E(f |F−k)||2+ = 0.

Zhao and Woodroofe proved that a process (f ◦T i) satisfying the condition of Wu and
Woodroofe has a martingale approximation if and only if it satisfies ZW. Later, Peligrad
(see [11]) improved the result by showing that the Wu-Woodroofe’s condition is redun-
dant and found other equivalent conditions. We thus have:

Proposition 1.3. An adapted process (f ◦ T i) has a martingale approximation if and
only if it satisfies ZW.

Further results leading to invariance principles can be found in [5].
We will search a nonadapted version of ZW. Recall that a nonadapted version of

the condition of Wu and Woodroofe has been found by Volný in [15]. For ZW, the same
method as in [15] gives a condition presented below in Corollary 1 which is sufficient for
a martingale approximation. As we will show in Proposition 2, this condition, however,
is not necessary. We thus define the following condition.

Definition 1.4. The function f satisfies nonadapted Zhao-Woodroofe’s condition
(naZW) if it satisfies:

lim
m→+∞

1

m

m∑
k=1

||E(f |F−k) + f − E(f |Fm−k)||2+ = 0. (1.1)

Theorem 1.5. A stationary process satisfies the nonadapted Zhao-Woodroofe’s condi-
tion (1.1) if and only if it has a martingale approximation.

Remark. As follows from [9], for f adapted, ||E(f |F−k)||+ → 0 is not a necessary
condition for a martingale approximation. Nevertheless, in Proposition 3 we shall give a
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necessary and sufficient condition for a martingale approximation using subsequences,
both for the adapted and the nonadapted case.

Proof of the Theorem:
For f ∈ L2 we have f = f ′ + f (r) + f ′′ where f ′ = E(f |F−∞) is the orthogonal

projection of f onto L2(F−∞), f ′′ = f − E(f |F∞) is the orthogonal projection of f onto
L2(A)	L2(F∞), and f (r) = E(f |F∞)−E(f |F−∞) is the orthogonal projection of f onto
L2(F∞)	L2(F−∞) (F∞ is the σ-algebra generated by the union of all Fk and F−∞ is the
intersection of all Fk). The subspaces L2(F−∞), L2(F∞)	L2(F−∞), and L2(A)	L2(F∞)

of L2(A) are mutually orthogonal and invariant with respect to the unitary operator U
defined by Uh = h ◦ T , h ∈ L2(A). For m ∈ L2 with P0m = m we thus have

||Sn(f −m)||22 = ||Sn(f ′)||22 + ||Sn(f (r) −m)||22 + ||Sn(f ′′)||22

and for 1 ≤ k ≤ j we have

E(f |F−k) + f − E(f |Fj−k) = f ′ + E(f (r)|F−k) + f (r) − E(f (r)|Fj−k) + f ′′,

||Sn(E(f |F−k) + f − E(f |Fj−k))||22 = ||Sn(f ′)||22 + ||Sn(f ′′)||22
+||Sn(E(f (r)|F−k) + f (r) − E(f (r)|Fj−k))||22

hence ||Sn(f ′)||2 = o(
√
n) and ||Sn(f ′′)||2 = o(

√
n) are necessary conditions both for a

martingale approximation with respect to the filtration (Fi)+∞i=−∞ and for the nonadapted
Zhao-Woodroofe’s condition.

For proving Theorem 1 we can thus suppose that f is regular, i.e. f = f (r) (otherwise
said, f is F∞-measurable and E(f |F−∞) = 0).

The naZW’s condition implies MA. Let us suppose that the nonadapted ZW’s condi-
tion is satisfied. Our aim is to prove that in such a case the process has a martingale
approximation. By regularity, f =

∑∞
i=−∞ Pif hence the naZW’s condition is equivalent

to

lim
m→+∞

1

m

m∑
k=1

∣∣∣∣∣
∣∣∣∣∣f −

m−k∑
i=−k+1

Pif

∣∣∣∣∣
∣∣∣∣∣
2

+

= 0.

