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Abstract

LetX1, X2, ... denote independent, identically distributed random variables with com-
mon distribution F , and S the corresponding random walk with ρ := limn→∞ P (Sn >

0) and τ := inf{n ≥ 1 : Sn ≤ 0}. We assume that X is in the domain of attraction of
an α-stable law, and that P (X ∈ [x, x + ∆)) is regularly varying at infinity, for fixed
∆ > 0. Under these conditions, we find an estimate for P (Sn ∈ [x, x + ∆)|τ > n),
which holds uniformly as x/cn →∞, for a specified norming sequence cn.

This result is of particular interest as it is related to the bivariate ladder height
process ((Tn, Hn), n ≥ 0), where Tr is the rth strict increasing ladder time, and
Hr = STr the corresponding ladder height. The bivariate renewal mass function
g(n, dx) =

∑∞
r=0 P (Tr = n,Hr ∈ dx) can then be written as g(n, dx) = P (Sn ∈

dx|τ > n)P (τ > n), and since the behaviour of P (τ > n) is known for asymptotically
stable random walks, our results can be rephrased as large deviation estimates of
g(n, [x, x+ ∆)).
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Let X1, X2, ... denote independent, identically distributed random variables with
common distribution F , and S the corresponding random walk. Suppose that there
is a norming sequence cn and a stable random variable Y such that

Sn
cn

D→ Y as n→∞.

If Y has index α and positivity parameter ρ := P (Y > 0) which satisfy α ∈ (0, 1) ∪ (1, 2)

and ρ ∈ (0, 1) or α = 1 or 2 and ρ = 1/2 we say that S is asymptotically stable and
write S ∈ D(α, ρ). It can be shown that {cn : n ≥ 1} is regularly varying with index α−1,
so that for some slowly varying function l(n), cn = n1/αl(n).

The important recent paper by Vatutin and Wachtel [13] has established local limit
theorems for the position at time n of an asymptotically stable random walk conditioned
to stay positive, in the zones of “normal deviations” and “small deviations”. That is, they
obtained uniform estimates of P (Sn ∈ [x, x+ ∆)|τ > n) as n→∞, where τ = inf{n ≥ 1 :

Sn ≤ 0} and 0 < ∆ <∞, in the case that x = O(cn) and the case x = o(cn) respectively.
These results are of particular interest in the study of fluctuations of random walks

since they can be rephrased in terms of the of the bivariate ladder height process
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Conditioned random walks

((Tn, Hn), n ≥ 0). Specifically, if we introduce the bivariate renewal mass function by

g(n, dx) =

∞∑
r=0

P (Tr = n,Hr ∈ dx),

where T0 = H0 = 0, and for r ≥ 1, Tr is the rth strict increasing ladder time and
Hr = STr

the corresponding ladder height, we have the duality relation

g(n, dx) = P (Sn ∈ dx, τ > n) = P (Sn ∈ dx|τ > n)P (τ > n).

Since the behaviour of P (τ > n) is known for asymptotically stable random walks we
see that the results in [13] also give uniform estimates for g(n, dx) in the case that
x = O(cn) and x = o(cn). As many questions about the asymptotic behaviour of random
walks involve controlling the dependence between the ladder times and ladder heights,
these results will find many applications, and in fact have already been exploited in [6]
to find uniform asymptotic estimates for the probability mass functions of first passage
times. It is also noteworthy that these results hold for all asymptotically stable random
walks, including the cases where Y is spectrally positive (i.e. α(1− ρ) = 1) or spectrally
negative (i.e. αρ = 1).

The main aim of this work is to find an estimate for P (Sn ∈ [x, x + ∆)|τ > n), and
hence for g(n, [x, x + ∆)), which holds uniformly in x as x/cn → ∞, for cn as defined
above. However, since we are in the scenario where the “one large jump” principle
is applicable, we cannot hope to get a general result in the spectrally negative case,
α ∈ (0, 2) and αρ = 1,: we know little about the behaviour of the righthand tail F (x) :=

P (X1 > x), and the corresponding tail estimate does not seem to be known. Also, if
S ∈ D(2, 1/2) and F ∈ RV (−α) with α > 2 it would be useful to have similar estimates,
but it is clear that we have to choose the sequence cn in a different way.

