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Abstract

Applying an inductive technique for Stein and zero bias couplings yields Berry-Esseen
theorems for normal approximation for two new examples. The conditions of the main
results do not require that the couplings be bounded. Our two applications, one to the
Erdős-Rényi random graph with a fixed number of edges, and one to Jack measure
on tableaux, demonstrate that the method can handle non-bounded variables with
non-trivial global dependence, and can produce bounds in the Kolmogorov metric with
the optimal rate.
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1 Introduction

We present new Berry-Esseen theorems for sums Y of possibly dependent variables
by combining both the Stein and zero bias couplings of Stein’s method with the inductive
technique of Bolthausen (1984) originally developed for the combinatorial central limit
theorem. We apply these results to obtain normal approximations in the Kolmogorov
metric for two new examples.

Stein’s method (Stein, 1972, 1986) typically proceeds by coupling a random variable Y
of interest to a related variable Y ′; for an overview see Chen, Goldstein and Shao (2011)
and Ross (2011). Here we develop results that can be applied to the Stein couplings of
Chen and Röllin (2010) and to the zero bias couplings of Goldstein and Reinert (1997),
thus encompassing most of the known couplings that have appeared in the literature,
including settings not typically framed in terms of couplings, such as local dependence.
The innovation here is the widened scope of the couplings that can be handled that
permit applications when the difference |Y − Y ′| between Y and the coupled Y ′ is not
almost surely bounded by a constant, or where the bound on this difference increases
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Stein’s method via induction

in the problem size. This work is a broad extension and continuation of Ghosh (2009),
applying induction and the zero bias coupling for the combinatorial central limit theorem
where the random permutations are involutions, and of Goldstein (2013) using the size
bias coupling to study degree counts in the Erdős-Rényi random graph; the inductive
method considered here is inspired by Bolthausen (1984), but goes ultimately back to
Bergström (1944).

At the center of Stein’s method is the characterization that Z is a standard normal
random variable if and only if

E{Zf(Z)} = E{f ′(Z)} (1.1)

for all locally absolutely continuous functions f for which the above expectations exist.
Given a standardized variable W whose distribution is to be compared to Z, and a test
function h on which to evaluate the difference Eh(W ) − Eh(Z), one solves the Stein
equation

f ′(w)− wf(w) = h(w)− Eh(Z)

for f . The difference Eh(W )−Eh(Z) may then be evaluated by substituting W for w and
taking expectation on the left hand side of (1.1), rather than the right. One explanation
of why the expectation of the left hand side may simpler to compute, or bound, than
that of the right is that it depends only on the distribution of W , whereas the right also
depends on that of Z. In particular, on the left hand side one may apply couplings of W
to auxiliary random variables having properties that allow for convenient manipulations.

In Theorem 1.1 we present results for situations in which one can form a Stein
coupling as defined by Chen and Röllin (2010). Following the treatment there, we say
that the triple (W,W ′, G) of random variables is a Stein coupling when

E{Gf(W ′)−Gf(W )} = E{Wf(W )} (1.2)

for all functions f for which the expectations above exist. It is not difficult to see that
the canonical exchangeable pair coupling of Stein (1986), and the size bias coupling of
Goldstein and Rinott (1996) are both special cases of Stein couplings. Indeed, recall that
for λ ∈ (0, 1] we say (W,W ′) is a λ-Stein pair if (W,W ′) is exchangeable and

E{W ′|W} = (1− λ)W. (1.3)

In this case, it is easily verified that (1.2) is satisfied with

G =
1

2λ
(W ′ −W ).

Likewise, for a non-negative random variable Y with finite mean µ, we say that (Y, Y ′) is
a size bias coupling of Y when Y ′ has the Y -size bias distribution, that is, when

E{Y f(Y )} = µE{f(Y ′)}

for all functions f for which these expectations exist. Again, it is easy to verify that for
such couplings (1.2) is satisfied with

W = Y − µ, W ′ = Y ′ − µ and G = µ.

In particular, Theorem 1.1 extend results in Goldstein (2013) for the size bias coupling.
Theorem 1.2 provides a parallel result for the zero bias coupling (W,W ∗) of Gold-

stein and Reinert (1997). Recall that for a non-trivial mean zero, variance σ2 random
variable W , we say that W ∗ has the W -zero biased distribution if

E{Wf(W )} = σ2E{f ′(W ∗)} (1.4)

EJP 25 (2020), paper 132.
Page 2/49

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP535
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stein’s method via induction

for all functions f for which the quantities above exist.
In Stein’s method in general, simplification occurs when a coupling of W to an

appropriate W ′ can be achieved in such a way that the difference is almost surely
bounded, or bounded uniformly in the size of the problem. However, in many situations
appropriately bounded couplings may be difficult to construct, whereas unbounded
couplings seem to appear naturally. Hence Theorems 1.1 and 1.2, which do not impose
restrictive boundedness conditions, may be applied to produce new results in a variety
of examples.

