
Electronic Journal of Statistics
Vol. 15 (2021) 326–391
ISSN: 1935-7524
https://doi.org/10.1214/20-EJS1780

Finite-sample analysis of M-estimators

using self-concordance

Dmitrii M. Ostrovskii∗

University of Southern California
3650 McKlintock Avenue, Los Angeles, CA 90089, USA

e-mail: dostrovs@usc.edu

Francis Bach†

Inria Paris, SIERRA team
2 rue Simone Iff, 75012, Paris, France

e-mail: francis.bach@inria.fr

Abstract: The classical asymptotic theory for parametric M -estimators
guarantees that, in the limit of infinite sample size, the excess risk has a
chi-square type distribution, even in the misspecified case. We demonstrate
how self-concordance of the loss allows to characterize the critical sample
size sufficient to guarantee a chi-square type in-probability bound for the
excess risk. Specifically, we consider two classes of losses: (i) self-concordant
losses in the classical sense of Nesterov and Nemirovski, i.e., whose third
derivative is uniformly bounded with the 3/2 power of the second derivative;
(ii) pseudo self-concordant losses, for which the power is removed. These
classes contain losses corresponding to several generalized linear models,
including the logistic loss and pseudo-Huber losses.

Our basic result under minimal assumptions bounds the critical sample
size by O(d · deff), where d the parameter dimension and deff the effective
dimension that accounts for model misspecification. In contrast to the exist-
ing results, we only impose local assumptions that concern the population
risk minimizer θ∗. Namely, we assume that the calibrated predictors, i.e.,
predictors scaled by the square root of the second derivative of the loss,
is subgaussian at θ∗. Besides, for type-ii losses we require boundedness of
certain measure of curvature of the population risk at θ∗.

Our improved result bounds the critical sample size from above as

O(max{deff, d log d})
under slightly stronger assumptions. Namely, the local assumptions must
hold in the neighborhood of θ∗ given by the Dikin ellipsoid of the population
risk. Interestingly, we find that, for logistic regression with Gaussian design,
there is no actual restriction of conditions: the subgaussian parameter and
curvature measure remain near-constant over the Dikin ellipsoid. Finally, we
extend some of these results to �1-penalized estimators in high dimensions.
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1. Introduction and problem formulation

Recall the standard statistical learning setup: given a set Θ ⊆ R
d that parame-

trizes the space of possible hypotheses, and observing a random Z ∈ Z with
unknown distribution P , one would like to minimize the population risk L(θ) :=
E[�Z(θ)]. For each possible observation z of Z, the loss �z : Θ → R specifies
the cost of choosing θ under the outcome {Z = z}, and E[·] is the expectation
with respect to the distribution P . This distribution is assumed unknown, so
the population risk cannot be computed and minimized directly. Instead, one is
granted access to the sample (Z1, ..., Zn) of independent copies of Z, and uses

it to construct an estimate θ̂ of the population risk minimizer,

θ∗ ∈ Argmin
θ∈Θ

L(θ),

assuming that such a minimizer exists. As such, we can consider the empirical
distribution Pn – uniform probability measure supported on the sample – and
the empirical risk Ln(θ), defined as the observable counterpart of L(θ), namely,

Ln(θ) :=
1

n

n∑
i=1

�Zi(θ).

Ideally, we would like to have an estimator with small excess risk L(θ̂)−L(θ∗),
in probability or in expectation over the sample. Since for each fixed value θ of
the parameter, Ln(θ) is an unbiased estimate of L(θ) which converges to L(θ)
almost surely by the law of large numbers, a natural candidate estimator of θ∗
is the empirical risk minimizer (ERM), defined as

θ̂n ∈ Argmin
θ∈Θ

Ln(θ).

In this paper, we are concerned with establishing high-probability finite-sample
bounds on the excess risk L(θ̂n)− L(θ∗) of this estimator. The classical Fisher
theorem ([30]) implies the rescaled excess risk has a chi-square type limiting
behavior, under weak conditions, when n → ∞. When stated informally, our
goal in this paper is to characterize the critical sample size sufficient to enter the
this “asymptotic regime”, i.e., to guarantee a chi-square type high-probability
bound for the excess risk in finite sample. Elaborating on this goal in more detail
and stating our results would be impossible without first giving a brief overview
of the classical asymptotic theory. We give such overview in the next section.

1.1. Classical asymptotic theory

Our main focus in this paper is the setting where Ln(θ) is a negative log-
likelihood, that is �z(θ) = − log pθ(z) where pθ(·) is some probability density

supported on Z. In this case, θ̂n maximizes the likelihood of observing the
i.i.d. sample (Z1, ..., Zn) from Pθ ranging over a parametric family P = {Pθ, θ ∈



328 D. Ostrovskii and F. Bach

Θ}. In reality, P may or may not contain the actual data-generating distribu-
tion P . When P ∈ P, we say that the parametric model corresponding to P
is well-specified ; in this case, ERM becomes the maximum-likelihood estimator
(MLE). Otherwise, the model is calledmisspecified, and ERM can be regarded as
MLE under model misspecification, or quasi maximum likelihood estimator [62].
In this case, Pθ∗ corresponds to the “projection” of P onto the family P in the
sense of the Kullback-Leibler divergence, and the quasi MLE approximates Pθ∗

by replacing P with the empirical distribution Pn.

Our goal in this section is to give a brief overview of the main results of the
asymptotic theory of M -estimation. Most of them, see monographs [30, 24, 57,
10], rely on the local regularity assumptions about the loss, allowing for second-
order Taylor expansion of L(θ) around θ∗. In particular, it is assumed that L(θ)
is sufficiently smooth at θ∗, which is an interior point of Θ, so that the first-order
optimality condition for θ∗ reduces to ∇L(θ∗) = 0. Moreover, the Hessian

H := ∇2L(θ∗)

is assumed to be non-degenerate, i.e., H � 0. Finally, the empirical risk is
assumed to be three times continuously differentiable at θ∗, see, e.g., [30]. When
combined together, these assumptions allow to derive, as a starting point, the
local asymptotic normality of quasi MLE: when n → ∞ with fixed d,

√
nH1/2(θ̂n − θ∗) � N (0,H−1/2GH−1/2), (1)

where � denotes convergence in law, and G is the covariance matrix of the loss
gradient at θ∗ (also called Fisher’s information matrix):

G := E[∇�Z(θ∗)∇�Z(θ∗)
�].

Matrices G and H remain fixed as n grows. Hence, under mild regularity as-
sumptions,1 one also has that the variance of θ̂n decreases as O(1/n). Moreover,
in the well-specified case G = H, see, e.g., [6], which leads to Fisher’s theorem:

√
nH1/2(θ̂n − θ∗)�N (0, Id),

where Id is the identity matrix of size d. Thus, denoting ‖·‖J the norm linked to

positive semidefinite matrix J by ‖x‖J = ‖J1/2x‖2, we have n‖θ̂n − θ∗‖2H�χ2
d,

where χ2
d is the chi-square law with d degrees of freedom. The second-order

Taylor expansion of the average risk around θ∗ then allows to derive the same
asymptotic law for the scaled excess risk 2n[L(θ̂n)−L(θ∗)] – this result is known
as Wilks’ theorem. In turn, this implies (under mild regularity conditions) that

En[L(θ̂n)]− L(θ∗) =
d

2n
+ o(n−1), as n → ∞, (2)

1It suffices for ρn :=
√
n‖θ̂n‖2 to be uniformly integrable, i.e., limε→0 supn E[ρn1ρn≥ε] =

0. This is a very weak condition; see [26, Sec. 6.2] for stronger (but easier to verify) conditions.
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where En is the expectation over the product distribution P⊗n of (Z1, ..., Zn).
More precisely, by the standard chi-square deviation bounds (see e.g., [28,
Lemma 1]) one has that, with probability ≥ 1− δ,

L(θ̂n)− L(θ∗) =
(
√
d+

√
2 log(1/δ))2

2n
+ o(n−1). (3)

Finally, these O(d/n) asymptotic bounds can be extended to the general situa-
tion of misspecified models by introducing the effective dimension:

deff := E[‖∇�Z(θ∗)‖2H−1 ] = Tr(H−1/2GH−1/2).

Note that in a well-specified model, deff = d since G = H; moreover, in the
ill-specified case one can still have deff = O(d) “in favorable circumstances” –
we will consider one such situation, that of misspecified linear regression, later
on.2 The expected excess risk bound (2) then changes to

En[L(θ̂n)]− L(θ∗) =
deff
2n

+ o(n−1), (4)

and the corresponding in-probability bound (see again [28, Lemma 1]) is

L(θ̂n)− L(θ∗) =
deff(1 +

√
2 log(1/δ))2

2n
+ o(n−1). (�)

In fact, the main term in the right-hand side of (4) is the minimum possi-
ble asymptotic variance of any unbiased estimator; this result is known as the
Cramér-Rao bound.

For what goes next, it is important to note that the asymptotic approach can
be summarized as follows:

• First, the estimate is localized : ‖θ̂n − θ∗‖2H is upper-bounded with the
squared “natural” norm of the score, ‖∇Ln(θ∗)‖2H−1 , which can be con-
trolled by the central limit theorem.

• Then, using the second-order Taylor expansion of L(θ) around θ∗, similar

behavior is obtained for the excess risk L(θ̂n)− L(θ∗).

Paying tribute to the clarity and historical significance of the classical asymp-
totic theory, one should keep in mind that its operating regime n → ∞ with
fixed parameter dimension usually cannot be applied in the modern context.
The recent works [16, 5] extend the classical results to the asymptotic high-
dimensional regime d → ∞ with d = O(n), analyzing M -estimator as the fixed
point of the approximate message passing algorithm. However, existing analysis
of approximate message passing in finite samples is scarce: the only work we are
aware of is [48], which only considers fixed-design linear regression. Postponing
a more detailed review of related work to Section 7, let us briefly overview the
main approaches in finite-sample analysis.

2We can also have deff < d if we get “extremely lucky”. For example, consider the Gaussian
shift model y ∼ N (θ, 1), and let in reality y ∼ N (0, σ). Then deff = σ2 while d = 1.
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1.2. Finite-sample regime and empirical processes

This work has been motivated by the following question:

For what finite n the excess risk admits a chi-square type bound akin to (�)?

One rather general approach towards answering this question, i.e., addressing
the fully finite-sample regime, has been outlined in [49], and can be described
as follows. First, the parameter space Θ is divided into the local subset, given
as the intersection of Θ and the (unit-radius) Dikin ellipsoid of θ∗,

Θ1(θ∗) := {θ ∈ R
d : ‖θ − θ∗‖H ≤ 1}, (5)

and the complement subset Θ \ Θ1(θ∗). Then, the second step of the asymp-
totic approach is replaced with so-called quadratic bracketing: the excess risk is
“sandwiched” on Θ1(θ∗) between two quadratic forms which correspond to the
inflation and deflation of ‖θ−θ∗‖2H. On the other hand, the first step (localization

of the estimate) is done via the control of the event {θ̂n /∈ Θ1(θ∗)}, by bound-
ing the uniform deviations of the empirical risk Ln(θ) − Ln(θ∗) via advanced
tools from empirical process theory such as generic chaining [52]. This approach
is quite powerful, allowing to derive the counterparts of asymptotic results in
the non-asymptotic regime n ≥ cδ · deff , where the constant cδ only depends
on the desired confidence level 1 − δ. However, it requires rather strong global
assumptions on the pointwise deviations of the empirical risk process, which are
necessary to control its uniform deviations, see [49, Sections 2.2 and 4]. Close in
spirit to [49] are the techniques developed in [14] to study Gaussian approxima-
tion of the maxima of the sums of i.i.d. random variables. The main highlight
of [14] is the ability to handle the regime of exponentially large dimensionality,
with respect to the sample size, due to the special structure of the statistics un-
der study. However, much like in [49], the techniques of [14] rely on the advanced
machinery of empirical processes.

Meanwhile, in the special case of random-design least-squares, finite-sample
analysis is way simpler, and heavy-weight machinery of empirical processes is
not needed. In this case, the problem is reduced to the control of a single random
matrix, the sample covariance matrix of the design vector, which encapsulates
the second-order information about the risk. Our primal goal in this work is
to extend these ideas to a wider class of models with non-quadratic losses of
certain types, including the losses arising in conditional generalized linear models
and robust regression. For these classes of losses, one may carefully exploit
their regularity properties, which allows to avoid using the empirical processes
machinery – and the associated global conditions – when localizing the empirical
risk minimizer. Deferring further discussion of our contributions to Sec. 1.4 and
related work to Sec. 7, let us overview the case of least-squares.

1.3. Simple case: least-squares

An original approach introduced in [19] allows to obtain finite-sample excess
risk bounds in the setting of unconstrained least-squares linear regression with
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random design. Here, Θ = R
d, and the observations take the form Z = (X,Y )

where X ∈ R
d and Y ∈ R. The goal is to predict response Y as a linear

combination of design X with parameter θ ∈ R
d, and one takes �Z(θ) to be

�Z(θ) = 1
2σ2 (Y − X�θ)2. ERM then reduces to the ordinary least-squares es-

timator. Least-squares correspond to the implicit assumption that the resid-
ual ε = Y −X�θ∗ has Gaussian distribution ε ∼ N (0, σ2) with σ > 0, and is in-
dependent ofX, which allows to factor out the distribution ofX from the model.
Note that the rate O(d/n) translates to the well-known minimax rate O(dσ2/n)
for the mean square error E[(Y −X�θ)2]− σ2. Moreover, sometimes the Gaus-
sian assumption on ε can be relaxed, and the misspecified situation becomes
essentially as favorable as the well-specified one, at least from the asymptotic
point of view. Indeed, normalizing the noise to have unit variance, and using
that

∇�Z(θ∗) = εX and H = E[XX�],

we get deff = E[ε2‖H−1/2X‖2]. Hence, deff = d for any distribution of ε with
E[ε2] = 1, provided that ε and X are independent. Moreover, assuming that Y
and all one-dimensional marginals of X have finite fourth moment, i.e.,√

E[Y 4|X = x] ≤ κεE[Y
2|X = x], ∀x ∈ R

d,√
E[〈u,X〉4] ≤ κXE[〈u,X〉2], ∀u ∈ R

d,

we can bound deff as deff ≤ κX ·κε ·d. In other words, deff and d are comparable.
Now, the approach of [19] exploits the fact that L(θ) is a quadratic form,

L(θ)− L(θ∗) =
1
2‖θ − θ∗‖2H, (6)

and the empirical risk is a quadratic form corresponding toHn = 1
n

∑n
i=1 XiX

�
i :

Ln(θ)− Ln(θ∗) =
1
2‖θ − θ∗‖2Hn

+ 〈∇Ln(θ∗), θ − θ∗〉.

As such, the global curvature information about L(θ) is encapsulated in a sin-
gle matrix H, and we have at our disposal an unbiased estimate Hn of this
matrix. This observation allows to dramatically simplify the analysis: it suffices
to control the deviations of Hn from its expectation, which can be done using
the standard tools of random matrix theory. In particular, in [59], see also The-
orem A.2 in Appendix, it is shown that whenever X is K-subgaussian in all
directions, and

n � K4(d+ log(1/δ)), (7)

where symbol � hides a constant factor, with probability at least 1− δ it holds

1
2‖Δ‖2H ≤ ‖Δ‖2Hn

≤ 2‖Δ‖2H, ∀Δ ∈ R
d. (8)

In other words, the sample second-moment matrix Hn approximates H, up
to a constant factor, in the sense of the corresponding Mahalanobis distances
(in particular, Hn is non-degenerate whenever H is). This result can then be

exploited as follows: since ∇Ln(θ̂n) = 0, and Hn � 0,

‖θ̂n − θ∗‖2Hn
= ‖∇Ln(θ∗)‖2H−1

n
. (9)
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Using (8), this gives 1
2‖θ̂n − θ∗‖2H ≤ 2‖∇Ln(θ∗)‖2H−1 , which, via (6), results in

L(θ̂n)− L(θ∗) ≤ 2‖∇Ln(θ∗)‖2H−1 .

Finally, a non-asymptotic version of (�) is obtained by controlling the squared
norm ‖∇Ln(θ∗)‖2H−1 under light-tailed (say, subgaussian or subexponential)
assumptions on ∇�Z(θ∗) = εX, through standard concentration inequalities.
These light-tailed assumptions can further be relaxed to fourth-moment as-
sumption, using the generalized median-of-means estimator (see [21]). On the
other hand, it is much more challenging to get rid of the light-tailed assumption
on X, as obtaining covariance estimators with guarantees of the type (8) un-
der weak moment assumptions is by itself a non-trivial problem. Recently, this
problem has been addressed in [45], whose authors then proposed an estimator
for ridge and ridgeless regression with near-optimal high-probability guarantees
under heavy-tailed assumptions on X (see [45, Theorem 6.1]).3

The remarkable feature of the outlined analysis is that, as soon as the curva-
ture of L(θ), as given by H, is reliably estimated, the localization step is “auto-
matic” due to (9). The only requirement is for n to reach the lower bound (7),
so that one could relate the norms ‖ · ‖Hn and ‖ · ‖H. The crucial fact here
is that for the quadratic loss, the curvature information is global, i.e., is en-
coded in a single matrix. However, for more general losses this is not the case,
and there seems to be no direct way of extending the above argument. As dis-
cussed before, the known solution to the problem [49] involved localization of
the estimate, through the control of the global uniform deviations of Ln(θ), to
a neighborhood of θ∗ where a local quadratic approximation can be used; this
approach requires global assumptions on the pointwise deviations of Ln(θ). Yet,
we will show that in some other models beyond linear regression with quadratic
loss, the local analysis suffices to provide localization of the estimate, and the
complicated and opaque localization step using generic chaining, as in [49], can
be circumvented.

1.4. Contributions and outline

Our analysis applies to linear prediction models: observing a pair Z = (X,Y )
with X ∈ X ⊆ R

d and Y ∈ Y ⊆ R, one predicts Y through linear combina-
tion η = X�θ with θ ∈ Θ ⊆ R

d. Accordingly, we consider losses given by

�Z(θ) = �(Y,X�θ)

for some function � : Y ×R → R assumed to be sufficiently smooth in its second
argument. This subsumes regression (Y = R) and classification (Y = {0, 1}).
Moreover, we assume the ability to bound the third derivative of �(y, η) with
respect to η via the second derivative in two alternative ways, as will be detailed

3Another possibility is to use a rejection sampling argument similar to the one employed
in the proof of our Theorem 3.2. This, however, prohibits us from taking small values of the
confidence parameter δ, namely, those decreasing polynomially fast with min(d, n), cf. (31).
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in Section 2. Such self-concordance assumptions originate from [43], where they
were used in the context of interior-point methods; later on, they were modified
and used in the statistical analysis of logistic regression [2, 4]. We consider both
variants of self-concordance in our analysis, and show that the canonical self-
concordance assumption, introduced in [43], leads to somewhat better bounds
on the critical sample size than its modification suggested in [2] (see Sections 3–
4). In addition to self-concordance of the loss, we make some assumptions on the
local behavior of the gradient and Hessian of the empirical risk at the population
risk minimizer θ∗, or its neighbordhood given by the unit Dikin ellipsoid (5) of
the population risk at θ∗. To prove our main results (cf. Theorems 4.1–4.2), we
carefully combine these assumptions through a non-standard covering argument,
which allows us to control the uniform deviations of ∇2Ln(θ) from ∇2L(θ) over
the Dikin ellipsoid, and implies localization of the estimator. We mention once
again that global assumptions in the vein of [49] about the deviations of the
empirical risk, its gradient and Hessian can be avoided by using self-concordance.

Our framework includes random-design least-squares linear regression as a
baseline. However, as we show in Section 2, it is in fact much more general.
First, it encompasses some conditional generalized linear models with random
design. Here we find that both versions of self-concordance are related to natural
assumptions about the moments of Y , and discover several generalized linear
models amenable to our analysis, including logistic regression. Second, we can
address some common losses in robust estimation, which turn out to be pseudo
self-concordant in the sense of [2]. Moreover, we show how to slightly modify
these losses to make them canonically self-concordant, while preserving their
first- and second-order structure. According to our theory, this leads to the
improved statistical performance of the M -estimator, as characterized by the
sufficient sample size to reach the asymptotically optimal rate for the excess risk.

Our analysis carries out the following plan. First, the local assumptions allow
to make sure that starting from the certain sample size, the sample Hessian

Hn = ∇2Ln(θ∗)

approximates the true Hessian H = ∇2L(θ∗) up to a constant factor, completely
analogous to the case of least squares. After that, self-concordance comes at
play. First, using simple analytic arguments, we prove that with high probabil-
ity, ∇2Ln(θ) remains nearly constant in a Dikin ellipsoid of a smaller radius of
order O(1/

√
d), leading to a larger critical sample size than in the case of least-

squares. We then use these initial results to prove that under slightly stronger
– but still local – assumptions, ∇2Ln(θ) in fact remains constant in a constant-
radius Dikin ellipsoid, leading to the critical sample size comparable to that in
least-squares (cf. Theorems 4.1–4.2). This is done via a simple but somewhat
non-trivial covering argument, which might be of independent interest.

Let us now give a more detailed overview of the obtained results.

In Section 3, we show that for pseudo self-concordant losses [2], the asymp-
totically optimal (up to a costant factor) bound on the excess risk is guaranteed
when the sample size reaches O(ρ · d · deff) up to a logarithmic factor in 1/δ,
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where ρ is the local curvature parameter linking H and Σ := E[XX�] by

Σ � ρH.