From now on, we will let F̄∆(x) := P (X1 ∈ [x, x + ∆)) for fixed ∆ ∈ (0,∞], so that
∆ = ∞ corresponds to F̄ (x) := F̄∞(x) = P (X1 > x). In what follows, we will consider
two different scenarios;

• Case A: S ∈ D(α, ρ) with 0 < α < 2, αρ < 1 and if α = 1 ρ = 1/2. In this situation
we know that F̄ (·) ∈ RV (−α), 1− F (x) = O( F̄ (x)) and we can define the norming
sequence to be the restriction to the integers of a continuous, increasing function
c(·) ∈ RV (α−1) which satisfies

lim
x→∞

xF̄ (c(x)) = 1.

• Case B: EX1 = 0, EX2
1 < ∞,and F̄ (·) ∈ RV (−α) with 2 < α < ∞. In this situation

we write c(x) :=
√
x log x, so that

lim
x→∞

xF̄ (c(x)) = 0.

Unconditional large deviation results are well known under these assumptions; see
[3] for general results. Special cases of this result can be found in Doney [5] when
∆ = ∞and α < 1, and in [12, 10] when ∆ = ∞ and α ≥ 1. For lattice random walks,
local results can also be found in [4]. These results are combined in Proposition 0.1
below.

Proposition 0.1. Suppose that the assumptions of Case A or Case B hold, and addi-
tionally, in the local case (∆ <∞), F̄∆(·) ∈ RV (−(α+ 1)). Then uniformly in n ≥ 1 such
that x/cn →∞,

P (Sn ∈ [x, x+ ∆)) ∼ nP (X1 ∈ [x, x+ ∆)) as x→∞. (0.1)
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Conditioned random walks

Although this result applies when n is fixed, to get our conditional results it is clear
that we must have n → ∞. In virtue of Proposition 0.1, it is then clear how P (Sn ∈
[x, x+ ∆)|τ > n) should behave, and our result in Theorem 0.2 confirms this.

Theorem 0.2. Suppose that the assumptions of Case A or Case B hold, and additionally,
in the local case (∆ <∞), F̄∆(·) ∈ RV (−(α+ 1)). Then uniformly in x such that x/cn →
∞,

P (Sn ∈ [x, x+ ∆)|τ > n) ∼ P (Sn ∈ [x, x+ ∆))

ρ
∼ nP (X1 ∈ [x, x+ ∆))

ρ
as n→∞. (0.2)

Remark 0.3. To be quite specific, (0.2) means that, given any ε > 0 we can find n(ε)

and Γ(ε) > 0 such that, whenever n ≥ n(ε) and x ≥ Γ(ε)cn,∣∣∣∣ρP (Sn ∈ [x, x+ ∆)|τ > n)

nP (X1 ∈ [x, x+ ∆))
− 1

∣∣∣∣ ≤ ε.
From now on we will often use the notation

u∼ to signify this.

Remark 0.4. The cases where ∆ = ∞, or that S is a lattice random walk, are taken
from the thesis [9], and have already found applications in part C of Theorem 1 of [6]
and Theorem 1 of [14].

1 Proofs

1.1 Preliminary lemma.

The following lemma provides a recursive relation for the quantity g(n, dx) =
∑n
k=1 P (Tk =

n,Hk ∈ dx), which will provide the basis to prove theorem 0.2. Recall that g(n, dx) co-
incides with P (Sn ∈ dx, τ > n). Another recursive relation,

ng(n, dy) =

n−1∑
m=1

∫ x−

z=0

g(m, dz)P (Sn−m ∈ dy − z), y > 0,

can be found in [1], and plays a key role in [13]. But it turns out that the following
variant is appropriate in our context. (It should be mentioned that the Lévy process
version of this has been used in [7].)

