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Abstract

In this paper, a new decay estimate for a class of stochastic evolution equations with weakly
dissipative drifts is established, which directly implies the uniqueness of invariant measures for
the corresponding transition semigroups. Moreover, the existence of invariant measures and the
convergence rate of corresponding transition semigroup to the invariant measure are also investi-
gated. As applications, the main results are applied to singular stochastic p-Laplace equations and
stochastic fast diffusion equations, which solves an open problem raised by Barbu and Da Prato in
[Stoc. Proc. Appl. 120(2010), 1247-1266].

1 Introduction

In recent years, the variational approach has been used intensively by many authors to analyze
semilinear and quasilinear stochastic partial differential equations. This approach was first inves-
tigated by Pardoux [19] to study SPDE, carried on by Krylov and Rozovoskii [13] who further
developed it and applied it to nonlinear filtering problems. We refer to [17, 20, 23] for a more
detailed exposition and references. Within this framework, various types of both analytic and
probabilistic properties such as the large deviation principle, discretized approximation of solu-
tions, ergodic properties and existence of random attractors have already been established for
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different types of nonlinear SPDE (cf. [12, 16, 17] and references therein). In particular, the
existence and uniqueness of invariant measures and the asymptotic behavior of the corresponding
transition semigroups have been studied for stochastic porous medium equations and stochastic
p-Laplace equations, see e.g. [1, 5, 7, 14, 20, 22].
The principal aim of this work is to show the uniqueness of invariant measures for a class of
stochastic evolution equations with weakly dissipative drifts such as stochastic fast diffusion equa-
tions and singular stochastic p-Laplace equations (where singular means 1 < p < 2 here). The
existence of an invariant measure has been established by Wang and the first named author in
[18, 15], and recently by Barbu and Da Prato in [2] for stochastic fast diffusion equations under
some weaker assumptions. It is more difficult, however, to derive the uniqueness of invariant
measures for this type of stochastic equations due to the lack of strong dissipativity for the drift.
Under some non-degeneracy assumption on the noise, Wang and the first named author have es-
tablished the Harnack inequality for the associated transition semigroup in [18, 15], which implies
the uniqueness of invariant measures and some heat kernel estimates. In this work we prove the
uniqueness of invariant measures in a more general setting and do not assume any non-degeneracy
of the noise. Inspired by the recent work of Es-Sarhir, von Renesse and Stannat [11], we establish
a decay estimate for stochastic evolution equations with weakly dissipative drifts (see (A2) below),
which directly implies the uniqueness of invariant measures. The result is applied to stochastic
p-Laplace equations and stochastic fast diffusion equations, which also solves an open problem
raised by Barbu and Da Prato (see [2, Remark 3.3]). Further applications of this new decay esti-
mate to asymptotic behavior of corresponding transition semigroups and the construction of the
corresponding Kolmogorov operators will be investigated in a separate paper.
Let us describe our framework in detail. Let H be a separable Hilbert space with inner product
〈·, ·〉H and dual H∗. Let V be a reflexive Banach space such that the embedding V ⊆ H is continuous
and dense. Then for its dual space V ∗ it follows that the embedding H∗ ⊆ V ∗ is also continuous
and dense. Identifying H and H∗ via the Riesz isomorphism we know that

V ⊆ H ≡ H∗ ⊆ V ∗

forms a so-called Gelfand triple. If the dualization between V ∗ and V is denoted by V ∗〈·, ·〉V we
have

V ∗〈u, v〉V = 〈u, v〉H for all u ∈ H, v ∈ V.

Suppose {Wt} is a cylindrical Wiener process on a separable Hilbert space U w.r.t a complete
filtered probability space (Ω,F , {Ft},P). We consider the following stochastic evolution equation

dX t = A(X t) d t + B dWt , X0 = x ∈ H, (1)

where B is a Hilbert-Schmidt operator from U to H and A : V → V ∗ is measurable.
Suppose that for a fixed α > 1 there exist constants δ > 0, β ∈ (0,α],γ ≥ 0 and K ∈ R such that
the following conditions hold for all v, v1, v2 ∈ V .

