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Abstract

It is known that the so-called Bercovici-Pata bijection can be explained in terms of
certain Hermitian random matrix ensembles (Md)d≥1 whose asymptotic spectral dis-
tributions are free infinitely divisible. We investigate Hermitian Lévy processes with
jumps of rank one associated to these random matrix ensembles introduced in [6]
and [10]. A sample path approximation by covariation processes for these matrix
Lévy processes is obtained. As a general result we prove that any d× d complex ma-
trix subordinator with jumps of rank one is the quadratic variation of an Cd-valued
Lévy process. In particular, we have the corresponding result for matrix subordina-
tors with jumps of rank one associated to the random matrix ensembles (Md)d≥1.
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1 Introduction

New models of infinitely divisible random matrices have emerged in recent years
from both applications and theory. On the one hand, they have been important in multi-
variate financial Lévy modelling where stochastic volatility models have been proposed
using Lévy and Ornstein-Uhlenbeck matrix valued processes; see [3], [4], [5] and [15].
A key role in these models is played by the positive-definite matrix processes and more
general matrix covariation processes.

On the other hand, in the context of free probability, Bercovici and Pata [9] intro-
duced a bijection Λ from the set of classical infinitely divisible distributions to the set
of free infinitely divisible distributions. This bijection was explained in terms of random
matrix ensembles by Benaych-Georges [6] and Cabanal-Duvillard [10], providing in a
more palpable way the bijection Λ and producing a new kind of infinitely divisible ran-
dom matrix ensembles. Moreover, the results in [6] and [10] constitute a generalization
of Wigner’s result for the Gaussian Unitary Ensemble and give an alternative simple in-
finitely divisible random matrix model for the Marchenko-Pastur distribution, for which
the Wishart and other empirical covariance matrix ensembles are not infinitely divisible.

More specifically, it is shown in [6] and [10] that for any one-dimensional infinitely
divisible distribution µ there is an ensemble of Hermitian random matrices (Md)d≥1,
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Covariation representations for random matrix ensembles

whose empirical spectral distribution converges weakly almost surely to Λ(µ) as d goes
to infinity. Moreover, for each d ≥ 1, Md has a unitary invariant matrix distribution
which is also infinitely divisible in the matrix sense. From now on we call these models
BGCD matrix ensembles. We consider additional facts of BGCD models in Section 3.

A problem of further interest is to understand the matrix Lévy processes {Md(t)}t≥0

associated to the BGCD matrix ensembles. It was pointed out in [12], [14] that the
Lévy measures of these models are concentrated on rank one matrices. This means
that the random matrix Md is a realization, at time one, of a matrix valued Lévy process
{Md(t)}t≥0 with rank one jumps ∆Md(t) = Md(t)−Md(t−).

The purpose of this paper is to study the structure of a d× d Hermitian Lévy process
{Ld(t)}t≥0 with rank one jumps. It is shown in Section 4 that if Ld is a d × d complex

matrix subordinator, it is the quadratic variation of an Cd-valued Lévy process Xd, being
the converse and extension of a known result in dimension one, see [11, Example 8.5].
The process Xd is constructed via its Lévy-Itô decomposition. In Section 5 we consider
new realizations in terms of covariation of Cd-valued Lévy process for matrix compound
Poisson process as well as sample path approximations for Lévy processes associated
to general BGCD ensembles. A new insight on Marchenko-Pastur’s type results for em-
pirical covariance matrix ensembles was recently given in [8] by considering compound
Poisson models (then infinitely divisible). In this direction our results show the role of
covariation of d-dimensional Lévy processes as an alternative to empirical covariance
processes.

For convenience of the reader, and since the material and notation in the literature
is disperse and incomplete, we include Section 2 with a review on preliminaries on
complex matrix semimartingales and matrix valued Lévy processes that are used later
on in this paper.

2 Preliminaries on matrix semimartingales and matrix Lévy
processes

Let Md×q = Md×q (C) denote the linear space of d× q matrices with complex entries

with scalar product 〈A,B〉 = tr (AB∗) and the Frobenius norm ‖A‖ = [tr (AA∗)]
1/2

where tr denotes the (non normalized) trace. If q = d, we write Md = Md×d. The set of
Hermitian random matrices in Md is denoted by Hd. Likewise, let Ud×q = Ud×q (C) =

{U ∈Md×q : U∗U = Iq} . If q = d, Ud = Ud×d.

We denote by Hd(1) the set of matrices in Hd of rank one and by H+
d (H

+

d ) the set of

positive (nonnegative) definite matrices in Hd. Likewise H+
d(1) = Hd(1) ∩H

+

d is the set of

d× d nonnegative definite matrices of rank one. Let S(Hd(1)) denote the unit sphere of
Hd(1).

Remark 2.1. (a) Every V ∈ H+
d(1) can be written as V = xx∗ where x ∈ Cd. One can

see that x is unique if we restrict x to the set Cd+ = {x = (x1, x2, . . . , xd) : x1 ≥ 0, xj ∈ C,
j = 2, ..., d}.

(b) Every V ∈ Hd(1) can be written as V = λuu∗ where λ is the unique nonzero
eigenvalue of V and u is a unitary vector in Cd. In this representation the d × d matrix
uu∗ is unique.