Moreover, for canonically self-concordant losses in the sense of [43], the depen-
dency on ρ can be eliminated, and the critical sample size becomes O(d·deff). We
now give a simplified (and slightly vulgarized) formulation of these two results.

Theorem 1.1 (Simplified formulation of Theorems 3.1–3.2). Assume that �(y, ·)
is self-concordant, for any y, in the sense of Nesterov and Nemirovski [43], i.e.,

|�′′′η (y, η)| ≤ 2�′′η(y, η)
3/2, ∀η ∈ R, (10)

and that �′η(Y,X
�θ∗)X =: ∇�Z(θ∗) and �′′η(Y,X

�θ∗)
1/2X are subgaussian. Then

L(θ̂n)− L(θ∗) � ‖θ̂n − θ∗‖2H � ‖∇Ln(θ∗)‖2H−1 � deff log (e/δ)

n
(11)

with probability ≥ 1− δ, δ ∈ (0, 1), as long as

n � deff · d · log (ed/δ) , (12)

where �,� hide constants. Moreover, if the loss satisfies the modified assumption

|�′′′η (y, η)| ≤ �′′η(y, η), ∀η ∈ R (13)

instead of (10), X is as well subgaussian, and Σ � ρH, then (11) is valid once

n � ρ · deff · d · log (ed/δ) . (14)

While the only available generic upper bound on ρ is given by the inverse
of the global strong convexity modulus of the loss, and can be very large or
even infinite in the case of unbounded predictors, the actual value of ρ depends
on the data distribution, and is moderate when this distribution is not chosen
adversarially, as discussed in [4, Sections 3.1, 4.2] and in our Section 2.2. In this
vein, we show in Appendix D that ρ � 1 + ‖θ∗‖3Σ in logistic regression with
Gaussian design X ∼ N (0,Σ). Motivated by this result, we propose canonically
self-concordant losses for classification and robust regression in Section 2.1.

In Section 4, we obtain improved bounds for the critical sample size, scaling
near-linearly in the parameter dimension, under slightly stronger assumption
on the data distribution. Essentially, we now require that the calibrated design
X̃(θ) := [�′′(Y,X�θ)]1/2X, is subgaussian uniformly over θ in the set

Θr(θ∗) := {θ : ‖θ − θ∗‖H ≤ r} (15)

– the r-radius Dikin ellipsoid of the population risk at θ∗. Specifically, we re-
quire r = 1 for canonically self-concordant losses, and r = 1/

√
ρ for pseudo self-

concordant losses. This assumption is still local, and is not much more restrictive
in some practical situations: in Appendix D we show, informally, that in the case
of logistic regression with Gaussian design, the tails of X̃(θ) over θ ∈ Θ1/

√
ρ(θ∗)

are not heavier than those of X̃(θ∗) (see Proposition D.1). It allows to control
the uniform deviations of the empirical Hessians from their means on Θr(θ∗),
leading to the reduced sample size as per the following result.
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Theorem 1.2 (Simplified formulation of Theorems 4.1–4.2). In addition to the

premise of Theorem 1.2, assume that the vectors X̃(θ) := [�′′(Y,X�θ)]1/2X are
subgaussian for θ ∈ Θr(θ∗), cf. (15), with r = 1 in the case of (10) and r = 1/

√
ρ

in the case of (13). Then bounds (11) in Theorem 1.1 are valid once

n �
{

deff ∨ d log d under (10),

ρ · deff ∨ d log d under (13).
(16)

The main technical challenge when proving this result is the fact that, while
(pseudo) self-concordance of the population risk over Θr(θ∗) with appropriate r
follows from that of the loss function (by relating the directional derivatives

of L(θ) to the corresponding moments of X̃(θ)), this fails to hold for the em-
pirical risk. Hence, we cannot uniformly control its Hessians on Θr(θ∗) by sim-
ply integrating the directional third derivatives of the empirical risk. Instead,
such control is attained by observing that self-concordance of the losses suf-
fices to control Hessians in a smaller Dikin ellipsoid with radius O(1/dκ) for
some κ ≥ 1/2, and combining this observation with a somewhat non-standard
covering argument. We hypothesize that the bounds (16) are optimal up to
the log(d) factor, i.e., ERM cannot provably achieve the nonasymptotic version
of (�) in the regime where n is sublinear in deff or d. This hypothesis is motivated
by the observation that n � d is necessary to estimate the local norm ‖ · ‖H,
whereas n � deff is necessary to have ‖∇Ln(θ∗)‖H ≤ c, which, in turn, allows

to localize θ̂n near θ∗.
In Section 5, we extend some of the above results to the high-dimensional

setup. Specifically, we obtain analogues of Theorem 1.1 for �1-regularized M -
estimators, assuming that the optimal parameter θ∗ is s-sparse, the matrices G
andH are bounded in the operator norm, and the design is uncorrelated (the last
assumption can in principle be relaxed). In the case of pseudo self-concordant
losses (Theorem 5.1), we replace max(d, deff) with O(ρs log(d)), both in the
error rates and the minimal sample size requirements. Unfortunately, for canon-
ically self-concordant losses, we do not get the expected improvement by ρ (see
Theorem 5.2), and the bounds essentially remain the same as in the case of
pseudo self-concordance. This, however, is not surprising, since sparsity and �1-
regularization depend on the choice of the basis, and are not affine-invariant,
which prevents us from fully exploiting self-concordance in the analysis by forc-
ing to rely on the usual �1- and �2-norms instead of ‖ · ‖H. More detailed dis-
cussion of these results and their comparison with related work is deferred to
Section 5.

1.5. Notation

We write f � g or f = O(g) to state that f(·) ≤ Cg(·) for any admissible argu-
ments of f(·), g(·) and some constant C > 0; analogously for f � g or f = Ω(g).
Notation f ≈ g means f � g � f . [n] is the set of integers {1, 2, ..., n}. Through-
out, θ∗ is the unique minimizer of L(θ). Similarly, θ̂n is the minimizer of Ln(θ),
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which will be (provably) unique with high probability in all cases. Random
vectors are denoted with capital letters (such as Z), and matrices with bold
capital letters (such as A). Id is the d× d identity matrix. A� is the transpose
of A. For two square matrices A1,A2 of the same size, we write A1 ≺ A2

(resp., A1 � A2) when A2−A1 is positive (semi)definite. We denote with ‖ · ‖p
the �p-norm on R

d and the Schatten �p-norm of a matrix; in particular, ‖A‖2
is the Frobenius and ‖A‖∞ the operator norm. For A � 0, we define the semi-
norm ‖θ‖A := ‖A1/2θ‖2.

2. Assumptions and examples

Before introducing the assumptions, we remind that the loss �Z : Θ → R is
modeled as �Z(θ) = �(Y,X�θ) for some function �(y, η) on Y × R

(+), where Y
is a subset of R, and R

(+) is allowed to be either R or the ray R
+ of strictly

positive numbers, which allows to encompass the exponential response model
(cf. Section 2.1). We refer to both �Z(θ) and �(y, η) as the loss; which of the two
we mean is clear from context. The derivatives of �(y, η) are with respect to η.

2.1. Self-concordance assumptions

Let us introduce the assumptions related purely to the loss, rather than to the
data distribution. Our standing assumption, which we silently use later on, is
that the loss �z(·) is three times differentiable and convex on Θ for any z ∈ Z.

We first present the assumption of pseudo self-concordance, introduced in [2]
for the analysis of logistic regression. The reader may refer to [50, 55, 4] for the
uses of generalized self-concordance in the context of quasi-Newton algorithms.

Assumption SCa. For any y ∈ Y and η ∈ R
(+), the loss satisfies

|�′′′(y, η)| ≤ �′′(y, η).

We also consider the canonical self-concordance assumption first introduced
in [43] in the context of interior-point algorithms. The constant 2 is standard in
the literature, but can be replaced with arbitrary constant by rescaling the loss.

Assumption SCb. For any y ∈ Y and η ∈ R
(+), the loss satisfies

|�′′′(y, η)| ≤ 2[�′′(y, η)]3/2.

We now present some examples in which either of these assumptions is sat-
isfied.

2.1.1. Generalized linear models over canonical exponential family

In generalized linear models (GLM) with canonical link function ([37]), one has

�(y, η) = −yη + a(η)− b(y), (17)
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where the cumulant a(η) : R(+) → R normalizes −�(y, η) to be a log-likelihood:

a(η) = log

∫
Y
exp(yη + b(y)) dy.

With η = X�θ, we have a conditional GLM for Y given η = X�θ.
Note that the second and third derivatives of �(y, η) with respect to η coincide

with those of a(·), hence � satisfies the basic smoothness/convexity assumption
whenever a(·) is three times differentiable (as such, a(·) must be convex). More-
over, the cumulant derivatives correspond to the central moments of Y :

a′(η) = Eη[Y ], a′′(η) = Eη[(Y − Eη[Y ])2], a′′′(η) = Eη[(Y − Eη[Y ])3],

where Eη[·] is expectation with respect to the distribution with negative log-
likelihood given by (17). Hence, Assumption SCb states precisely that the
skewness of the model distribution is bounded by a constant uniformly over
η ∈ R

(+). This is the case in the exponential response GLM where Y ∼ Exp(η)
and a(η) = − log(η) defined on R

(+) = R
+.

On the other hand, Assumption SCa is satisfied whenever the third abso-
lute central moment of Y is uniformly bounded by the variance of Y , with-
out the 3/2 power. This is the case in Poisson regression: Y ∼ Poisson(λ)
with λ = exp(η); then b(y) = − log(y!) and a(η) = exp(η) so that a′′′(η) = a′′(η).
This model is appropriate for count data where the rate of arrival itself de-
pends multiplicatively on the canonical parameter η; see, e.g., [15]. Perhaps
most importantly, Assumption SCa is automatically satisfied in logistic regres-
sion in which Y = {0, 1}, and Y is modeled as a Bernoulli random variable
with Pη{Y = 1} = σ(η) where σ(η) = 1/(1 + e−η) is the sigmoid function. In
this case, a(η) = log(1+ eη), and one can verify that a′′′(η) = a′′(η)(1− 2σ(η)),
so Assumption SCa is satisfied since |σ(η)| < 1 for any η ∈ R. Another way to
see this is by looking at the cumulant and using that Y = {0, 1}:

|a′′′(η)| ≤ |Y − Eη[Y ]| · Eη[(Y − Eη[Y ])2] ≤ Eη[(Y − Eη[Y ])2] = a′′(η).

2.1.2. Robust estimation

Here, Y = R, and �(y, η) = ϕ(y − η) for some contrast ϕ : R → R, a func-
tion minimized in the origin and usually even. Crucially, ϕ(·) must be globally
Lipschitz-continuous, which guarantees robustness of the M -estimator, see [23].
On the other hand, from the statistical perspective, one can motivate contrasts
that are locally quadratic, i.e., such that ϕ′′(0) exists and is strictly positive, see,
e.g., [31].4 These considerations, along with some minimax optimality results,
lead to the Huber loss (see [22]):

ϕτ (t) =

{
t2/2, |t| ≤ τ,

τ t− τ2/2, |t| > τ.
(18)

4However, this condition is not necessary for the asymptotic normality of M -estimator.
For example, the sample median (ϕ(t) = |t|) in the model y = θ + ε ∈ R is asymptotically
normal provided that the density of ε does not vanish at 0.
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Fig 1. Left: self-concordant pseudo-Huber loss, cf. (21). Right: self-concordant analogue of
the logistic loss suitable for classification, cf. (22). Although our classification loss does not
upper-bound the 0-1 loss on R

+, it can be lower-bounded as Ω(− log(yη)) whenever yη > 0.

The Huber loss is parametrized by τ > 0, which allows to control the tradeoff be-
tween robustness and statistical performance. Indeed, on one hand, |ϕ′

τ (t)| ≤ τ
for any t ∈ R, and we make estimation more robust by decreasing τ ; on the
other hand, the variance of the corresponding M -estimator usually decreases
as τ . However, finite-sample statistical analysis of the Huber loss is complicated
by the fact that ϕ(t) is not C3-smooth. This is also unfavorable from the algorith-
mic perspective, as it complicates the analysis of Newton-type algorithms for the
computation of theM -estimator. These issues can be circumvented if one instead
uses pseudo-Huber losses, which retain the favorable properties of the Huber loss,
yet are C3-smooth. E.g., such are contrasts of the form ϕτ (t) = τ2ϕ(t/τ) with

ϕ(t) = log (cosh(t)) , ϕ(t) =
√

1 + t2 − 1. (19)

In both cases, the resulting φ′′
τ (·) satisfies φ′′

τ (0) = 1 for any τ > 0, and |ϕ′
τ (t)| ≤

τ for any t ∈ R. Moreover, simple algebra shows that both functions in (19)
satisfy Assumption SCa up to c = 3, whence |ϕ′′′

τ (t)| ≤ 3
τ φ

′′
τ (t). As such, our

theory is applicable to both these losses once they are properly renormalized.

2.1.3. Novel self-concordant losses

Here we construct a canonically self-concordant (up to a constant) pseudo-Huber
loss, and similarly, a canonically self-concordant loss suitable for classification
and similar to the logistic loss. This construction is motivated by the observa-
tion that our theory has a somewhat tighter guarantee on the critical sample
size (after which the fast rates occur) under the canonical self-concordance as-
sumption. (However, in practice the situation might be different as we explore
in Sec. 6.) The key idea in this construction is that self-concordance is preserved
under convex conjugation (see, e.g., [50, Prop. 6]), while at the same time one
can control the range of the function through the domain of its convex conjugate
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(see [47]). Namely, consider φ : (−1, 1) → R
+:

φ(u) = − log(1− u2)/2, (20)

that is, the negative log-barrier on [−1, 1] normalized by φ′′(0) = 1. Its convex
conjugate ϕ(t) can be explicitly computed:

ϕ(t) =
1

2

[√
1 + 4t2 − 1 + log

(√
1 + 4t2 − 1

2t2

)]
. (21)

Note that φ(·) is even, satisfies φ′′(0) = 1 and |φ′′′(u)| ≤ 2
√
2[φ′′(u)]3/2, since

both functions log(1 ± u) satisfy Assumption SCb. By simple calculations de-
tailed in Appendix C, ϕ(t) defined in (21) has all the same properties. On
the other hand, we have |ϕ′(t)| < 1 since φ(u) is a barrier on [−1, 1]. Thus,
ϕ(t) has all properties desired for a robust loss, and besides is canonically self-
concordant (albeit with constant 2

√
2 instead of 2). As illustrated in Figure 1,

the quality of approximating the Huber loss for the new loss is essentially as
good as for the commonly used pseudo-Huber losses (19). The new loss has
a rescaled version ϕτ (t) = τ2ϕ(t/τ), for which ϕ′′

τ (0) = 1, |ϕ′
τ (t)| ≤ τ , and

|ϕ′′′
τ (t)| ≤ (2/τ)[ϕ′′

τ (t)]
3/2.

Similarly, we can construct a self-concordant counterpart of the logistic loss
suited for classification. In this case, we take φ(u) = − log(u(1 + u))/2, the
normalized log-barrier of [−1, 0], whose convex conjugate is

φ∗(t) =
1

2

[
−1− t+

√
1 + t2 + log

(√
1 + t2 − 1

2t2

)]
.

The derivative of φ∗(·) must belong to (−1, 0), and is canonically self-concordant
(up to a constant) by the same reasoning as before. By rescaling and shifting
it, we obtain the loss

�(y, η) = 2 +
1

2 log 2

[
−1− yη +

√
1 + (yη)2 + log

(√
1 + (yη)2 − 1

2(yη)2

)]
(22)

which can be understood as a convex surrogate of the 0-1 loss similar to the
logistic loss, see Figure 1. However, this loss is negative for yη > 2.4, and
therefore does not globally upper-bound the 0-1 loss. Fortunately, its right
branch can be lower-bounded with Ω(− log(yη)), so the resulting “leakage” is
insignificant. On the other hand, this defect is unavoidable: one can show that a
canonically self-concordant function on R

+ cannot have a horizontal asymptote:
this would imply ϕ′′(t) →t→+∞ 0, contradicting Assumption SCb reformulated
as |([ϕ′′(t)]−1/2)′| ≤ 1. Finally, let us remark that the “leakage” effect can also
be quantified using the so-called calibration theory [7].

2.2. Distribution assumptions

Preliminaries We now introduce additional assumptions that ar e related to
the distribution of the design scaled by the derivatives of the loss at the true
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optimum θ∗. All these assumptions are fully local, i.e., they only concern the
true optimal point θ∗. We begin with the basic assumptions. First, we assume
the existence of the matrices

Σ := E[XX�], G := E[∇�Z(θ∗)∇�Z(θ∗)
�], H := E[∇2�Z(θ∗)];

Generally, Σ �= H (unless for least-squares), and G �= H (unless in a well-
specified model). Recall that E[∇�Z(θ∗)] = 0; as such, G is the covariance
matrix of ∇�Z(θ∗). For future reference we also note that, for any θ ∈ Θ, one
has

∇�Z(θ) = �′(Y,X�θ)X, ∇2�Z(θ) = �′′(Y,X�θ)XX�. (23)

We assume that X�θ ∈ R
(+) for any θ ∈ Θ and X ∈ X . This assumption is non-

trivial only when R
(+) = R

+ which is of interest in the exponential response
model. In this case, one can assume Θ ⊆ R

d
+ and X ⊆ R

d
+ where R

d
+ is the

positive orthant, or replace the pair (Rd
+,R

d
+) with other pairs of mutually dual

convex cones in R
d.

Following [59], we use the formalism of subgaussian, or ψ2-norms. The ψ2-
norm ‖ξ‖ψ2 of a random variable ξ ∈ R can be defined in a number of equivalent

ways (see Appendix A), e.g., as ‖ξ‖ψ2 := {σ > 0 : E[eξ
2/σ2

] ≤ e}. This definition
is extended to random vectors Z ∈ R

d in the standard way:

‖Z‖ψ2 := sup{‖〈Z, θ〉‖ψ2 : ‖θ‖2 ≤ 1}.

In other words, ‖Z‖ψ2 is the maximal ‖ · ‖ψ2-norm for all one-dimensional
marginals of Z. See Appendix A on more details on subgaussian random vari-
ables.

Assumption D0. The decorrelated design is subgaussian: it holds

‖Σ−1/2X‖ψ2 ≤ K0.

Assumption D0 is often satisfied with a constant K0 not depending on n or d.
For example, this is the case for zero-mean Gaussian design X ∼ N (0,Σ), or
design with independent Bernoulli components. Moreover, it can be shown that
affine transformation of the design X that satisfies Assumption D0 also satisfies
it, with at worst twice larger K0 (see Lemma A.5 in Appendix).

Assumption D1. The decorrelated loss gradient at θ∗ is subgaussian:

‖G−1/2∇�Z(θ∗)‖ψ2 ≤ K1.

Note that Assumption D1 can be reformulated in terms of the design vector
scaled by the loss derivative at θ∗ since ∇�Z(θ∗) = �′(Y,X�θ∗)X. Similarly, we
can consider the random vector

X̃ := [�′′(Y,X�θ∗)]
1/2X (24)

which we call the calibrated design. Note that X̃ is linked with H by E[X̃X̃�] =
H, cf. (23). As stated next, we assume that the calibrated design is subgaussian.
This allows to control the deviations of Hn using Theorem A.2 in Appendix.



Analysis of M-estimators using self-concordance 341

Assumption D2. The calibrated design X̃ := [�′′(Y,X�θ∗)]
1/2X satisfies

‖H−1/2X̃‖ψ2 ≤ K2.

Assumption D2 can be reformulated in terms of the loss Hessian ∇2�Z(θ∗)
due to (23). However, this formulation does not give new ideas, and we omit it.

Remark 2.1. The quantities K0, K1, K2 are necessarily bounded with some
absolute constant from below. This fact follows from the moment characteriza-
tion of the ψ2-norm (Item 2 of Lemma A.1 in Appendix), combined with the
bound (E|ξ|4)1/4 ≥ (E|ξ|2)1/2 for any random variable ξ ∈ R, and allows to
simplify the formulation of the subsequent results.

Remark 2.2. Assumptions D1–D2 are quite restrictive, even under Assump-
tion D0. In particular, in GLMs with canonical link function (cf. Section 2.1),

the calibrated design at point θ∗ is given by X̃(θ) = [a′′(X�θ)]1/2X where a(η)
is the cumulant function. The transform [a′′(X�θ)]1/2 that scales X along a

direction θ can be highly-non-linear, breaking subgaussianity for X̃(θ). For ex-
ample, Assumption D2 does not hold in Poisson regression. Another limita-
tion of our approach is that the constants K1,K2 in Assumptions D1–D2 can
depend on the magnitude of θ∗. In fact, for logistic regression with Gaussian
design X ∼ N (0,Σ), one has

K2 � log(1 + ‖θ∗‖Σ)
√
1 + ‖θ∗‖Σ.

This proof of this estimate (see Appendix D) is highly non-trivial, and relies on
the Gaussianity of X. We also show that

K1 � 1 + ‖θ∗‖3/2Σ

if the logistic model for Y |X is well-specified. This improves to K1 � 1+‖θ∗‖1/2Σ

if the subgaussian norm ‖ · ‖ψ2 is replaced with the subexponential norm ‖ · ‖ψ1

(see Appendix D and Section 3 for details). In other applications, one should
carefully verify Assumptions D1–D2, bounding the constants K1 and K2. This
can be a non-trivial task itself, especially when the distribution of X is unknown.