(A1) Hemicontinuity of A: The map λ 7→ V ∗〈A(v1 +λv2), v〉V is continuous on R.

(A2) (Weak) dissipativity of A:

2V ∗〈A(v1)− A(v2), v1 − v2〉V ≤−δ
‖v1 − v2‖2

H

‖v1‖
β
V + ‖v2‖

β
V

.

(A3) Coercivity of A:
2V ∗〈A(v), v〉V ≤−δ‖v‖αV + K .
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(A4) Boundedness of A:
‖A(v)‖V ∗ ≤ K

�

1+ ‖v‖α−1
V

�

.

Remark 1.1. (1) It is easy to check that (A1)–(A4) hold for some concrete examples such as the
stochastic fast diffusion equation and the singular stochastic p-Laplace equation (i.e. 1 < p ≤
2). We refer to Section 3 for more details.

(2) (A2) resembles the following stronger dissipativity condition (α > 2):

2V ∗〈A(v1)− A(v2), v1 − v2〉V ≤−δ‖v1 − v2‖αV , v1, v2 ∈ V. (2)

This type of dissipativity condition holds for the stochastic porous medium equation, the stochas-
tic p-Laplace equation (p ≥ 2) and some other equations with similar degenerate drifts (cf.
[12, 14, 16]). The condition (2) has been used for the investigation of the ergodicity in [14],
large deviation principle in [16] and the existence of random attractors in [12] for a large class
of stochastic evolution equations.

Note that (A2) is stronger than the classical (weak) monotonicity condition (cf.[13, 20]), hence for
any T > 0 and any x ∈ H, (1) has a unique solution {X t(x)}t∈[0,T] which is an adapted continuous

process on H such that E
∫ T

0
‖X t‖αV d t <∞ and

〈X t , v〉H = 〈x , v〉H +
∫ t

0
V ∗〈A(Xs), v〉V ds+ 〈BWt , v〉H

holds for all v ∈ V and (t,ω) ∈ [0, T]×Ω.
Let us define the corresponding transition semigroup

Pt F(x) := EF(X t(x)), t ≥ 0, x ∈ H,

where F is a bounded measurable function on H.

Theorem 1.2. Suppose (A1)–(A4) hold for (1).

(i) There exists a constant C > 0 such that

E

�

‖X t(x)− X t(y)‖
2α
β

H

�

≤ C

�

‖x − y‖2
H

t

�
α

β
�

1+
‖x‖2

H

t
+
‖y‖2

H

t

�

, x , y ∈ H, t > 0, (3)

where X t(y) denotes the solution of (1) with starting point y ∈ H.

(ii) {Pt} is a Feller semigroup. Moreover, there exists C > 0 such that for any Lipschitz function
F : H →R we have

|Pt F(x)− Pt F(y)| ≤
CL (F)‖x − y‖Hp

t

�

1+
‖x‖Hp

t
+
‖y‖Hp

t

�

β

α

, x , y ∈ H, t > 0, (4)

where L (F) is the Lipschitz constant of F.

(iii) If β ∈ (0,α), then {Pt} has at most one invariant measure.
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Remark 1.3. (1) This type of decay estimate (3) is new for stochastic fast diffusion equations and
singular stochastic p-Laplace equations. For stochastic porous media equations, the following
type of estimate is established in [7, Theorem 1.3] (α > 2):

‖X t(x)− X t(y)‖2
H ≤ ‖x − y‖2

H ∧
n

C t−
2
α−2

o

, t > 0, x , y ∈ H.

Moreover, it has been proved in [14] that the above estimate holds for a large class of stochastic
evolution equations with strong dissipativity condition (2).