Covariation of complex matrix semimartingales An Md×q-valued process X =

{(xij)(t)}t≥0 is a matrix semimartingale if xij(t) is a complex semimartingale for each
i = 1, ..., d, j = 1, ..., q. Let X = {(xij)(t)}t≥0 ∈ Md×q and Y = {(yij)(t)}t≥0 ∈ Mq×r be
semimartingales. Similar to the case of matrices with real entries in [3], we define the
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Covariation representations for random matrix ensembles

matrix covariation of X and Y as the Md×r-valued process [X,Y ] := {[X,Y ] (t) : t ≥ 0}
with entries

[X,Y ]ij (t) =

q∑
k=1

[xik, ykj ] (t), (2.1)

where [xik, ykj ] (t) is the covariation of the C-valued semimartingales {xik(t)}t≥0 and
{xkj(t)}t≥0; see [16, pp 83]. One has the decomposition into a continuous part and a
pure jump part as follows

[X,Y ] (t) = [Xc, Y c] (t) +
∑
s≤t

(∆X(s)) (∆Y (s)) , (2.2)

where [Xc, Y c]ij (t) :=
∑q
k=1

[
xcik, y

c
kj

]
(t). We recall that for any semimartingale x, the

process xc is the a.s. unique continuous local martingale m such that [x−m] is purely
discontinuous.

We will use the facts that [X] = [X,X∗] is a nonnegative definite d × d matrix, that
[X,Y ]

>
=
[
Y >, X>

]
and that for any nonrandom matrices A ∈ Mm×d, C ∈ Mr×n and

semimartingales X ∈Md×q, Y ∈Mq×r,

[AX,Y C] = A [X,Y ]C. (2.3)

The natural example of a continuous semimartingale is the standard complex d ×
q matrix Brownian motion B = {B(t)}t≥0 = {bjl(t)}t≥0 consisting of independent C-
valued Brownian motions bjl(t) = Re(bjl(t)) + i Im(bjl(t)) where Re(bjl(t)), Im(bjl(t)) are
independent one-dimensional Brownian motions with common variance t/2. Then we
have [B,B∗]ij (t) =

∑q
k=1

[
bik, bjk

]
(t) = qtδij and hence the matrix quadratic variation

of B is given by the d× d matrix process:

[B,B∗] (t) = qtId. (2.4)

The case q = 1 corresponds to the Cd-valued standard Brownian motion B. We observe
this corresponds to [B,B∗] (t) = tId instead of the common 2tId used in the literature.

Other examples of complex matrix semimartingales are Lévy processes considered
next.

Complex matrix Lévy processes An infinitely divisible random matrix M in Md×q is
characterized by the Lévy-Khintchine representation of its Fourier transform Eeitr(Θ∗M)

= exp(ψ(Θ)) with Laplace exponent

ψ(Θ) = itr(Θ∗Ψ )− 1

2
tr (Θ∗AΘ∗) +

∫
Md×q

(
eitr(Θ∗ξ) − 1− i

tr(Θ∗ξ)

1 + ‖ξ‖2

)
ν(dξ), Θ ∈Md×q,

(2.5)
where A : Mq×d → Md×q is a positive symmetric linear operator (i.e. tr (Φ∗AΦ∗) ≥ 0

for Φ ∈Md×q and tr (Θ∗2AΘ∗1) = tr (Θ∗1AΘ∗2) for Θ1,Θ2 ∈Md×q), ν is a measure on Md×q
(the Lévy measure) satisfying ν({0}) = 0 and

∫
Md×q

(1 ∧ ‖x‖2)ν(dx) <∞, and Ψ ∈Md×q.

The triplet (A, ν,Ψ) uniquely determines the distribution of M .

Remark 2.2. The notation AΘ∗ means the linear operator A fromMq×d toMd×q acting
on Θ∗ ∈Mq×d. Some interesting examples of A and its corresponding matrix Gaussian
distributions are:

(a) AΘ∗ = Θ. This corresponds to a Gaussian matrix distribution invariant under left
and right unitary transformations in Ud and Uq, respectively.
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(b) AΘ∗ = Σ1ΘΣ2 for Σ1 ∈ H
+

d and Σ2 ∈ H
+

q . In this case the corresponding matrix
Gaussian distribution is denoted by Nd×q(0,Σ1 ⊗Σ2) and Σ1 ⊗Σ2 is called a Kronecker

covariance. It holds that if N has the distribution Nd×q(0, Id ⊗ Iq), then Σ
1/2
1 NΣ

1/2
2 has

distribution Nd×q(0,Σ1 ⊗ Σ2).
(c) When q = d, AΘ∗ = tr(Θ)Id is the covariance operator of the Gaussian random

matrix gId where g is a one-dimensional random variable with a standard Gaussian
distribution.

Let Sd×q be the unit sphere ofMd×q and letM0
d×q = Md×q\{0}. If ν is a Lévy measure

on Md×q, then there are a measure λ on Sd×q with λ(Sd×q) ≥ 0 and a measure νξ for
each ξ ∈ Sd×q with νξ((0,∞)) > 0 such that

ν(E) =

∫
Sd×q

λ(dξ)

∫
(0,∞)

1E(uξ)νξ(du), E ∈ B(M0
d×q).

We call (λ, νξ) a polar decomposition of ν. When d = q = 1, ν is a Lévy measure on C
and λ is a measure in the unit sphere S1×1 of C.