Finally, for pseudo self-concordant losses we need compatibility of Σ and H.

Assumption C. It holds Σ � ρH for some ρ < ∞.

Assumption C has already appeared in the statistical analysis of logistic
regression in [4]. Note that the simplest generic upper bound for ρ is

ρ ≤
(

inf
(y,η)∈Y×R(+)

�′′(y, η)

)−1

, (25)

and unless �′′(y, ·) is strictly convex on R
(+) (which is usually not the case),

this bound is vacuous. On the other hand, the infinum in (25) can be taken on
the subset of R(+) corresponding to possible values of X�θ∗, but such bound
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can still be very conservative: for example, it only gives ρ = O(eRD) in the
case of logistic regression with ‖X‖2 ≤ R a.s. and Θ = {θ ∈ R

d : ‖θ‖2 ≤ D}.
However, the actual value of ρ depends on the true distribution of the data,
and is usually much smaller, see, e.g., dicsussion in [4, Sections 3.1, 4.2] for
the case of logistic regression. For example, consider a “quasi well-specified”
robust regression model: �(Y,X�θ) = ϕ(Y −X�θ) with even contrast ϕ(·) and
unconstrained parameter. Suppose that the true distribution of Y is given by
Y = X�θ∗+ε, with ε being independent from X, zero-mean, and symmetrically
distributed. One can check that in this case, L(θ) is minimized at θ∗, and ρ =
1/E[ϕ′′(ε)]. On the other hand, the worst-case bounds on ρ can be enforced if the
data distribution is chosen adversarially. In particular, for logistic regression [18]
construct an adversarial distribution that enforces ρ = Ω(eRD) as long as n =
O(eRD).

3. Results under minimal assumptions

In this section, we present extensions of the asymptotic deviation bound (�)
to the finite-sample regime under minimal assumptions. We then refine these
results in Section 4, under a slightly strengthened version of Assumption D2,
through a more subtle analysis. In the proofs, we use some probabilistic tools
collected in Appendix A; in particular, we use deviation bounds for the quadratic
forms (Theorem A.1) and for sample covariance matrices (Theorem A.2) of
subgaussian vectors. We also use technical results on (pseudo) self-concordant
functions collected in Appendix B. Some of them appear to be new, and are of
independent interest. To improve readability, we defer the proofs to Appendix C.

Preliminaries In the results which we are about to present, there is a techni-
cal difficulty arising due to the unboundedness of the vectors X and X̃, cf. (24).5

To this end, we observe that, due to Assumptions D0 and D2, these vectors ad-
mit O(

√
d) high-probability bound on their norms – more precisely, the events

E0 :=
{
‖X‖Σ−1 � K0

√
d log (e/δ)

}
, E2 :=

{
‖X̃‖H−1 � K2

√
d log (e/δ)

}
hold with probability ≥ 1− δ, correspondingly, under Assumptions D0 and D2.
To exploit this fact, we replace the population risk L(θ) with the restricted risks:

LE0(θ) := E[�Z(θ)1 {X ∈ E0}]; LE2(θ) := E[�Z(θ)1{X̃ ∈ E2}], (26)

where we exclude from averaging the low-probability outcomes in which the
norms of X and X̃ are too large. Provided that δ is small enough, we can show
that ∇LE0(θ∗) ≈ ∇LE2(θ∗) ≈ 0 and ∇2LE0(θ∗) ≈ ∇2LE2(θ∗) ≈ ∇2L(θ∗), so
that the second-order structure of the population risk is preserved; at the same
time, we can now work with X and X̃ as if they were almost surely bounded.

We now present our basic result for M -estimators with self-concordant losses.

5This issue arises due to working with individual losses; as a result, it does not appear
in our refined results, presented in Section 4, in which we analyze the empirical risk “as a
whole”.
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Theorem 3.1. Let Assumptions SCa, D0, D1, D2, and C hold. Whenever

n � max
{
K4

2 (d+ log (1/δ)) , ρK2
0K

2
1deff d log (ed/δ)

}
, (27)

with probability at least 1− δ it holds

‖∇Ln(θ∗)‖2H−1 � K2
1deff log (e/δ)

n
, (28)

‖θ̂n − θ∗‖2H � ‖∇Ln(θ∗)‖2H−1 . (29)

Moreover, one has

LE0(θ̂n)− LE0(θ∗) � K2
1deff log (e/δ)

n
(30)

provided that

δ � min

⎧⎨⎩
(

1√
n log(edeff)

)1+1/ log(deff )

,

(
1

K2
2d log(ed)

)1+1/ log(d)
⎫⎬⎭ . (31)

The main message of Theorem 3.1 is that, under minimal assumptions, the
“quadratic” behavior of the population risk, as given by (28)–(30), is guaranteed
for sample sizes growing quadratically in parameter dimension – more precisely,
for n = Ω̃(ρ · d · deff), cf. the second bound in (27), where Ω̃ hides subgaussian
constants and the logarithmic factor in δ. Technically, the curvature parameter ρ
appears in (27) because of the “incorrect” power of the second derivative in
Assumption SCa as compared to power 3/2 in Assumption SCb. Indeed, for
canonically self-concordant losses, the factor ρK2

0 in the bound for the critical
sample size get replaced with K2

2 , and Assumptions C and D0 are not needed.

Theorem 3.2. Let Assumptions SCb, D1, D2 hold, and assume that δ satis-
fies (31). Then, (28)–(30) are satisfied, with LE2(·) instead of LE0(·), whenever

n � max
{
K4

2 (d+ log (1/δ)) , K2
1K

2
2deff d log (ed/δ)

}
. (32)

We also note that both of the above results include a technical condition (31)
that does not minimal violation probability δ. This condition is mild, as the
admissible δ depends polynomially on n and d. Moreover, this condition can be
dropped if one reinforces Assumption D0 (resp., D2) by assuming that Σ−1/2X

(resp., H−1/2X̃) is almost surely bounded. The corresponding modifications of
Theorems 3.1–3.2 are given in the arXiv version of this paper [44, Thms 3.1–3.2].

As we previously discussed (cf. Remark 2.2), the distribution assumptions D0–
D2, although local, are quite restrictive, as they assume light-tailed behavior.
Next we discuss how these assumptions can be relaxed.

Extension to heavy-tailed distributions To extend the results, we might
use the confidence-boosting technique based on a version of the multi-dimen-
sional sample median as proposed in [21]. This allows to completely get rid of
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Assumption D1, only assuming the existence of the covariance matrix G(θ∗). To
use the technique, one first divides the sample into k = log(e/δ) non-overlapping

subsamples, and computes the corresponding M -estimators θ̂(1), ..., θ̂(k) over
each subsample. Then, one aggregates them through [21, Algorithm 3], by using

dist(i)(θ) := ‖θ − θ̂(i)‖Ĥ(i) , Ĥ(i) := ∇2Ln(θ̂
(i))

as the random distance oracle related to θ̂(i). The final estimator is θ̂(̂i) with

î ∈ Argmin
i∈[k]

{
Median

[(
dist(j)(θ̂(i))

)
j∈[k]

]}
.

By Chebyshev’s inequality, each θ̂(i) admits a fixed-probability version of (28),
say, with δ = 2/3. On the other hand, for each i ∈ [k], one has

1
2H � ∇2Ln(θ̂

(i)) � 2H

with fixed probability. Indeed, 1
2L(θ∗) � Ln(θ∗) � 2L(θ∗) by the analysis

in Theorems 3.1–3.2. Then, our integration argument (cf. the proof of Lem-

mas B.1–B.3 in appendix) allows to relate Ln(θ∗) to Ln(θ̂
(i)) and results in

1
2Ln(θ∗) � Ln(θ̂

(i)) � 2Ln(θ∗). Finally, the estimators over different subsam-
ples are mutually independent. Thus, we can apply Theorem 11 of [21], which
finally yields (30).

A similar technique also allows to somewhat weaken Assumptions D0 and D2,
replacing the subgaussian norm ‖ · ‖ψ2 with the subexponential norm ‖ · ‖ψ1

at the expense of an extra logarithmic factor. (By definition, X ∈ R
d satis-

fies ‖X‖ψ1 ≤ K if for any u on the unit sphere one has (E[|〈X,u〉|p])1/p � Kp,
compared to K

√
p in the case of ‖ · ‖ψ2 , cf. Lemma A.1 in Appendix.) This can

be done by replacing Theorem A.2 (high-probability bound for subgaussian dis-
tributions) with [59, Theorem 5.48] (fixed-probability bound for subexponential

distributions), controlling E[maxi∈[n] ‖Xi‖2H] and E[maxi∈[n] ‖X̃i‖2H] via Bern-
stein’s inequality (Theorem A.1 in Appendix). However, this technique is limited

to subexponential distributions of X and X̃ as required by [59, Theorem 5.48].
On the other hand, replacing Assumptions D0 and D2 with finite-moment

assumptions (ideally, finite kurtoses of vectors X and X̃) is challenging. First of

all, sample covariance estimators Σ̂ and Ĥ would have to be replaced by some
estimators Σ̄ and H̄ that admit affine-invariant bounds of the form

1
2Σ � Σ̄ � 2Σ, 1

2H � H̄ � 2H (33)

with high probability, under the existence of only finite moments (ideally, the

fourth moment) of X and X̃ in any direction. Such estimators were recently
obtained in [45] based on the iterative appication of the truncated covariance
estimator analyzed in [61]. Computing such an estimator on the hold-out sample
would allow to get rid of Assumption D0 in Theorem 3.1. However, this technique
by itself does not allow relax Assumption D2, note first that we do not know the
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true minimizer θ∗, and hence cannot directly compute the robust estimator H̄.
A possible remedy, leading to the extension of Theorems 3.1–3.2, is to apply
an approximation technique on top of the affine-invariant covariance estimator,
similarly to the one used below to prove Theorems 4.1–4.2 with improved critical
sample size. As we will discuss in the end of Section 4, this would allow to get rid
of Assumptions D0 and D2 in Theorems 3.1–3.2 but not in Theorems 4.1–4.2.

4. Improved results: near-linear critical sample size

As we demonstrate next, the previously obtained bounds on the critical sample
size can be improved: essentially, the product of deff and d can be replaced with
their maximum. This requires to slightly strengthen Assumption D2 as follows.

Assumption D2∗. The calibrated design X̃(θ) := [�′′(Y,X�θ)]1/2X satisfies

‖H(θ)−1/2X̃(θ)‖ψ2 ≤ K̄2(r),

where H(θ) = E[X̃(θ)X̃(θ)�], for any θ in the Dikin ellipsoid Θr(θ∗) given by

Θr(θ∗) := {θ ∈ R
d : ‖θ − θ∗‖H(θ∗) ≤ r}.

Note that Assumption D2 corresponds to Assumption D2∗ with r = 0, the
correspondence being given by K2 = K̄2(0). On the other hand, the strength-
ened assumption is still local, i.e., it only concerns the points r-close to θ∗, in the
local Hessian metric, rather than in the whole domain Θ. With the new assump-
tion at hand, we now state the improved result for canonically self-concordant
losses.

Theorem 4.1. Assume SCb, D1, and D2∗ with r � 1. Then, (28), (29) and

L(θ̂n)− L(θ∗) � K2
1deff log (e/δ)

n
(34)

hold as long as

n � max
{
K̄4

2 (r)d log (ed/δ) , K
2
1K̄

6
2 (r)deff log (e/δ)

}
. (35)

Let us briefly explain the key ideas behind this result. First of all, recall that
the extra factor d in the bound of Theorem 3.2 appears because self-concordance
of the individual losses only allows to obtain a second-order approximation of
the empirical risk in a small Dikin ellipsoid with radius O(1/

√
d), due to the

fact that ‖X̃‖H−1 = Ω(
√
d) with high probability. This second-order approxi-

mation then allows to localize the estimate as soon as ‖∇Ln(θ∗)‖H−1 becomes
smaller than the radius of the ellipsoid in which such an approximation holds,
cf. the proof of Proposition B.3. Hence, the extra factor d would be eliminated
if we managed to provide a second-order Taylor approximation of Ln(θ) in the
constant-radius Dikin ellipsoid Θc(θ∗). The immediately arising difficulty is that
unlike the individual losses, the empirical risk is not self-concordant, hence, the
desired Taylor approximation cannot be obtained purely by integration. In-
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Fig 2. The crucial step in the proof of Theorem 4.1 is to establish the high-probability
bound 1

2
H(θ∗) � Hn(θ) � 2H(θ∗) uniformly over the constant-radius Dikin ellipsoid Θc(θ∗)

(in green). Using Assumption D2∗, we first prove that 1
2
H(θ∗) � H(θ) � 2H(θ∗) for any θ ∈

Θc(θ∗). On the other hand, self-concordance of individual losses provides a constant-order
approximation of Hn(·) within a smaller ellipsoid with radius O(1/dγ), for some γ ≥ 1/2,
around θ. As such, the problem is reduced to the control of the uniform deviations of Hn(θ)
from H(θ) for θ ∈ Nε, where Nε is the epsilon-net of Θ1(θ∗) with respect to the norm ‖·‖H(θ∗)
with ε = O(1/dγ). This is done by using Theorem A.2.

stead, we conduct a somewhat non-standard argument (see Figure 2) which
combines (i) self-concordance of the population risk following from Assump-
tion D2∗; (ii) self-concordance of the individual losses; (iii) a covering argument
in which ellipsoid Θc(θ∗) is covered with small ellipsoids with radius O(1/dγ)
for some γ ≥ 1/2. In particular, we choose γ = 2: this simplifies the calculations
in the final step of the proof without breaking (35) since dγ enters the analysis
under logarithm, when bounding covering numbers.

Next we present a counterpart of Theorem 4.1 for pseudo self-concordant
losses. As one might expect, the bound on the critical sample size degrades
by ρ.

Theorem 4.2. Assume SCa, D0, D1, C, and D2∗ with r � 1/
√
ρ. Then, (28),

(29) and (34) hold as long as

n � max
{
K̄4

2 (r)d log (ed/δ) , ρK
2
0K

2
1K̄

4
2 (r)deff log (e/δ)

}
. (36)

The two results above merit some discussion.
First, note that, in the case of pseudo self-concordance, the radius of the

Dikin ellipsoid in which Assumption D2∗ is required to hold is
√
ρ times smaller
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than in the case of canonical self-concordance. As it will become clear from
the proof of Theorem 4.2, this deflation is related to the fact that we cannot
control the Hessians of L(θ) over Dikin ellipsoids with a larger radius, even when
Assumption D2∗ holds on such an ellipsoid. On the other hand, decreasing the
radius r of the Dikin ellipsoid allows to control K̄2(r): as we show in Appendix D,
in logistic regression with Gaussian design X ∼ N (0,Σ), one has

K̄2
2 (r) � K̄2

2 (0) + r
√
ρ.

Thus Assumption D2∗ with r = 1/
√
ρ is essentially equivalent to Assump-

tion D2.
Second, note that the second threshold in (35) has an extra K̄4

2 (r) factor
compared to that in (32) if we do not distinguish between K̄2(r) and K2 =
K̄2(0), and similarly when comparing (36) and (27). This can be a substantial
difference since K2 and K̄2(r) can both depend on the norm of θ∗. In fact,
in Appendix D (Proposition D.1) we show, by a technical calculation, that in
logistic regression with X ∼ N (0,Σ) one has

ρ � (1 + ‖θ∗‖Σ)3,

this bound being tight, while the bound on K̄2(1/
√
ρ) is

K̄2(1/
√
ρ) �

√
1 + ‖θ∗‖Σ

up to a logarithmic factor. Thus, K̄4
2 (1/

√
ρ) can potentially be as large as ρ2/3.

On the other hand, when the distribution of X̃(θ) is log-concave and centrally
symmetric at any θ ∈ Θr(θ∗), the factor K̄

4
2 (r) can be eliminated. This amounts

to using the improved relation between the third and second moments of the
marginals of H(θ)−1/2X̃(θ) in step 1o of the analysis in Theorems 4.1–4.2:

E[|〈H(θ)−1/2X̃(θ), u〉|3| ≤ 7(E[〈u,H(θ)−1/2X̃(θ), u〉2])3/2,

as follows from [11, Lem. 2] by simple algebra, using log-concavity of

H(θ)−
1
2 X̃(θ).

Extending Theorems 4.1–4.2 to heavy-tailed distributions One fact
playing the key role in the proofs of the last two theorems is that in the bound

K2(d+ log(e/δ)) (37)

for the sample complexity of estimating a single covariance matrix, the confi-
dence term log(1/δ) is additive with d. This allows to take the union bound over
an exponential in d number of events correponding to the centers of the epsilon
net, while still preserving a near-linear in d sample complexity.

As discussed in Section 3, the main technical challenge when trying to ex-
tend our results to heavy-tailed distributions is posed by Assumption D2, which
for Theorems 4.1–4.2 gets strengthened to Assumption D2∗. To get rid of it,
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one could replace the empirical Hessians Ĥ(θ) by some estimator H̄(θ) that
estimates H(θ) with high confidence in the positive-semidefinite sense (cf. (33))
under weak moment assumptions. Given such estimators, we can essentially re-
peat the covering argument in the analysis of Theorems 4.1–4.2, replacing the
Hessian estimate in any θ ∈ Θr(θ∗) (with r = 1 or r = 1/

√
ρ) with the es-

timate H̄(θ′) in the closest center θ′ of the cover, and replacing empirical risk
minimization with a version of stochastic quasi-Newton algorithm with H̄(θ′) as
the Hessian oracle for H(θ). Unfortunately, the only known to us estimator that
provably satisfies a high-confidence affine-invariant bound under weak moment
assumptions is the one from [45], and its sample complexity scales as

K2d log(e/δ),

i.e., the confidence term enters multiplicatively with d. After taking the union
bound over dO(d) events, this bound becomes quadratic in d. While this is suf-
ficient to extend Theorems 3.1–3.2, the argument in Theorems 4.1–4.2 is de-
stroyed. Thus, extending the latter theorems, and obtaining near-linear sample
complexity, has to rely on �-type covariance estimation with additive confi-
dence, cf. (37). The closest in this direction is the recent work [40] which es-

tablishes a high-probability bound in the operator norm, ‖Σ̂ − Σ‖ ≤ c‖Σ‖,
holding with probability ≥ 1− δ when n ≥ C(κ)[r(Σ) + log(1/δ)], where C(κ)
is a constant depending only on the kurtosis, and r(Σ) := Tr(Σ)/‖Σ‖ ≤ d is
the effective rank. Unfortunately, it is challenging to apply this result in our
context, since the operator-norm bounds cannot be translated to �-type guar-
antees akin to (33) when the estimator is not affine-equivariant. Some progress
in this direction has recently been obtained in [45]; see also [45, Sec. 2.3] for the
detailed discussion.

5. High-dimensional setup

Our next goal is to extend the results obtained so far to the high-dimensional set-
ting. Namely, we assume that Θ = R

d with d � n, and that the optimal param-
eter θ∗ is sparse, i.e., the number of non-zero components of θ∗ is at most s � d.
Note that if the support S of θ∗ was known, a reasonable estimator could be
obtained by replacing X with its projection XS on S, and minimizing the empir-
ical risk on S. As in the case of quadratic loss, and the classical Lasso estimator,
this would lead to the improvement over the results of Section 3–4: the ambient
dimension d would be replaced with s, and deff with the quantity Tr(H−1

S GS)
where GS = E[�′(Y,X�

S θ∗)XSX
�
S ] and HS = E[�′′(Y,X�

S θ∗)XSX
�
S ]. However,

in reality S is unknown, and the common recommendation is to use the �1-
penalized M -estimator, given by

θ̂λ,n ∈ Argmin
θ∈Rd

Ln(θ) + λ‖θ‖1. (38)

In the case of quadratic loss, it is well-known that the risk of the �1-penalized
estimator, when measured in terms of the �1-loss or the “prediction” loss corre-
sponding to the design covariance matrix, is within a logarithmic in d factor from
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the “ideal” risk of the projection oracle, provided that the penalization param-
eter λ is appropriately chosen, and the design is near-isotropic and subgaussian
– see, e.g., [54], [12], [9], [25]. While the statistical theory for the quadratic loss
is almost complete, this is not yet the case for general M -estimators. Here our
goal is to partially close this gap, providing analogues of Theorems 3.1 and 3.2
in the high-dimensional setting. These results extend those obtained in [2] for
the logistic loss using pseudo self-concordance, and are close to those proved
in [56]; we discuss the connections with these works in the end of this section.
Finally, notice that we do not prove analogues of Theorems 4.1–4.2, which would
have resulted in a near-linear, rather than quadratic, dependency of the critical
sample size from s. We leave such extensions for future work.

We now introduce the final assumption complimentary to Assumption C.

Assumption C∗. One has Σ = I. Moreover, for some κ1,κ2 > 0 it holds

G � κ1I, H � κ2I.

Together, Assumptions C and C∗ imply the bounds in operator norm:

‖G‖∞ ≤ κ1, ‖H‖∞ ≤ κ2, ‖H−1‖∞ ≥ 1/ρ.

Moreover, we can reasonably expect that in the ill-specified case, G � H, which
is a stronger version of the natural inequality deff ≥ d. When this is the case,
the eigenvalues of both H and G belong to the interval [ρ−1,κ] where κ :=
max(κ1,κ2). Then, the product

Q := ρκ

can be considered as the condition number of the estimation problem at hand.
In particular, we are about to see that the excess risk bounds, as well the bounds
for the critical sample size, get inflated by Q in the high-dimensional regime.
This reflects the requirement that the problem should be well-conditioned with
respect to the standard coordinate basis, since both �0-“norm” and �1-norm
depend on the choice of the basis. Some further remarks are given below.