Lemma 1.1. For n ≥ 1 and x > 0 we have the identity

xg(n, dx) =

∫ x−

w=0

n−1∑
m=1

x− w
n−m

g(m, dw)P (Sn−m ∈ dx− w). (1.1)

Proof. First we prove

xg(n, dx) =

∞∑
k=1

∞∑
j=1

1

j
E{Hj : Tk+j = n,Hk+j ∈ dx} (1.2)

To see this put φ(α, β) = E{αT1βH1}, so that

∞∑
k=1

∞∑
n=1

∫ ∞
x=0+

xP (Tk = n,Hk ∈ dx)αnβx

=

∞∑
k=1

β
∂φ

∂β
kφ(α, β)k−1 =

β ∂φ∂β
(1− φ(α, β))2

.
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Conditioned random walks

However, writing (Tk+j , Hk+j)
D
= (Tk, Hk) + (T̃j , H̃j) and using the independence prop-

erty, we see that

∞∑
n=1

∫ ∞
x=0+

αnβx · RHS of (1.2) =

∞∑
k=1

∞∑
j=1

1

j
·
(
βjφj−1 ∂φ

∂β

)
φk =

β ∂φ∂β
(1− φ)2

.

So (1.2) holds, and we can write the RHS of it as

∞∑
k=1

∞∑
j=1

1

j

∑
m

∫
w

(x− w)P (Tj = n−m,Hj ∈ dx− w)P (Tk = m,Hk ∈ dw). (1.3)

Now, from equation (3) of [1], with σx := min(m : Hm ≥ x), we have the identity

P (Tj = n−m,Hj ∈ dx− w) =
j

n−m
P (Sn−m ∈ dx− w, σx = j),

so (1.3) can be written as

∞∑
k=1

∞∑
j=1

∑
m

∫
w

x− w
n−m

P (Sn−m ∈ dx− w, σx = j)P (Tk = m,Hk ∈ dw)

=

∞∑
k=1

∑
m

∫
w

x− w
n−m

P (Sn−m ∈ dx− w)P (Tk = m,Hk ∈ dw)

=
∑
m

∫
w

x− w
n−m

P (Sn−m ∈ dx− w)g(m, dw),

and Lemma 1.1 follows.

1.2 Proof of theorem 0.2.

The following lemma is required to prove Theorem 0.2.

Lemma 1.2. Under the assumptions of Theorem 0.2, in both the local case ∆ < ∞
and the global case ∆ = ∞, there is a Λ ∈ (0,∞) and n∗ < ∞ such that for F̄∆(x) :=

P (X1 ∈ [x, x+ ∆)),

sup
x≥Λcn,n≥n∗

P (Sn ∈ [x, x+ ∆), τ > n)

nF̄∆(x)P (τ > n)
<∞. (1.4)

Proof. Let T = inf{n : Sn > y′}, where y′ = cnd
1/2 and d = d(x, n) = x/cn, so that

cn = o(y′) and y′ = o(x), where cn is defined as before, and write

P (Sn ∈ [x, x+ ∆), τ > n) =

n∑
t=1

∫
w∈(y′,x/2]

P (Sn ∈ [x, x+ ∆), τ > n, T = t, St ∈ dw)

+

n∑
t=1

P (Sn ∈ [x, x+ ∆), τ > n, T = t, St > x/2) =: Q1 +Q2.

Note that

Q1 =

n∑
t=1

∫
w∈(y′,x/2]

P (τ > t, T = t, St ∈ dw)Pw(Sn−t ∈ [x, x+ ∆), Si > 0,∀i = 1, · · ·n− t)

≤
n∑
t=1

sup
w∈(y′,x/2]

Pw(Sn−t ∈ [x, x+ ∆))

∫
w∈(y′,x/2]

P (τ > t, T = t, St ∈ dw)

≤C sup
t≤n;w∈(y′,x/2]

Pw(Sn−t ∈ [x, x+ ∆))

n∑
t=1

P (τ > t, T = t).
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Conditioned random walks

To see that for some constant C,

P (τ > n) ≥ C
n∑
t=1

P (τ > t, T = t), (1.5)

note that

P (τ > n) ≥P (S exits [0, y′] before time nat y′, τ > n)

≥
n∑
t=1

P (T = t, τ > t)P ( inf
w≤n

Sw > −y′).

However, limn→∞ P (infw≤n Sw > −y′) > 0 uniformly as d → ∞, since, using Pruitt’s
inequality [11] in the case that α ∈ (0, 2),

P ( inf
w≤n

Sw ≤ −y′) ≤ P (max
w≤n
|Sw| > y′) ≤ Cn

(
F̄ (y′) + F (−y′)

)
→ 0,

uniformly, for some constant C, and in the case that α > 2, an application of Chebyshev’s
inequality gives the desired result. Therefore, by applying Proposition 0.1,

Q1 ≤ sup
t≤n;w∈(y′,x/2]

Pw(Sn−t ∈ [x, x+ ∆))P (τ > n)

∼nP (X1 ∈ [x/2, x/2 + ∆))P (τ > n) ∼ CnF̄∆(x)P (τ > n).