(2) For the plane stochastic curve shortening flow (cf.[10]), a similar type of polynomial decay
estimate is established by Es-Sarhir, von Renesse and Stannat for the ergodic measure in [11].

Theorem 1.4. Suppose that (A1)–(A4) hold with β ∈ (0,α) and the embedding V ⊆ H is compact.
Then the Markov semigroup {Pt} has an unique invariant probability measure µ, which satisfies

∫

H

‖x‖αV µ(d x)<∞.

Moreover,

(i) if α≥
p

2, there exists C > 0 such that the following estimate holds:

|Pt F(x)−µ(F)| ≤
CL (F)

�

1+ ‖x‖H
�

p
t



1+
�

1+ ‖x‖Hp
t

�

β

α



 , x ∈ H, t > 0; (5)

(ii) if 1< α≤
p

2, then for any γ ∈
�

0, α2

α+β

i

, there exists C > 0 such that

|Pt F(x)−µ(F)| ≤
C |F |γ

�

1+ ‖x‖γH
�

t
γ

2






1+

1+ ‖x‖
βγ

α

H

t
βγ

2α






, x ∈ H, t > 0, (6)

where F is any γ-Hölder continuous function and

|F |γ := sup
x 6=y∈H

|F(x)− F(y)|
‖x − y‖γH

.

The rest of the paper is organized as follows: the proofs of the main theorems are given in the
next section. In Section 3, we apply the main results to some concrete examples of SPDE.

2 Proof of the main results

2.1 Proof of Theorem 1.2

(i) Let X t(x), X t(y) denote the solution of (1) starting from x , y respectively. Then by (A2) and
the chain rule, we have

‖X t(x)− X t(y)‖2
H ≤ ‖x − y‖2

H −δ
∫ t

0

‖Xs(x)− Xs(y)‖2
H

‖Xs(x)‖
β
V + ‖Xs(y)‖

β
V

ds.
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Note that by

d

d t
‖X t(x)− X t(y)‖2

H = 2V ∗〈A(X t(x))− A(X t(y)), X t(x)− X t(y)〉V ≤ 0,

the map t 7→ ‖X t(x)− X t(y)‖2
H is decreasing. Hence we have that

‖X t(x)− X t(y)‖2
H ≤ ‖x − y‖2

H −δ‖X t(x)− X t(y)‖2
H

∫ t

0

1

‖Xs(x)‖
β
V + ‖Xs(y)‖

β
V

ds.

Furthermore,

‖X t(x)− X t(y)‖2
H ≤ ‖x − y‖2

H

 

1+

∫ t

0

δ

‖Xs(x)‖
β
V + ‖Xs(y)‖

β
V

ds

!−1

.

By Jensen’s inequality, we get that
∫ t

0

δ

‖Xs(x)‖
β
V + ‖Xs(y)‖

β
V

ds ≥
δt2

∫ t

0

�

‖Xs(x)‖
β
V + ‖Xs(y)‖

β
V

�

ds
.

Which leads to

‖X t(x)− X t(y)‖2
H ≤ ‖x − y‖2

H






1+

δt2

∫ t

0

�

‖Xs(x)‖
β
V + ‖Xs(y)‖

β
V

�

ds







−1

= ‖x − y‖2
H

∫ t

0

�

‖Xs(x)‖
β
V + ‖Xs(y)‖

β
V

�

ds

δt2 +
∫ t

0

�

‖Xs(x)‖
β
V + ‖Xs(y)‖

β
V

�

ds

≤
‖x − y‖2

H

δt

�

1

t

∫ t

0

‖Xs(x)‖
β
V ds+

1

t

∫ t

0

‖Xs(y)‖
β
V ds

�

.