• Similarly to the bound (25), we can always bound κ1 and κ2:

κ1 ≤ sup
(y,η)∈Y×R

|�′(y, η)|, κ2 ≤ sup
(y,η)∈Y×R

�′′(y, η).

Arguably, these bounds are more informative than the bound (25) for ρ,
as they involve the suprema of the loss derivatives (e.g., the right-hand
sides are constants for pseudo-Huber and logistic losses).

• Correlated designs can also be considered, but this would lead to the
inflation of the bounds by the condition number ofΣ. This is natural, as �1-
regularization fixes the basis, and the estimator is not affine-invariant.

The next result characterizes the statistical properties of the �1-penalized M -
estimator (38) with a canonically self-concordant loss, extending Theorem 3.1.
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Theorem 5.1. Assume SCa, D0, D1, D2, C, C∗, and |θ∗|0 ≤ s.

1. Whenever

n � max
{
ρκ2K

4
2s log (ed/δ) , ρ

2
κ1K

2
0K

2
1s

2 log (edn/δ)
}
, (39)

and the regularization parameter satisfies

K1

√
κ1 log(ed/δ)

n
� λ � 1

ρK0s
√
log(edn/δ)

, (40)

we have that with probability at least 1− δ,

‖θ̂λ,n − θ∗‖1 � ρsλ, ‖θ̂λ,n − θ∗‖2H � ρsλ2. (41)

2. Define E := {‖X‖∞ � K0

√
log (ed/δ)}. Then, P(E) ≥ 1−δ, and whenever

δ �
(

λ

K1

√
κ1 log(ed)

)1+ 1
log(d)

,

the restricted risk LE(θ) := E[�Z(θ)1E(X)] w.p. at least 1− δ satisfies

LE(θ̂λ,n)− LE(θ∗) � ρsλ2. (42)

Clearly, the right choice of λ is the one attaining the lower bound in (40):

λ ≈ K1

√
κ1 log(ed/δ)

n

This choice is always possible since the left-hand side in (40) is upper-bounded
with the right-hand side due to the second bound in (39). With such λ, both the

prediction error and the (restricted) excess risk LE(θ̂λ,n)− LE(θ∗) are at most

O

(
Qs log(ed/δ)

n

)
whenever n � max(Qs, ρQs2) log(ed/δ), ignoring the dependence on the sub-
gaussian constants. Thus, in the case of pseudo self-concordant losses, d and deff
both get replaced with s, at the expense of extra O(Q log d) factor in the bounds.

Next we state a version of Theorem 5.1 for canonically self-concordant losses.

Theorem 5.2. Assume SCb, D1, D2, C, C∗, and |θ∗|0 ≤ s.

1. Whenever

n � max
{
ρκ2K

4
2s log (ed/δ) , ρ

2
κ1κ2K

2
1K

2
2s

2 log (edn/δ)
}

(43)

and the regularization parameter satisfies

K1

√
κ1 log(ed/δ)

n
� λ � 1

ρK2s
√
κ2 log(edn/δ)

, (44)

we have that with probability at least 1− δ,

‖θ̂λ,n − θ∗‖1 � ρsλ, ‖θ̂λ,n − θ∗‖2H � ρsλ2. (45)
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2. The event E := {‖X̃‖∞ � K2

√
κ2 log (ed/δ)} satisfies P(E) ≥ 1 − δ.

Moreover, whenever

δ �
(

λ

K1

√
κ1 log(ed)

)1+ 1
log(d)

,

the restricted risk LE(θ) := E[�Z(θ)1E(X)] w.p. at least 1− δ satisfies

LE(θ̂λ,n)− LE(θ∗) � ρsλ2. (46)

Comparison of Theorems 5.1 and 5.2 The usual gain of ρ that we have
observed so far for canonically viz. pseudo self-concordant losses is not preserved
in �1-regularized estimators. Instead, the second bound in (39) and the upper
bound in (40) get inflated with κ2, and the critical sample size, given the “ideal”
choice of the regularization parameter corresponding to the lower bound in (44),
becomes n � max(Qs, Q2s2) log(ed/δ). Essentially, the reason for that is that
�1-regularization does not “know” anything about the matrices H and Hn,
and, in a sense, violates the affine-invariant structure of the proofs for non-
regularized M -estimators. This seems to be a fundamental problem with �1-
regularization, rather than the artifacts of our proofs, since �1-regularized M -
estimators are themselves not affine-invariant. As such, we believe the additional
factors of Q and Q2 to be unimprovable in the high-dimensional setup without
further assumptions.

Comparison with prior work Theorem 5.1 extends the result of [2, Theo-
rem 5] for logistic regression with fixed design, obtained using the pseudo self-
concordance of the logistic loss. While the established error bounds are similar,
our results have important novelties. First, we analyze the random-design set-
ting, whereas [2] assumes fixed design. Second, the result of [2] requires larger
sample size, scaling with the product of s and R2 where R is an upper bound
on ‖X‖2. Typically, R scales as Ω(

√
d) (e.g., this is the case where the design is

pre-generated by sampling from a subgaussian distribution), thus [2] essentially
proves the bound O(sd) for the critical sample size.

On the other hand, our results can be compared to those in [56] who establish
the rate O(λs) for the �1-error and O(λ2s) for the prediction error (see their
Theorems 5.2 and 7.3), addressing a larger class of models including GLMs with
non-canonical link functions, and general convex robust losses. However, in order
to control the precision of the local quadratic approximations of the risk, the
authors of [56] assume that �′′(Y,X�θ∗) is bounded from below (Conditions A4
and B), which can only be guaranteed by assuming that θ∗ is bounded in �1-
norm. Thus, their results do not address the case of unbounded parameter.
Remarkably, these results have a similar requirement for the sample size to
scale as Ω(s2 log d).

Remark 5.1. In the proofs of Theorems 5.1–5.2, matrices H and Hn only in-
teract with residual Δ which with high probability satisfies the restricted subspace
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condition (105). Hence, we can strengthen the result, replacing Assumption C
and the inequality H � κ2I in Assumption C∗ with the requirement that

‖Δ‖22/ρ ≤ ‖Δ‖2H ≤ κ2‖Δ‖22

in the case where Δ ∈ R
d is approximately sparse, i.e., satisfies ‖Δ− [Δ]s‖1 ≤

3‖[Δ]s‖1, where [Δ]s is the projection of Δ to the span of its s largest coor-
dinates. This observation can be exploited to accelerate computation of the es-
timator (38) when using proximal Newton-type methods (see [29]) via Hessian
sketching, i.e., by replacing the estimates Hn(θ) with the estimates Hm(θ) :=
1
m

∑m
j=1 X̃j(θ)X̃j(θ)

� computed from a small subsample.

We defer discussion of further related work on �1-regularized M -estimators
to Sec. 7.

6. Numerical experiments

We now present two numerical experiments that illustrate our theoretical re-
sults.6

Critical sample size grows linearly with model dimensionality Here
the point is to illustrate the results in Section 4, namely Theorems 4.1–4.2.
Recall that, in a nutshell, these results state that the fast O(d/n) rate for
the excess risk becomes available starting from the critical sample size which
is O(deff ∨d), where O(·) hides factors depending on the distribution-dependent
constants K0,K1, K̄2, ρ arising in Assumptions D0, D1, D2∗, and C. In our first
experiment (see Fig. 3), we empirically demonstrate that the critical sample
size indeed scales linearly with the parameter dimension. For growing sample
size n = 10k, k ∈ [1, 3], we generate an i.i.d. sample (Xi, Yi)

n
i=1 with standard

Gaussian design Xi ∼ N (0, Id) and conditional distribution of the (binary) label
given by P[Yi = 1] = 1/(1 + exp(−X�

i θ∗)) (i.e., such that the logistic model is
well-specified) or by P[Yi = 1] = 1−φ(X�θ∗), where φ(·) is the standard Gaus-
sian c.d.f., which corresponds to the probit regression. Thus, the logistic model
for Y |X is well-specified in the second case We take θ∗ = 1d/

√
d (thus ‖θ∗‖2 = 1)

and consider the following three quantities for d ∈ {8, 16, 32, 64}:

1. Excess risk L(θ̂n) − L(θ∗) of the logistic regression estimator, i.e., for
the M -estimator with the logistic loss �(y, η) = log(1 + eη)− yη.

2. Excess risk LSC(θ̂SCn )−LSC(θSC∗ ) for theM -estimator with loss (22) – canon-
ically self-concordant analogue of the logistic loss proposed in Sec. 2.1.
Here LSC(θ) := E[�SC(Y,X�θ)] with �SC(y, η) given by (22); θSC∗ mini-
mizes LSC(θ) and might be different from θ∗. Note that �

SC(y, ·) and �(y, ·)
have the same second-order Taylor expansion around η = 0 (see Fig. 1).

3. Excess risk L(θ̂SCn )− L(θ∗) that evaluates θ̂
SC
n as a surrogate estimator.

6All our codes are available online at http://github.com/ostrodmit/self-concordant.

http://github.com/ostrodmit/self-concordant
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In all three cases, we approximate the excess risk via a test sample with N = 104

observations, and we compute θSC∗ by running fmincon optimization routine in
Matlab (we use the constraint ‖θ‖2 ≤ 2 to avoid numerical instabilities). Then,
for each value of d and the three notion of excess risk, we plot the excess risk
against the sample size in the log10 − log10 scale. The experiment is repeated T =
800 times, and the averaged curve is then plotted along with a 3σ-confidence
interval.

The results are shown in Fig. 3. We can distinctively see the elbow effect: the
initial slow convergence rate (slope around −1/2 on the log-log scale) changes
to the fast rate (slope −1) for larger sample size. This is observed for all three
curves, all values of d, and both conditional distributions of Y .

• For the logistic distribution, θ̂n outperforms θ̂SCn in the fast rate zone (i.e.,
with sample sizes above the critical level) in terms of their corresponding

“native” risks as well as the logistic risk. This is expected: while θ̂n is
well-specified, estimator θ̂SCn has to pay for model misspecification, and
its excess risk depends on deff rather than d (cf. (34) in Theorem (4.1)).

Meanwhile, for smaller sample sizes LSC(θ̂SCn ) − LSC(θSC∗ ) is smaller than
the other two excess risks. This seems to be simply due to �SC(y, η) being
smaller than �(y, η) away from η = 0 (cf. Fig. 1).

• In the case of probit distribution, both estimators are misspecified, and
turn out to have very close performance in terms of all three excess risks.

Finally, and most importantly, we see that the “elbow” on the curves moves to
the right in (roughly) constant increments as we increase d geometrically. This
is what we expect: according to Theorems 4.2–4.1, the critical sample size grows
linearly with d or deff in the misspecified case (and here deff is itself linear in d).

Critical sample size growing as eRD for “hard” design distributions
Here we empirically investigate the dependency of constants K0,K1, K̄2, ρ from
the norm D = ‖θ∗‖Σ of the population risk minimizer. Recall that in Ap-
pendix D we provide polynomial bounds in the case of logistic regression with
Gaussian design. However, for certain (quite artificial) distributions of design
the dependency might be exponential as implied by the results of [18]. In this
experiment, we consider the adversarial distribution proposed in [18, Sec. 3.2],
in which X ∈ R

2 is supported on three points with carefully chosen probabil-
ities (see [18, Figs. 3-4]) and Y ≡ 1. The authors prove the Ω(1/

√
n) lower

bound (and hence the absence of fast rate) for the excess risk long as n � eRD,
where R = ‖X‖Σ−1 . We empirically discover a similar phenomenon for the self-
concordant loss (22). To this end, we follow a similar protocol as in the previous
experiment but generate the pairs (Xi, Yi) according to the distribution in [18]
and linearly increase D while fixing d = 2. The experiment is repeated T = 1600
times for sample sizes n ∈ [101, 104], and the population risk is approximated via
a test sample with size N = 5 · 104. We then plot the same three dependencies
as in the previous experiment (again in the log-log scale) for D ∈ {1, 3, 5, 7}.

The results are presented in Fig. 4. For small sample sizes the curves oscillate,
which seems to be due to the special low-dimensional structure of the design
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Fig 3. The comparison of two M-estimators: with the logistic loss (estimator θ̂n) and its

canonically self-concordant analogue (22) (estimator θ̂SCn ) in the first experiment. “Logis-
tic”, “self-conc” and “calibrated” correspond to the three notions of excess risk: the “native”
risks for θ̂n, θ̂SCn and the “transfer” risk for θ̂SCn with logistic loss (see p. 30 for more details).
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Fig 4. The comparison of M-estimators θ̂n, θ̂SCn in the second experiment, using the adversar-
ial data distribution from [18] (see p. 31 for more details). “Logistic”, “self-conc” and “cal-
ibrated” correspond to the same three notions of excess risk as in the first experiment (see
Fig. 3).

distribution. However, the upper envelope of the curve clearly exhibits the same
“elbow” effect as before: the slope changes from roughly −1/2 to −1 for large
sample sizes. Moreover, the horizontal location of the elbow moves in nearly
uniform increments as we change D linearly, precisely as expected from the
theory in [18]. We also note that the “transfer” risk L(θ̂SCn ) − L(θ∗) converges
to a non-zero value, which shows that θSC∗ �= θ∗ for the distribution considered
here.

7. Related work

Self-concordant analysis of logistic regression Our approach is inspired
by [2], and we reuse and extend some of their technical results in our Propo-
sitions B.3–B.4. However, our results and analysis are crucially different from
those in [2] in several ways. First, we address the random-design setting, whereas
in [2] the design is fixed. Second, [2] considers only pseudo self-concordant losses,
focusing on logistic regression, whereas we also provide results for canonically
self-concordant losses, and, crucially, compare the two cases. Third, we obtain
similar results for ill-specified models, whereas [2] only establishes a slow rate in
this case. Finally, and most importantly, while we use very similar tools to those
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in [2], the “core” of our analysis is more direct. Namely, [2] studies the mini-

mizer θ̂λ,n of the �2-penalized empirical risk with strictly positive regularization
parameter λ, and moreover, imposes some technical condition on the minimal
magnitude of λ, see their Eq. (13). Upon close inspection, this condition implies

n � ρ · df2λ, dfλ := Tr[H(H+ λI)−1], (47)

where the degrees of freedom parameter dfλ replaces d in the �2-penalized set-
ting. This, in turn, allows to carry out an argument analogous to ours, but apply-
ing Proposition B.4 to the regularized empirical risk. However, �2-penalization
makes the analysis much more involved, as it rests on the comparison of the
regularized risks, and accordingly, relates θ∗ and θ̂λ,n through the intermediate
point – the minimizer θλ of the regularized average risk. The extra condition
in [2], which makes this analysis possible, is non-trivial, and requires some fine
balance between the regularization parameter, sample size, and various types
of degrees of freedom and biases. We manage to circumvent these difficulties
for the plain ERM, including the ill-specified case, by realizing that the only
condition needed to carry out the argument based on self-concordance, in the
non-regularized case, is the sufficient sample size.

Self-concordant analysis and improper algorithms Another relevant
work is [3] which studies logistic regression with random design, but analyzes
an estimate computed by stochastic approximation with averaging. While this
estimator is more advantageous from the computational standpoint, the control
of the distance to the optimum is more involved (see [3, Proposition 7]) which
leads to the suboptimal risk bound

En[L(θ̂)]− L(θ∗) � R2(R4D4
0 + 1)

μn
, (48)

where μ is the minimal eigenvalue of H, R is an upper bound for ‖X‖2 and
supθ∈Θ ‖∇�Z(θ)‖2, and D0 := ‖θ0 − θ∗‖2 is the initial �2-distance from the op-
timum (in fact, if D0 is known up to a constant factor, R4D4

0 in (48) can be
replaced with R2D2

0). The bound (48) reflects the fact that gradient descent tra-
jectory is not affine-invariant, hence the distances are not “measured” in terms
of the natural norm ‖ · ‖H. For the natural gradient, that is, gradient descent
on the tranformed problem θ̃ = H1/2θ, factor μ would disappear from (48),
but R would be replaced with max(deff , ρ · d), and D0 with the initial predic-
tion distance ‖θ0 − θ∗‖H, which would lead to a bound scaling as the cube
of max(deff , ρd). The follow-up work [4] studies a version of the quasi-Newton
method, solving the quadratic subproblems via stochastic approximation. This
allows to conduct affine-invariant analysis of the outer loop, and results in

En[L(θ̂)]− L(θ∗) � ρ2(R4D4
0 + 1)max(deff , ρd)

n
(49)

whenever n � (R4D4
0 + 1). It should be noted that the curvature parame-

ter ρ that appears in these results, as well as in our results for pseudo self-
concordant losses, is problem-dependent. In particular, it depends on the true
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distribution P of the data, and can be very large if this distribution is cho-
sen adversarially. By constructing such an adversarial distribution, [18] prove a
lower bound Ω(

√
RD/n), i.e., for the excess risk of any algorithm, in logistic

regression in the finite-sample regime n = O(eRD). This implies that ρ grows
super-polynomially in RD for this distribution. Notably, the lower bound of [18]
is not applicable in the setting of improper prediction, where one is allowed to
estimate η∗ := X�θ∗ with any predictor η̂ : X �→ R, not necessarily with a
linear one. Making such an observation, [17] recently proposed an improper es-
timator which attains the excess risk O(d/n) up to logarithmic factors in RD, n,
and 1/δ. Their estimator reduces to Vovk’s Aggregating Algorithm [60] for on-
line convex optimization, combined with a simple “boosting the confidence”
scheme proposed in [38].

Non-parametric setup and �2-regularization After the arXiv preprint of
this work began circulating,7 our analysis was extended in [36] to M -estimators
with �2-regularization, including the case of infinite-dimensional parameter. The
reader might refer to [36] for an overview of related work in this direction. In a

nutshell, [36] proves asymptotically near-optimal bounds Õ(deff/n) on the “vari-

ance” term corresponding to the excess risk L(θ̂λ,n)−L(θλ), and the additional
“bias” term L(θλ) − L(θ), under condition (47), and without extra conditions
in the vein of those in [2]. Moreover, it is shown that the classical source and
capacity conditions [13], known to lead to faster non-parametric rates in ridge
regression, can be extended to M -estimators with self-concordant losses. How-
ever, [36] does not extend our improved results with near-linear sample size
(Theorems 4.1–4.2) to the �2-penalized case. We believe that such extension is
possible by replacing Theorem A.2 with a similar result for regularized covari-
ance matrices such as [27, Thm. 9]. This, however, would be of little practical
interest, since typically under source condition, dfλ is a constant depending only
on the rate of decay of the eigenvalues of H.

Quasi-Newton algorithms We also mention in passing that recently there
has been a surge of interest in stochastic quasi-Newton methods applied to the
finite-sum setting with self-concordant losses, see, e.g., [63], [65]. However, none
of these works establishes generalization bounds for the associated estimator. In
fact, such bounds have recently been established in the work [35] for a certain
(globally convergent) ad-hoc quasi-Newton scheme. These generalization bounds
are similar to those established in [36] for the exact ERM, with similar criticism.

Empirical processes The use of empirical processes in the context of para-
metric estimation was pioneered in [49], which has been one of the main inspi-
rations for our work. Apart from the technical difficulty in the proofs, our main
critique of [49] is the global conditions they impose – most importantly, they
require ∇Ln(θ) to be subgaussian uniformly over the whole parametric set Θ.
As can be seen from the proof of Proposition D.1 in Appendix D, verification of

7This happened in October 2018.
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such global conditions can be quite technical; moreover, such conditions can in
fact be way more restrictive than their local counterparts (see, e.g., the bounds
in Proposition D.1 which degrade drastically when ‖θ∗‖Σ � 1, and which are
sharp as can be seen from the analysis).

Recently we learned about the work [39] that applies empirical processes to
study constrained empirical risk minimization with smooth non-convex losses.
(Its preprint came out after that of our work.) Essentially, [39] proves that in
the regime n � d log d (resp. n � s log d in the high-dimensional setup), the
sample gradients Ln(θ) and Hessians ∇2Ln(θ) uniformly converge to their pop-
ulation counterparts, assuming that ∇Ln(θ) is subgaussian, and ∇2Ln(θ) is
subexponential on the whole domain Θ. This allows to establish correspondence
between the stationary points of L(·) and Ln(·). While the focus of [39] is dif-
ferent, we expect that one may also prove asymptotically optimal rates for the
excess risk in this regime, i.e., prove “local” analogues of our improved results
(cf. Section 4), by localizing a minimizer θ̂n to the unit Dikin ellipsoid of the
associated population risk minimizer θ∗.

8 However, [39] has the same limita-
tions as [49], requiring “global” conditions on the tails of ∇Ln(θ) and ∇2Ln(θ).
Similar criticism applies to the literature on �1-regularized M -estimators in high
dimensions ([56, 41, 31]); we discuss these results in more detail in Section 5.

Further related work on �1-regularized M-estimators Interestingly, [64]
showed that, in absense of restricted-eigenvalue (RE) type conditions imposed on
the (fixed) design matrix, decomposable regularizers only lead to slow O(1/

√
n)

rates, even with quadratic loss. Hence, the light-tailed design condition that we
impose appears to be necessary when �1-regularized M -estimators are consid-
ered.