Any Md×q-valued Lévy process L = {L(t)}t≥0 with triplet (A, ν,Ψ) is a semimartin-
gale with the Lévy-Itô decomposition

L(t) = tΨ +BA(t) +

∫
[0,t]

∫
‖V ‖≤1

V J̃L(ds,dV ) +

∫
[0,t]

∫
‖V ‖>1

V JL(ds,dV ), t ≥ 0, (2.6)

where:
(a) {BA(t)}t≥0 is a Md×q-valued Brownian motion with covariance A, i.e. it is a Lévy

process with continuous sample paths (a.s.) and each BA(t) is centered Gaussian with

E {tr(Θ∗1BA(t))tr (Θ∗2BA(s)) } = min(s, t)tr (Θ∗1AΘ∗2) for each Θ1,Θ2 ∈Md×q,

(b) JL(·, ·) is the Poisson random measure of jumps on [0,∞) × M0
d×q. That is,

JL(t, E) = #{(0 ≤ s ≤ t : ∆Ls ∈ E}, E ∈ M0
d×q, with intensity measure Leb ⊗ ν,

and independent of {BA(t)}t≥0,

(c) J̃L is the compensator measure of JL, i.e.

J̃L(dt,dV ) = JL(dt,dV )− dtν(dV );

see for example [1] for the most general case of Lévy processes with values in infinite
dimensional Banach spaces.

An Md×q-valued Lévy process L = {L(t)}t≥0 has bounded variation if and only if its
Lévy-Itô decomposition takes the form

L(t) = tΨ0 +

∫
[0,t]

∫
M0

d×q

V JL(ds,dV ) = tΨ0 +
∑
s≤t

∆L(s), t ≥ 0, (2.7)

where Ψ0 = Ψ−
∫
‖V ‖≤1

V ν(dV ).

The matrix quadratic variation (2.2) of L is given by the H
+

d -valued process

[L](t) = [BA, B
∗
A] (t) +

∫
[0,t]

∫
M0

d×q

V V ∗JL(ds,dV ) = [BA, B
∗
A] (t)+

∑
s≤t

∆L(s)∆L(s)∗.

(2.8)
In Section 3 we prove a partial converse of the last result in the case q = 1.

Remark 2.3. On the lines of Remark 2.2 we have the following observations for the
quadratic variation of the continuous part in (2.8):
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(a) When AΘ∗ = Θ, [BA, B
∗
A] (t) = qtId. This follows from (2.4) since BA(t) is a

standard complex d× q matrix Brownian motion.

(b) When AΘ∗ = Σ1ΘΣ2 for Σ1 ∈ H
+

d and Σ2 ∈ H
+

q , we have BA(t) = Σ
1/2
1 B(t)Σ

1/2
2

where B = {B(t)}t≥0 is a standard complex d× q matrix Brownian motion. Then, using
(2.3) we have

[BA, B
∗
A] (t) =

[
Σ

1/2
1 BΣ

1/2
2 ,Σ

1/2
2 B∗Σ

1/2
1

]
(t) = Σ

1/2
1

[
BΣ

1/2
2 ,Σ

1/2
2 B∗

]
(t)Σ

1/2
1 = ttr(Σ2)Σ1,

where we have also used the easily checked fact
[
BΣ

1/2
2 ,Σ

1/2
2 B∗

]
(t) = ttr(Σ2)Id.

(c) When q = d and AΘ∗ = tr(Θ)Id, we have [BA, B
∗
A] (t) = tId since BA(t) = b(t)Id

where b = {b(t)}t≥0 is a one-dimensional Brownian motion.

The extension of the notion of a real subordinator to the matrix case relies on cones.
A cone K is a nonempty, closed, convex subset of Md×q such that if A ∈ K and α ≥ 0

imply αA ∈ K. A cone K determines a partial order in Md×q by defining V1 ≤K V2 for
V1, V2 ∈ Md×q whenever V2 − V1 ∈ K. A Md×q-valued Lévy process L = {L(t)}t≥0 is K-
increasing if L(t1) ≤K L(t2) for every t1 < t2 almost surely. A K-increasing Lévy process
with values inMd×q is called a matrix subordinator. It is easy to see that if L = {L(t)}t≥0

is a Lévy process in Md×q then L is a subordinator if and only if L takes values in K. In
this sense the matrix quadratic variation Lévy process in (2.8) with values in the cone

H
+

d is a matrix subordinator.

Approximation of Lévy processes The following are useful results on the sample
path approximation of complex matrix Lévy processes; see [13, Th 15.17] and [17, Th.
8.7]. They follow from their corresponding real vector case by the usual identification
of Md×q → R2dq via A → vec(A), A ∈ Md×q and the fact that tr (A∗B) = vec(A)∗vec(B),
where vec(A) is the dq column complex vector obtained by stacking the columns of A
one down each other.

Proposition 2.4. Let L and Ln n = 1, 2, ... be complex matrix Lévy processes in Md×q

with Ln(1)
L→ L(1). Then there exist processes L̃n with the same distribution that Ln

such that

sup
0≤s≤t

∣∣∣L̃n(s)− L(s)
∣∣∣ Pr−→ 0, ∀t ≥ 0.