General Framework. Let (Θ, T ) and (Ω,F) be two measurable spaces, the parameter
space and the sample space, respectively. All random variables are understood to be real
valued measurable functions from the product space (Θ× Ω, T ⊗ F). The distribution
of a random variable X is determined by a parameter θ ∈ Θ through a given transition
kernel Pθ from Θ to Ω. That is, for each θ ∈ Θ, Pθ[·] is a probability measure on (Ω,F),
and for each A ∈ F , the map P·[A] is T -measurable. Depending on context and emphasis,
we may also write X as X(θ, ω) or Xθ(ω), so that, for instance, EθX =

∫
Ω
X(θ, ω)Pθ[dω].

These measurability conditions are needed to assure the measurability of mappings that
appear later, such as of the mean µθ, the variance σ2

θ of Y , and of YΨ(θ,ω)(ω), which
represents the value of Y at the parameter used in the inductive step. These conditions
will not always be invoked explicitly below; we illustrate their use by showing in the
Appendix, Section 4, that this latter variable in particular is measurable.

Our goal is to obtain bounds on the Kolmogorov distance between the standardized
version W of a random variable Y and the normal distribution in terms of the parameter θ.
Theorems 1.1 and 1.2 below yield a bound of the form C/rθ for rθ a positive ‘rate’ function
of θ and C a constant not depending on θ.

As noted, one main step our method requires is to couple W to a random variable W ′,
which satisfies either the Stein coupling relation (1.2) or the zero bias coupling rela-
tion (1.4). In order to apply induction, we identify a subset ⊂ Θ in Condition (G1),
consisting of the ‘nicely behaved’ parameters; its complement plays the role of the base
case, on which the bound C/rθ may be trivial. For our bound to be informative, it is
necessary that the rate function rθ be unbounded on .

For the induction step, we also introduce a sub σ-algebra Fθ that, roughly speaking,
captures the information about the changes that were necessary to construct W ′ from
W (or equivalently, Y ′ from Y ); the coarser Fθ is, the better the normal approximation
will be. A certain tension is created here, as Fθ must be large enough to contain the
variables describing the changes from Y to Y ′, but small enough so that the conditional
distribution of Y on Fθ, is sufficiently close to its original one.

Conditional on Fθ, the variable Y may no longer have its original distribution, but
induction is viable when one can identify within Y another variable V that has a distribu-
tion similar to the original Y ; when the parameter space Θ is ordered, V typically has a
smaller parameter. For a successful induction, the parameter of the smaller problem
should not stray too far from that of Y . There is some leeway here, as it suffices to
have control over an event Fθ,1, as specified in Condition (G4). Intuitively, the event Fθ,1
should contain the bulk of the support of the variables that generate Fθ, and not their
extremes. For instance, for the Erdős-Rényi graph problem considered, Fθ contains the
label and degree of a chosen vertex on which the coupling is based, and Fθ,1 is an even
on which its degree is ‘not too large’.

Relaxing the condition that the difference D = W ′ −W be bounded, we control the
magnitude of this difference by its moments. Moreover, we upper bound D by D, and in
the case of a Stein coupling, also G by G, where these majorizing variables are required
to be Fθ measurable; we are able to handle exceptional or boundary cases as these
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upper bounds are only required to hold on Fθ,1. We will also require the existence of a
random variable B that bounds the absolute difference |Y − V |, and which is not ‘too
large.’ See Conditions (G3), (G4) and (G6) for the case of Stein couplings.

There is also some leeway in that the distribution of V , conditionally on Fθ, only
needs to be close to that of Y on an event Fθ,2 ∈ Fθ. Precisely, for the Stein coupling case,
with similar remarks also applying to zero bias couplings, we impose in Condition (G5)
that

Lθ(V |Fθ) = LΨθ (Y ) on Fθ,2, (1.5)

where Ψθ is the (typically random) parameter capturing the conditional distribution of
the embedded variable V . For clarification, by (1.5) we mean

Pθ[V ∈ · |Fθ](ω) = PΨθ(ω)[Y ∈ · ] for all ω ∈ Fθ,2.

With the help of V , a recursive inequality for a bound on the distance between W and
the normal can be produced.

Before attempting to apply the methods presented in this article, it is advisable that
a user first ‘test the waters’ by constructing a Stein or zero-bias coupling and proving a
normal approximation for a smooth metric such as the Wasserstein distance; see Chen
and Röllin (2010), or Goldstein (2007), respectively. Once this goal has been achieved,
the sigma-algebra Fθ will typically arise naturally from the coupling construction, and
one may then proceed to identify a suitable variable V whose conditional distribution
given Fθ is within the same class of distributions determined by Θ and close to that of Y .
For instance, in occupancy problems, a Stein coupling or zero-bias coupling typically
involves moving around a small number of balls among a small number of urns, and V
will typically again represent an occupancy problem, but on fewer balls and fewer urns.

1.1 Abstract approximation theorems

We now state the conditions required for our main results. The inverse rate function rθ
is assumed to be a positive function, measurable in θ, a condition satisfied for all natural
examples, including the ones considered here. The mean µθ = EθY and variance σ2

θ =

Varθ(Y ) are measurable by the conditions in our General Framework. To avoid repetition,
the distribution of random variables indicated after θ ∈ Θ has been fixed is with respect
to Lθ(·). The random variable Z will always denote the standard normal.

