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Abstract

This investigation concerns the hyper-exponential jump-diffusion processes. Follow-
ing the exposition of the two-sided exit problem by Kyprianou [10] and Asmussen and
Albrecher [1], this study investigates first passage functionals for these processes.
The corresponding boundary value problems are solved to obtain an explicit formula
for the first passage functionals.
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1 Introduction

This investigation concerns the hyper-exponential jump-diffusion processes. Owing
to its analytical tractability, such processes have become popular among practitioners
and academicians who work in mathematical finance and insurance. See, for example,
the work of Jeanblanc et al.[7], and Asmussen and Albrecher[1] and the references
therein. Following the exposition of the two-sided exit problem by Kyprianou[10] and
Asmussen and Albrecher[1], the first passage functional of the following form is studied
herein:

Φ(x) = Ex
[
e−rτg(Xτ )

]
(1.1)

where r ≥ 0, g is a nonnegative bounded measurable function, X0 = x a.s. under Px
and τ is the exit time of X from a finite interval I = (h1, h2). The function Φ(x), given in
Eq.(1.1), is typically referred to as the Gerber-Shiu function. For recent works on this
topic, see [11], [3], [9] and Chapter XII of [1].

Section 2 describes the hyper-exponential jump-diffusion processes that are con-
sidered herein. To find an explicit formula for the function Φ(x) in Eq.(1.1), the cor-
responding two-sided boundary value problem is considered. By direct calculation,
the associated integro-differential equation is transformed into a homogeneous ODE of
higher order, which is then solved. In fact, in Theorem 2.5 below, this ODE is solved
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A note on first passage functionals for hyper-exponential jump-diffusion processes

in closed form and its solution equals the first passage functional Φ. Theorem 2.5 is of
interest, in itself, (see also Remark 2.6,) and it can be utilized to solve other problems
in mathematical finance and insurance. (See, for example, [5] and [6].)

2 Main Results

Given a constant r ≥ 0 and a nonnegative bounded measurable function g, the first
passage functional Φ(x), defined in Eq.(1.1), is computed. X is assumed to be given by
a jump-diffusion process,

Xt = ct+ σWt −
Nt∑
n=1

Yn, t ≥ 0. (2.1)

Here, c ∈ R; σ > 0; W = (Wt; t ≥ 0) is a standard Brownian motion; N = (Nt; t ≥ 0)

is a compound Poisson process with rate λ > 0, and the jump sizes (Yn, n ≥ 1) are
independent and identically distributed. All of the aforementioned objects are mutu-
ally independent. The distribution F of Y1 is assumed to have the probability density
function

f(y) =


∑m(+)

j=1 pjη
+
j e
−η+j y, y > 0,

0, y = 0,∑m(−)

j=1 qjη
−
j e

η−j y, y < 0.

(2.2)

where
∑m(+)

j=1 pj +
∑m(−)

j=1 qj = 1, pj , qj , η
±
j > 0, and η±i 6= η±j for i 6= j. Px denotes the

law of X + x under P. By Dynkin’s formula and the theorem of Feynman and Kac, the
following boundary value problem which admits at most one solution, must be solved:
find Φ ∈ C([h1, h2]) ∩ C2((h1, h2)) such that{

(L − r)Φ = 0, in (h1, h2),

Φ = g, on (−∞, h1] ∪ [h2,∞),
(2.3)

where L is the infinitesimal generator of X that acts on h ∈ C20(R) by

Lh(x) =
σ2

2
h′′(x) + ch′(x) + λ

∫
h(x− y)f(y)dy − λh(x). (2.4)

For details, see [2]. Lh(x) is defined by the Eq.(2.4) for all functions h on R such that
h′, h′′ and the integral in Eq.(2.4) exist at x. Notably, the characteristic exponent ψ(ζ)

of X is given by

ψ(ζ) =
σ2

2
ζ2 + cζ + λ(

m(+)∑
j=1

pjη
+
j

ζ + η+j
+

m(−)∑
j=1

−qjη−j
ζ − η−j

)− λ, ζ ∈ iR.