Proposition 2.5. Let Mn, n = 1, 2, ... be infinitely divisible random matrices in Md×q

with triplet (An, νn,Ψn). Let M be a random matrix in Md×q. Then Mn L→M if and only
if M is infinitely divisible whose triplet (A, ν,Ψ) satisfies the following three conditions:
a) If f : Md×q →Md×q is bounded and continuous function vanishing in a neighborhood
of 0 then

lim
n→∞

∫
Md×q

f(ξ)νn(dξ) =

∫
Md×q

f(ξ)ν(dξ).

b) Define the positive symmetric operator An,ε : Mq×d →Md×q by

tr (Θ∗An,εΘ∗) = tr (Θ∗AnΘ∗) +

∫
‖ξ‖≤ε

|tr (Θ∗ξ)|2 νn(dξ) for Θ ∈Md×q.

Then

lim
ε↓0

lim sup
n→∞

|tr (Θ∗An,εΘ∗)− tr (Θ∗AΘ∗)| = 0, for Θ ∈Md×q.

c) Ψn → Ψ.
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3 BGCD random matrix ensembles

We now consider the matrix Lévy processes associated to the BGCD matrix ensem-
bles (Md)d≥1 mentioned in the introduction.

When µ is the standard Gaussian distribution, Md is a Gaussian unitary invariant
random matrix, Λ(µ) is the semicircle distribution and {Md(t)}t≥0 is the Hermitian ma-

trix valued process given by Md(t) =
(
1/
√
d+ 1

)
(B(t) + dg(t)Id) where B (t) is a d × d

Hermitian matrix Brownian motion independent of the one-dimensional Brownian mo-
tion g(t); see [6, Remark 3.5].

Likewise, if µ is the Poisson distribution with parameter λ > 0, {Md(t)}t≥0 is the d×d
matrix compound Poisson process Md(t) =

∑N(t)
k=1 u

d
ku

d∗
k where

{
udk
}
k≥1

is a sequence of

independent uniformly distributed random vectors on the unit sphere of Cd indepen-
dent of the Poisson process {N(t)}t≥0, and Λ(µ) is the Marchenko-Pastur distribution
of parameter λ > 0; see [6, Remark 3.2]. We observe that in this case {Md(t)}t≥0 is
a matrix covariation (quadratic) process rather than a covariance matrix process as in
the Wishart or other empirical covariance processes.

Proposition 3.1 below collects computations in [6], [10] and [12] to summarize the
Lévy triplet of a general BGCD matrix ensemble in an explicit manner. Let ν|(0,∞)

and ν|(−∞,0) denote the corresponding restrictions to (0,+∞) and (−∞, 0) for any Lévy
measure ν, respectively.

Proposition 3.1. Let µ be an infinitely divisible distribution in R with Lévy triplet
(a2, ν, ψ) and let (Md)d≥1 be a BGCD matrix ensemble for Λ(µ). Then, for each d ≥ 1 Md

has the Lévy-Khintchine representation (2.5) with Lévy triplet (Ad, νd,Ψd) where
a) Ψd = ψId
b)

AdΘ = a2 1

d+ 1
(Θ + tr(Θ)Id), Θ ∈ Hd. (3.1)

c)

νd (E) = d

∫
S(Hd(1))

∫ ∞
0

1E (rV ) νV (dr) Π (dV ) , E ∈ B (Hd\ {0}) , (3.2)

where νV = ν|(0,∞) or ν|(−∞,0) according to V ≥ 0 or V ≤ 0 and Π is a measure on
S(Hd(1)) such that

Π (D) =

∫
S(Hd(1))∩H

+
d

∫
{−1,1}

1D (tV )λ (dt)ωd (dV ) , D ∈ B
(
S(Hd(1))

)
, (3.3)

where λ is the spherical measure of ν and ωd is the probability measure on S(Hd(1))∩H
+

d

induced by the transformation u→ V = uu∗, where u is a uniformly distributed column
random vector in the unit sphere of Cd.

Proof. (a) It follows from the first term in the Lévy exponent of Md in page 635 of [10],
where the notation Λd(µ) is used for the distribution of Md. For (b), the form of the
covariance operator Ad was implicitly computed in the first example in Section II.C of
[10]. Finally, the polar decomposition of the Lévy measure (3.2) was found in [12].

The Lévy-Itô decomposition of the Lévy process associated to the BGCD model Md

is given by

Md(t) = ψtId+BAd
(t)+

∫
[0,t]

∫
{‖V ‖≤1}∩Hd(1)

V J̃d(ds,dV )+

∫
[0,t]

∫
{‖V ‖>1}∩Hd(1)

V Jd(ds,dV ),

(3.4)
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where t ≥ 0, AdΘ = a2 1
d+1 (Θ + tr(Θ)Id), Jd(t, E) = # {0 ≤ s ≤ t : ∆Md(s) ∈ E} =

Jd(t, E ∩ Hd(1)) for any measurable E ∈ Hd\{0}. Its quadratic variation is obtained
by (2.8) as the matrix subordinator

[Md] (t) = a2tId +

∫
[0,t]

∫
Hd(1)\{0}

V V ∗Jd(ds,dV ) = a2tId +
∑
s≤t

∆Md(s) (∆Md(s))
∗
.

Remark 3.2. It is possible to obtain BGCD models of symmetric random matrices
rather than Hermitian. Indeed, slight changes in the proof of [6, Theorem 3.1] give
for each d ≥ 1, a d × d real symmetric random matrix Md with orthogonal invariant
infinitely divisible matrix distribution. The asymptotic spectral distribution of the cor-
responding Hermitian and symmetric ensembles is the same, similarly as the semicircle
distribution is the asymptotic spectral distribution for the Gaussian Unitary Ensemble
and Gaussian Orthogonal Ensemble.