Not directly relevant to our results here, we note that, whenever the com-
putational considerations are not important, the �1-regularization can perform
worse than other types of regularization. In fact, �0-regularized estimators are
known to achieve O(s/n) rate for the prediction error without RE-type condi-
tions (in the fixed-design setup) [64]. Moreover, there are other (non-convex)
penalties that have favorable statistical properties without incoherence, see,
e.g., [34, 33, 31, 32].

After the preprint of this work had been publicized, the statistical perfor-
mance of regularized M -estimators has been studied in the asymptotic regime
n, d → ∞ with d/n = c, including the “high-dimensional” case with c � 1 –
see [53, 51].

8. Conclusion

Our work sheds light on the mechanism behind the transition to the fast-
rate regime in M -estimators with smooth losses. Our analysis allows to deal
with M -estimators with losses satisfying self-concordance-type assumptions, in-
cluding logistic regression, other generalized linear models, and robust regres-

8This, however, would require restating their Assumptions 1-3 in affine-invariant manner.
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sion. Self-concordance assumptions allow to control the precision of the local
quadratic approximations of empirical risk. Simple analysis under minimal as-
sumptions leads to a fast-rate guarantee for large sample sizes – larger (in or-
der) than d · deff , where deff is the effective dimensionality of the parametric
model. However, a refined analysis under slightly stronger assumptions leads
to the O(max{deff , d log d}) sample size threshold. This is done through a com-
bination of self-concordance with a covering argument, allowing to control the
uniform deviations of the empirical risk Hessian in the Dikin ellipsoid around
the population risk minimizer. We also extend the analysis to �1-regularized M -
estimators in the high-dimensional regime. Finally, we verify the empirical per-
formance of a canonically self-concordant analogue of the logistic loss in numer-
ical experiments.
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Appendix A: Probabilistic tools

A.1. Subgaussian distributions

We recall the definition of subgaussian norm for random variables ξ ∈ R:

‖ξ‖ψ2 := inf
{
σ > 0 : E[eξ

2/σ2

] ≤ e
}
.

The lemma below provides equivalent definitions of the subgaussian norm.

Lemma A.1 ([59, Lemma 5.5]). There exists an absolute constant c > 0 such
that ‖ξ‖ψ2 ≤ σ is equivalent to either of the following:

1. Subgaussian tails: for any t ≥ 0, P {|ξ| > t} ≤ exp
(
1− ct2/σ2

)
.

2. Subgaussian moments: for any p ≥ 1, E[|ξ|p]1/p ≤ cσ
√
p.

Moreover, if E[ξ] = 0, each of these properties is equivalent to the moment bound

E exp(tξ) ≤ exp(cσ2t2).

Following [59], we define the ‖ · ‖ψ2-norm of a random vector as follows:

‖Z‖ψ2 := sup
θ∈Sd−1

‖〈Z, θ〉‖ψ2 , (50)

where Sd−1 is the unit sphere in R
d. Note that this is indeed a norm; in partic-

ular, it satisfies the triangle inequality: ‖Z1 +Z2‖ψ2 ≤ ‖Z1‖ψ2 + ‖Z2‖ψ2 for any
pair of random vectors Z1, Z2. Another elementary property is that ‖JZ‖ψ2 ≤
‖J‖∞‖Z‖ψ2 for arbitrary matrix J. Some well-known properties of subgaussian
random vectors are summarized in the following lemmas.

https://www.ams.org/mathscinet-getitem?mr=1629690
https://www.ams.org/mathscinet-getitem?mr=0640163
https://www.ams.org/mathscinet-getitem?mr=3622646
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Lemma A.2. Let the components of Z ∈ R
d satisfy ‖Zi‖ψ2 ≤ K, i ∈ [d]. Then,

with probability at least 1− δ,

‖Z‖∞ � K
√
log(ed/δ).

Proof. The claim follows from Item 1 of Lemma A.1 by the union bound. �
Next we give a bound for the p-th moment of ‖Z‖∞. Although this bound is

loose for any fixed p, we only use it in the regime p ≈ log d where it is tight.9

Lemma A.3. In the assumptions of the previous lemma, for any p ≥ 1 it holds

E[‖Z‖p∞]1/p � Kd1/p
√
p.

Proof. Using the bound from Lemma A.2, we obtain

E[‖Z‖p∞] =

∫ ∞

0

P {‖Z‖∞ ≥ u} d(up) ≤ ed

∫ ∞

0

e−
c2u2

K2 d(up)

≤ ed

(
K

c

)p
p

2
Γ
(p
2

)
≤ ed

(
K

c

)p
p

2

(p
2

)p/2

=
d(K

√
p)pep

2(c
√
2)p

.

We obtain the claim by extracting the p-th root and doing simple estimates. �
Lemma A.4 (Hoeffding-type inequality, follows from [59, Lemma 5.9] via (50)).

Let Z1, ..., Zn be i.i.d. random vectors, then one has ‖
∑n

i=1 Zi‖2ψ2
�

∑n
i=1 ‖Zi‖2ψ2

.

The next result shows that the ‖ · ‖ψ2-norm is stable under affine transforms.

Lemma A.5 (Subgaussian norm after affine transform and decorrelation). Sup-

pose that X ∈ R
d satisfies E[X] = 0, Σ := E[XX�], and ‖Σ−1/2X‖ψ2 ≤ K.

Then for any A ∈ R
d×d, b ∈ R

d, vector X̂ = AX + b satisfies

‖Σ̂
−1/2

X̂‖ψ2 � K, where Σ̂ = E[X̂X̂�].

Proof. The quantity Σ−1/2X is invariant with respect to linear transforms, so
it only remains to treat the case X̂ = X + b. Now, in this case, Σ̂ = Σ + bb�,
and

‖Σ̂
−1/2

X̂‖ψ2 ≤ ‖Σ̂
−1/2

X‖ψ2 + ‖Σ̂
−1/2

b‖ψ2 ≤ ‖Σ̂
−1/2

X‖ψ2 + ‖Σ̂
−1/2

b‖2.

Since Σ̂ � Σ, we have ‖Σ̂
−1/2

X‖ψ2 ≤ ‖Σ−1/2X‖ψ2 ≤ K. On the other hand,

‖Σ̂
−1/2

b‖22 = b�Σ̂
−1

b� ≤ 1,

by the Sherman-Morrison formula. Finally, note that K � 1, as follows from the
inequality E[ξ4] ≥ (E[ξ2])2 applied to ξ = 〈u,X〉, and Item 2 of Lemma A.1. �

9Tight bounds for all moments can be obtained via the Chernoff method combined with
the general Orlicz norms ‖ · ‖ψα with α = 2/p, see, e.g., [46]. It is beyond the scope of this
paper.
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A.2. Quadratic forms of subgaussian vectors

We call random vector Z ∈ R
d isotropic if E[Z] = 0 and E[ZZ�] = Id. The

following result is a deviation bound for quadratic forms of isotropic subgaussian
random vectors. It is obtained from [20, Theorem 2.1] using the isotropicity
assumption which allows to get rid of the K2 factor ahead of Tr(J).

Theorem A.1. Let Z ∈ R
d be an isotropic random vector with ‖Z‖ψ2 ≤ K,

and let J ∈ R
d×d be positive semidefinite. Then,

P
{
‖Z‖2J − Tr(J) ≥ t

}
≤ exp

(
−cmin

{
t2

K2‖J‖22
,

t

K‖J‖∞

})
.

In other words, with probability at least 1− δ it holds

‖Z‖2J − Tr(J) � K2
(
‖J‖2

√
log (1/δ) + ‖J‖∞ log (1/δ)

)
.

Corollary A.1. We obtain a deviation bound for the �2-norm of the projection
of an isotropic subgaussian vector Z onto an arbitrary direction u ∈ R

d: with
probability at least 1− δ it holds

|〈u, Z〉| � ‖u‖2K
√
log (e/δ). (51)

This follows, through some elementary algebra, by applying Theorem A.1 to the
rank-one matrix J = uu� which satisfies ‖J‖∞ = ‖J‖2 = Tr(J) = ‖u‖22.

The next result follows from Theorem A.1 since ‖J‖∞ ≤ ‖J‖2 ≤ Tr(J).

Corollary A.2. Under the premise of Theorem A.1, ζ = ‖Z‖J is subgaussian:

P
{
ζ ≥ c(1 + t)K

√
Tr(J)

}
≤ exp(−t2).

As a consequence, P
{
ζ ≥ cuK

√
Tr(J)

}
≤ exp

(
c1 − u2/c2

)
, so that

‖ζ‖ψ2
≤ cK

√
Tr(J).

A.3. Sample covariance matrices

Next we focus on sample second-moment matrices of subgaussian vectors.

Theorem A.2 ([59, Theorem 5.39]). Assume that the random vector X̃ ∈
R

d satisfies E[X̃X̃�] = H and ‖H−1/2X̃‖ψ2 ≤ K. Let Hn = 1
n

∑n
i=1 X̃iX̃

�
i

where X̃1, ..., X̃n are independent copies of X̃. Whenever

n � K4(d+ log(1/δ)),

with probability at least 1− δ it holds

‖Δ‖2H/2 ≤ ‖Δ‖2Hn
≤ 2‖Δ‖2H, ∀Δ ∈ R

d. (52)
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Next we present an extension of this result to the high-dimensional setting.

Theorem A.3 ([66, Theorem 1.6]). Let H, Hn, and X̃ be as in the previous
theorem, and suppose that H satisfies the (ρ,κ, s)-restricted eigenvalues (RE)
condition for some ρ,κ > 0 and s ≤ d. Namely, for any Δ ∈ R

d such that
‖ΔSc‖1 ≤ 3‖ΔS‖1, where S is the subspace of R

d correponding to s largest
coordinates of Δ, and Sc is the complement of S, it holds

‖Δ‖22/ρ ≤ ‖Δ‖2H ≤ κ‖Δ‖22.

Then, whenever
n � ρκK4s log (ed/δ) ,

it holds that with probability ≥ 1−δ, for any Δ ∈ R
d satisfying the RE condition,

‖Δ‖2H/2 ≤ ‖Δ‖2Hn
≤ 2‖Δ‖2H.

Appendix B: Technical results for self-concordant (-like) functions

Here we summarizing the technical results related to self-concordant-like func-
tions. These results are used later on to control the population and empirical
risks L(θ), Ln(θ) in the proofs in Appendix C. In what follows, we fix θ0, θ1 ∈ Θ,
and let θt := θ0 + t(θ1 − θ0), t ∈ [0, 1]. We define functions φ(·), φn(·) on [0, 1]
by

φ(t) := L(θt), φn(t) := Ln(θt). (53)

The next result follows from the assumptions of Section 2.1 via the chain rule.

Proposition B.1. Suppose that �z(·) is convex, and �′′′z (·) exists on Θ.

(a) If Assumption SCa is satisfied, then for any t ∈ [0, 1], one has

|φ′′′
n (t)| ≤ φ′′

n(t)max
i∈[n]

|〈Xi, θ1 − θ0〉|, (54)

|φ′′′(t)| ≤ φ′′(t) sup
x∈X

|〈x, θ1 − θ0〉|. (55)

(b) If Assumption SCb is satisfied instead, then for any t ∈ [0, 1], one has

|φ′′′
n (t)| ≤ φ′′

n(t)
[
max
i∈[n]

φ′′
Zi
(t)

]1/2
, (56)

|φ′′′(t)| ≤ φ′′(t)
[
sup
z∈Z

φ′′
z (t)

]1/2
. (57)

Proof. Recall that θt = θ0 + t(θ1 − θ0) for t ∈ [0, 1], and denote Δ := θ1 − θ0.
Differentiating under the expectation, we obtain that the derivatives of φ(t) =
L(θt) and φn(t) = Ln(θt) are given by

φ(p)(t) = E[�(p)(Y, 〈X, θt〉)〈X,Δ〉p], (58)

φ(p)
n (t) =

1

n

∑
i∈[n]

�(p)(Yi, 〈Xi, θt〉)〈Xi,Δ〉p. (59)



Analysis of M-estimators using self-concordance 367

This holds for p ≤ 3 due to the basic smoothness assumption. Now, let Assump-
tion SCa be satisfied. Using (58) with p ∈ {2, 3}, we get

|φ′′′(t)| ≤ E[|�′′′(Y, 〈X, θt〉)||〈X,Δ〉|3] ≤ E[�′′(Y, 〈X, θt〉)〈X,Δ〉2] sup
x∈X

|〈x,Δ〉|,

arriving at (55). Analogously, we obtain (54) from (59), replacing X with the
set {X1, ..., Xn}. On the other hand, if Assumption SCb is satisfied instead,

|φ′′′(t)| ≤ E[|�′′′(Y, 〈X, θt〉)||〈X,Δ〉|3] ≤ E[�′′(Y, 〈X, θt〉)3/2|〈X,Δ〉|3]

≤ E[�′′(Y, 〈X, θt〉)〈X,Δ〉2] sup
x,y∈X×Y

{√
�′′(y, 〈x, θt〉)|〈x,Δ〉|

}
,

implying (57). We obtain (56) by replacing E[·] with sample averaging. �
The next proposition, whose proof follows [42], allows to control the second

derivative of the loss when it is restricted to a straight line.

Proposition B.2. Suppose g : R → R is differentiable, non-negative, and

|g′(t)| ≤ 2c[g(t)]3/2, ∀t ∈ R
(+) : c|t|

√
g(0) ≤ 1

for some c ≥ 0. Then, for any t ∈ R
(+) such that c|t|

√
g(0) ≤ 1, it holds

g(0)

(1 + c|t|
√
g(0))2

≤ g(t) ≤ g(0)

(1− c|t|
√
g(0))2

.

Proof. We first treat the case g(0) > 0. Consider the segment

T0 =
[
− 1/c

√
g(0), 1/c

√
g(0)

]
,

and assume that g(t) > 0 on the whole T0. Then, we can define ψ(t) := 1/
√
g(t)

on T0, and the premise of the proposition translates to |ψ′(t)| ≤ c. Now, let
t ∈ T0 be positive without loss of generality. Integrating from 0 to t, we get

−ct ≤ 1/
√
g(t)− 1/

√
g(0) ≤ ct.

Multiplying by the product
√
g(t)g(0) > 0, and rearranging the terms, we prove

the claim in the case where g(t) does not vanish on T0 (the case of negative t is
treated analogously). Now, let t0 ∈ T0 be the leftmost zero of g(t) on T0 ∪ R

+

(recall that we still assume g(0) > 0). Then the preceding argument is valid for
any t ∈ [0, t0], which implies that g(t0) > 0, thus yielding a contradiction. This
argument can be repeated for negative t, taking t0 to be the rightmost negative
zero of g(t) on T0. Hence, g(0) > 0 in fact implies that g(t) > 0 on the whole T0.

Finally, assume that g(0) = 0. Then if g(t) ≡ 0 on the whole T0, we are done.
Otherwise, there is a point t′ ∈ T0 in which g(t′) > 0. W.l.o.g. assume that
t′ > 0, let t0 be the rightmost zero of g(t) on T0 ∪R

+, and take a pair of points
t1, t2 ∈ T0 such that t0 < t1 < t2. Integrating ψ′(t) from t1 to t2, we get

−c(t2 − t1) ≤ 1/
√
g(t2)− 1/

√
g(t1) ≤ c(t2 − t1),
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which, after the mutiplication by
√

g(t1)g(t2) and rearrangement, results in

g(t1) ≥
g(t2)

1 + (t2 − t1)
√

g(t2)
.

When t1 → t0, by continuity of g(t) we get a contradiction with g(t0) = 0. �

The next proposition describes the local properties of multivariate func-
tions whose restrictions to line segments behave as pseudo self-concordant func-
tions (Case (a)), or similarly but with a weaker control of the third derivative
(Case (b)). Case (a) repeats [2, Proposition 1], and suffices for pseudo self-
concordant losses; Case (b) allows to treat canonically self-concordant losses.

Proposition B.3. Let F : Θ → R be a convex C3-mapping, fix θ0, θ1 ∈ Θ, and
let φF (t) := F (θt), θt := θ0 + t(θ1 − θ0). Assume that H0 := ∇2F (θ0) � 0.
Finally, for some W ∈ R

d, define

S := |〈W, θ1 − θ0〉|.

(a) [2, Proposition 1]. Suppose that φF (t) satisfies

|φ′′′
F (t)| ≤ Sφ′′

F (t), 0 ≤ t ≤ 1, then,

F (θ1)− F (θ0)−∇F (θ0)
�(θ1 − θ0) ≤ eS−S−1

S2 ‖θ1 − θ0‖2H0
, (60)

F (θ1)− F (θ0)−∇F (θ0)
�(θ1 − θ0) ≥ e−S+S−1

S2 ‖θ1 − θ0‖2H0
. (61)

(b) Suppose that θ1/S ∈ Θ, and φF (t) satisfies, instead,

|φ′′′
F (t)| ≤ S

1−Stφ
′′
F (t), 0 ≤ t < 1/S. Then

1
3S2 ‖θ1 − θ0‖2H0

≤ F (θ1/S)− F (θ0)− 1
S∇F (θ0)

�(θ1 − θ0)

≤ 1
S2 ‖θ1 − θ0‖2H0

. (62)

Moreover, if S < 1, we have

1
2+S ‖θ1 − θ0‖2H0

≤ F (θ1)− F (θ0)−∇F (θ0)
�(θ1 − θ0) ≤ 1

2−S ‖θ1 − θ0‖2H0
.

(63)

Proof. We first treat the one-dimensional case, extending Proposition B.2.

Lemma B.1 (Lemma 1 in [2]). Let g : [0, 1] → R be a three times differentiable
and convex function such that g′′(0) > 0, and for some S ≥ 0,

|g′′′(t)| ≤ Sg′′(t), 0 ≤ t ≤ 1.

Then, for any 0 ≤ t ≤ 1, one has

e−St+St−1
S2 g′′(0) ≤ g(t)− g(0)− g′(0)t ≤ eSt−St−1

S2 g′′(0), 0 ≤ t ≤ 1. (64)
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Proof. First assume that g′′(t) > 0 on [0, 1]. Then, the premise of the lemma
implies that −Sdt ≤ d log g′′(t) ≤ Sdt for 0 ≤ t ≤ 1. Integrating this, we get

g′′(0)e−St ≤ g′′(t) ≤ g′′(0)eSt. (65)

Two more integrations successively give

1−e−St

S g′′(0) ≤ g′(t)− g′(0) ≤ eSt−1
S g′′(0),

and then (64). Now, let t0 ∈ (0, 1] be the leftmost zero of g′′(t). Then, the
preceding argument can be applied on [0, t0], yielding a contradiction due to the
left inequality in (65). �
Lemma B.2. Let g : [0, 1] → R be a three times differentiable and convex
function such that g′′(0) > 0, and for some S ≥ 0,

|g′′′(t)| ≤ S
1−tg

′′(t), 0 ≤ t < 1.

Then, for any 0 ≤ t ≤ 1, one has

g(t)− g(0)− g′(0)t ≥ (1−t)2+S+(2+S)t−1
(1+S)(2+S) g′′(0),

g(t)− g(0)− g′(0)t ≤ (1−t)2−S+(2−S)t−1
(1−S)(2−S) g′′(0),

(66)

where the upper bound holds whenever S < 1 for any t ∈ [0, 1), and when-
ever S < 2 when t = 1. In particular, taking t = 1, we have

1
2+S g

′′(0) ≤ g(1)− g(0)− g′(0) ≤ 1
2−S g

′′(0).

Proof. W.l.o.g., we assume g′′(t) > 0; the general case can be treated as in
Lemma B.1. We follow the same steps as in Lemma B.1: after the first integra-
tion,

(1− t)Sg′′(0) ≤ g′′(t) ≤ (1− t)−Sg′′(0). (67)

Integrating two more times, and assuming S < 1 for the upper bound, we get

1−(1−t)1+S

1+S g′′(0) ≤ g′(t)− g′(0) ≤ 1−(1−t)1−S

1−S g′′(0)

and then (66). When t = 1, the term (1− S) vanishes from the denominator of
the right-hand side of (66), hence in this case we can take S < 2. �
Lemma B.3. Let g : [0, 1] → R be a three times differentiable and convex
function such that g′′(0) > 0, and for some S ≥ 0,

|g′′′(t)| ≤ S
1−Stg

′′(t), 0 ≤ t < 1/S.

Then, for any 0 ≤ t ≤ 1/S, one has(
t2

2 − St3

6

)
g′′(0) ≤ g(t)− g(0)− g′(0)t ≤ St+(1−St) log(1−St)

S2 g′′(0). (68)

In particular, taking t = 1/S, we have

g′′(0)

3S2
≤ g(1/S)− g(0)− g′(0)

S
≤ g′′(0)

S2
.
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Proof. We again assume w.l.o.g. that g′′(t) > 0. Integrating three times, we get

(1− St)g′′(0) ≤ g′′(t) ≤ 1
1−Stg

′′(0),

then (
t− St2

2

)
g′′(0) ≤ g′(t)− g′(0) ≤

(
− log(1−St)

S

)
g′′(0), (69)

implying (68). The last claim follows by continuity of f(u) = u log u at 0. �

Proof of the proposition Case (a), the first statement of Case (b), and the
second statement of Case (b) follow, correspondingly, from Lemmas B.1, B.3,
and B.2 applied to g(t) = φF (t) and using that g(t) = F (θt), g

′(0) = 〈F ′(θ0), θ1−
θ0〉, and g′′(0) = ‖θ1 − θ0‖2H0

. Note that the inner-product structure of S does
not play a role here, but is used in Proposition B.4. �

The next result describes the behavior of (pseudo) self-concordant functions
close to the optimum. Case (a) corresponds to [2, Proposition 2]. The argument
for Case (b) appears to be new, and is of independent interest. We note that a
very similar argument was independently invented by U. Marteau-Ferey in [36].