The variable Y denotes the unstandardized random variable of interest. Theorem 1.1
shows that the following set of conditions are sufficient for the Kolmogorov distance
between the standardized version W of Y and the normal to be bounded by C/rθ for
some universal constant C.

(G1) Let rθ be a positive measurable function, let r be a positive number, and let

= {θ ∈ Θ : rθ > r}. (1.6)

Assume that r is chosen such that Varθ Y > 0 for all θ ∈ .

(G2) For all θ ∈ Θ, let µθ = EθY and σ2
θ = Varθ Y , and define

W =
Y − µθ
σθ

whenever σθ > 0, and set W = 0 otherwise. Let W ′ and G be two random variables
such that, for each θ ∈ , (W,W ′, G) is a Stein coupling, in the sense of (1.2), with
respect to Pθ.
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(G3) With D = W ′ −W assume that

sup
θ∈

rθ Eθ
∣∣Eθ(1−GD|W )

∣∣ <∞ and sup
θ∈

rθ Eθ
{

(1 + |W |)|G|D2
}
<∞. (1.7)

(G4) For each θ ∈ , let Fθ ⊂ F be a sub-σ-algebra. Let G and D be random variables
such that, for each θ ∈ , the mappings G(θ, ·) and D(θ, ·) are Fθ-measurable and
such that, on some event Fθ,1 which need not be in Fθ, we have |G| ≤ G, |D| ≤ D,
and

sup
θ∈

r2
θ Eθ

{
|G|D2(1− IFθ,1)

}
<∞ and sup

θ∈
rθ Eθ

{
GD

2}
<∞. (1.8)

(G5) Let Ψ be a Θ-valued random element such that, for each θ ∈ , Ψ(θ, ·) is Fθ-
measurable. Let V be a random variable, and for each θ ∈ , let Fθ,2 ∈ Fθ be such
that

Lθ(V |Fθ) = LΨ(Y ) on Fθ,2, (1.9)

and
sup
θ∈

r2
θ Eθ

{
|G|D2(1− IFθ,2)

}
<∞. (1.10)

(G6) Let B be a random variable such that, for each θ ∈ , B(θ, ·) is Fθ-measurable,

σ−1
θ |Y − V | ≤ B on Fθ,1, and sup

θ∈
r2
θ Eθ

{
GD

2
BIFθ,2

}
<∞. (1.11)

(G7) Assume

sup
θ∈

ess sup
ω∈Fθ,2∩{Ψ∈ }

σ2
θ

σ2
Ψ(θ,ω)

<∞, (1.12)

sup
θ∈

ess sup
ω∈Fθ,2

rθ
rΨ(θ,ω)

<∞, sup
θ∈

ess sup
ω∈Fθ,2∩{Ψ∈ }

rΨ(θ,ω)

rθ
<∞, (1.13)

where the essential suprema are taken with respect to Pθ.

Theorem 1.1. If Conditions (G1)–(G7) are satisfied, then there exists a constant C,
independent of θ, such that

sup
z∈R

∣∣Pθ[W ≤ z]− P[Z ≤ z]
∣∣ ≤ C

rθ
for all θ ∈ Θ. (1.14)

Theorem 1.1 extends Theorem 1.1 in Goldstein (2013), which produces a Kolmogorov
bound equivalent up to constants to the bound in Chen and Röllin (2010) for the Wasser-
stein distance to the normal for bounded size bias couplings. In addition, the bound
produced by Bartroff and Goldstein (2013) by an application of Theorem 1.1 of Goldstein
(2013) to counts in a multinomial occupancy model was shown there to be of optimal
order by the lower bound (1.6) of Englund (1981), see also (1.7) of Bartroff and Goldstein
(2013); the bound of Theorem 1.2 of Goldstein (2013), using also Theorem 1.1 of that
same work, for degree counts in the Erdős-Rényi random graph can also be shown to be
optimal up to constant factors in the same manner.

When higher moments exist a number of the conditions of the theorem may be
verified using simpler expressions, obtained via standard inequalities. For instance,
using f(w) = w and that Varθ(W ) = 1 in (1.2) shows that Eθ(GD) = 1, hence applying
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the Cauchy-Schwarz inequality to the first expression in (1.7) in Condition (G3) above,
followed by a consequence of the conditional variance formula, we obtain

Eθ|Eθ(1−GD|W )| ≤
√

Varθ(Eθ(GD|W )) ≤
√

Varθ(Eθ(GD|H)), (1.15)

where H is any σ-algebra with respect to which W is measurable.

We now state a parallel result for zero bias couplings.

(Z1) Let rθ be a positive measurable function, let r a positive number, and let

= {θ ∈ Θ : rθ > r}.

Assume that r is chosen such that Varθ Y > 0 for all θ ∈ .

(Z2) Let µθ = EθY and σ2
θ = Varθ Y , and define

W =
Y − µθ
σθ

whenever σθ > 0 and W = 0 otherwise. Let W ∗ be defined on Ω, such that for
each θ ∈ the variable W ∗ has the W -zero bias distribution as in (1.4) with
respect to Pθ.