Accordingly, ψ is an analytic function on C except at a finite number of poles. Also, the
equation ψ(ζ) − r = 0 yields m(+) + m(−) + 2 distinct real zeros. (If r = 0, c 6= 0 or
m(+) + m(−) > 0 is further assumed.) Set S = m(+) + m(−) + 2 and let ρ1, ρ2, · · · , ρS be
the distinct real zeros of the equation ψ(ζ)− r = 0.

Let P0(ζ) =
∏m(+)

j=1 (ζ+η+j )
∏m(−)

j=1 (ζ−η−j ). Now, P1(ζ) = P0(ζ)(ψ(ζ)−r) is a polynomial
whose zeros coincide with those of ψ(ζ)− r. Denote by D the differential operator such
that its characteristic polynomial is P1(ζ).

Proposition 2.1. Suppose a bounded solution Φ defined on R to the boundary value
problem (2.3) exists. Then, on (h1, h2), Φ is infinitely differentiable and satisfies the
ODE,

DΦ ≡ 0, on (h1, h2). (2.5)

Hence, on (h1, h2), Φ(x) =
∑S
i=1 Qie

ρix for some constants Qi.
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Proof. This proposition is proved by direct computation. Plugging the density function
f , given by Eq.(2.2), into Eq.(2.4), yields the generator L that acts on Φ:

LΦ(x) = σ2

2 Φ′′(x) + cΦ′(x) + λ
(∑m(+)

j=1 pjη
+
j e
−η+j x

∫ x
−∞ Φ(y)eη

+
j ydy

+
∑m(−)

j=1 qjη
−
j e

η−j x
∫∞
x

Φ(y)e−η
−
j ydy

)
− λΦ(x) .

From this equation and the fact that σ > 0 and (L − r)Φ ≡ 0, Φ is infinitely dif-
ferentiable on (h1, h2), as can be established by induction, as in the work of Chen et
al.[4].

Next, Φ will be shown to satisfy an ODE. Consider the differentiation rule,(
d

dx
+ η+j

)
pjη

+
j e
−η+j x

∫ x

−∞
Φ(y)eη

+
j ydy

= pjη
+
j

[(
−η+j e

−η+j x
∫ x

−∞
Φ(y)eη

+
j ydy + Φ(x)

)
+ η+j e

−η+j x
∫ x

−∞
Φ(y)eη

+
j ydy

]
= pjη

+
j Φ(x),

and similarly,
(
d
dx − η

−
j

)
qjη
−
j e

η−j x
∫∞
x

Φ(y)e−η
−
j ydy = −qjη−j Φ(x). Since Φ is infinitely

differentiable on (h1, h2) and (L − r)Φ ≡ 0 on (h1, h2),

0 =

(
d

dx
+ η+1

)
· · ·
(
d

dx
+ η+m(+)

)(
d

dx
− η−1

)
· · ·
(
d

dx
− η−m(−)

)
(L − r)Φ(x)

=

m(+)∏
j=1

(
d

dx
+ η+j

)m(−)∏
j=1

(
d

dx
− η−j

)(
σ2

2

d2

dx2
+ c

d

dx
− λ− r

)
Φ(x)

+

m(+)∑
j=1

m(+)∏
k=1,k 6=j

(
d

dx
+ η+k

)
pjη

+
j Φ(x)−

m(−)∑
j=1

m(−)∏
k=1,k 6=j

(
d

dx
− η−k

)
qjη
−
j Φ(x). (2.6)

Hence, Eq.(2.6) transforms the integro-differential equation (L − r)Φ ≡ 0 into an ODE:
D̃Φ ≡ 0, where D̃ is a high order differential operator.

To complete the proof, D̃ must be shown to coincide with D. (See the definition of D
in the paragraph above Proposition 2.1.) To show that the characteristic polynomials of
D and D̃ coincide will suffice. Write P̃(ζ) as the characteristic polynomial of D̃. Then,
by Eq.(2.6), P̃ is given by

P̃(ζ) =

m(+)∏
j=1

(ζ + η+j )

m(−)∏
j=1

(ζ − η−j )

[
σ2

2
ζ2 + cζ +λ

m(+)∑
j=1

pjη
+
j

ζ + η+j
+

m(−)∑
j=1

−qjη−j
ζ − η−j

− (λ+ r)


= P0(ζ)(ψ(ζ)− r).

This equation reveals that the characteristic polynomial P1(ζ) of D equals that, P̃(ζ), of
D̃. The proof is complete.