Proposition B.4. Suppose that one of the Cases (a)–(b) in Proposition B.3
holds with fixed θ0, all θ1 ∈ Θ, and W ∈ R

d which can depend on θ1. Whenever

‖W‖H−1
0
‖∇F (θ0)‖H−1

0
≤ 1/4,

function F (θ) has a unique minimizer θ̃ ∈ Θ, and ‖θ̃−θ0‖H0 ≤ 4‖∇F (θ0)‖H−1
0
.

The key message of Proposition B.4 is that the local information about F (·)
at one point efficiently amounts to the global information about how close is this
point to the optimum. When applied to the empirical risk with θ0 = θ∗ and θ̃ =
θ̂n, this proposition allows to localize θ̂n using that the quantity ‖∇Ln(θ∗)‖2H−1

decreases at rate O(deff/n) under the i.i.d. assumption.

Proof. Note that from (65), (67), or (69), depending on the case, it follows
that ∇2F (θ) � 0 for any θ ∈ Θ, hence the minimum θ̃ is unique provided that
it exists. Now, consider the level set

ΘF (F (θ0)) := {θ ∈ Θ : F (θ) ≤ F (θ0)}.

Let θ1 ∈ ΘF (F (θ0)) be arbitrary, and r = ‖θ1−θ0‖H0 . Denote ν := ‖∇F (θ0)‖H−1
0

and R := ‖W‖H−1
0
; note that S ≤ Rr. We now treat all cases of Proposition B.3.

Case (a) By (61), we have

F (θ1) ≥ F (θ0) + 〈∇F (θ0), θ1 − θ0〉+ e−Rr−1+Rr
R2r2 r2 ≥ F (θ0)− νr + e−Rr−1+Rr

R2 ,

where we first used that u �→ (e−u− 1+u)/u is a decreasing function, and then
the Cauchy-Schwarz inequality. Denoting u = Rr, we arrive at

e−u − 1 + u ≤ νRu. (70)
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By the premise, we know that νR ≤ 1/2, hence e−u−1+u/2 ≤ 0. We can check
numerically that this implies u ≤ 2; moreover, one has e−u − 1 + u ≥ u2/4 for
such u. Plugging this back into (70), we arrive at u ≤ 4νR, that is, ‖θ1−θ0‖H0 ≤
4ν. In other words, the level set ΘF (F (θ0)) is compact and belongs to the ‖·‖H0-
ball of radius 4ν centered at θ0. Hence, the minimum θ̃ exists and belongs to
the same ball; it is also unique since F (θ) � 0.

Case (b) with S < 1 By the lower bound in (63), we have

F (θ1) ≥ F (θ0) + 〈∇F (θ0), θ1 − θ0〉+ 1
2+Rr r

2 ≥ F (θ0)− νr + 1
2+Rr r

2,

where we used that u �→ 1/(2 + u) is a decreasing function on R
+. Whence,

u

u+ 2
≤ νR,

where u := Rr. Since νR ≤ 1/2, we have u ≤ 2. Thus, we get r ≤ 4ν as required.

Case (b) with arbitrary S ≥ 0 First assume that Rr ≥ S ≥ 1. Then, θ1/S
belongs to the segment [θ0, θ1] and to Θ. Whence F (θ1/S) ≤ F (θ0) by convexity
of ΘF (F (θ0)). On the other hand, from the lower bound in (62) we have

F (θ1/S) ≥ F (θ0)−
νr

S
+

r2

3S2
.

Whence ν ≥ r
3S ≥ 1

3R , and we arrive at the contradiction. Thus, the only
possibility is that S < 1, in which case the statement has already been proved.

�

B.1. Properties of pseudo-Huber loss (21)

We can check that the Fenchel dual of φ : (−1, 1) → R defined in (20) is
indeed ϕ(t), cf. (21), by solving a quadratic equation. Since φ is a barrier
on (−1, 1), we have |ϕ′(t)| < 1 for any t ∈ R. Now, we have φ′(ϕ′(t)) = t
for t ∈ R, see, e.g., [47]. Differentiating this identity, we obtain

φ′′(ϕ′(t)) · ϕ′′(t) = 1. (71)

Clearly, the Fenchel dual of an even function is also even, hence ϕ′(0) = 0,
and ϕ′′(0) = 1/φ′′(0). Differentiating once again, we get

φ′′′(ϕ′(t)) · [ϕ′′(t)]2 + φ′′(ϕ′(t)) · ϕ′′′(t) = 0,

whence, using that φ′′(u) > 0 for any u ∈ (−1, 1),

|ϕ′′′(t)| = |φ′′′(ϕ′(t))|
φ′′(ϕ′(t))

[ϕ′′(t)]2.

Whence, if |φ′′′(u)| ≤ c[φ′′(u)]3/2, we get that |φ′′′(u)| ≤ c[φ′′(u)]3/2 via (71). �
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Appendix C: Proofs of theorems

C.1. Proof of Theorem 3.1

1o. Recall that H = ∇2L(θ∗), and let Hn := ∇2Ln(θ∗). Note that due to
Assumption D2 and the first bound on n in the premise of the theorem, we can
apply Theorem A.2 to Hn and H. Thus, with probability at least 1− δ we have

1
2H � Hn � 2H. (72)

On the other hand, we can prove (28) using Assumption D1. Indeed, the vectors

∇�Zi(θ∗) = �′(Yi, X
�
i θ∗)Xi, i ∈ [n],

are independent, zero mean and with covariance G. Hence, the random vec-
tors G−1/2∇�Zi(θ∗). i ∈ [n], are independent and isotropic (have zero mean
and unit covariance). Moreover, by Assumption D1, ‖G−1/2∇�Zi(θ∗)‖ψ2 ≤ K1.
Hence, by Lemma A.4 about the subgaussian norm of the sum of i.i.d. random
vectors, we have that the random vector Vn :=

√
nG−1/2∇Ln(θ∗), is isotropic,

satisfies ‖Vn‖ψ2 � K1, and, moreover,

‖∇Ln(θ∗)‖2H−1 = 1
n‖Vn‖2J with J := G1/2H−1G1/2. (73)

Using that ‖J‖∞ ≤ ‖J‖2 ≤ Tr(J) = deff , by Theorem A.1, we arrive at (28).
2o. Our next goal is proving (29). Let μ := E[X] and Σo := E[(X − μ)(X −

μ)�] so that Σ = Σo + μμ�. Denoting Q = Σ1/2
o Σ−1Σ1/2

o , we have

‖Xi‖2Σ−1 = ‖Xi − μ‖2Σ−1 + 2〈Σ−1/2μ,Σ−1/2(Xi − μ)〉+ ‖μ‖2Σ−1

= ‖Σ−1/2
o (Xi − μ)‖2Q + 2〈Q1/2Σ−1/2

o μ,Q1/2Σ−1/2
o (Xi − μ)〉+ ‖Σ−1/2μ‖22.

(74)

By construction, Σ−1/2
o (Xi − μ) is isotropic. Moreover, ‖Σ−1/2

o (Xi − μ)‖ψ2 �
K0 due to Assumption D0 and Lemma A.5. Note that ‖Q‖2 ≤ Tr(Q) ≤ d
and ‖Q‖∞ ≤ 1. Hence, by Theorem A.1, with probability at least 1− δ one has

‖Σ−1/2
o (Xi − μ)‖2Q � K2

0d
[√

log (e/δ) + log (1/δ)
]

� K2
0d log (e/δ) .

Now, the second term in the right-hand side of (74) can be controlled as follows:

|〈Q1/2Σ−1/2
o μ,Q1/2Σ−1/2

o (Xi − μ)〉|
≤ ‖Q‖1/2∞ ‖Q1/2Σ−1/2

o μ‖2‖Σ−1/2
o (Xi − μ)‖2

= ‖Q‖1/2∞ ‖Σ−1/2μ‖2‖Σ−1/2
o (Xi − μ)‖2

≤ ‖Σ−1/2μ‖2‖Σ−1/2
o (Xi − μ)‖2

� K0

√
d log (e/δ)‖Σ−1/2μ‖2,

where the last inequality holds with probability ≥ 1−δ by Corollary A.1. Finally,

‖Σ−1/2μ‖22 ≤ μ�Σ−1μ = μ�(Σo + μμ�)−1μ ≤ 1.
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Combining these results with the union bound, (72), and Assumption C, we
have

max
i∈[n]

‖Xi‖2H−1
n

� ρK2
0d log (en/δ) , ∀i ∈ [n] (75)

with probability ≥ 1− δ. Now, (28), (72), and the 2nd bound in (27) imply that

max
i∈[n]

‖Xi‖2H−1
n
‖∇Ln(θ∗)‖2H−1

n
≤ c. (76)

Now, putting c = 1/4, this results in (29). Indeed, invoking the bound (54)
of Proposition B.1, we see that Ln(·) falls into Case (a) of Proposition B.3
with θ0 = θ∗, H0 = Hn, and W (θ) = Xj(θ) for j(θ) ∈ Argmaxi∈[n] |〈Xi, θ− θ∗〉|.
Hence, we can apply Proposition B.4: clearly, ‖W (θ)‖H−1

n
≤ maxi∈[n] ‖Xi‖H−1

n

for all θ ∈ Θ, and then (76) with c = 1/4 implies that the minimizer θ̂n of L̂n(·) is
unique and satisfies ‖θ̂− θ∗‖2Hn

≤ 4‖∇Ln(θ∗)‖2H−1
n
. By (72), this results in (29).

3o. Let us now prove (30). To this end, consider the restricted risk LE0(θ),
fix two arbitrary points θ0, θ1 ∈ Θ, and consider function φE0(t) := LE0(θt)
where θt = θ0 + t(θ1 − θ0) for t ∈ [0, 1]. Differentiating φE0(t) three times (note
that E0 does not depend on θ), we see that (55) can now be replaced with

|φ′′′
E0
(t)| ≤ φ′′

E0
(t) sup

x∈XE0

|〈x, θ1 − θ0〉|,

where XE0 := {x ∈ X : ‖x‖H−1 ≤ √
ρB0}, with B0 := K0

√
d log(e/δ), is

the (1− δ)-confidence set (under E0) for X. (We used Assumption C.) Besides,
let us momentarily assume that the new Hessian HE0 := ∇2LE0(θ∗) is invertible,
and approximatesH in the positive-semidefinite sense: for some constants c, C >
0,

cH � HE0 � CH. (77)

Later on, we will verify this under condition (31) on δ. Now, under (77), we can

apply Case (a) of Proposition B.3 to LE(·) with θ0 = θ∗, θ1 = θ̂n, H0 = HE0 ,
and W = W (θ) ∈ Argmaxx∈XE0

|〈x, θ−θ∗〉|. Observe that ‖W (θ)‖H−1 ≤ √
ρB0,

and let r := ‖θ̂n−θ∗‖2H. By (60) combined with the Cauchy-Schwarz inequality,

LE0(θ̂n)− LE0(θ∗) �
(
e
√
ρB0r − 1−√

ρB0r

ρB2
0r

2

)
r2 +∇LE0(θ∗)

�(θ̂n − θ∗).

Now, observe that the term in the parentheses is at most a constant. Indeed,√
ρB0r � 1 follows from the combination of (27)–(29), and then f(u) = eu −

1− u � u2 whenever u � 1 (in particular, f(u) ≤ u2 when u ≤ 1). Thus,

LE0(θ̂n)− LE0(θ∗) � r2 + r‖∇LE0(θ∗)‖H−1 . (78)

In order to prove (30), it remains to control ‖∇LE0(θ∗)‖H−1 and to verify (77).
4o. To estimate the additional term in (78), consider the complementary risk:

LEc
0
(θ∗) := E[�Z(θ∗)1Ec

0
(X)],
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where Ec
0 is the complement of E0, so that P(Ec

0) ≤ δ. Note that, since ∇L(θ∗) =
0, we have ∇LE0(θ∗) = −∇LEc

0
(θ∗), whence

‖∇LE0(θ∗)‖H−1 = ‖∇LEc
0
(θ∗)‖H−1 .

We now estimate ‖∇LEc
0
(θ∗)‖H−1 through a technique inspired by the one in [58,

Section 1.3]. For any p, q such that 1/p+1/q = 1, we have by Hölder’s inequality:

‖∇LEc
0
(θ∗)‖H−1 ≤ E[‖∇�Z(θ∗)‖H−11Ec

0
] ≤ E[‖∇�Z(θ∗)‖pH−1 ]

1/pδ1/q. (79)

Note that
‖∇�Z(θ∗)‖2H−1 = ‖G−1/2∇�Z(θ∗)‖2J

where J = G1/2H−1G1/2, and G−1/2∇�Z(θ∗) is isotropic and satisfies

‖G−1/2∇�Z(θ∗)‖ψ2 ≤ K1.

Hence, by Corollary A.2, ζ := ‖H−1/2∇�Z(θ∗)‖ satisfies ‖ζ‖ψ2 � K1

√
deff . As

such, we can bound the moments of ζ using Lemma A.1:

E[‖∇�Z(θ∗)‖pH−1 ]
1/p � K1

√
pdeff .

Combining this with (78)–(79) and (28)–(29), and choosing p = log(edeff)
and q = 1 + 1/log(deff), we obtain

LE0(θ̂n)− LE0(θ∗)

� K2
1

√
deff log(e/δ)

n

(√
deff log(e/δ)

n + δ
log(deff )

log(deff )+1
√
deff log(edeff)

)
.

Finally, (31) implies that δ
log(deff )

log(deff )+1
√
log(deff) �

√
log(e/δ)/n, and (30) follows.

5o. It remains to verify (77), i.e., that the HessiansH andHE0 are close. First,
the upper bound in (77) is trivial. Indeed defining the complementary HEc

0
:=

∇2LEc
0
(θ∗), we see that HE0 = H−HEc

0
� H since HEc

0
� 0. On the other hand,

the lower bound in (77) with c ∈ (0, 1) would follow from the bound

‖H−1/2HEc
0
H−1/2‖∞ ≤ c′,

where c′ ∈ (0, 1). Let us show that this bound is satisfied under the second
bound in (31), using a technique similar to the one used to control ∇LE0(θ∗).
For any p, q ≥ 1 such that 1/p + 1/q = 1, we have by Hölder’s and Young’s
inequalities:

‖H−1/2HEc
0
H−1/2‖∞ ≤ E[‖H−1/2∇2�Z(θ∗)H

−1/2‖p∞]1/pδ1/q

= E[‖H−1/2X̃X̃�H−1/2‖p∞]1/pδ1/q

= E[‖H−1/2X̃‖2p2 ]1/pδ1/q � K2
2pdδ

1/q,

where in the end we used that ζ = ‖H−1/2X̃‖2 satisfies ‖ζ‖ψ2 ≤ K2

√
d by

Corollary A.2. Choosing p = log(ed), we see that K2
2pdδ

1/q � 1 under (31). �
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C.2. Proof of Theorem 3.2

Disclaimer The key distinction from Theorem 3.1 is the absence of curvature
parameter ρ in the derived critical sample size (cf. (32) viz. (27)). This improve-
ment is achieved by carefully exploiting Assumption SCb. In particular, we in-
voke Case (b), instead of Case (a), in Propositions B.1 and B.3. Meanwhile, the

role of the bounding vectorW is now relegated fromX to X̃ = �′′(Y,X�θ∗)
1/2X.

The proof of the theorem below recycles results from the proof of Theo-
rem 3.1.

Proof. We repeat step 1o in the previous proof verbatim, arriving at (28) and
(72).

2o. In order to prove (29), we use Case (b) of Proposition B.1. To this end, fix
arbitrary θ ∈ Θ, let θt = θ∗ + t(θ − θ∗) for t ∈ [0, 1), and define φz(t) := �z(θt)
for arbitrary z ∈ Z. Due to Assumption SCb, for any z ∈ Z = R

d × Y , we
have |φ′′′

z (t)| ≤ 2[φ′′
z (t)]

3/2. Hence, we can apply Proposition B.2 to g(t) = φ′′
z (t)

with c = 1. Thus, with x̃ := [�′′(y, x�θ∗)]
1/2x for arbitrary (x, y) ∈ Z, we have

φ′′
z (t) ≤

φ′′
z (0)

(1− t
√
φ′′
z (0))

2
=

〈x̃, θ − θ∗〉2
(1− t|〈x̃, θ − θ∗〉|)2

(80)

for any t ≥ 0 such that the denominator is non-zero. Combining this with (56),

|φ′′′
n (t)| ≤ φ′′

n(t)max
i∈[n]

|〈X̃i, θ − θ∗〉|
1− t|〈X̃i, θ − θ∗〉|

= φ′′
n(t)

|〈X̃j(θ), θ − θ∗〉|
1− t|〈X̃j(θ), θ − θ∗〉|

, (81)

where j(θ) ∈ Argmaxi∈[n] |〈X̃i, θ − θ∗〉|, and again we can take any t ≥ 0 such
that the denominator is positive. Thus, Ln(θ) falls into Case (b) of Proposi-

tion B.3 with θ0 = θ∗, H0 = Hn, and W = W (θ) = X̃j(θ). On the other hand,
repeating the analysis that led to (75), we obtain that, for any fixed θ,

‖X̃j(θ)‖2H−1
n

� B2
2 := K2

2d log (en/δ)

with probability ≥ 1− δ. Combining this result with the second bound in (32),

‖X̃j(θ)‖2H−1
n
‖∇Ln(θ∗)‖2H−1

n
� 1, (82)

cf. (76). Hence, we can apply Proposition B.4 to Ln(θ) at θ0 = θ∗, and repeating
the final argument in step 2o of the proof of Theorem 3.1, we arrive at (29).

3o. We now prove (30) with LE0 replaced by LE2 . Similarly to (81), from (80)
and (57) we have

|φ′′′(t)| ≤ φ′′(t)
|〈W (θ), θ − θ∗〉|

1− t|〈W (θ), θ − θ∗〉|
, (83)

with probability ≥ 1− δ, where W (θ) ∈ Argmaxx∈X̃E2
|〈x, θ − θ∗〉| for the set

X̃E2 := {x̃ = [�′′(y, x�θ∗)]
1/2x : ‖x̃‖2H−1 � B2

2}.
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(Clearly, X̃E2 is the (1− δ)-confidence set for the new observation X̃.) Thus,

|〈W (θ), θ̂n − θ∗〉| ≤ B2r, r := ‖θ̂n − θ∗‖H;

moreover, due to (28), (29), and the 2nd bound in (32) we have B2r � 1. As
such, whenever cH � ∇2LE2(θ∗) � CH, the restricted risk LE2(·), cf. (26), falls
under Case (b) of Proposition B.3 with θ1 = θ̂n and S < 1; the upper bound
in (63) then gives the analogue of (78):

LE2(θ̂n)− LE2(θ∗) � r2

2−B2r
+∇LE2(θ∗)

�(θ̂n − θ∗) � r2 + r‖∇LE2(θ∗)‖H−1 .

It remains to estimate the right-hand side and to verify cH � ∇2LE2(θ∗) � CH,
using (31) in both cases. This repeats steps 4o–5o in the proof of Theorem 3.1.

�

C.3. Proof of Theorem 4.1

1o. Without loss of generality, we assume that Θ = R
d; the argument can be

extended to the general case simply by replacing all arising Dikin ellipsoids with
their intersections with Θ. For simplicity, we also assume that Assumption D2∗

holds with r = 1, and denote K̄2 := K̄2(1). First of all, for any r ≥ 0 and
θ ∈ Θ1(θ∗), we define the Dikin ellipsoid with center θ and radius r:

Θr(θ) := {θ′ ∈ R
d : ‖θ′ − θ‖H(θ) ≤ r}.

We will prove that the Hessians H(θ) := ∇2L(θ) are close to H(θ∗) within the
Dikin ellipsoid with radius Ω(1/K̄3

2 ). To this end, fix θ0 = θ∗ and arbitrary θ1 ∈
R

d, and let θt = θ0 + t(θ1 − θ0), t ≥ 0. By using Assumptions SCb and D2∗, we
can prove that for the function φ(t) = L(θt) it holds

φ′′′(t) ≤ 2c̄[φ′′(t)]3/2

for any t ≥ 0 such that θt ∈ Θ1/c̄(θ∗) with c̄ � 1/K̄3
2 . Indeed, let Δ := θ1 − θ0,

and recall that

φ(p)(t) = E[�(p)(Y, 〈X, θt〉)〈X,Δ〉p], p ∈ {2, 3},

cf. the proof of Proposition B.1. Putting X̃(θt) := [�′′(Y, 〈X, θt〉)]1/2X, this gives

φ′′(t) = E[〈X̃(θt),Δ〉2] = E[〈H(θt)
−1/2X̃(θt),H(θt)

1/2Δ〉2] = ‖Δ‖2H(θt)
.

On the other hand, due to Assumption SCb,

|φ′′′(t)| ≤ E[|�′′′(Y, 〈X, θt〉)| · |〈X,Δ〉|3]
≤ 2E[|〈[�′′(Y, 〈X, θt〉)]1/2X,Δ〉|3]
= 2E[|〈H(θt)

−1/2X̃(θt),H(θt)
1/2Δ〉|3].