4 Bounded variation case

It is well known that the quadratic variation of a one-dimensional Lévy process is
a subordinator, see [11, Example 8.5]. The following result gives a converse and a
generalization to matrix subordinators with rank one jumps. The one dimensional case
is given in [18, Lemma 6.5].

Theorem 4.1. Let Ld = {Ld(t) : t ≥ 0} be a Lévy process in H
+

d whose jumps are of
rank one almost surely. Then there exists a Lévy process X = {X(t) : t ≥ 0} in Cd such
that Ld(t) = [X] (t).

Proof. We construct X as a Lévy-Itô decomposition realization. Using (2.7), for each

d ≥ 1, Ld is an H
+

d -process of bounded variation with Lévy-Itô decomposition

Ld(t) = tΨ0 +

∫
[0,t]

∫
H

+
d(1)

V JLd
(ds,dV ), t ≥ 0,

where Ψ0 ∈ H+
d and JLd

is the Poisson random measure of Ld. Let Leb⊗ νLd
denote the

intensity measure of JLd
.

Consider the cone Cd+ = {x = (x1, x2, . . . , xd) : x1 ≥ 0, xj ∈ C, j = 2, ..., d} and let
ϕ+ : R+ ×H+

d(1) → R+ × Cd+ be defined as ϕ+ (t, V ) = (t, x) where V = xx∗ and x ∈ Cd+.

Let ϕ+ : H+
d(1) → Cd+ be defined by ϕ+ (V ) = x for V = xx∗ and x ∈ Cd+. By Remark 2.1

(a), the functions ϕ+ and ϕ+ are well defined.
Let us define J(ds,dx) =

(
JLd
◦ ϕ−1

+

)
(ds,dx) the random measure induced by the

transformation ϕ+ which is a Poisson random measure on R+ × Cd+. Observe that
E [J(t, F )] = E

[
JLd
◦ ϕ−1

+ ({t} × F )
]

= tνLd

(
ϕ+ (F )

)
= t

(
νLd
◦ ϕ−1

+

)
(F ) for F ∈ B(Cd+

\ {0}). Let us denote ν = νLd
◦ ϕ−1

+ which is a Lévy measure on Cd+ since∫
Cd

+\{0}

(
1 ∧ |x|2

)
ν(dx) =

∫
Cd

+\{0}

(
1 ∧ |x|2

)
νLd
◦ ϕ−1

+ (dx)

=

∫
Cd

+\{0}
(1 ∧ tr (xx∗)) νLd

◦ ϕ−1
+ (dx) =

∫
H

+
d(1)

(1 ∧ tr (V ))
(
νLd
◦ ϕ−1

+

)
◦ f−1(dV )

=

∫
H

+
d(1)

(1 ∧ tr (V )) νLd
(dV ) <∞,

where
(
νLd
◦ ϕ−1

+

)
◦ f−1 = νLd

, with f (x) = xx∗ and we have used that tr (V ) ≤ α ‖V ‖
for some constant α > 0. Thus Leb ⊗ ν is the intensity measure of the Poisson random
measure J .
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Covariation representations for random matrix ensembles

Let us take the Lévy process in Cd

X(t) = |Ψ0|1/2BI(t) +

∫
[0,t]

∫
Cd∩{|x|≤1}

xJ̃(ds,dx) +

∫
[0,t]

∫
Cd∩{|x|>1}

xJ(ds,dx), t ≥ 0,

(4.1)
where BI is a Cd-valued standard Brownian motion with quadratic variation tId, (i.e.
(2.4) with q = 1). Thus the quadratic variation of X is given by

[X] (t) =
[
|Ψ0|1/2BI , B∗I |Ψ0|1/2

]
(t) +

∫
[0,t]

∫
Cd\{0}

xx∗J(ds,dx)

= Ψ0t+

∫
[0,t]

∫
Cd\{0}

xx∗JLd
◦ ϕ−1

+ (ds,dx) = Ψ0t+

∫
[0,t]

∫
H

+
d(1)

V JLd
◦ ϕ−1

+ ◦ h−1(ds,dV )

= Ψ0t+

∫
[0,t]

∫
H

+
d(1)

V JLd
(ds,dV ) = Ld(t),

where JLd
◦ ϕ−1

+ ◦ h−1 = JLd
, with h (t, x) = (t, xx∗) .

For the general bounded variation case we have the following Wiener-Hopf type
decomposition.

Theorem 4.2. Let Ld = {Ld(t) : t ≥ 0} be a Lévy process in Hd of bounded variation
whose jumps are of rank one almost surely. Then there exist Lévy processes X =

{X(t) : t ≥ 0} and Y = {Y (t) : t ≥ 0} in Cd such that

Ld(t) = [X] (t)− [Y ] (t). (4.2)

Moreover, {[X] (t) : t ≥ 0} and {[Y ] (t) : t ≥ 0} are independent processes.

Proof. For each d ≥ 1, Ld is an Hd-process of bounded variation with Lévy-Itô decom-
position

Ld(t) = Ψt+

∫
[0,t]

∫
Hd(1)

V JLd
(ds,dV ), t ≥ 0, (4.3)

where Ψ ∈ Hd and JLd
is the Poisson random measure of Ld. Let Leb ⊗ νLd

denote the
intensity measure of JLd

.