Proposition 2.2. Suppose that Φ is a bounded solution to the boundary value problem
(2.3) and, on (h1, h2), Φ(x) =

∑S
i=1 Qie

ρix for some constants Qi. Then the constant
vector Q satisfies the equation

AQ = Vg (2.7)
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where

A =



1
ρ1+η

+
1

eρ1h1 · · · 1
ρS+η

+
1

eρSh1

...
. . .

...
1

ρ1+η
+
m(+)

eρ1h1 · · · 1
ρS+η

+
m(+)

eρSh1

1
ρ1−η−1

eρ1h2 · · · 1
ρS−η−1

eρSh2

...
. . .

...
1

ρ1−η−m(−)

eρ1h2 · · · 1
ρS−η−m(−)

eρSh2

eρ1h1 · · · eρSh1

eρ1h2 · · · eρSh2


(2.8)

and Vg is a column vector whose components Vg(i) are given by the formula

Vg(i) =


∫ h1

−∞ g(y)eη
+
i (y−h1)dy, if 1 ≤ i ≤ m(+)

−
∫∞
h2
g(y)e

−η−i−m(+)
(y−h2)

dy, if m(+) + 1 ≤ i ≤ m(+) +m(−)
g(h1), if i = m(+) +m(−) + 1

g(h2), if i = m(+) +m(−) + 2

(2.9)

Proof. Let m = m(+) +m(−). Since (L − r)Φ = 0 on (h1, h2), for x ∈ (h1, h2),

0 = σ2

2 Φ′′(x) + cΦ′(x) + λ
∫

Φ(x− y)f(y)dy − (λ+ r)Φ(x)

=
∑m+2
i=1 Qie

ρix(σ
2

2 ρ
2
i + cρi − (λ+ r)) + λ

∫
Φ(x− y)f(y)dy. (2.10)

Furthermore,∫
Φ(x− y)f(y)dy =

(∫ h1

−∞
+

∫ ∞
h2

)
g(y)f(x− y)dy +

∫ x−h1

x−h2

Φ(x− y)f(y)dy

=

m(+)∑
j=1

pje
−η+j x

∫ h1

−∞
g(y)η+j e

η+j ydy +

m(−)∑
j=1

qje
η−j x

∫ ∞
h2

g(y)η−j e
−η−j ydy

+

m+2∑
i=1

Qie
ρix

m(−)∑
j=1

qjη
−
j

∫ 0

x−h2

e−ρiyeη
−
j ydy +

m+2∑
i=1

Qie
ρix

m(+)∑
j=1

pjη
+
j

∫ x−h1

0

e−ρiye−η
+
j ydy

=

m(+)∑
j=1

pje
−η+j x

∫ h1

−∞
g(y)η+j e

η+j ydy +

m(−)∑
j=1

qje
η−j x

∫ ∞
h2

g(y)η−j e
−η−j ydy

+

m+2∑
i=1

Qie
ρix

m(−)∑
j=1

qjη
−
j

η−j − ρi

(
1− e−(η

−
j −ρi)(h2−x)

)

+

m+2∑
i=1

Qie
ρix

m(+)∑
j=1

pjη
+
j

ρi + η+j

(
1− e−(ρi+η

+
j )(x−h1)

)
(2.11)

Now, by Eqs.(2.10) and (2.11) and the fact ψ(ρi)− r = 0 for all i, we have

0 =

m(+)∑
j=1

pje
−η+j x

∫ h1

−∞
g(y)η+j e

η+j ydy +

m(−)∑
j=1

qje
η−j x

∫ ∞
h2

g(y)η−j e
−η−j ydy

+

m+2∑
i=1

Qie
ρix

m(−)∑
j=1

−qjη−j
η−j − ρi

e−(η
−
j −ρi)(h2−x) +

m+2∑
i=1

Qie
ρix

m(+)∑
j=1

−pjη+j
ρi + η+j

e−(ρi+η
+
j )(x−h1).