In addition, letting xi be a sequence such that x0 = x/2 and xi = xi−1 + ∆ for i = 1, ...,
and for a constant C > 0 which may change from line to line,

Q2 =

n∑
t=1

∑
i

P (Sn ∈ [x, x+ ∆), τ > n, T = t, St ∈ [xi, xi + ∆))

≤
n∑
t=1

∑
i

∫ y′

u=0

P (τ > t− 1, St−1 ∈ du)P (Xt ∈ [xi − u, xi − u+ ∆))P (Sn−t ∈ [x− xi −∆, x+ ∆− xi))

≤ sup
u≤y′,i

P (X1 ∈ [xi − u, xi − u+ ∆))

n∑
t=1

∑
i

P (τ > t− 1)P (Sn−t ∈ [x− xi −∆, x+ ∆− xi))

=2 sup
u≤y′,i

P (X1 ∈ [xi − u, xi − u+ ∆))

n∑
t=1

P (τ > t− 1)
∑
i

P (Sn−t ∈ [x− xi, x+ ∆− xi))

≤2F̄∆(x/2− y)

n∑
t=1

P (τ > t− 1) ∼ CF̄∆(x/2− y)nP (τ > n) ∼ CF̄∆(x)nP (τ > n)

and (1.2) follows.

It turns out that the first part of the following proof is also valid in both the local and
global situations.

Proof. (Of Theorem 0.2) Our aim is to show

P (Sn ∈ [x, x+ ∆), τ > n)

P (τ > n)

u∼ n

ρ
P (X1 ∈ [x, x+ ∆)),

and we can rewrite the result of Lemma 1.1 as

P (Sn ∈ [x, x+ ∆), τ > n) =

∫ x+∆

y=x

∫ y

w=0

n−1∑
m=1

y − w
n−m

P (Sm ∈ dw, τ > m)
Pw(Sn−m ∈ dy)

y
.
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Therefore, showing that

Q∆ :=

∫ x+∆

y=x

∫ y

w=0

n−1∑
m=1

y − w
n−m

P (Sm ∈ dw, τ > m)

nP (τ > n)

Pw(Sn−m ∈ dy)

yF̄∆(x)

u→ ρ−1

as n→∞, is sufficient to show that Theorem 0.2 holds. We write Q∆ = Q
(1)
∆ +Q

(2)
∆ with

Q
(1)
∆ :=

∫ x+∆

y=x

∫ xδ

w=0

n−1∑
m=1

y − w
n−m

P (Sm ∈ dw, τ > m)

nP (τ > n)

Pw(Sn−m ∈ dy)

yF̄∆(x)
.

Firstly, for any δ ∈ (0, 1), when w ≤ δx note that (y − w)/y must lie in the interval
(1− δ, 1), and by applying Proposition 0.1,

n−1∑
m=1

∫ x+∆

y=x

∫ δx

w=0

P (Sm ∈ dw, τ > m)

nP (τ > n)

1

(n−m)

Pw(Sn−m ∈ dy)

F̄∆(x)
∼
n−1∑
m=1

∫ δx

w=0

P (Sm ∈ dw, τ > m)

nP (τ > n)

F̄∆(x− w)

F̄∆(x)
.

Furthermore, note that for sufficiently large x, F̄∆(x− w)/F̄∆(x) is bounded between 1
and (1− δ)−α−2, so that by defining Iδ :=

∑n−1
m=1 P (τ > m,Sm ≤ xδ),

(1− δ) Iδ
nP (τ > n)F̄∆(x)

≤ Q(1)
∆ ≤ (1− δ)−α−2 Iδ

nP (τ > n)F̄∆(x)

so we need only deal with

Iδ =

n−1∑
m=1

P (τ > m)−
n−1∑
m=1

P (τ > m,Sm > xδ).

Recalling that T := inf{t : St > y′}, where y′ is defined as before, we write

P (τ > m,Sm > xδ) =

m∑
t=1

P (T = t, τ > m,Sm > xδ)

=

m∑
t=1

P (T = t, τ > m,Sm > xδ, St ∈ [y′, xδ/2]) +

m∑
t=1

P (T = t, τ > m,Sm > xδ, St > xδ/2).