Using Jensen’s inequality again, we get that

‖X t(x)− X t(y)‖
2α
β

H ≤
�

2‖x − y‖2
H

δt

�
α

β
�

1

t

∫ t

0

‖Xs(x)‖αV ds+
1

t

∫ t

0

‖Xs(y)‖αV ds

�

. (7)

By applying Itô’s formula to ‖ · ‖2
H and using (A3), one can easily get the estimates

E

�

‖X t(x)‖2
H +δ

∫ t

0

‖Xs(x)‖αV ds

�

≤ ‖x‖2
H + t

�

K + ‖B‖2
HS

�

;

E

�

‖X t(y)‖2
H +δ

∫ t

0

‖Xs(y)‖αV ds

�

≤ ‖y‖2
H + t

�

K + ‖B‖2
HS

�

,

where ‖ · ‖HS denotes the Hilbert-Schmidt norm from U to H.

Hence there exists a constant C > 0 such that

E

�

‖X t(x)− X t(y)‖
2α
β

H

�

≤ C

�

‖x − y‖2
H

t

�
α

β
�

1+
‖x‖2

H

t
+
‖y‖2

H

t

�

.
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(ii) It is obvious that (3) implies that {Pt} is a Feller semigroup. Moreover, for any Lipschitz
function F : H →R we have

|Pt F(x)− Pt F(y)| ≤ L (F)E‖X t(x)− X t(y)‖H

≤
CL (F)‖x − y‖Hp

t

�

1+
‖x‖Hp

t
+
‖y‖Hp

t

�

β

α

,

where L (F) is the Lipschitz constant of F and C > 0 is a constant (independent of x , y, t
and F).

(iii) Let us prove that (4) is sufficient for the uniqueness of invariant measures. It is well known
that one only need to show the uniqueness of ergodic invariant measures (cf. [8]).

In fact, if there exist two ergodic invariant measures µ and ν , then for any bounded Lipschitz
function F we get in the limit T →∞,

1

T

∫ T

0

Pt F(x) d t →
∫

H

F dµ for µ-a.e. x;

1

T

∫ T

0

Pt F(y) d t →
∫

H

F dν for ν-a.e. y.

Since β < α, by (4) we have that
�

�

�

�

�

1

T

∫ T

0

Pt F(x) d t −
1

T

∫ T

0

Pt F(y) d t

�

�

�

�

�

≤
1

T

∫ T

0

�

�Pt F(x)− Pt F(y)
�

� d t

≤
CL (F)‖x − y‖H

T

∫ T

0

1
p

t

�

1+
‖x‖Hp

t
+
‖y‖Hp

t

�

β

α

d t

−→ 0 as T →∞.

Therefore, for any bounded Lipschitz function F on H we have that
∫

H

F dµ=

∫

H

F dν ,

i.e. µ= ν . Therefore, {Pt} has at most one invariant measure.

2.2 Proof of Theorem 1.4

Note that {Pt} is a Markov semigroup (cf.[13, 20]) and Feller by Theorem 1.2. Therefore, the
existence of an invariant measure µ can be proved by the standard Krylov-Bogoliubov procedure
(cf. [20, 14]). Let

µn :=
1

n

∫ n

0

δ0 Pt d t, n≥ 1,

where δ0 is the Dirac measure at 0.
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Hence for the existence of an invariant measure, one only needs to verify the tightness of {µn :
n≥ 1}.
By using Itô’s formula and (A3), we have the following estimate:

‖X t‖
2
H ≤ ‖x‖

2
H +

∫ t

0

(K + ‖B‖2
HS −δ‖Xs‖αV ) ds+ 2

∫ t

0

〈Xs, B dWs〉H . (8)

Note that Mt :=
∫ t

0
〈Xs, B dWs〉H is a martingale, then (8) implies that

µn(‖ · ‖αV ) =
1

n

∫ n

0

E‖X t(0)‖αV d t ≤
(K + ‖B‖2

HS)

δ
, n≥ 1. (9)

Note that the embedding V ⊆ H is compact, then for any constant C the set

{x ∈ H : ‖x‖V ≤ C}

is relatively compact in H. Therefore, (9) implies that {µn} is tight, hence the limit of a convergent
subsequence provides an invariant measure µ of {Pt}.
The uniqueness of µ follows from Theorem 1.2. And the concentration property for µ follows from
(9), since µ is the weak limit of µn.
(i) If α≥

p
2, then it is also easy to show (5) by using (4) and µ(‖ · ‖αV )<∞.