Comparing e−η
+
j x and eη

−
j x yields (2.7). The proof is complete.
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Remark 2.3. Consider the function V (x) =
∑S
i=1 Qie

ρix for x ∈ (h1, h2), and V (x) =

g(x) otherwise, where g is a bounded function on (h1, h2)c and Qi’s are given constants.
Now,

(L − r)V (x) =

m(+)∑
j=1

pje
−η+j x

∫ h1

−∞
g(y)η+j e

η+j ydy

+

m(−)∑
j=1

qje
η−j x

∫ ∞
h2

g(y)η−j e
−η−j ydy +

m+2∑
i=1

Qie
ρix

m(−)∑
j=1

−qjη−j
η−j − ρi

e−(η
−
j −ρi)(h2−x)

+

m+2∑
i=1

Qie
ρix

m(+)∑
j=1

−pjη+j
ρi + η+j

e−(ρi+η
+
j )(x−h1). (2.12)

Lemma 2.4. For any h1 < h2, the matrix A given by Eq.(2.8) is invertible.

Proof. Letm = m(+)+m(−) and assumeAC = 0 for some vector C = [C1, C2, · · · , Cm+2]T .

Consider the function V (x) =
∑m+2
i=1 Cne

ρnx for x ∈ (h1, h2), and V (x) = 0 otherwise.
Since AC = 0 and by Eq.(2.12), V (x) is a solution to the boundary value problem (2.3)
with g(x) ≡ 0. From the uniqueness of solutions to the boundary value problem (2.3),
V (x) =

∑m+2
n=1 Cne

ρnx = 0 for all x ∈ (h1, h2). Now consider the Wronskian

W (eρ1x, · · · , eρm+2x) ≡ det


eρ1x · · · eρm+2x

ρ1e
ρ1x · · · ρm+2e

ρm+2x

...
. . .

...
ρm+1
1 eρ1x · · · ρm+1

m+2e
ρm+2x

 .
Then

W (eρ1x, · · · , eρm+2x) = exp
(

(
∑m+2
n=1 ρn)x

)
det


1 · · · 1

ρ1 · · · ρm+2

...
. . .

...
ρm+1
1 · · · ρm+1

m+2

 (2.13)

= exp
(

(
∑m+2
n=1 ρn)x

)∏
1≤i<j≤m+2(ρi − ρj) 6= 0.

(The matrix in Eq.(2.13) is a Vandermonde matrix.) This inequality implies that {eρnx|1 ≤
n ≤ m+2} are linearly independent and so C = 0, which implies that A is invertible.

In the following, for a given function g on (h1, h2)c, Q(g) = A−1Vg is set where
A and Vg are defined as in Eqs.(2.8) and (2.9), respectively. Also, Y • Z is written
for the usual inner product of the vectors Y and Z in RS and for every real value x,
eρ(x) = [eρ1x, · · · , eρSx]. Our main result is as follows.

Theorem 2.5. Given a constant r ≥ 0 and a nonnegative bounded function g on
(h1, h2)c, the function Φ(x), defined by the formula

Φ(x) =

{
Q(g) • eρ(x), if x ∈ (h1, h2)

g(x), if x /∈ (h1, h2)
, (2.14)

solves the boundary value problem (2.3). Additionally, Φ(x) = Ex [e−rτg(Xτ )], where
τ = inf{t ≥ 0|Xt /∈ (h1, h2)}.

Proof. The first statement follows by direct calculation using Eqs. (2.12) and (2.7). The
proof of the second statement(concerning the uniqueness of solutions of the boundary
value problem (2.3)) is the same as that of Proposition 4.1 in the work of [4] if R+ is
replaced by (h1, h2)c. This proof is omitted here.
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Remark 2.6. When X is a spectrally negative Lévy process, the Laplace transform of
the two-sided exit times can be expressed in terms of scale functions. See, for example,
Theorem 8.1 in the work of Kyprianou[10], Chapter XI Theorems 3.2-3.3 in the work
of Asmussen and Albrecher[1], or the work of Rogers[12]. See also Theorem 5.3 in
Chapter XI of the work of Asmussen and Albrecher[1] in which the process X has two-
sided phase-type jumps. Kuznetsov et al in [9] took a completely different approach
to obtain the law of the discounted overshoot for meromorphic Lévy processes. From
[9], the formula for the function Φ is obtained in an integral form. In Theorem 2.5,
thus obtained, Φ(x) is expressed as a linear combination of known functions and the
coefficients are uniquely determined. It is worth noting that, by the same approach,
similar results as in Theorem 2.5 can be obtained for the case (h1,∞) or (−∞, h2).
(See, also, the work of Chen et al.[4].)