Note that, using (1.5),

m∑
t=1

P (T = t, τ > m,Sm > δx, St ∈ [y′, xδ/2]) ≤
m∑
t=1

∫ xδ/2

u=y′
P (T = t, τ > t, St ∈ du)P (Sm−t > δx− u)

≤ sup
r≤m

P (Sr> xδ/2)

m∑
t=1

P (T = t, τ > t)P (Sm−t > xδ/2)

≤CmF (xδ/2)P (τ > m),

for some constant C, and

m∑
t=1

P (T= t, St > xδ/2, τ > m,Sm > δx)

≤
m∑
t=1

P (T = t, τ > t− 1, St > xδ/2)

≤F̄ (xδ/2−y′)
m∑
t=1

P (τ > t− 1).
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It then follows easily that, for any fixed δ

n−1∑
m=1

P (τ > m,Sm ≤ xδ)
nP (τ > n)

u
=

n−1∑
m=1

P (τ > m)

nP (τ > n)
+ o(1)

u→ 1

ρ
.

Thus, given any ε > 0 we can find δε > 0,∆ε, and nε such that

n−1∑
m=1

∫ xδε

w=0

P (τ > m,Sm ∈ dw)

nP (τ > n)

(x− w)

(n−m)

Pw(Sn−m > x)

xp(x)
∈ (ρ−1 − ε, ρ−1 + ε)

whenever n ≥ nε and x is sufficiently large.
To show that Q(2)

∆ = o(1), we consider the cases ∆ =∞ and ∆ <∞ separately.

(i) THE GLOBAL CASE (∆ =∞)

In this case we have

Q(2)
∞ =

n−1∑
m=1

∫
y>x

∫ y

w=δx

P (τ > m,Sm ∈ dw)

nP (τ > n)

(y − w)

(n−m)

Pw(Sn−m ∈ dy)

yF̄ (x)
.

For fixed m, note that∫
y>x

∫ y

w=δx

P (τ > m,Sm ∈ dw)
(y − w)

(n−m)

Pw(Sn−m ∈ dy)

y

≤
∫ ∞
w=δx

∫
y>w

P (τ > m,Sm ∈ dw)

(n−m)
Pw(Sn−m ∈ dy)

≤
∫ ∞
w=δx

P (τ > m,Sm ∈ dw)

(n−m)

≤P (Sm > δx)

(n−m)
∼ mF̄ (δx)

(n−m)
= o

(
F̄ (x)nP (τ > n)

)
,

so that we can discard the terms with m ≤ n∗, where n∗ features in Lemma 1.2. Next
we write

n−1∑
m=n∗+1

∫ ∞
w=δx

∫
y≥w

P (τ > m,Sm ∈ dw)
(y − w)

(n−m)

Pw(Sn−m ∈ dy)

y

=

n−1∑
m=n∗+1

∫ ∞
w=δx

∫
z≥0

P (τ > m,Sm ∈ dw)
z

(n−m)

P (Sn−m ∈ dz)
(w + z)

:= P
(1)
δ + P

(2)
δ ,

where P
(1)
δ has z ∈ (0,

√
dcn−m), and P

(2)
δ has z ≥

√
dcn−m. Now, using the result of

Lemma 1.2, and noting that mP (τ > m) is asymptotically increasing,

P
(1)
δ ≤ 1

δx

n−1∑
m=n∗+1

P (τ > m,Sm > δx)

√
dcn−m
n−m

∼
√
d

δx

n−1∑
m=n∗+1

mF̄ (δx)P (τ > m)
cn−m
n−m

≤
√
d

δx
nP (τ > n)F̄ (δx)

n∑
m=1

cm
m

∼C
√
dcn
δx

nP (τ > n)F̄ (δx) = o
(
nP (τ > n)F̄ (δx)

)
.

To deal with P (2)
δ , we use the following lemma:
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Lemma 1.3. For any random variable X, and positive constant w,

E

[
X

X + w
: X ≥ c

]
≤ 2

cF̄ (c)

c+ w

Proof.