First we prove that Ld = L1
d − L2

d where L1
d and L2

d are the Lévy processes in H
+

d

given by (4.4) and (4.5).
Every V ∈ Hd(1) can be written as V = λuu∗ where λ the eigenvalue of V and u is a
unitary vector in Cd. Let us define |V | = |λ|uu∗ and V + = λ+uu∗, V − = λ−uu∗ where
λ+ = λ if λ ≥ 0 and λ− = −λ if λ < 0.

Let ϕ+ : R+ × Hd(1) → R+ × H+
d(1) and ϕ− : R+ × Hd(1) → R+ × H+

d(1) be defined

as ϕ+ (t, V ) = (t, V +) and ϕ− (t, V ) = (t, V −) respectively. Let ϕ+ : Hd(1) → H+
d(1) and

ϕ− : Hd(1) → H+
d(1) be defined as ϕ+(V ) = V + and ϕ−(V ) = V − respectively. By Remark

2.1 (b) the functions ϕ+, ϕ+, ϕ− and ϕ− are well defined and hence V = ϕ+(V )−ϕ−(V ).

Let us define J+(ds,dx) =
(
JLd
◦ ϕ−1

+

)
(ds,dx) and J−(ds,dx) =

(
JLd
◦ ϕ−1
−
)

(ds,dx)

the random measures induced by the transformations ϕ+ and ϕ− respectively, which
are Poisson random measures both on R+ ×H+

d(1). Observe that E [J+(t, F )] = E[JLd
◦

ϕ−1
+ ({t} × F )] = tνLd

(
ϕ−1

+ (F )
)

= t
(
νLd
◦ ϕ−1

+

)
(F ) for F ∈ B

(
H+
d(1)

)
and similarly

E [J−(t, F )] = t
(
νLd
◦ ϕ−1
−
)

(F ). Let us denote ν+
Ld

= νLd
◦ ϕ−1

+ and ν−Ld
= νLd

◦ ϕ−1
− .
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Note that ν+
Ld

is a Lévy measure on H+
d(1) since

∞ >

∫
Hd(1)\{0}

(1 ∧ ‖V ‖) νLd
(dV ) ≥

∫
Hd(1)

(
1 ∧

∥∥ϕ+(V )
∥∥) νLd

(dV )

=

∫
H

+
d(1)

(1 ∧ ‖W‖) ν+
Ld

(dW ).

Hence Leb⊗ ν+
Ld

is the intensity measure of J+. Similarly, one can see that Leb⊗ ν−Ld
is

the intensity measure of J−.
There exist Ψ+ and Ψ− inH+

d such that Ψ = Ψ+−Ψ−. Let us take the Lévy processes
X and Y in Cd

X(t) =
∣∣Ψ+

∣∣1/2BI(t) +

∫
[0,t]

∫
Cd∩{|x|≤1}

xJ̃+(ds,dx) +

∫
[0,t]

∫
Cd∩{|x|>1}

xJ+(ds,dx), t ≥ 0,

Y (t) =
∣∣Ψ−∣∣1/2BI(t) +

∫
[0,t]

∫
Cd∩{|x|≤1}

xJ̃−(ds,dx) +

∫
[0,t]

∫
Cd∩{|x|>1}

xJ−(ds,dx), t ≥ 0,

where BI is a Cd-valued standard Brownian motion with quadratic variation tId.
Observe that

[X] (t) = Ψ+t+

∫
[0,t]

∫
Cd\{0}

xx∗J+(ds,dx) = Ψ+t+

∫
[0,t]

∫
H

+
d(1)

V JLd
(ds,dV ) (4.4)

and

[Y ] (t) = Ψ−t+

∫
[0,t]

∫
Cd\{0}

xx∗J−(ds,dx) = Ψ−t−
∫

[0,t]

∫
Cd\{0}

(−xx∗) JLd
(ds,dx)

= Ψ−t−
∫

[0,t]

∫
H

−
d(1)

V JLd
(ds,dV ), (4.5)

where H−d(1) denotes the set of negative (nonpositive) definite matrices of rank one in
Hd. The first assertion follows from (4.3). Finally, since JLd

is a Poisson random measure
andH+

d(1) andH−d(1) are disjoint sets, from the last expressions in (4.4) and (4.5) we have

that [X] and [Y ] are independent processes, although X and Y are not.

Next we consider the matrix Lévy processes associated to the BGCD matrix ensem-
bles (Md)d≥1. We have the following two consequences of the former results.

Corollary 4.3. Let Md = {Md(t) : t ≥ 0} be the matrix Lévy process associated to the
BGCD random matrix ensembles.

a) Let µ be the infinitely divisible distribution with triplet (0, ν, ψ) associated to Md

such that∫
|x|≤1

(1 ∧ x) ν(dx) <∞, ν((−∞, 0]) = 0 and ψ0 := ψ −
∫
x≤1

xν(dx) ≥ 0.

Let us consider the Lévy-Itô decomposition of Md(t) in H
+

d

Md(t) = ψ0tId +

∫
[0,t]

∫
H

+
d(1)

V JMd
(ds,dV ).