Analysis of M-estimators using self-concordance 377

Now, recall that whenever θ ∈ Θc(θ∗), one has ‖H(θt)
−1/2X̃(θt)‖ψ2 ≤ K̄2 due

to Assumption D2∗. Thus, for such θt we have

‖〈H(θt)
−1/2X̃(θt),H(θt)

1/2Δ〉‖ψ2 ≤ K̄2‖Δ‖H(θt),

and by Lemma A.1,

E[|〈H(θt)
−1/2X̃(θt),H(θt)

1/2Δ〉|3] ≤ CK̄3
2‖Δ‖3H(θt)

for some absolute constant C > 0. Without the loss of generality we can assume
that C ≥ 1. Combining the above inequalities, we observe that

|φ′′′(t)| ≤ 2CK̄3
2 [φ

′′(t)]3/2, 0 ≤ t[φ′′(0)]1/2 ≤ 1,

where we used that θt ∈ Θ1(θ∗) is equivalent to t2φ′′(0) ≤ 1. We can now apply
Proposition B.2 to g(t) = φ′′(t), putting

c̄ := CK̄3
2 � 1,

and arriving at

φ′′(0)

(1 + c̄t
√
φ′′(0))2

≤ φ′′(t) ≤ φ′′(0)

(1− c̄t
√
φ′′(0))2

whenever 0 ≤ c̄t[φ′′(0)]1/2 ≤ 1. Finally, since φ′′(t) = ‖Δ‖2H(θt)
, this results in

H(θ∗)

(1 + c̄‖θ − θ∗‖H(θ∗))
2

� H(θ) � H(θ∗)

(1− c̄‖θ − θ∗‖H(θ∗))
2
,

whenever θ ∈ Θ1/c̄(θ∗). In particular, for any θ ∈ Θ1/(2c̄)(θ∗) we have

4
9H(θ∗) � H(θ) � 4H(θ∗). (84)

2o. Next, we derive a similar approximation result for the Hessian of empirical
risk Hn(θ) := ∇2Ln(θ). This can be done by constructing an epsilon-net on
Θ1/(2c̄)(θ∗) with respect to the ‖·‖H(θ∗)-norm. Then, one can control the uniform
deviations of Hn(θ) fromH(θ) for θ on the net, while approximatingHn(θ) for θ
outside the net, by exploiting the self-concordance of the individual losses, and
appropriately choosing the net resolution. To this end, recall that Hn(θ) writes

Hn(θ) =
1

n

n∑
i=1

�′′(Yi, X
�
i θ)XiX

�
i .

Hence, we can relate Hn(θ) to Hn(θ
′) at some other point θ′ by relating

�′′(Yi, X
�
i θ) to �′′(Yi, X

�
i θ′). Namely, fix arbitrary θ0 ∈ Θ1/(2c̄)(θ∗) and θ1 ∈ Θ,

and observe that, due to Assumption SCb, φZ(t) = �Z(θt) satisfies

|φ′′′
Z (t)| ≤ 2[φ′′

Z(t)]
3/2,
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hence we can apply Proposition B.2 to φ′′
Z(t). For 0 ≤ t[φ′′

Z(0)]
1/2 ≤ 1 this gives

φ′′
Z(0)

(1 + t[φ′′
Z(0)]

1/2)2
≤ φ′′

Z(t) ≤
φ′′
Z(0)

(1− t[φ′′
Z(0)]

1/2)2
.

cf. (80). Recalling that φ′′
Z(t) = �′′(Y,X�θt) · 〈X,Δ〉2 = 〈X̃(θt),Δ〉2, where

again Δ = θ1 − θ0 but now without the constraint that θ0 = θ∗, we arrive at

�′′(Y,X�θ0)

(1 + t|〈X̃(θ0),Δ〉|)2
≤ �′′(Y,X�θt) ≤

�′′(Y,X�θ0)

(1− t|〈X̃(θ0),Δ〉|)2

when t|〈X̃(θ0),Δ〉| ≤ 1. By the Cauchy-Schwarz inequality and (84), this gives

�′′(Y,X�θt) ≥
�′′(Y,X�θ0)

(1 + 2t‖X̃(θ0)‖H(θ0)−1‖Δ‖H(θ∗))
2

�′′(Y,X�θt) ≤
�′′(Y,X�θ0)

(1− 2t‖X̃(θ0)‖H(θ0)−1‖Δ‖H(θ∗))
2
,

where t ≥ 0 is such that the denominator is strictly positive. As a result, we
have

�′′(Y,X�θ′) ≥ �′′(Y,X�θ)

(1 + 2‖H(θ)−1/2X̃(θ)‖2‖θ′ − θ‖H(θ∗))
2
,

�′′(Y,X�θ′) ≤ �′′(Y,X�θ)

(1− 2‖H(θ)−1/2X̃(θ)‖2‖θ′ − θ‖H(θ∗))
2

(85)

for any θ ∈ Θ1/(2c̄)(θ∗), and any θ′ for which the denominator is strictly positive.
3o. Now, consider the smallest epsilon-net Nε for Θ1/(2c̄)(θ∗) with respect

to the norm ‖ · ‖H(θ∗), i.e., the smallest subset of Θ1/(2c̄)(θ∗) such that for
any θ ∈ Θ1/(2c̄)(θ∗) there exists a point θ′ ∈ Nε such that ‖θ′ − θ‖H(θ∗) ≤ ε.
Note that such Nε can be obtained as the affine image of the epsilon-net for the
‖ · ‖2-ball with radius 1/(2c̄) with respect to the standard ‖ · ‖2-norm. Hence,
we can apply the bound for covering numbers of Euclidean balls: for any ε ≤ 1,

|Nε| ≤
(

3

2c̄ε

)d

. (86)

Consider random vectors H(θ)−1/2X̃i(θ), where i ∈ [n] and θ ∈ Nε for some ε
to be defined later. Each of them has unit covariance matrix, and is subgaussian
with ψ2-norm at most K̄2 due to Assumption D2∗. Repeating the argument from
part 1o of the proof of Theorem 3.1 (to account for the fact that the vectors are
not centered), we can show that with probability at least 1− δ,

‖H(θ)−1/2X̃i(θ)‖2 ≤ C2K̄2

√
d log (e/δ)

for some constant C2 ≥ 1. Here we used that Nε ⊂ Θ1/2c̄(θ∗) ⊆ Θ1(θ∗). Thus,

sup
i∈[n], θ0∈Nε

‖H(θ)−1/2X̃i(θ)‖2 ≤ C2K̄2

√
d log

(
en|Nε|

δ

)
≤ C2K̄2d

√
log

(
3en

δε

)
,

(87)



Analysis of M-estimators using self-concordance 379

with probability ≥ 1−δ, where in the second step we used (86). Now, we choose

ε =
1

64C2
2K̄

2
2d

2 log (en/δ)
. (88)

By some simple algebra, such choice of ε ensures that

ε

√
log

(
3en

δε

)
≤ 1

4C2K̄2d
.

Combining this with (85) and (87), we see that the following is true with prob-
ability ≥ 1− δ: for any θ′ ∈ Θ1/(2c̄)(θ∗), there exists θ ∈ Nε such that

4
9�

′′(Yi, X
�
i θ) ≤ �′′(Yi, X

�
i θ′) ≤ 4�′′(Yi, X

�
i θ), i ∈ [n].

This implies that with probability ≥ 1− δ, it holds

4
9Hn(π∗(θ)) � Hn(θ) � 4Hn(π∗(θ)), ∀θ ∈ Θ1/(2c̄)(θ∗), (89)

where π∗(·) is the operation of ‖ · ‖H(θ∗)-projection on the epsilon-net Nε. Fi-
nally, to establish the uniform approximation of Hn(·) on Θ1/(2c̄)(θ∗), it remains
to control Hn(θ) on the net itself. This can be done by combining the devia-
tion bounds for sample covariance matrices with the results of 1o. First, by
Theorem A.2, for any θ ∈ Nε we have that with probability at least 1− δ,

1
2H(θ) � Hn(θ) � 2H(θ),

provided that n � K̄4
2 (d + log(1/δ)). Taking the union bound over Nε, and

using (86) and (88), we see that

1
2H(θ) � Hn(θ) � 2H(θ), ∀θ ∈ Nε (90)

holds with probability ≥ 1− δ, provided that

n � K̄4
2d log

( e

c̄δε

)
� K̄4

2d [log (ed/δ) + log log (en/δ)] .

By simple algebra, it suffices that

n � K̄4
2d log (e/δ) . (91)

Combining (89), (90), and (84), we see that the sample size satisfying (91)
guarantees uniform approximation of empirical Hessians on the Dikin ellip-
soid Θ1/(2c̄)(θ∗): with probability ≥ 1− δ, for any θ ∈ Θ1/(2c̄)(θ∗) it holds

0.09H(θ∗) � Hn(θ) � 32H(θ∗). (92)

4o. With (92) at hand, we can localize the estimate through a similar argu-
ment to that in Proposition B.4, but with S replaced with a constant. Indeed,
fixing θ0 = θ∗ and taking arbitrary θ1 ∈ Θ1/(2c̄)(θ∗), we see that (92) reduces to

0.09φ′′(0) ≤ φ′′
n(t) ≤ 32φ′′(0), 0 ≤ t ≤ 1.
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Integrating this twice, we get 0.045φ′′(0)t2 ≤ φn(t)−φn(0)−φ′
n(0)t ≤ 16φ′′(0)t2.

Putting t = 1, and noting that φ′′(0) = ‖θ1 − θ∗‖2H(θ∗)
, we obtain that for any

θ ∈ Θ1/(2c̄)(θ∗), with high probability it holds

0.045‖θ − θ∗‖2H(θ∗)
≤ Ln(θ)− Ln(θ∗)− 〈∇Ln(θ∗), θ − θ∗〉 ≤ 16‖θ − θ∗‖2H(θ∗)

.
(93)

cf. (62). Now we can proceed as in the proof of Proposition B.4, Case (b).

Namely, consider the event θ̂n /∈ Θ1/(2c̄)(θ∗). Under this event, there exists θ̄n ∈
[θ∗, θ̂n] such that ‖θ̄n − θ∗‖H(θ∗) = 1/2c̄. On the other hand, clearly, Ln(θ̄n) ≤
Ln(θ∗). Combining these facts with (93), we obtain that with probability at
least 1− δ,

‖∇Ln(θ∗)‖2H(θ∗)−1 � 1/c̄2 � 1/K̄6
2 .

On the other hand, we know (see part 1o of the proof of Theorem 3.1) that

‖∇Ln(θ∗)‖2H(θ∗)−1 � K2
1deff log (e/δ)

n

with probability ≥ 1 − δ. Thus, whenever n � K2
1K̄

6
2deff log(e/δ), we have a

contradiction, so θ̂n must belong to Θ1/(2c̄)(θ∗). Then, (93) with θ = θ̂n yields

‖θ̂n − θ∗‖2H(θ∗)
� ‖∇Ln(θ∗)‖2H(θ∗)−1 .

It remains to bound the excess risk. To this end, recall (84) which translates to

4
9φ

′′(0) ≤ φ′′(t) ≤ 4φ′′(0), 0 ≤ t ≤ 1.

Integrating this twice on [0, 1], we obtain 4
9φ

′′(0)t2 ≤ φ(t)−φ(0) ≤ 4φ′′(0)t2. The
upper bound translates to L(θ)− L(θ∗) ≤ ‖θ − θ∗‖2H(θ∗)

for any θ ∈ Θ1/2c̄(θ∗).

But we have already proved that θ̂n ∈ Θ1/2c̄(θ∗) with high probability. �

C.4. Proof of Theorem 4.2

We use the same conventions as in the proof of Theorem 4.1. We assume w.l.o.g.
that Assumption D2∗ holds with r = 1/

√
ρ, and use K̄2 := K̄2(1/

√
ρ) for brevity.

1o. Our first goal is to prove that the Hessians H(θ) := ∇2L(θ) are close
to H(θ∗) within the Dikin ellipsoid with radius 1/(c̄

√
ρ) for some c̄ depending

on constants K0, K̄2. Fix θ0 = θ∗ and arbitrary θ1 ∈ R
d, and let θt = θ0+ t(θ1−

θ0), Δ := θ1 − θ0. Putting X̃(θt) := [�′′(Y, 〈X, θt〉)]1/2X as before, we have

φ′′(t) = E[�′′(Y, 〈X, θt〉)〈X,Δ〉2] = E[〈H(θt)
−1/2X̃(θt),H(θt)

1/2Δ〉2]
= ‖Δ‖2H(θt)

.
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On the other hand, due to Assumption SCa,

|φ′′′(t)| ≤ E[|�′′′(Y, 〈X, θt〉)| · |〈X,Δ〉|3]
≤ E[�′′(Y, 〈X, θt〉) · |〈X,Δ〉|3]
≤ E[〈X̃(θt),Δ〉2 · |〈X,Δ〉|]
= E[〈H(θt)

−1/2X̃(θt),H(θt)
1/2Δ〉2 · |〈Σ−1/2X,Σ1/2Δ〉|]

≤
√
E[〈H(θt)−1/2X̃(θt),H(θt)1/2Δ〉4] ·

√
E[〈Σ−1/2X,Σ1/2Δ〉2],

where the last step is by the Cauchy-Schwarz inequality. Now, for θt ∈ Θ1/
√
ρ(θ∗),

one has ‖H(θt)
−1/2X̃(θt)‖ψ2 ≤ K̄2 due to Assumption D2∗. On the other

hand, ‖Σ−1/2X‖ψ2 ≤ K0. Hence, by Lemma A.1 and Assumption C, we have

E[〈H(θt)
−1/2X̃(θt),H(θt)

1/2Δ〉4] ≤ CK̄4
2‖Δ‖4H(θt)

,

E[〈Σ−1/2X,Σ1/2Δ〉2] ≤ CK2
0‖Δ‖2Σ ≤ ρCK̄2

0‖Δ‖2H(θ∗)
,

for some constant C > 0; moreover, we can safely assume that C > 1 by
weakening the bounds otherwise. Combining the above results, we arrive at

|φ′′′(t)| ≤ CK0K̄
2
2 [ρφ

′′(0)]1/2φ′′(t), 0 ≤ t[ρφ′′(0)]1/2 ≤ 1.

We now formulate a specification of Proposition B.2 for the present situation.

Proposition C.1. Assume g : R → R is differentiable, non-negative, and

|g′(t)| ≤ c
√
g(0)g(t), |t| ≤ T

for c ≥ 0. Then for t : |t| ≤ T one has g(0)e−c|t|
√

g(0) ≤ g(t) ≤ g(0)ec|t|
√

g(0).

Proof. We assume that g(t) > 0 for t : |t| ≤ T ; the argument can be generalized
in exactly the same way as in the proof of Proposition B.2. Denoting ψ(t) =
log g(t), we obtain by integrating ψ′(t) that −c

√
g(0)t ≤ log(g(t))− log(g(0)) ≤

c
√
g(0)t. Rearranging this, we arrive at the claim. �
Now, putting

c̄ := CK0K̄
2
2 , (94)

and applying Proposition C.1 to g(t) = φ′′(t), under c̄|t|
√
ρ̄φ′′(0) ≤ 1 we get

φ′′(0)e−c̄|t|
√

ρφ′′(0) ≤ φ′′(t) ≤ φ′′(0)ec̄|t|
√

ρφ′′(0).

Finally, since φ′′(t) = ‖Δ‖2H(θt)
, this translates to the analogue of (84):

1

e
H(θ∗) � H(θ) � eH(θ∗), θ ∈ Θr̄(θ∗), r̄ :=

1

c̄
√
ρ̄
. (95)

Here we used that Θr̄(θ∗) ⊆ Θ1/
√
ρ(θ∗) since c̄ ≥ 1.
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2o. We now provide a local approximation of Hn(θ) using pseudo self-concor-
dance of individual losses. Fix θ0 ∈ Θr̄(θ∗) and θ1 ∈ Θ, and note that

|φ′′′
Z (t)| = |�′′′(Y,X�θt) · 〈X,Δ〉|3

≤ |�′′′(Y,X�θt) · 〈X,Δ〉|3 = 〈X̃(θt),Δ〉2 · |〈X,Δ〉| = φ′′
Z(t) · |〈X,Δ〉|.

By the argument analogous to those in Propositions B.2 and C.1, we obtain

φ′′
Z(0)e

−t|〈X,Δ〉| ≤ φ′′
Z(t) ≤ φ′′

Z(0)e
t|〈X,Δ〉|,

which translates to �′′(Y,X�θ0)e
−t|〈X,Δ〉| ≤ �′′(Y,X�θt) ≤ �′′(Y,X�θ0)e

t|〈X,Δ〉|.
Thus, denoting H := H(θ∗) for brevity, we have

�′′(Y,X�θ0)e
−t‖X‖H−1‖Δ‖H ≤ �′′(Y,X�θt) ≤ �′′(Y,X�θ0)e

t‖X‖H−1‖Δ‖H .

Equivalently, for any θ ∈ Θr̄(θ∗) and θ′ ∈ Θ,

�′′(Y,X�θ0)e
−‖X‖H−1‖θ′−θ‖H ≤ �′′(Y,X�θt) ≤ �′′(Y,X�θ0)e

‖X‖H−1‖θ′−θ‖H .
(96)

By Assumption D0, random vector Σ−1/2X has ψ2-norm at most K̄0. Hence,
repeating the argument from 1o in the proof of Theorem 3.1 we can show that,
for some constant C0, with probability at least 1− δ one has

max
i∈[n]

‖Xi‖H−1 ≤ C0K0

√
ρd log

(en
δ

)
. (97)

3o. Let Nε be the epsilon-net on Θr̄(θ∗), with respect to the norm ‖ · ‖H,
with

ε =
1

C0K0

√
ρd log (en/δ)

. (98)

Combining this with (96) and (97), we obtain that with probability at most 1−δ,

1
eHn(π(θ)) � Hn(θ) � eHn(π(θ)), ∀θ ∈ Θr̄(θ∗), (99)

where π(·) is the projection operator on the net Nε. On the other hand, by
Theorem A.2, it holds that

1
2H(θ) ≤ Hn(θ) ≤ 2H(θ), ∀θ ∈ Nε (100)

with probability at least 1−δ, whenever n � d+log (|Nε|/δ). Recaling that |Nε| ≤
(3r̄/ε)d, it is sufficient that

n � d log
(er̄
εδ

)
� d log

(
eK0

√
d log(en/δ)

c̄δ

)
� d log

(
e
√
d log(en/δ)

K̄2
2δ

)
,

where we used (94) and (98). Noting that K̄2 ≥ 1, by simple algebra we have
that (100) holds with probability at least 1− δ whenever

n � d log (ed/δ) .
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Finally, if this is the case, with probability at least 1− δ it holds

e2

2 H(θ∗) � Hn(θ) � 2e2H(θ∗), ∀θ ∈ Θr̄(θ∗),

where we combined (100) with (99) and (95).
4o. As the empirical Hessians are uniformly approximated by H(θ∗) in the

Dikin ellipsoid with radius r̄ = 1/(CK0K̄
2
2
√
ρ), we can proceed in the same

way as in step 4o in the proof of Theorem 4.1, showing that (34) holds when-
ever ‖∇Ln(θ∗)‖2H−1 � 1/(ρc̄2) � 1/(ρK2

0K̄
4
2 ), cf. (94). This leads to the second

bound on the critical sample size from the premise of the theorem. �

C.5. Proof of Theorem 5.1

0o. First, we follow the standard idea in the analysis of �1-penalized estimators
(see, e.g., [8]): using the convexity of Ln(θ), we show that whenever λ dom-
inates ∇Ln(θ) – which is in fact enforced by the lower bound in (40) – the

essential part of the residual Δ := θ̂λ,n − θ∗ with high probability concentrates

on the support S. Indeed, due to the optimality of θ̂ := θ̂λ,n, we have

Ln(θ̂)− Ln(θ∗) ≤ λ(‖θ∗‖1 − ‖θ̂‖1). (101)

Let ΔS be the orthogonal projection of Δ onto S, and denote ΔSc = Δ−ΔS =

θ̂S its projection onto Sc, the orthogonal complement of S. By the triangle
inequality,

‖θ∗‖1 − ‖θ̂‖1 ≤ ‖ΔS‖1 − ‖ΔSc‖1. (102)

On the other hand, by convexity of Ln(θ), we have

Ln(θ̂)− Ln(θ∗) ≥ −‖∇Ln(θ∗)‖∞‖θ̂ − θ∗‖1 ≥ −‖∇Ln(θ∗)‖∞(‖ΔS‖1 + ‖ΔSc‖1).
(103)

Collecting (101)–(103), we get

(λ− ‖∇Ln(θ∗)‖∞) ‖ΔSc‖1 ≤ (λ+ ‖∇Ln(θ∗)‖∞) ‖ΔS‖1.

Whence if

λ ≥ 2‖∇Ln(θ∗)‖∞, (104)

we have that Δ satisfies the restricted subspace condition:

‖ΔSc‖1 ≤ 3‖ΔS‖1, (105)

combining which with ‖ΔS‖1 ≤ √
s‖ΔS‖2 ≤ √

s‖Δ‖2 results in

‖Δ‖1 ≤ 4
√
s‖Δ‖2. (106)

Later on, we will show that the lower bound in (40) implies (104) with proba-
bility at least 1− δ. For now, let us assume that (104) holds.
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1o. To localize the estimate, we now use a similar technique to the one used
in the proof of Proposition B.4, but replace the Cauchy-Schwarz inequality with
Young’s inequality. First, applying (61) to Ln(θ) with θ0 = θ∗, θ1 = θ̂, and W =
Xj for some (random) j ∈ [n], we have

e−|〈Xj ,Δ〉| − 1 + |〈Xj ,Δ〉|
|〈Xj ,Δ〉|2 ‖Δ‖2Hn

≤ Ln(θ̂)− Ln(θ∗)− 〈∇Ln(θ∗),Δ〉.