(ii) For the case 1 < α ≤
p

2, one can consider a smaller class of test function in the estimate (5).
More precisely, for any γ-Hölder continuous function F : H → R, by Hölder’s inequality and (3)
we have

|Pt F(x)− Pt F(y)| ≤ |F |γE
�

‖X t(x)− X t(y)‖
γ
H

�

≤ |F |γ

�

E

�

‖X t(x)− X t(y)‖
2α
β

H

��
βγ

2α

≤
C |F |γ‖x − y‖γH

t
γ

2

�

1+
‖x‖Hp

t
+
‖y‖Hp

t

�

βγ

α

,

where |F |γ is the γ-Hölder norm of F and C > 0 is a constant (independent of x , y, t, F).

Hence for any 0< γ≤ α2

α+β
, we have that

|Pt F(x)−µ(F)| ≤
C |F |γ

�

1+ ‖x‖γH
�

t
γ

2






1+

1+ ‖x‖
βγ

α

H

t
βγ

2α






, x ∈ H, t > 0,

where F is any γ-Hölder continuous function.

3 Applications

In order to verify (A2) for concrete examples of stochastic evolution equations, we first recall the
following inequality in Hilbert space proved in [15].

Lemma 3.1. Let (H, 〈·, ·〉,‖ · ‖) be a Hilbert space, then for any 0< r ≤ 1 we have

〈‖a‖r−1a−‖b‖r−1 b, a− b〉 ≥ r‖a− b‖2 (‖a‖ ∨ ‖b‖)r−1 , a, b ∈ H. (10)
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The first example is the stochastic p-Laplace equation, which arises from geometry, plasma physics
and fluid dynamics etc (cf. [9, 15]). In particular, Ladyzenskaja suggests the p-Laplace equation
as a model for the motion of non-Newtonian fluids.
Let Λ be an open bounded domain in Rd with a sufficiently smooth boundary. We consider the
following Gelfand triple

V :=W 1,p
0 (Λ)⊆ H := L2(Λ)⊆ (W 1,p

0 (Λ))
∗

and the stochastic p-Laplace equation

dX t =
�

div(|∇X t |p−2∇X t)
�

d t + B dWt , X0 = x ∈ L2(Λ), (11)

where p ∈ (1∨ 2d
2+d

, 2), B is a Hilbert-Schmidt operator on L2(Λ) and {Wt} is a cylindrical Wiener
process on L2(Λ) w.r.t. a complete filtered probability space (Ω,F , {Ft},P).

Proposition 3.2. The Markov semigroup {Pt} associated with (11) has a unique invariant probability
measure.

proof. According to Theorem 1.4, we need to show (A1)-(A4) hold for (11). It is well known that
(11) satisfies (A1), (A3) and (A4) with α= p (cf. [15, 20]). Let us verify (A2) with β = 2− p.
By Lemma 3.1 and Hölder’s inequality we have

V ∗〈div(|∇v1|p−2∇v1)− div(|∇v2|p−2∇v2), v1 − v2〉V

=−
∫

Λ

�

|∇v1|p−2v1 − |∇v2|p−2v2

�

�

∇v1 −∇v2
�

dξ

≤− (p− 1)

∫

Λ

|∇v1 −∇v2|2
�

|∇v1|+ |∇v2|
�p−2 dξ

≤− (p− 1)
‖v1 − v2‖2

V
�∫

Λ
(|∇v1|+ |∇v2|)p dξ

�
2−p

p

≤− C
‖v1 − v2‖2

H

‖v1‖
2−p
V + ‖v2‖

2−p
V

, v1, v2 ∈ V,

where C > 0 is some constant derived from the Poincaré inequality used in last step.
Note that the embedding W 1,p

0 (Λ)⊆ L2(Λ) is compact, hence the conclusion follows from Theorem
1.4. Now the proof is complete.