3 Examples

As an illustration of the main result(Theorem 2.5), we consider the Kou model, that
is, m(−) = m(+) = 1. We write η± for η±1 and assume σ > 0. Fix (h1, h2) and write τ(h1,h2)

for the first exit time of X from (h1, h2). Note that the matrix A is given by the formula
in Eq.(2.8).

Example 3.1. Consider the case, g(x) = 1. Then Φ(x) = Ex
[
e−rτ(h1,h2)

]
and by direct

calculation, Vg = [ 1
η+ ,−

1
η− , 1, 1]T . Simple algebraic calculation shows that AQ = Vg is

equivalent to ÂD̂Q = V̂g where V̂g = [0, 0, 0, 1]T , D̂ = diag(ρ1, · · · , ρ4) and

Â =


eρ1h1

ρ1+η+
eρ2h1

ρ2+η+
eρ3h1

ρ3+η+
eρ4h1

ρ4+η+

eρ1h2

ρ1−η−
eρ2h2

ρ2−η−
eρ3h2

ρ3−η−
eρ4h2

ρ4−η−
eρ1h2−ρ1h1

ρ1
eρ2h2−ρ2h1

ρ2
eρ3h2−ρ3h1

ρ3
eρ4h2−ρ4h1

ρ4
eρ1h2

ρ1
eρ2h2

ρ2
eρ3h2

ρ3
eρ4h2

ρ4

 .

(Note that for the vector V̂g, all components except the last one are zeros.) Therefore,

Ex
[
e−rτ(h1,h2)

]
=
∑4
i=1Qie

ρix for x ∈ (h1, h2) where Qi = (ρidetÂ)−1Yi,

Y1 = −

∣∣∣∣∣∣∣
eρ2h1

ρ2+η+
eρ3h1

ρ3+η+
eρ4h1

ρ4+η+

eρ2h2

ρ2−η−
eρ3h2

ρ3−η−
eρ4h2

ρ4−η−
eρ2h2−ρ2h1

ρ2
eρ3h2−ρ3h1

ρ3
eρ4h2−ρ4h1

ρ4

∣∣∣∣∣∣∣ , Y2 =

∣∣∣∣∣∣∣
eρ1h1

ρ1+η+
eρ3h1

ρ3+η+
eρ4h1

ρ4+η+

eρ1h2

ρ1−η−
eρ3h2

ρ3−η−
eρ4h2

ρ4−η−
eρ1h2−ρ1h1

ρ1
eρ3h2−ρ3h1

ρ3
eρ4h2−ρ4h1

ρ4

∣∣∣∣∣∣∣ ,

Y3 = −

∣∣∣∣∣∣∣
eρ1h1

ρ1+η+
eρ2h1

ρ2+η+
eρ4h1

ρ4+η+

eρ1h2

ρ1−η−
eρ2h2

ρ2−η−
eρ4h2

ρ4−η−
eρ1h2−ρ1h1

ρ1
eρ2h2−ρ2h1

ρ2
eρ4h2−ρ4h1

ρ4

∣∣∣∣∣∣∣ , Y4 =


eρ1h1

ρ1+η+
eρ2h1

ρ2+η+
eρ3h1

ρ3+η+

eρ1h2

ρ1−η−
eρ2h2

ρ2−η−
eρ3h2

ρ3−η−
eρ1h2−ρ1h1

ρ1
eρ2h2−ρ2h1

ρ2
eρ3h2−ρ3h1

ρ3

∣∣∣∣∣∣∣ ,
and detÂ =

∑4
i=1

eρ1h2

ρi
Yi.