Since function u �→ (e−u − 1 + u)/u2 is non-increasing, we can replace
|〈Xj ,Δ〉| with ‖Xj‖∞‖Δ‖1. Combining this with (101) and (102), bounding
−〈∇Ln(θ∗),Δ〉 via Young’s inequality, and using (104), we get

e−‖Xj‖‖Δ‖1 − 1 + ‖Xj‖∞‖Δ‖1
‖Xj‖2∞‖Δ‖21

‖Δ‖2Hn
≤ 3λ‖Δ‖1

2
. (107)

We now use the standard result from compressed sensing theory (see Theo-
rem A.3 in Appendix) which states the following. Suppose that all s-restricted
eigenvalues of H belong to [1/ρ,κ2], meaning that

‖Δ‖2/ρ ≤ ‖Δ‖2H ≤ κ‖Δ‖2

for any Δ satisfying the restricted subspace property (105) – which is clearly the
case for H in question, due to Assumptions C and C∗. Then, the corresponding
sample covariance matrix Hn with probability at least 1− δ satisfies

1
2‖Δ‖2H � ‖Δ‖2Hn

� 2‖Δ‖2H, (108)

for any Δ satisfying (105), provided that

n � ρκ2K
4
2s log (ed/δ) ,

cf. (39). Combining this result with

‖Δ‖2H ≥ ‖Δ‖22
ρ

≥ ‖Δ‖21
16ρs

,

where we used (106), we have that under (39) with probability 1− δ it holds

‖Δ‖2Hn
≥ ‖Δ‖21

32ρs
. (109)

Combining this with (107), and denoting

Bsup := max
i∈[n]

‖Xi‖∞, u := Bsup‖Δ‖1,

we obtain e−u − 1+ u ≤ 48ρsλBsupu. From now on, we proceed as in the proof
of Proposition B.4, cf. (70). That is, under

48ρsλBsup ≤ 1/2, (110)
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we sequentially obtain u ≤ 2, e−u − 1 + u ≥ u2

4 , then u ≤ 192ρsBsupλ, and

‖Δ‖1 ≤ 192ρsλ.

This is the first inequality in (41), and the second one is obtained by combining
it with (107)–(108). Thus, both inequalities in (41) are satisfied under the two
assumed conditions (104) and (110). It remains to show that these conditions
are indeed guatanteed to be satisfied with high probability under (40). For that,
we have to bound the quantities ‖∇Ln(θ∗)‖∞ and Bsup from above. Indeed,
due to Assumption D1, we have

‖∇�Z(θ∗)‖ψ2 ≤ K1
√
κ1.

By Lemma A.4, this gives ‖∇Ln(θ∗)‖ψ2 � K1

√
κ1/n. Whence, ‖[∇Ln(θ∗)]i‖ψ2�

K1

√
κ1/n componentwise for any i ∈ [n]. Whence, by Lemma A.2, one has

‖∇Ln(θ∗)‖∞ � K1

√
κ1 log (ed/δ)

n

with probability at least 1 − δ. This guarantees (104) under the lower bound
in (40). Similarly, we can show that with probability at least 1− δ,

Bsup � K0

√
log (edn/δ),

which guarantees (110) under the upper bound in (40). The first claim of the
theorem is proved; note that the upper bound in (39) is a corollary of (40).

2o. To prove the second claim, we bound the excess risk using a similar
technique as in the proof of Theorem 3.1. Note that P(E) ≥ 1− δ by the results
of 1o. As in the proof of Theorem 3.1, let HE := ∇2LE(θ∗); recall that HE � H.
Applying (60) to LE(θ) with S ≤ ‖X‖∞‖Δ‖1 (recall that X ∈ E), we have

LE(θ̂)− LE(θ∗) ≤ ‖∇LE(θ∗)‖∞‖Δ‖1 +
e‖X‖∞‖Δ‖1 − 1− ‖X‖∞‖Δ‖1

‖X‖2∞‖Δ‖21
‖Δ‖2H

� ‖∇LE(θ∗)‖∞‖Δ‖1 + ‖Δ‖2H,

where we bounded the factor ahead of ‖Δ‖2H by a constant using the results
of 1o. Now, define LEc(θ) := E[�Z(θ)1Ec(X)] where Ec

0 is the complimentary
event to E . Since ∇L(θ∗) = 0, we have ∇LE(θ∗) = ∇LEc(θ∗). On the other
hand, for any p, q ≥ 1 such that 1/p+ 1/q = 1, we have

‖∇LEc(θ∗)‖∞ ≤ E[‖∇�Z(θ∗)‖∞1Ec(X)] ≤ E[‖∇�Z(θ∗)‖p∞]
1
p δ

1
q ≤ K1

√
pκ1 d

1
p δ

1
q ,

where we applied Hölder’s and Young’s inequalities, and then Lemma A.3. Recall
that in 1o we obtained that ‖Δ‖1 � ρsλ and ‖Δ‖2H � ρsλ2 with probability at
least 1− δ. Combining these observations, we arrive at

LE(θ̂)− LE(θ∗) ≤ (λ+K1
√
pκ1 d

1/pδ1/q)ρsλ.

Choosing p = log(ed), so that q = log(ed)/ log(d), we arrive at the claim. �
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C.6. Proof of Theorem 5.2

1o. Let θ̂ = θ̂λ,n for brevity. The step 0o of the proof of Theorem 5.1 can be
repeated verbatim. As a result, whenever

λ ≥ 2‖∇Ln(θ∗)‖∞, (111)

we have

Ln(θ̂)− L(θ∗) ≤ λ(‖ΔS‖1 − ‖ΔSc‖1) ≤ λ‖Δ‖1, (112)

‖ΔSc‖1 ≤ 3‖ΔS‖1, (113)

‖Δ‖1 ≤ 4
√
s‖Δ‖2. (114)

Moreover, we know (cf. the end of step 1o of the proof of Theorem 5.1) that (111)
holds with probability at least 1− δ as long as

‖∇Ln(θ∗)‖∞ � K1

√
κ1 log (ed/δ)

n
. (115)

Hence, (111) and (115) are satisfied under the lower bound in (44). Finally,
under (113) we have

1
2‖Δ‖2H � ‖Δ‖2Hn

� 2‖Δ‖2H (116)

and

‖Δ‖2Hn
≥ ‖Δ‖21

32ρs
, (117)

both with probability at least 1− δ, whenever n � ρκ2K
4
2s log (ed/δ).

2o. However, (107) does not hold since we cannot use (61). Instead, we prove

‖Δ‖2Hn

1 + 3‖X̃j‖∞‖Δ‖1
≤ Ln(θ̂)− L(θ∗)− 〈∇Ln(θ∗),Δ〉, (118)

where j ∈ Argmaxi∈[n] |〈X̃i,Δ〉|. Indeed, to this end denote S = |〈X̃j ,Δ〉|.
Whenever S < 1, function Ln(θ) satisfies the second statement of Case (b) of
Proposition B.3, and we obtain (118) from the lower bound in (63). On the
other hand, when S ≥ 1 function Ln(θ) satisfies the basic statement of Case (b)
of Proposition B.3, and we can use the lower bound in (62), i.e.,

1
3S2 ‖Δ‖2Hn

≤ Ln(θ1/S)− L(θ∗)− 1
S 〈∇Ln(θ∗),Δ〉, (119)

where θ1/S is the convex combination of θ∗ and θ̂ given by

θ1/S = (1− 1/S) · θ∗ + 1/S · θ̂.

By convexity, we have Ln(θ1/S) ≤ (1 − 1
S )Ln(θ∗) +

1
SLn(θ̂), whence Ln(θ̂) −

Ln(θ∗) ≤ (Ln(θ̂)− Ln(θ∗))/S. When combined with (119), this results in

1
3S ‖Δ‖2Hn

≤ Ln(θ̂)− L(θ∗)− 〈∇Ln(θ∗),Δ〉.
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Whence (118) follows by Young’s inequality. Now, (118), (112), and (111) imply

‖Δ‖2Hn

1 + 3‖X̃j‖∞‖Δ‖1
≤ 3λ‖Δ‖1

2
, (120)

which is an analogue of (107). Starting from this point, we can proceed in a

similar way as in the proof of Theorem 5.2. Namely, let B̃sup := ‖X̃‖∞ and u :=

B̃sup‖Δ‖1, then (120) and (117) imply

u

1 + 3u
≤ 48ρsλB̃sup.

Hence, whenever
48ρsλB̃sup ≤ 1/4, (121)

we have u ≤ 1 and u/(1 + 3u) ≥ u/4, which implies u ≤ 192ρsλB̃sup and ‖Δ‖1 ≤
192ρsλ. This is the first inequality in (45). To obtain the second inequality, we
combine (120) and (116). Thus, for (45) it remains to show that (121) holds un-

der the upper bound in (44). We have ‖X̃‖ψ2 ≤ ‖H1/2‖2‖H−1/2X̃‖ψ2 ≤ K2
√
κ2,

where we used Assumptions D2 and C∗. This leads to B̃sup � K2

√
κ2 log(edn/δ)

with probability 1− δ, which guarantees (121) under the upper bound in (44).
2o. We now adapt the proof of the second claim of Theorem 5.1. Recall that

in our case E := {‖X̃‖∞ � K2

√
κ2 log (ed/δ)}, and P(E) ≥ 1− δ by the results

of 1o. As before, we put HE := ∇2LE(θ∗) � H, but this time we note that LE(θ)

satisfies Case (b) of Proposition B.3 with S ≤ ‖X̃‖∞‖Δ‖1 < 1, cf. 1o. Thus, by
the upper bound in (63) we have

LE(θ̂)− LE(θ∗) � ‖∇LE(θ∗)‖∞‖Δ‖1 + ‖Δ‖2H.

Thence we proceed as in the proof of the second claim of Theorem 5.1. �

Appendix D: Logistic regression with Gaussian design

Change of variables Consider a canonical GLM (17) with cumulant a(η).

Here, �′′(y, η) = a′′(η) does not depend on y, hence X̃(θ) = [a′′(X�θ)]1/2X is
fully defined by the distribution of X and the value of θ. Hence, the validity of
Assumptions C, D2, D2∗ only depends on the distribution of X, the expression
for a′′(η), and, possibly, the value of θ∗ (or θ in the unit Dikin ellipsoid of θ∗ in
the case of Assumption D2∗). Note, however, that the distribution of Y does in-
fluence Assumption D1 since the loss gradient �′(Y,X�θ)X = (a′(X�θ)− Y )X
contains Y . Now, consider the case of zero-mean design, which only makes sence
when η is unrestricted, i.e., R(+) = R (note that this excludes the exponential
responce model). In this case, it is natural to pass from X and θ to the decor-

related design Z := Σ−1/2X and parameter ϑ := Σ−1/2θ. Indeed, X�θ = Z�ϑ,
and the corresponding vector Z̃(ϑ),

Z̃(ϑ) := [a′′(Z�ϑ)]1/2Z,
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writes Z̃(ϑ) = Σ−1/2X̃(θ), so that its 2nd-moment matrix Ψ(ϑ) :=

E[Z̃(ϑ)Z̃(ϑ)�] is given by Ψ(ϑ) = Σ−1/2H(θ)Σ−1/2. Verifying Assumption C

thus reduces to bounding the lowest eigenvalue of Ψ(ϑ∗) at ϑ∗ := Σ1/2θ∗, while

Assumptions D2 and D2∗ reduce to checking ‖Ψ(ϑ)−1/2Z̃(ϑ)‖ψ2 � K2 in the
neighborhood of ϑ∗. Similarly, Assumption D1 can be reformulated in terms of
the variables Z, ϑ, Y .

Here we consider the case of logistic regression with zero-mean Gaussian
design (with arbitrary covariance), verifying the assumptions presented in Sec-
tion 2.2.

Proposition D.1. In logistic regression with X ∼ N (0,Σ), the following holds:

1. Assumption C holds with

ρ � 1 + ‖θ∗‖3Σ.

2. Assumption D2 holds with K2 � (1 + log(1 + ‖θ∗‖Σ))
√
1 + ‖θ∗‖Σ.

Moreover, Assumption D2∗ with radius r of the Dikin ellipsoid holds with

K̄2(r) � (1 + log(1 + ‖θ∗‖Σ + r
√
ρ))

√
1 + ‖θ∗‖Σ + r

√
ρ.

That is, K̄2(1/
√
ρ) admits the same bound as K2 up to a constant factor.

3. If the model is well-specified, Assumption D1 holds with

K1 � √
ρ � (1 + ‖θ∗‖Σ)3/2.

Moreover, for subexponential norm ‖ · ‖ψ1 , see [59, Sec. 5.2.4], one has

‖G(θ∗)
−1/2�′(Y,X�θ∗)X‖ψ1 � log(1 + ‖θ∗‖Σ)2

√
1 + ‖θ∗‖Σ;

equivalently,
(
E[〈G(θ∗)

− 1
2 �′(Y,X�θ∗)X,u〉p

) 1
p � Kp for all u ∈ Sd−1

with
K = log(1 + ‖θ∗‖Σ)2

√
1 + ‖θ∗‖Σ.

Proof. Note that Z ∼ N (0, Id), and since this law is rotation-invariant, we
can w.l.o.g. assume that the first coordinate vector is parallel to ϑ. Using the
symmetries of N (0, 1), we can make sure that Ψ(ϑ) = Σ−1/2H(θ)Σ−1/2 writes

Ψ(ϑ) =

[
κ 0�d−1

0d−1 κ⊥Id−1,

]
, (122)

where 0d−1 is the zero column, and κ, κ⊥ can be expressed in terms of the
standard Gaussian density φ(·) and

t := ‖ϑ∗‖2 = ‖θ∗‖Σ

as

κ :=

∫ ∞

−∞
a′′(tu)u2φ(u)du, κ⊥ :=

∫
R

a′′(tu)φ(u)du.
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In fact, the form (122) for Ψ(ϑ) will be preserved with any elliptical distribution
of X, with somewhat more complicated expressions for κ and κ⊥. Our next step
is to lower-bound κ and κ⊥, which automatically yields an upper bound for ρ
in Assumption C:

ρ ≤ 1

min(κ, κ⊥)
. (123)

1o. We bound κ and κ⊥ for logistic regression. Here one has a(η) = log(1+ eη),

a′(η) = σ(η), a′′(η) = σ(η)(1− σ(η)),

where σ(η) := 1/(1+e−η) is the sigmoid. Clearly, we can bound a′′(η), ∀η ∈ R :

1

2(1 + e|η|)
≤ a′′(η) ≤ 1

1 + e|η|
,

which yields
1
4e

−|η| ≤ a′′(η) ≤ e−|η|. (124)

Hence, letting a ≈ b denote the intersection of a � b and a � b, we have

κ⊥ ≈
∫ ∞

0

e−tuφ(u)du ≈
∫ ∞

0

e−tu−u2/2du = et
2/2G(t),

where

G(t) =

∫ +∞

t

e−v2/2dv

is the partial Gaussian integral. Now, [1, Eq. 7.1.13] gives sharp bounds for G(t):

2e−t2/2

t+
√
t2 + 4

≤ G(t) ≤ 2e−t2/2

t+
√

t2 + 8/π
, t ≥ 0. (125)

In particular, these bounds imply G(t) ≈ e−t2/2/(t+ 1), whence,

κ⊥ ≈ 1/(t+ 1). (126)

We can similarly bound κ:

κ ≈
∫ ∞

0

e−tuu2φ(u)du ≈ et
2/2

∫ ∞

0

e−(u+t)2/2u2du = (t2 + 1)G(t)− te−t2/2.

Using the lower bound in (125), this gives

κ ≥ 4

(t+
√
t2 + 4)(t2 + 2 +

√
t4 + 4t2)

� 1

1 + t3
. (127)

Plugging (126) and (127) into (123), we arrive at ρ � 1+‖θ∗‖3Σ, as claimed. The
dependency on t cannot be improved since the lower bound in (125) is sharp.
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2o. On the other hand, we can estimate K2 from Assumption D2 (and simi-
larly K̄2(r) from Assumption D2∗). Indeed, note that

K2 = ‖Ψ(ϑ∗)
−1/2Z̃(θ∗)‖ψ2 = sup

u∈Sd−1

‖〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉‖ψ2 .

Let us consider separately the marginals for u = ϑ∗/t and for u from the oth-
ogonal complement of the span of ϑ. When u = ϑ∗/t, we have

|〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉| =

√
a′′(tZ1)

κ
|Z1| � (1 + t3/2)e−

t|Z1|
2 |Z1|,

where Z1 ∼ N (0, 1), and we used (124) and (127). Thus, when t � 1, we have

‖〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉‖ψ2 � ‖Z1‖ψ2 � 1.

Let, on the contrary, t � 1. Note that in the case where |Z1| ≥ 3 log(1+t)
t , we

have (1 + t3/2)e−t|Z1|/2 � 1, whence |〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉| � |Z1|. On the other

hand, when |Z1| ≤ 3 log(1+t)
t , we have

(1 + t3/2)e−t|Z1|/2|Z1| � (1 + t1/2) log(1 + t).

Hence, when u is parallel to ϑ∗, we have

‖〈u,Ψ(ϑ∗)
−1/2Z̃(θ∗)〉‖ψ2 � (1 + log(1 + t))

√
1 + t.

Finally, when u is orthogonal to ϑ∗, we can use the trivial estimate

‖〈u,Ψ(ϑ∗)
− 1

2 Z̃(θ∗)〉‖ψ2 =

∥∥∥∥√a′′(tZ1)
κ⊥

〈u, Z〉
∥∥∥∥
ψ2

�
√
1 + t‖〈u, Z〉‖ψ2 �

√
1 + t.

In fact, this bound is tight, which can be verified by Item 2 of Lemma A.1 (note
that Z1 and 〈Z, u〉 are independent). Thus, overall we have

K2 � (1 + log(1 + ‖θ∗‖Σ))
√
1 + ‖θ∗‖Σ. (128)

Moreover, for K̄2(r) from Assumption D2∗, we clearly have

K̄2(r) � sup
θ∈Θr(θ∗)

(1 + log(1 + ‖θ‖Σ))
√
1 + ‖θ‖Σ

� (1 + log(1 + ‖θ∗‖Σ + r
√
ρ))

√
1 + ‖θ∗‖Σ + r

√
ρ.

This still gives (128) when r � 1/
√
ρ, motivating our condition in Theorem 4.2.

3o. Finally, let us verify Assumption D1, assuming well-specified model. In
this case, G(θ∗) = H(θ∗), and the trivial bound using |Y − σ(X�θ∗)| ≤ 1 is

K1 � √
ρ � 1 + t3/2.
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This is a rather discouraging result. However, we can show a weaker (subex-
ponential) version of Assumption D1 with a milder dependency on t, replacing
the ‖ · ‖ψ2 norm with the ‖ · ‖ψ1-norm as defined in [59, Section 5.2.4]:

‖�′(Y,X�θ∗)Z‖ψ1 � log(1 + t)2
√
1 + t. (129)

An equivalent definition of the subexponential norm is as follows: a random vari-
able ξ ∈ R satisfies ‖ξ‖ψ1 ≤ K when its moments grow as (E[|ξ|p])1/p � Kp, i.e.,
same as the moments of the exponential distribution; then, the ψ1-norm of a ran-
dom vector is defined as the maximum norm of its one-dimensional marginals.
Recall that for subgaussian variables the scaling is K

√
p (cf. Lemma A.1).

For (129), note that in the well-specified case for y ∈ {0, 1} we have

P{Y = y} = σ(X�θ∗)
y(1− σ(X�θ∗))

1−y,

thus we bound the moments of the marginals of �′(Y,X�θ∗)Z = (Y −σ(Z�ϑ∗)Z:

EZ,Y [(Y − σ(Z�ϑ∗))〈Z, u〉]p ≤ 2EZ

[
σ(Z�ϑ∗)(1− σ(Z�ϑ∗))〈Z, u〉p

]
� 2EZ

[
e−|Z�ϑ∗|〈Z, u〉p

]
, p ≥ 1,

where we used (124). For u parallel to ϑ∗, we should prove that

(1 + t)3/2
(∫ +∞

0

e−tuupe−u2/2du

)1/p

� p log2(1 + t)
√
1 + t. (130)

We proceed similarly to 2o, using that (1 + t)3p/2e−tu ≤ 1 for u ≥
3p log(1 + t)/(2t). Thus, when t � 1,

(1 + t)3p/2
∫ +∞

0

e−tuupe−u2/2du

≤(1 + t)3p/2
∫ 3p log(1+t)

2t

0

updu+

∫ +∞

3p log(1+t)
2t

upe−u2/2du

�(1 + t)3p/2
1

p+ 1

(
3p log(1 + t)

2t

)p+1

+ pp/2 � (2p)p(1 + t)p/2 log(1 + t)p+1,

which implies (130). The remaining cases (u parallel to ϑ∗ with t � 1; u ⊥ ϑ∗)
are straightforward, by using that ‖ · ‖ψ1 ≤ C‖ · ‖ψ2 for some constant C,
see [59]. �
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