(Z3) For each θ ∈ let Fθ be a sub-sigma algebra of F , let D = W ∗ −W , and let D
be a random variable such that D(θ, ·) is Fθ-measurable, and let Fθ,1 be an event,
which need not be in Fθ, on which |D| ≤ D and such that

sup
θ∈

r2
θ Eθ

{
|D|(1− IFθ,1)

}
<∞ and sup

θ∈
rθEθ

{
|DW |+D

}
<∞. (1.16)

(Z4) Let V be a random variable, and let Ψ be a Θ-valued random element such that,
for each θ ∈ , Ψ(θ, ·) is Fθ-measurable. For each θ ∈ , let Fθ,2 be an event in Fθ
such that

Lθ(V |Fθ) = LΨ(Y ) on Fθ,2, (1.17)

and

sup
θ∈

r2
θ Eθ

{
|D|(1− IFθ,2)

}
<∞. (1.18)

(Z5) Let B be a random variable such that, for each θ ∈ , B(θ, ·) is Fθ-measurable, and

σ−1
θ |Y − V | ≤ B on Fθ,1, and sup

θ∈
r2
θ Eθ

{
D
(
B +D

)
IFθ,2

}
<∞. (1.19)

Theorem 1.2. If Conditions (Z1)–(Z5) and (G7) are satisfied, then there exists a constant
C, independent of θ, such that

sup
z∈R

∣∣Pθ[W ≤ z]− P[Z ≤ z]
∣∣ ≤ C

rθ
, for all θ ∈ Θ.

Many of the conditions of Theorem 1.2, as for Theorem 1.1, can be shown to be
satisfied using inequalities on moments. The proofs of Theorems 1.1 and 1.2 appear in
Section 4.
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1.2 Applications

We apply Theorems 1.1 and 1.2 to obtain new results in two examples; the proofs are
deferred to Sections 2 and 3.

The first examples invokes Theorem 1.1 for Stein couplings for the normal approx-
imation of the number Y of isolated vertices in the Erdős-Rényi graph G ∼ ER(n,m)

on n vertices, having exactly m edges, distributed uniformly at random. This model is
related to the one where edges between each pair of vertices are chosen independently
with some fixed probability, but in the model we consider the indicators that vertices
are isolated exhibit a non-trivial global dependence since the total number of edges is
fixed. In fact, while in the model with independent edges these indicators are positively
correlated, the effect of the global dependence in ER(n,m) is stronger, resulting in a
negative correlation; see proof of Lemma 2.5.

Related work was done by Kordecki (1987) on the number of isolated vertices in the
Erdős-Rényi graph model, although his general framework is not applicable here.The
boundedness of the second derivative of the solution to the Stein equation on page 132
is shown only for the points where the second derivative exists, whereas, in order to
perform the Taylor expansion on page 135, it is needed to hold everywhere; we were
thus not able to reproduce his final results. In addition, the fixed number of edges model
does not appear to satisfy the condition on page 134 of his work. We also mention the
work by Goldstein (2013), who considered vertex degrees in general, though it only
addressed the independent edge model.

Theorem 1.3 provides the following bound on the Kolmogorov distance between the
standardized variable Y and the normal.

Theorem 1.3. Let Y count the number of isolated vertices in the Erdős-Rényi graph
G ∼ ER(n,m) on n vertices, having exactly m edges, distributed uniformly at random.
Then, with µn,m and σ2

n,m the mean and variance of Y , letting W = (Y − µn,m)/σn,m
when σn,m > 0 and zero otherwise, with

Θ =

{
(n,m) : n ≥ 3, 0 < m <

(
n

2

)}
, (1.20)

there exists a universal constant C > 0 such that, for all (n,m) ∈ Θ,

sup
z∈R

∣∣Pn,m[W ≤ z]− Φ(z)
∣∣ ≤ C

rn,m

where

rn,m =
σ3
n,m

µn,m(1 + m2

n2 )
. (1.21)

Remark 1.4. In order to better understand the bounds obtained in Theorem 1.3, we
now discuss in more detail the different regimes at which m and n can tend to infinity.
To this end, denote by a(n) ∼ b(n) that lim a(n)/b(n) = 1, and by a(n) � b(n) that
lim inf a(n)/b(n) > 0 and lim sup a(n)/b(n) <∞. By Lemma 2.7, if n and m tend to infinity
so that max{m/n2,m2/n3} → 0, then

µn,m ∼ ne−2m/n and σ2
n,m ∼ nϕ(2m/n) for ϕ(x) = e−x(1− e−x(1 + x)).

Hence, we have
σ2
n,m

µn,m
∼ 1− e−2m/n

(
1 +

2m

n

)
,

so that

rn,m ∼ σn,m
1− e−2m/n(1 + 2m

n )

1 + (m/n)2
.
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For n � m, the central domain, it follows that rn,m � σn,m, and moreover, in the special
case where m ∼ cn,

µn,m ∼ ne−2c and σ2
n,m ∼ ne−2c

(
1− e−2c(1 + 2c)

)
.

Regarding lower bounds, Englund (1981, Section 6) shows that for the standardized
number of occupied cells in a uniform occupancy model with n balls and m boxes,

sup
z∈R
|P[Wn,m ≤ z]− P[Z ≤ z]| ≥ 0.087/max(3, σn,m).