Such a condition implies (see Proposition 1.8) that there exist subsequences n
′

k and n
′′

k

(both tending to infinity) such that∣∣∣∣∣∣
∣∣∣∣∣∣f −

n
′′
k∑

i=−n′k

Pif

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+

→ 0. (1.2)

A regular L2 function h has a martingale-coboundary decomposition h = m + g −
g ◦ T with m, g ∈ L2 and P0m = m if and only if the series

∑∞
i=0E(h ◦ T i|F−1) and∑∞

i=1[h◦T−i−E(h◦T−i|F−1)] converge in L2; then, we can have m =
∑∞
i=−∞ P0(h◦T i),

g =
∑∞
i=0E(h ◦ T i|F−1) −

∑∞
i=1[h ◦ T−i − E(h ◦ T−i|F−1)] (see [14], cf. [4]). From

this we deduce that
∑n

′′
k

i=−n′k
Pif −

∑n
′
k

i=−n′′k
P0(f ◦ T i) is a coboundary g − g ◦ T with an

L2-integrable transfer function g. More precisely, g is equal to

n
′
k∑

i=1

n
′
k−i∑
j=0

P−i(f ◦ T j)−
n
′′
k−1∑
i=0

n
′′
k−i∑
j=1

Pi(f ◦ T−j)
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and the martingale part m is zero.

Therefore,

∣∣∣∣∣∣∣∣∑n
′′
k

i=−n′k
Pif −

∑n
′
k

i=−n′′k
P0(f ◦ T i)

∣∣∣∣∣∣∣∣
+

= 0, hence (notice that ‖.‖+ is a

seminorm, cf. [19]) ∣∣∣∣∣∣
∣∣∣∣∣∣f −

n
′
k∑

i=−n′′k

P0(f ◦ T i)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

+

→ 0

for some subsequences n
′′

k and n
′

k both tending to infinity.

Denote mk =
∑n

′
k

i=−n′′k
P0(f ◦ T i); like in [14] we will show that there exists m such

that mk → m in L2. Since mk = P0(mk) for every k and l we have ||mk −ml||2 = ||mk −
ml||+. Because ||mk −ml||+ ≤ ||f −mk||+ + ||f −ml||+, where both terms of the right-
hand side tend to zero, we have ||mk −ml||2 → 0. We deduce that there exists m such
that m = limk→∞mk. ‖f−m‖+ ≤ ‖f−mk‖+ +‖m−mk‖+ = ‖f−mk‖+ +‖m−mk‖2 → 0

(cf. [14]) hence ||f −m||+ = 0 and the function f has a martingale approximation.

The MA implies the naZW’s condition. Let us suppose that the process (f ◦ T i) has
a martingale approximation (m ◦ T i), i.e. ||Sn(f −m)||2 = o(

√
n); by [18] and [15],

||E(Sn(f)|F0)||2 = o(
√
n) and ||Sn(f)− E(Sn(f)|Fn)||2 = o(

√
n).

Therefore

||Sn(f −m)− E(Sn(f)|F0)− (Sn(f)− E(Sn(f)|Fn))||2 = o(
√
n)

hence
||E(Sn(f)|Fn)− E(Sn(f)|F0)− Sn(m)||2 = o(

√
n).

We have

E(Sn(f)|Fn)− E(Sn(f)|F0) =

n∑
k=1

PkSn(f).

Noticing that the mapping Uh = h ◦ T is a unitary operator in L2 and that UPi = Pi+1U

we get
n∑
k=1

PkSn(f) =

n∑
k=1

Uk
n∑
j=1

P0U
j−kf.

We denote
n∑
j=1

P0U
j−kf =

k−1∑
j=1

P0U
−jf +

n−k∑
j=0

P0U
jf = s

′′

k + s
′

n−k.

Therefore,

E(Sn(f)|Fn)− E(Sn(f)|F0)− Sn(m) = −
n∑
k=1

(m− s
′

n−k − s
′′

k) ◦ T k,

The functions m− s′n−k − s
′′

k are martingale differences, hence

||E(Sn(f)|Fn)−E(Sn(f)|F0)−Sn(m)||22 =

n∑
k=1

||m−s
′

n−k−s
′′

k ||22 =

n∑
k=1

||m−s
′

n−k−s
′′

k ||2+ = o(n).

Let us note that the functions E(f |F0)−E(f |Fk−n−1)−s′n−k and E(f |Fk−1)−E(f |F0)−
s
′′

k are coboundaries. Indeed, for h = E(f |F0) − E(f |Fk−n−1) − s′n−k the condition for a
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martingale-coboundary decomposition is easily satisfied and the martingale part m =∑∞
i=−∞ P0(h◦T i) is zero; the same reasoning applies to the second function. Therefore,

||E(f |F0)− E(f |Fk−n−1)− s
′

n−k||+ = 0 and ||E(f |Fk−1)− E(f |F0)− s
′′

k ||+ = 0.