Then there exists a Lévy process X = {X(t) : t ≥ 0} in Cd such that Md(t) = [X] (t),
where

X(t) = |ψ0|1/2BI(t) +

∫
[0,t]

∫
Cd∩{|x|≤1}

xJ̃(ds,dx) +

∫
[0,t]

∫
Cd∩{|x|>1}

xJ(ds,dx), t ≥ 0,
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BI is a Cd-valued standard Brownian motion with quadratic variation tId, and the Pois-
son random measure J is given by J = JMd

◦ ϕ−1
+ .

b) If Md has bounded variation then there exist Lévy processes X = {X(t) : t ≥ 0}
and Y = {Y (t) : t ≥ 0} in Cd such that Md(t) = [X] (t) − [Y ] (t), where {[X] (t) : t ≥ 0}
and {[Y ] (t) : t ≥ 0} are independent.

5 Covariation matrix processes approximation

We now consider approximation of general BGCD ensembles by BGCD matrix com-
pound Poisson processes which are covariation of Cd-valued Lévy processes.

The following results gives realizations of BGCD ensembles of compound Poisson
type as the covariation of two Cd-valued Lévy processes. Its proof is straightforward.

Proposition 5.1. Let µ be a compound Poisson distribution on R with Lévy measure ν
and drift ψ ∈ R and let (Md)d≥1 be the BGCD matrix ensemble for Λ(µ). For each d ≥ 1,
assume that

i) (βj)j≥1 is a sequence of i.i.d. random variables with distribution ν/ν (R).
ii) (uj)j≥1 is a sequence of i.i.d. random vectors with uniform distribution on the

unit sphere of Cd.
iii) {N(t)}t≥0 is a Poisson process with parameter one.
Assume that (βj)j≥1, (uj)j≥1 and {N(t)}t≥0 are independent. Then
a) Md has the same distribution as Md(1) where

Md(t) = ψtId +

N(t)∑
j=1

βjuju
∗
j , t ≥ 0. (5.1)

b) Md(·) = [Xd, Yd](·) where Xd = {Xd(t)}t≥0 , Yd = {Yd(t)}t≥0 are the Cd-valued
Lévy processes

Xd(t) =
√
|ψ|B(t) +

N(t)∑
j=1

√
|βj |uj , t ≥ 0, (5.2)

Yd(t) = sign (ψ)
√
|ψ|B(t) +

N(t)∑
j=1

sign (βj)
√
|βj |uj , t ≥ 0, (5.3)

and B = {B(t)}t≥0 is a Cd-valued standard Brownian motion independent of (βj)j≥1,
(uj)j≥1 and {N(t)}t≥0.

For the general case we have the following sample path approximation by covaria-
tion processes for Lévy processes generated by the BGCD matrix ensembles.

Theorem 5.2. Let µ be an infinitely divisible distribution on R with triplet (a2, ν, ψ) and
let (Md)d≥1 be the corresponding BGCD matrix ensemble for Λ(µ). Let d ≥ 1 fixed and
assume that for n ≥ 1

i) (βnj )j≥1 is a sequence of i.i.d. random variables with distribution µ∗
1
n .

ii) (unj )j≥1 is a sequence of i.i.d. random vectors with uniform distribution on the
unit sphere of Cd.

iii) Nn = {Nn(t)}t≥0 is a Poisson process with parameter n.

iv) Bn = {Bn(t)}t≥0 is a Cd-valued standard Brownian motion.
v) (βnj )j≥1, (unj )j≥1, N

n and Bnare independent.
Let

Xn
d (t) =

√
|ψ|Bn(t) +

Nn(t)∑
j=1

√∣∣βnj ∣∣unj , t ≥ 0, (5.4)
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Y nd (t) = sign (ψ)
√
|ψ|Bn(t) +

Nn(t)∑
j=1

sign
(
βnj
)√∣∣βnj ∣∣unj , t ≥ 0. (5.5)

Then for each d ≥ 1 there exist Md-valued processes M̃n
d =

{
M̃n
d (t)

}
d≥1

such that

M̃n
d
L
= [Xn

d , Y
n
d ],

sup
0<s≤t

∥∥∥M̃n
d (s)−Md(s)

∥∥∥ Pr−→
n→∞

0, ∀t ≥ 0,

where {Md(t) : t ≥ 0} is the Md-valued Lévy process associated to (Md)d≥1.

Proof. By the compound Poisson approximation for infinitely divisible distributions on
R (see [17, pp 45]), we choose µn an infinitely divisible distribution such that µn −→ µ,

where we take the triplet of µn as (0, νn, ψn) , ψn =
∫

x
1+|x|2 ν

n (dx) and νn = nµ∗
1
n , sat-

isfying (see [17, Theorem 8.7]) that for every bounded continuous function f vanishing
in a neighborhood of zero∫

R

f (r) νn (dr) −→
∫
R

f (r) ν (dr) as n→∞, (5.6)

for each ε > 0 ∫
|r|≤ε

r2νn (dr) −→ a2 as n→∞, (5.7)

and ψn → ψ.
A similar proof as for Proposition 5.1 gives

Mn
d (t) := [Xn

d , Y
n∗
d ] (t) = ψtId +

Nn(t)∑
j=0

βnj u
n
j u

n∗
j ,

which is a matrix value compound Poisson process with triplet (And , νnd , ψnd ) given by
And = 0, ψnd = ψId and

νnd (E) = d

∫
S(Hd(1))

∫ ∞
0

1E (rV ) νnV (dr) Π (dV ) , E ∈ B (Hd\ {0}) , (5.8)

where νnV = νn|(0,∞) or νn|(−∞,0) according to V ≥ 0 or V ≤ 0 and Π is the measure on
S(Hd(1)) in (3.3).