Englund’s argument holds without changes for any random variable with finite variance
supported on the integers, and so also for the number of isolated vertices in our model.
Hence, since in the central domain rn,m � σn,m, the rate function is of optimal order.

If m→∞ and m/n→ 0, the left domain, say, then

rn,m �
σn,mm

2

n2
� m3

n5/2

since 1−e−x(1+x) ∼ x2/2 as x→ 0 for the first relation, and σ2
n,m � m2/n for the second.

In this case, Englund’s lower bound is not achieved since rn,m = o(σn,m). Nonetheless,
the bound is informative as long as rn,m →∞, which is the case as long as m/n5/6 →∞,
such as when m = cnα for c > 0 and 5/6 < α < 1.

If m/n→∞, the right domain, using σ2
n,m � ne−2m/n for the second relation we have

rn,m ∼
σn,mn

2

m2
� e−m/nn5/2

m2
,

so Englund’s lower bound is not attained. However, rn,m goes to infinity when m ≤
αn log n for 0 < α < 1/2.

In the second example, we use the zero bias coupling constructed in Fulman and
Goldstein (2011, Theorem 3.1) in Theorem 1.2 to give a bound on the normal approxima-
tion of the content Y of a Young tableux under Jackα measure over a range of large α. In
more detail, we recall that a partition of a positive integer n can be represented as a
vector Λ = (λ1, . . . , λp) of non-increasing, positive integers summing to n, where p is the
number of parts of the partition. For instance, Λ = (4, 2, 1) corresponds to a partition of
n = 7 with p = 3. In turn, the partition Λ can be represented by a tableaux with p rows
of equal sized boxes, whose jth row is of length λj , such as in (1.23).

The Jackα measure on tableaux, defined for α > 0, recovers the Plancherel measure
when specializing to the case α = 1. Under Jackα, see Fulman (2004) for instance, the
probability of a partition Λ of n is given by

Jackα(Λ) =
αnn!∏

x∈Λ(αa(x) + l(x) + 1)(αa(x) + l(x) + α)
, (1.22)

where the product is over all boxes x in the partition, a(x) denotes the number of boxes
in the same row of x and to the right of x (the “arm” of x), and l(x) denotes the number
of boxes in the same column of x and below x (the “leg” of x). For each tableaux
representing a partition of n we may define the α-content of any individual box by

cα(x) = α(column number of x− 1)− (row number of x− 1),

as depicted in the following tableaux for the partition (4, 2, 1) of 7:

0 α 2α 3α

−1 α−1

−2

(1.23)
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Here we study the distribution of the standardized sum of the α-contents over all boxes
in the tableaux, that is,

W =
Y√
α
(
n
2

) , where Y =
∑
x∈Λn

cα(x) (1.24)

and where the partition Λn of n is sampled from the Jackα measure in (1.22).
Fulman (2004) proved an O(n−1/4) bound for the error in the Kolmogorov metric

for the normal approximation of W , improved by Fulman (2006) using martingales to
O(n−1/2+ε) for any ε > 0, and by Fulman (2006) to O(n−1/2) using Bolthausen’s inductive
approach and Stein’s method, but without an explicit constant. Hora and Obata (2007)
prove a central limit theorem, with no error bound, for Wn,α using quantum probability.

Fulman and Goldstein (2011) prove the bound

d1(W,Z) ≤
√

2

n

(
2 +

√
2 +

max(α, 1/α)

n− 1

)
for all n ≥ 2, α > 0, (1.25)

in the Wasserstein metric d1, where Z is a standard normal variable. In addition to
providing explicit constants, this bound also highlights the role of α. A natural question
it brings is whether a bound in the Kolmogorov metric can be shown that has this same
dependence on α. A few weeks before the current work was posted, Chen, Raič and
Thành (2020+, Theorem 1.1) proved the bound

sup
x∈R
|Pn,α[W ≤ x]− P[Z ≤ x]| ≤ 9

(
1√
n
∨ (
√
α ∨ 1/

√
α) log n

n

)
,

which achieves this goal with an explicit constant to within a logarithmic factor.
Here, given any ε ∈ (0, 1), we show that, in the ‘large α’ region α ≥ n1+ε, this log

factor may be removed, resulting in the bound having the same α dependence as (1.25).
That is, as α ≥ n over the region we consider, the ratio between the right hand sides
of (1.25) and (1.26) is bounded away from zero and infinity. This same result, with an
explicit constant, was also achieved by Chen, Raič and Thành (2020+, Proposition 4.1)
by applying a different approach. We do not consider ε > 1, as Theorem 3.1 below shows
that this case is degenerate.

Theorem 1.5. For W as given in (1.24) with Λn sampled according to Jackα measure
for some n ≥ 2, for every ε ∈ (0, 1) there exists a constant C depending only on ε such
that

sup
z∈R

∣∣Pn,α[W ≤ z]− P[Z ≤ z]
∣∣ ≤ C

√
α

n
for all n ≥ 2 and α ≥ n1+ε. (1.26)

We remark that by applying the reasoning at the end of the proof of Theorem 4.1
of Fulman and Goldstein (2011) the result holds also for α ≤ n−1−ε when replacing the
α on the right hand side by 1/α. In the computations that follow, C without subscript
will denote a universal constant whose value may change from line to line, and for n a
non-negative integer, [n] will denote the set {1, . . . , n}.