E

[
X

X + w
: X ≥ c

]
=

∫ ∞
c

x

w + x
d(−F̄ (x)) =

c

c+ w
F̄ (c) +

∫ ∞
c

F̄ (x)
w

(w + x)2
dx

≤ c

c+ w
F̄ (c) + F̄ (c)

∫ ∞
c

w

(w + x)2
dx

=2
cF̄ (c)

c+ w
,

as required.

Applying this lemma to P (2)
δ , and recalling that P (Sn−m >

√
dcn−m) ∼ (n−m)F̄ (

√
dcn−m),

P
(2)
δ ≤

n−1∑
m=1

∫ ∞
w=δx

P (τ > m,Sm ∈ dw)

n−m
2
√
dcn−mP (Sn−m >

√
dcn−m)

w +
√
dcn−m

∼
n−1∑
m=1

∫ ∞
w=δx

P (τ > m,Sm ∈ dw)
2
√
dcn−mF̄ (

√
dcn−m)

w +
√
dcn−m

≤C
√
d

δx

n−1∑
m=1

P (Sm > δx)P (τ > m)
cn−m
n−m

= 2
C
√
dcn
δx

nP (τ > n)F̄ (x) = o(1)nP (τ > n)F̄ (x),

as required, so that when ∆ =∞,

Q(2)
∞ = o

(
nP (τ > n)F̄ (x)

)
.

(ii) THE LOCAL CASE (∆ <∞)

Now with ∆ <∞, we prove that

Q
(2)
∆ =

n−1∑
m=1

∫ x+∆

w=δx

∫ x+∆

y=x∨w
P (τ > m,Sm ∈ dw)

(y − w)

(n−m)

P (Sn−m ∈ dy − w)

y
= o

(
nP (τ > n)F̄∆(x)

)
.

Note first that∫ x+∆

y=x∨w

(y − w)P (Sn−m ∈ dy − w)

y
≤ 1

x

∫ ∆+x−w

z=(x−w)+
zP (Sn−m ∈ dz).

Next we see that for any fixed m and suitably large k when y ≥ kc(n−m) and n is large
enough we have ∫ ∆+y

z=y

zP (Sn−m ∈ dz) ≤ (∆ + y)P (Sn−m ∈ (y, y + ∆])

≤2(n−m)(∆ + y)F∆(y) v 2(n−m)yF∆(y),

and hence, ∫ x+∆−kcn−m

w=δx

∫ x+∆

y=x∨w
P (τ > m,Sm ∈ dw)

(y − w)

(n−m)

P (Sn−m ∈ dy − w)

y

≤ 2

x

∫ x+∆−kcn−m

w=δx

P (τ > m,Sm ∈ dw)(x− w)F∆(x− w)

≤2(1− δ)F∆((1− δ)x)P (Sm > δx) = o(F∆(x)) = o(F∆(x)nP (τ > n)).
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Note that the Gnedenko and Stone local limit theorem implies that there exists a con-
stant C > 0 such that

P (S
r
∈ [(u−∆)+, u)) ≤ C∆

cr
, r ≥ 1. (1.6)

Using this gives

1

x(n−m)

∫ x+∆

x+∆−kcn−m

P (τ > m,Sm ∈ dw)

∫ ∆+x−w

z=(x−w)+
zP (Sn−m ∈ dz)

≤ ∆ + x

x(n−m)

∫ kcn−m

0

P (τ > m,Sm ∈ x− dw)P (Sn−m ∈ ((x− w)+,∆ + x− w)

≤ (∆ + x)∆

x(n−m)cn−m

∫ kcn−m

0

P (τ > m,Sm ∈ x− dw)

≤ (∆ + x)∆P (Sm ∈ (x− kcn−m, x])

x(n−m)cn−m
∼ m∆P (S1 ∈ (x− kcn−m, x])

ncn−m

∼m∆kcn−mF∆(x)

ncn−m
=
m∆kF∆(x)

n
= o(F∆(x)nP (τ > n)).