Using these equalities and ||f −m||+ = 0 we have

||m− s
′

n−k − s
′′

k ||+ = ||f − s
′

n−k − s
′′

k ||+
= ||f − (E(f |F0)− E(f |Fk−n−1))− (E(f |Fk−1)− E(f |F0))||+
= ||f − E(f |Fk−1) + E(f |Fn−k+1)||+

hence
1

n

n∑
k=1

||f − E(f |Fk−1) + E(f |Fn−k+1)||2+ → 0

and the naZW condition follows.

4
From Theorem 1 we get the following corollary.

Corollary 1.6. The conditions

lim
m→+∞

1

m

m∑
k=1

||E(f |F−k)||2+ = 0

and

lim
m→+∞

1

m

m∑
k=1

||f − E(f |Fk)||2+ = 0

imply MA.

The corollary resembles the nonadapted versions of the theorems of Wu and Woodroofe
[18], Maxwell and Woodroofe [10] and Peligrad and Utev [13], cf. [16] and [7]. Here,
however, the assumption of the corollary is not a necessary condition for a martingale
approximation:

Proposition 1.7. There exists a function f such that there is a martingale approxima-
tion but none of the conditions limm→+∞

1
m

∑m
k=1 ||E(f |F−k)||2+ = 0, limm→+∞

1
m

∑m
k=1 ||f−

E(f |Fk)||2+ = 0 is satisfied.

Proof. Let (ei) be a sequence of iid random variables, E(ei) = 0, ‖ei‖2 = 1, ei ◦T = ei+1.
We define N0 = 0 and Nk = 2k, k = 1, 2, . . . . Let

fk =

Nk∑
i=−Nk

ak,iei, k = 1, 2, . . . , where ak,i =
sign(i)

2kNk
;

sign(i) is defined as 1 if i > 0, −1 if i < 0, and 0 for i = 0. We define

f̄ =

∞∑
k=1

fk, f = e0 + f̄ .

Remark that f = e0+
∑
i∈Z aiei where ai =

∑
k: Nk≥|i| ak,i; because Nk ≥ k,

∑
i∈Z a

2
i <∞

hence f ∈ L2.
By [18, proof of Theorem 1], if there is a martingale approximation (m ◦ T i) for

E(f |F0) then m is the limit of 1
n

∑n
k=1

∑k
i=0 P0(f ◦ T i). Because

∑−1
i=−∞ ai = −∞, the

ECP 18 (2013), paper 36.
Page 5/8

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2780
http://ecp.ejpecp.org/


On Zhao-Woodroofe’s condition

adapted part E(f |F0) of f does not have a martingale approximation. From
∑∞
i=1 ai =∞

we get the same result for the nonadapted part f −E(f |F0). From Theorem 1 applied to
E(f |F0) and to f−E(f |F0) separately it follows that neither limm→+∞

1
m

∑m
k=1 ||E(f |F−k)||2+ =

0 nor limm→+∞
1
m

∑m
k=1 ||f − E(f |Fk)||2+ = 0 can be satisfied.

Now, let us show that for every n < Nk

‖Sn(

∞∑
j=k

fj)‖2 ≤ 4

√
n

k

and for n ≥ Nk,

lim
k→∞

sup
n≥Nk

1√
n
‖Sn(

k∑
j=1

fj)‖2 = 0.

This will imply that ‖Sn(f − e0)‖2 = o(
√
n) hence (e0 ◦T i) is a martingale approximation

for f . For every k we have

‖Sn(

∞∑
j=1

fj)‖2 ≤ ‖Sn(

k−1∑
j=1

fj)‖2 + ‖Sn(

∞∑
j=k

fj)‖2

and that for each n there exists a k such that Nk−1 ≤ n < Nk.

Let us prove the first estimation.
By orthogonality,

‖Sn(

∞∑
j=k

fj)‖22 =

∞∑
l=0

∑
Nl≤i≤Nl+1

‖Pi(Sn(

∞∑
j=k

fj)‖22.

For |i| ∈ {Nj−1 + 1, . . . , Nj} we have |ai| ≤ 1
jNj

. By direct computation we thus get

∞∑
l=0

∑
Nl≤i≤Nl+1

‖Pi(Sn(

∞∑
j=k

fj)‖22 ≤
∑
|i|≤Nk

‖Pi(Sn(2fk)‖22 +

∞∑
l=k

∑
Nl<|i|≤Nl+1

‖Pi(Sn(4fl)‖22

≤ 8n2
∞∑
j=k

1

j2Nj
.