Remark 3.3. In [6], Ciotir and the second named author show the convergence of solutions, corre-
sponding semigroups and invariant measures for stochastic p-Laplace equations as p → p0, where
p0 ∈ [1,2]. In their result (see [6, Theorem 1.5]) they assume that the transition semigroup of
(11) has a unique invariant measure for p0. From the above result we know that this assumption
always holds for p0 ∈ (1, 2] (since d = 1,2 is assumed in [6]). However, the uniqueness of invariant
measures in the limit case (i.e. p0 = 1) is still open.

The second example is the stochastic fast diffusion equation, which models diffusion in plasma
physics, curvature flows and self-organized criticality in sandpile models, e.g see [3, 4, 21] and
the references therein. We consider the following stochastic fast diffusion equation in an open
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bounded domain Λ of Rd with sufficiently smooth boundary (cf. [2, 18]):







dX t(ξ) = ∆
�

|X t(ξ)|r−1X t(ξ)
�

d t + B dWt , ξ ∈ Λ,

X t(ξ) = 0, ∀ξ ∈ ∂Λ,

X0(ξ) = x(ξ), ∀ξ ∈ Λ,

(12)

where r ∈ (0, 1), B is a Hilbert-Schmidt operator from L2(Λ) to W−1,2(Λ) and {Wt} is a standard
cylindrical Wiener process on L2(Λ) w.r.t. a complete filtered probability space (Ω,F , {Ft},P).
According to the classical Sobolev embedding theorem, if r > max{0, d−2

d+2
}, then the embedding

L r+1(Λ)⊆W−1,2(Λ) is compact. By using the following Gelfand triple

V := L r+1(Λ)⊆ H :=W−1,2(Λ)⊆
�

L r+1(Λ)
�∗

,

we can rewrite the stochastic fast diffusion equation (12) into the following form:

dX t =∆
�

|X t |r−1X t

�

d t + B dWt , X0 = x ∈ H. (13)

Proposition 3.4. If r ∈ (0 ∨ d−2
d+2

, 1), then the Markov semigroup {Pt} associated with (13) has a
unique invariant probability measure.

Proof. According to Theorem 1.4, we only need to show (A1)–(A4) hold for (13). It is easy to see
that (13) satisfies (A1), (A3) and (A4) with α = r + 1 (cf. [18, 2, 20]). We will show that (A2)
holds with β = 1− r.
Combining Lemma 3.1 with Hölder’s inequality, we get that

V ∗〈∆
�

|v1|r−1v1

�

−∆
�

|v2|r−1v2

�

, v1 − v2〉V

=−
∫

Λ

�

|v1|r−1v1 − |v2|r−1v2

�

�

v1 − v2
�

dξ

≤− r

∫

Λ

|v1 − v2|2
�

|v1|+ |v2|
�r−1 dξ

≤− r
‖v1 − v2‖2

L r+1

�∫

Λ
(|v1|+ |v2|)r+1 dξ

�
1−r
1+r

≤− C
‖v1 − v2‖2

H

‖v1‖1−r
V + ‖v2‖1−r

V

, v1, v2 ∈ L r+1(Λ),

where C > 0 is some constant derived from the Sobolev inequality used in last step.
Therefore, Pt has a unique invariant measure.

Remark 3.5. For more general existence results of invariant measures for stochastic fast diffusion
equations we refer to [2, 5, 18]. If the noise in (13) is non-degenerate, then the uniqueness of
invariant measures, some concentration property and heat kernel estimates has been established in
[18] by using Harnack inequality. In this paper, the uniqueness of invariant measures is established
without any non-degeneracy assumption on the noise, which answers the problem raised by Barbu
and Da Prato in [2] (see Remark 3.3 therein).
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