So we can discard the terms with m ≤ n∗, where n∗ features in Lemma 1.2. In addition,
if we write η = 1− δ/2, then for all large x,

n−1∑
m=n∗+1

∫ x+∆

w=δx

∫ x+∆

y=x∨w
P (τ > m,Sm ∈ dw)

(y − w)

(n−m)

P (Sn−m ∈ dy − w)

y

≤ 1

x

n−1∑
m=n∗+1

1

n−m

∫ x+∆

w=δx

P (τ > m,Sm ∈ dw)

∫ x−w+∆

z=(x−w)+
zP (Sn−m ∈ dz)

=
1

x

n−1∑
m=n∗+1

1

n−m

∫ (1−δ)x+∆

u=0

P (τ > m,Sm ∈ x+ ∆− du)

∫ u

z=(u−∆)+
zP (Sn−m ∈ dz)

≤ 1

x

n−1∑
m=n∗+1

1

n−m

∫ ηx

u=0

uP (τ > m,Sm ∈ x+ ∆− du)P (Sn−m ∈ [(u−∆)+, u)) =: J.

Showing that J is o
(
nP (τ > n)F̄∆(x)

)
completes the proof. We write J = J (1) + J (2),

such that for suitably large k,

J (1) =
1

x

n−1∑
m=n∗+1

1

n−m

∫ kcn−m

u=0

P (τ > m,Sm ∈ x+ ∆− du)uP (Sn−m ∈ [(u−∆)+, u)).

Using the bound (1.6) again gives

J (1) ≤
n−1∑

m=n∗+1

C∆

x(n−m)cn−m

∫ kcn−m

u=0

uP (τ > m,Sm ∈ x+ ∆− du).

Now let N = [kcn−m/∆], then for some constant C > 0 which may change from line to
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line,∫ kcn−m

u=0

uP (τ > m,Sm ∈ x+ ∆− du) ≤
N∑
r=0

∫ (r+1)∆

r∆

uP (τ > m,Sm ∈ x+ ∆− du)

≤
N∑
r=0

(r + 1)∆P (τ > m,Sm ∈ [x− r∆, x− r∆ + ∆])

≤mP (τ > m)

N∑
r=0

(r + 1)∆F̄∆(x− r∆)

∼mP (τ > m)F̄∆(x)

N∑
r=0

(r + 1)∆

≤CmP (τ > m)F̄∆(x)c2n−m. (1.7)

Now,

J (1) ≤
∑
m>n∗

C

x(n−m)cn−m
mP (τ > m)F̄∆(x)c2n−m

∼CnP (τ > n)F̄∆(x)

x

∑
m>n∗

cn−m
(n−m)

∼CnP (τ > n)F̄∆(x)

x
cn = o

(
nP (τ > n)F̄∆(x)

)
as required. Finally, to show that J (2) is also of the correct form, note that for u ∈
[kcn−m, ηx], k sufficiently large and all m

P (Sn−m ∈ [(u−∆)+, u]) ≤ 2(n−m)F̄∆(u−∆) v 2(n−m)F̄∆(u).

Now, since uF̄∆(u) ∼ KF (u) for some constant K,

J (2) ≤ 1

x

∑
m>n∗

∫ ηx

kcn−m

uF̄∆(u)P (τ > m,Sm ∈ x+ ∆− du)

∼K
x

∑
m>n∗

∫ ηx

kcn−m

F̄ (u)P (τ > m,Sm ∈ x+ ∆− du)

and we can use a variation of the argument leading up to (1.7) to show that∫ ηx

kcn−m

F̄ (u)P (τ > m,Sm ∈ x+ ∆− du) ≤ CnP (τ > n)F̄∆(x)

∫ ηx

kcn−m

F̄ (u)du.

When α < 2, c satisfies F̄ (c(x)) ∼ 1/x for x ≥ 1 so that

n∑
m=1

∫ x

y=kcm

F̄ (y) �
∫ n

1

dz

∫ x

kc(z)

F̄ (y)dy

=

∫ x

y=kc(1)

F̄ (y)dy

∫ c−1(y/k)∧n

1

dz

=

∫ kc(n)

y=kc(1)

c−1(y/k)F̄ (y)dy + n

∫ x

kc(n)

F̄ (y)dy

∼k
∫ n

w=1

wF̄ (kc(w))c′(w)dw + n

∫ x

kc(n)

F̄ (y)dy

=c(n)− c(1) + n

∫ x

kc(n)

F̄ (y)dy. (1.8)
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Note that
n

x

∫ x

kc(n)

F̄ (y)dy ≤ n

x
xF̄ (kcn) ∼ n

kα
F̄ (cn), (1.9)

we can choose k to be as large as we want, giving the desired result. If α > 2 we have
xF (c(x))→ 0, and the same argument applies.
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