2 Isolated vertices in the Erdős-Rényi random graph

In this section we prove Theorem 1.3. We begin by reviewing Construction 2A of
Chen and Röllin (2010) for Stein couplings. Let X = (X1, . . . , Xn) be a collection of
mean zero random variables, and let I be a random index uniformly distributed over [n],
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independent of X. Let W =
∑
i∈[n]Xi and suppose that for each i = 1, . . . , n there exists

W ′i such that

E{Xi|W ′i} = 0. (2.1)

Then, with G = −nXI , the triple (W,W ′I , G) is a Stein coupling. To verify the claim, first
note that

E{Gf(W ′I)} = −E{nXIf(W ′I)} = −E
∑
i∈[n]

Xif(W ′i )

= −E
∑
i∈[n]

E{Xi|W ′i}f(W ′i ) = 0.

On the other hand,

−E{Gf(W )} = E{nXIf(W )} = E
∑
i∈[n]

Xif(W ) = E{Wf(W )};

so (1.2) holds.

2.1 Isolated vertices in ER(n,m)

Consider the Erdős and Rényi (1960) random graph G ∼ ER(n,m) on n vertices,
having exactly m edges, distributed uniformly at random. Let dv be the degree of vertex
v ∈ [n], and consider the number of isolated vertices

Y =

n∑
v=1

I[dv = 0].

With N =
(
n
2

)
, the mean and variance of Y are given by, respectively,

µn,m = n

(
N−(n−1)

m

)(
N
m

) and σ2
n,m = µn,m + n(n− 1)

(
N−(2n−3)

m

)(
N
m

) − µ2
n,m.

We remark that though there may be a choice of couplings for a given situation, the
coupling we have chosen will work for the more general problem where Y is a sum

Y =

n∑
v=1

hv(dv)

of functions hv of the degree dv of vertex v. For instance, the size bias coupling will work,
as in Goldstein (2013), for counting the number of vertices having specified degrees, but
not in this greater generality.

Proof of Theorem 1.3. The proof consists of the setting up the framework, and then
checking that Conditions (G1)–(G7) hold, with Condition (G2) requiring the construction
of a Stein coupling. First, let En be the enumeration of all N unordered pairs {v, w} ⊂ [n]

with v 6= w, given by

En =
(
{1, 2}, . . . , {1, n}, {2, 3}, . . . , {2, n}, . . . , {n− 1, n}

)
. (2.2)

Let π be a uniformly chosen random permutation of [N ]. We will describe the construction
of a graph G(m,π), determined by m and π, that has distribution ER(n,m). As n is
determined by N , and hence by π, n may be omitted in the notation for the graph; the
same principle will be applied without comment for like quantities that appear later.
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We construct G(m,π) as follows. For each {v, w} ⊂ [n] with v < w, connect vertices v
and w with an edge if and only if

π−1(i) ≤ m, (2.3)

where i is the index in the enumeration (2.2) corresponding to the pair {v, w}. Clearly
this construction results in a graph with m edges — those with labels {π(1), . . . , π(m)}.
Since π is uniform it is immediate that G(m,π) ∼ ER(n,m). Let dv(m,π) be the degree
of vertex v ∈ [n] in G(m,π), let

Iv(m,π) = I[dv(m,π) = 0] and Y (m,π) =

n∑
v=1

Iv(m,π). (2.4)

We now verify the conditions of Theorem 1.1 with Θ and rn,m as given in (1.20) and (1.21),
respectively.

Condition (G1). Let n0, m0, c0 and C0 be as in Lemma 2.7. Now obtain r in the
definition (1.6) of through Lemma 2.8 and the choices

n = (2n0) ∨ 344, m = (2m0) ∨ (8C0) ∨ 28, and c = 1 ∧ c0
2
∧ 1

3C
1/2
0

. (2.5)

Since our definition of rn,m in (1.21) implies that rn,m = 0 whenever σ2
n,m = 0, the

condition that σ2
n,m > 0 on is satisfied. Note that by Lemma 2.8

n ≥ n and m ≤ m ≤ cn3/2 whenever (n,m) ∈ . (2.6)

Condition (G2). For (n,m) ∈ , let

W =
Y (m,π)− µn,m

σn,m
, (2.7)

and set W = 0 otherwise. Assume (n,m) ∈ . Let Σ = (σ1, . . . , σn) be a collection
of uniform random permutations of [N ], with π, σ1, . . . , σn mutually independent. The
purpose of the following algorithm is to take the graph G(m,π) as input and to construct,
for each vertex v ∈ [n], a graph Gv(m,π, σv) on the n − 1 vertices [n] \ {v}, having
distribution ER(n − 1,m), independent of dv(m,π), and which can be closely coupled
to G(m,π).