Example 3.2. Consider the case, g(x) = 1{x≥h2}. Then Φ(x) = Ex

[
e−rτ(h1,h2)1{Xτ(h1,h2)

≥h2}

]
and Vg = [0, 1

η− , 0, 1]. Now AQ = Vg is equivalent to ÂD̂Q = V̂g where V̂g = [0, 0, 0, 1]T ,

D̂ = diag(ρ1, · · · , ρ4) and

Â =


eρ1h1

ρ1+η+
eρ2h1

ρ2+η+
eρ3h1

ρ3+η+
eρ4h1

ρ4+η+

eρ1h2

ρ1−η−
eρ2h2

ρ2−η−
eρ3h2

ρ3−η−
eρ4h2

ρ4−η−
eρ1h1

ρ1
eρ2h1

ρ2
eρ3h1

ρ3
eρ4h1

ρ4
eρ1h2

ρ1
eρ2h2

ρ2
eρ3h2

ρ3
eρ4h2

ρ4

 .
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Therefore, Ex
[
e−rτ(h1,h2)1{Xτ(h1,h2)

≥h2}

]
=
∑4
i=1Qie

ρix for x ∈ (h1, h2). Here Qi =

(ρidetÂ)−1Yi,

Y1 = −

∣∣∣∣∣∣∣
eρ2h1

ρ2+η+
eρ3h1

ρ3+η+
eρ4h1

ρ4+η+

eρ2h2

ρ2−η−
eρ3h2

ρ3−η−
eρ4h2

ρ4−η−
eρ2h1

ρ2
eρ3h1

ρ3
eρ4h1

ρ4

∣∣∣∣∣∣∣ , Y2 =

∣∣∣∣∣∣∣
eρ1h1

ρ1+η+
eρ3h1

ρ3+η+
eρ4h1

ρ4+η+

eρ1h2

ρ1−η−
eρ3h2

ρ3−η−
eρ4h2

ρ4−η−
eρ1h1

ρ1
eρ3h1

ρ3
eρ4h1

ρ4

∣∣∣∣∣∣∣ ,

Y3 = −

∣∣∣∣∣∣∣
eρ1h1

ρ1+η+
eρ2h1

ρ2+η+
eρ4h1

ρ4+η+

eρ1h2

ρ1−η−
eρ2h2

ρ2−η−
eρ4h2

ρ4−η−
eρ1h1

ρ1
eρ2h1

ρ2
eρ4h1

ρ4

∣∣∣∣∣∣∣ , Y4 =

∣∣∣∣∣∣∣
eρ1h1

ρ1+η+
eρ2h1

ρ2+η+
eρ3h1

ρ3+η+

eρ1h2

ρ1−η−
eρ2h2

ρ2−η−
eρ3h2

ρ3−η−
eρ1h1

ρ1
eρ2h1

ρ2
eρ3h1

ρ3

∣∣∣∣∣∣∣ ,
and detÂ =

∑4
i=1

eρ1h2

ρi
Yi.

Example 3.3. Consider the case, g(x) = (x−h2)+. Then Φ(x) = Ex

[
e−rτ(h1,h2)(Xτ(h1,h2)

− h2)+
]

and Vg = [0, −1η− −
1

(η−)2 , 0, 0]. Therefore, Ex
[
e−rτ(h1,h2)(Xτ(h1,h2)

− h2)+
]

=
∑4
i=1Qie

ρix

where Qi = (−1η− −
1

(η−)2 )detA−1Yi,

Y1 = −

∣∣∣∣∣∣∣
eρ2h1

ρ2+η+
eρ3h1

ρ3+η+
eρ4h1

ρ4+η+

eρ2h1 eρ3h1 eρ4h1

eρ2h2 eρ3h2 eρ4h2

∣∣∣∣∣∣∣ , Y2 =

∣∣∣∣∣∣∣
eρ1h1

ρ1+η+
eρ3h1

ρ3+η+
eρ4h1

ρ4+η+

eρ1h1 eρ3h1 eρ4h1

eρ1h2 eρ3h2 eρ4h2

∣∣∣∣∣∣∣ ,
Y3 = −

∣∣∣∣∣∣∣
eρ1h1

ρ1+η+
eρ2h1

ρ2+η+
eρ4h1

ρ4+η+

eρ1h1 eρ2h1 eρ4h1

eρ1h2 eρ2h2 eρ4h2

∣∣∣∣∣∣∣ , Y4 =

∣∣∣∣∣∣∣
eρ1h1

ρ1+η+
eρ2h1

ρ2+η+
eρ3h1

ρ3+η+

eρ1h1 eρ2h1 eρ3h1

eρ1h2 eρ2h2 eρ3h2

∣∣∣∣∣∣∣ ,
and detA =

∑4
i=1

eρnh2

ρn−η−Yi.
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