Since we suppose n < Nk,

‖Sn(

∞∑
j=k

fj)‖22 ≤ 8n

∞∑
j=k

1

j2
≤ 16n

k
.

Now, we prove the second estimate.
For j = 1, 2, . . . the functions fj are coboundaries fj = gj − gj ◦ T with a cobounding

function

gj = − 1

2jNj

Nj−1∑
i=0

(Nj − i)ei −
1

2jNj

Nj∑
i=1

(Nj − i+ 1)e−i.

∑k
j=1 fj is thus a coboundary with a cobounding function g =

∑Nk−1
i=−Nk

biei where

0 ≤ bi ≤
1

2

(
1 + · · ·+ 1

k

)
for 0 ≤ i ≤ N1 − 1 = 1,

0 ≤ bi ≤
1

2

(
1

j
+ · · ·+ 1

k

)
for Nj−1 ≤ i ≤ Nj − 1, j = 2, . . . , k.
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For −Nk ≤ i ≤ −1 we get a similar estimation for |bi|.
For k sufficiently big and ε > 0, l = εk > 1 we get, using 1

2 + · · ·+ 1
k ≤ log k,

‖g‖22 ≤ 2

Nk∑
i=1

b2i = 2

k∑
j=1

Nk∑
i=Nk−1+1

b2i

≤ Nk−1

(
1

k

)2

+ · · ·+Nk−l

(
1

k − l + 1
+ · · ·+ 1

k

)2

+ 2Nk−l(1 + log k)2

≤ Nk

(
ε

1− ε

)2

+Nk2−εk(1 + log k)2;

choosing ε → 0 such that εk/ log log k → ∞ we see that for k → ∞, ‖g‖22/Nk → 0.
Because Sn(

∑k
j=1 fj) = g ◦ T − g ◦ Tn+1 we get the result.

4

Proposition 1.8. The nonadapted Zhao-Woodroofe’s condition is equivalent to the ex-
istence of subsequences (n

′

k) and (n
′′

k) such that both of them tend to infinity and

||E(f |F−n′k) + f − E(f |Fn′′k )||2+ → 0.

In adapted case, the Zhao-Woodroofe’s condition is equivalent to the existence of a
subsequence (nk) such that

||E(f |F−nk
)||+ → 0.

Proof: Notice that limN→∞ infk,l≥N ||E(f |F−n′k)+f−E(f |Fn′′l )||2+ = 0 if and only if there

is a sequence of (n
′

k, n
′′

k) such that n
′

k, n
′′

k ↗ ∞ and ||E(f |F−n′k) + f − E(f |Fn′′k )||2+ → 0.

If there are no subsequences (n
′

k) and (n
′′

k) such that

||E(f |F−n′k) + f − E(f |Fn′′k )||2+ → 0

as (n
′

k) and (n
′′

k) tend to infinity then there is a δ > 0 such that for all N large enough
and k,m− k ≥ N : ||E(f |F−k) + f −E(f |Fm−k)||2+ > δ, hence the naZW condition cannot
hold. This proves sufficiency. The same proof applies to the adapted case.

To prove necessity, we will treat the adapted case first. We will use the same idea
as in the proof of Theorem 1. Let us suppose that there exists a subsequence (nk) such
that

||E(f |F−nk
)||+ → 0.

The function (
∑0
i=−nk+1 Pif−

∑nk−1
i=0 P0(f◦T i)) is a coboundary and formk =

∑nk−1
i=0 P0(f◦

T i), (mk ◦ T i) is a martingale difference sequence (mk = P0mk). Then ||f − mk||+ =

‖
∑0
i=−nk+1 Pif −mk + E(f |F−nk

)‖+ ≤ ‖
∑0
i=−nk+1 Pif −mk‖+ + ‖E(f |F−nk

)‖+ → 0 as
k →∞. Using the same arguments as in the proof of Theorem 1 we get the existence of
m ∈ L2, m = P0m, such that mk → m in L2 and ||f −m||2+ = 0. Therefore, the function
f has a martingale approximation. From Theorem 1 it follows that the ZW condition is
satisfied.

The proof of the nonadapted case is the same; in particular,
∑n

′′
k

i=−n′k
Pif−

∑n
′
k

i=−n′′k
P0(f◦

T i) is a coboundary, for mk =
∑n

′
k

i=−n′′k
P0(f ◦ T i) we have P0mk = mk and mk converge

to a limit m in L2.

4
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