We first describe the algorithm in words: Initialise counters k and i that respectively
record the number of edges successfully relocated, and the index of a candidate edge
for possible addition to the new graph; for each given vertex v ∈ [n], begin with G(m,π)

and relocate the dv(m,π) edges incident to v uniformly by, incrementing i when needed,
adding En(σv(i)) as a new edge when it connects two vertices, neither of which are
incident to v (Step 6), and which are not already connected (Step 7). The counter k
records the number of edges successfully relocated, and the set Lv(m,π, σv) holds
their locations (that is, indices) in En. At termination, the set Lv(m,π, σv) will have
size dv(m,π).

Algorithm 1. Fix v ∈ [n].
1. Let Lv(m,π, σv)← ∅
2. Let G′ be equal to G(m,π), but with vertex v and all dv(m,π) edges incident to v

removed.

3. Let k ← 0 and i← 0.

4. If k = dv(m,π), then denote the resulting graph by Gv(m,π, σv), and stop.
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5. Let i← i+ 1.

6. If v ∈ En(σv(i)), then return to Step 5.

7. If π−1(σv(i)) ≤ m, that is, if En(σv(i)) is an edge in G(m,π), then return to Step 5.

8. In G′ connect the vertices in En(σv(i)) by an edge, and moreover, let Lv(m,π, σv)←
Lv(m,π, σv) ∪ {σv(i)}.

9. Let k ← k + 1.

10. Return to Step 4.

It is not difficult to see that the algorithm will succeed in redistributing the edges
incident on v if and only if m ≤

(
n−1

2

)
, which is guaranteed by our choice of . Note

that, given m, π and σv, the construction of Gv(m,π, σv) from G(m,π) is deterministic
and hence, for given m, π and σv, will always result in the same graph Gv(m,π, σv). Note
also that, although Gv(m,π, σv) has only n− 1 vertices, we keep the labeling from the
original graph G(m,π). Since the order at which potential locations where the dv(m,π)

edges are added are sampled uniformly at random without replacement (via σv), it is
clear that Gv(m,π, σv) ∼ ER(n− 1,m), up to vertex labeling.

Now, let W = W (m,π) as in (2.7). With V a uniformly chosen vertex from [n],
independent of π, σ1, . . . , σn, and recalling the notation in (2.4), let

G = − n

σn,m
(IV(m,π)− µn,m/n). (2.8)

For w 6= v, let dvw(m,π, σv) be the degree of vertex w in the graph Gv(m,π, σv), let

Ivw(m,π, σv) = I[dvw(m,π, σv) = 0], Y v(m,π, σv) =
∑

w∈[n]\v

Ivw(m,π, σv),

and

W ′ =
Y V(m,π, σV)− µn,m

σn,m
, and hence, D =

Y V(m,π, σV)− Y (m,π)

σn,m
. (2.9)

Since the distribution of Gv(m,π, σv) is the same regardless of the value of dv(m,π),
we conclude that Iv(m,π) − µn,m/n and Y v(m,π, σv) are independent, so (2.1) holds,
implying (W,W ′, G) is a Stein coupling.

Condition (G3). In what follows, consider a fixed (n,m) ∈ , and drop the subscript θ
in the expectations that follow. As W is a function of (π,Σ), using (1.15) we have

E
∣∣E(1−GD|W )

∣∣ ≤ (VarE(GD|π,Σ)
)1/2

. (2.10)

Now, from (2.8) and (2.9), we have

VarE(GD|π,Σ) =
1

σ4
n,m

Var
∑
v∈[n]

(Iv(m,π)− µn,m/n)(Y (m,π)− Y v(m,π, σv)).

Splitting the sum into two and using Var(X + Y ) ≤ 2 VarX + 2 VarY , we have

VarE(GD|π,Σ) ≤ 2

σ4
n,m

Var(fm(π,Σ)) +
2µ2

n,m

n2σ4
n,m

Var(gm(π,Σ)),

where

fm(π,Σ) =
∑
v∈[n]

Iv(m,π)Bv(m,π, σv) and gm(π,Σ) =
∑
v∈[n]

Bv(m,π, σv) (2.11)
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with Bv(m,π, σv) = Y (m,π) − Y v(m,π, σv). Note that fm(π,Σ) and gm(π,Σ) are deter-
ministic functions of m, π and Σ. Applying Lemma 2.1 and using the notation as there,
we obtain

VarE(GD|π,Σ) ≤ 1

σ4
n,m

(
Rg,1 +Rf,1 +Rg,2 +Rf,2

)
(2.12)

where

Rg,1 =
µ2
n,m

n2

n∑
i=1

E
(
gm(π,Σ)− gm(π,Σ′i)

)2
,

Rf,1 =

n∑
i=1

E
(
fm(π,Σ)− fm(π,Σ′i)

)2
,

Rg,2 =
µ2
n,m

n2

N−1∑
j=1

E
(
gm(π,Σ)− gm(πτj ,Σ)

)2
,

Rf,2 =

N−1∑
j=1

E
(
fm(π,Σ)− fm(πτj ,Σ)

)2
.