We will prove that Mn
d
L−→ Md by showing that the triplet (And , νnd , ψnd ) converges to

the triplet (Ad, νd, ψd) of the BGCD matrix ensemble in Proposition 3.1 in the sense of
Proposition 2.5:

We observe that ψnd = ψId for each n.
Let f : Hd(1) −→ R be a continuous bounded function vanishing in a neighborhood

of zero. Using the polar decomposition (3.2) for νnd we have∫
Hd(1)

f (ξ) νnd (dξ) = d

∫
S(Hd(1))

∫ ∞
0

f (rV ) νnV (dr) Π (dV )

= d

∫
S(Hd(1))∩H

+
d

∫
{−1,1}

∫ ∞
0

f (trV ) νnV (dr)λn (dt)ωd (dV ) . (5.9)

For V ∈ S(Hd(1)) ∩H
+

d fixed,∫
{−1,1}

∫ ∞
0

f (trV ) νnV (dr)λn (dt) = λn ({1})
∫ ∞

0

f (rV ) νn (dr)

+ λn ({−1})
∫ 0

−∞
f (rV ) νn (dr) .
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As a function of r, f (rV ) is a real valued continuous bounded function vanishing in a
neighborhood of zero, hence using (5.6)

λn ({1})
∫ ∞

0

f (rV ) νn (dr) −→ λ ({1})
∫ ∞

0

f (rV ) ν (dr)

and

λn ({−1})
∫ 0

−∞
f (rV ) νn (dr) −→ λ ({−1})

∫ 0

−∞
f (rV ) ν (dr) .

Then from (5.9)∫
Hd(1)

f (ξ) νnd (dξ) −→ d

∫
S(Hd(1))∩H

+
d

∫
{−1,1}

∫ ∞
0

f (trV ) νV (dr)λ (dt)ωd (dV )

= d

∫
S(Hd(1))

∫ ∞
0

f (rV ) νd (dr) Π (dV ) =

∫
Hd(1)

f (ξ) νd (dξ) .

Next, we verify the convergence of the Gaussian part.
Let us define, for each ε > 0 and n ≥ 1, the operator An,ε : Hd −→ Hd by

tr (ΘAn,εΘ) =

∫
‖ξ‖≤ε

|tr (Θξ)|2 νnd (dξ) .

From (5.8) we get∫
‖ξ‖≤ε

|tr (Θξ)|2 νnd (dξ) = d

∫
S(Hd(1))

∫ ∞
0

1{‖rV ‖≤ε} (rV ) |tr (rΘV )|2 νnV (dr) Π (dV )

= d

∫
S(Hd(1))∩H

+
d

∫
{−1,1}

∫ ∞
0

1{r≤ε} (rtV ) r2 |tr (ΘV )|2 νnV (dr)λ (dt)ωd (dV )

= d

∫
S(Hd(1))∩H

+
d

∫
R

1{r≤ε} (rV ) r2 |tr (ΘV )|2 νn (dr)ωd (dV )

= d

∫
S(Hd(1))∩H

+
d

|tr (ΘV )|2
∫
|r|≤ε

r2νn (dr)ωd (dV ) .

Then using (5.7), ∫
‖ξ‖≤ε

|tr (Θξ)|2 νnd (dξ) −→ da2Eu |tr (Θuu∗)|2 ,

where u is a uniformly distributed column random vector in the unit sphere of Cd.
Finally

da2Eu |tr (Θuu∗)|2 =
a2

d+ 1

(
tr
(
Θ2
)

+ (tr (Θ))
2
)

= tr (Θ∗AdΘ∗) , (5.10)

where Ad is as in (3.1) and the first equality in (5.10) follows from page 637 in [10].

Thus Mn
d
L−→Md and the conclusion follows from Proposition 2.4.

6 Final remarks

1. For the present work we do not have a specific financial application in mind. How-
ever, infinitely divisible nonnegative definite matrix processes with rank one jumps
as characterized in Theorem 4.1, might be useful in the study of multivariate high-
frequency data using realized covariation, where matrix covariation processes ap-
pear; see for example [2]. Moreover, it seems interesting to explore the construc-
tion of financial oriented matrix Lévy based models as in [4] for the specific case
of rank one jumps matrix process of bounded variation.
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2. In the direction of free probability, it is well known that the so-called Hermitian
Brownian motion matrix ensemble {Bd(t) : t ≥ 0}, d ≥ 1, is a realization of the
free Brownian motion. It is an open question if the matrix Lévy processes from
BGCD models {Md(t) : t ≥ 0}, d ≥ 1, are realizations of free Lévy processes. A first
step in this direction would be to prove that the increments of a BGCD ensemble
become free independent. A second step, more related to our work, would be
to have an insight of the implication of the rank one condition of the matrix Lévy
BGCD process in Corollary 4.3 as realization of a positive free Lévy process. These
two problems are the subjects of current research of one of the coauthors.

3. In [7] a new Bercovici-Pata bijection for certain free convolution �c is established
and a d × d′ random matrix model for this bijection which is very close to the
one given by the BGCD random matrix model is established. It can be seen that
the Lévy measures of these rectangular BGCD random matrices are supported in
the subset of d × d′ complex matrices of rank one, in a similar way as done in
[12] for the BGCD case. It would be of interest to have the analogue results on
bounded variation of Section 4 for the Lévy processes associated to these rect-
angular BGCD random matrices, considering an appropriate nonnegative definite
notion for rectangular matrices.
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