Bounding Rg,1 Note that

gm(π,Σ)− gm(π,Σ′i) = Bi(m,π, σi)−Bi(m,π, σ′i), (2.13)

since all differences arising from the first sum in (2.11) cancel except the one with
index v = i. Applying the simple bound

|Bv(m,π, σv)| = |Y (m,π)− Y v(m,π, σv)| ≤ 1 + 2di(m,π)

we obtain

|Bi(m,π, σi)−Bi(m,π, σ′i)| ≤ 2 + 4di(m,π). (2.14)

Let Hyp(N,m, n) count the number of white balls among m draws from an urn with N
balls, n of which are white and N − n black. Note that the marginal distribution of the
degree of any vertex in G(m,π) is Hyp

(
N,m, n− 1

)
, and hence has mean 2m/n, since the

graph’s m edges are uniformly sampled among all N possibilities, and exactly n− 1 of
them are associated with a specific vertex. Hence, applying Lemma 2.2, (2.13) and (2.14),
we obtain

E
(
gm(π,Σ)− gm(π,Σ′i)

)2 ≤ C(1 +
m2

n2

)
,

where we recall C denotes a universal constant, whose value may change from line to
line. Thus, as µn,m ≤ n,

Rg,1 ≤
Cµ2

n,m

n

(
1 +

m2

n2

)
≤ Cµn,m

(
1 +

m2

n2

)
. (2.15)

Bounding Rf,1 As for gm, we likewise have

fm(π,Σ)− fm(π,Σ′i) = Ii(m,π)
(
Bi(m,π, σi)−Bi(m,π, σ′i)

)
.

Noting that, if Ii(m,π) = 1, we have di(m,π) = 0 and hence Bi(m,π, σi) = Bi(m,π, σ
′
i) =

1, it is immediate that

Rf,1 = 0. (2.16)

EJP 25 (2020), paper 132.
Page 13/49

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP535
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stein’s method via induction

Bounding Rg,2 In order to bound Rg,2, with τij the transposition of i and j, note first
that

gm(πτij ,Σ) = gm(π,Σ), if i, j ≤ m or i, j > m, (2.17)

since gm is a function of the graph G(m,π) and Σ, and by (2.3), the graph G(m,π)

obtained from π does not change when swapping edge with edge or non-edge with
non-edge. Hence, averaging over τj , a transposition of j and a uniformly chosen index in
{j, . . . , N}, yields

Rg,2 =
µ2
n,m

n2

m∑
j=1

1

N − j + 1

N∑
i=m+1

E
(
gm(π,Σ)− gm(πτij ,Σ)

)2
.

By exchangeability the expectation on the right hand side is constant for j ≤ m and i ≥
m+ 1; hence, for such i and j,

E
(
gm(π,Σ)− gm(πτij ,Σ)

)2
= E

(
gm(π,Σ)− gm(πτ1,m+1,Σ)

)2
,

so that

Rg,2 =
µ2
n,m

n2

m∑
j=1

N −m
N − j + 1

E
(
gm(π,Σ)− gm(πτ1,m+1,Σ)

)2
≤
µ2
n,mm

n2
E
(
gm(π,Σ)− gm(πτ1,m+1,Σ)

)2
.

Now,

E
(
gm(π,Σ)− gm(πτ1,m+1,Σ)

)2
≤ 2E

(
gm(π,Σ)− gm+1(πτ1,m+1,Σ)

)2
+ 2E

(
gm+1(πτ1,m+1,Σ)− gm(πτ1,m+1,Σ)

)2
= 2E

(
gm(π,Σ)− gm+1(π,Σ)

)2
+ 2E

(
gm+1(π,Σ)− gm(π,Σ)

)2
= 4E

(
gm(π,Σ)− gm+1(π,Σ)

)2
;

here, we have first applied the inequality (x + y)2 ≤ 2x2 + 2y2, followed by (2.17)
with m replaced by m+ 1 to the first expectation in the expression that results to yield
that gm+1(πτ1,m+1,Σ) = gm+1(π,Σ), and πτ1,m+1 =d π to the second expectation, where
=d denotes equality in distribution. Hence,

Rg,2 ≤
4µ2

n,mm

n2
E
(
gm(π,Σ)− gm+1(π,Σ)

)2
=

4µ2
n,mm

n2
E

( ∑
v∈[n]

(
Bv(m,π, σv)−Bv(m+ 1, π, σv)

))2

.
(2.18)

Now, recalling that Lv(m,π, σv) is the set of indices of edges to which those edges
adjacent to vertex v were relocated, let

Nv(m,π, σv) =
⋃

i∈Lv(m,π,σv)

En(i)

= {w ∈ [n] : ∃i ∈ Lv(m,π, σv) such that w ∈ En(i)},
(2.19)

the set of vertices that received at least one additional edge when redistributing those
edges. Also, let

Mv(m,π, σv) = {w ∈ [n] \ v : {w, v} ∈ G(m,π), w 6∈ Nv(m,π, σv)}, (2.20)
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the neighbours of v that did not receive a new edge when redistributing the edges
incident on v.

Note that the chosen vertex v will increase the difference Y (m,π)− Y v(m,π, σv) by
one if it is isolated in G(m,π). A vertex w 6= v, will have this same effect if w is isolated
in G(m,π) but then has an edge attached to it in the redistribution of the removed edges
of v. On the other hand, a vertex w 6= v will decrease this difference by one when w is
connected to v, and has degree 1 in G(m,π), and does not have such an edge reattached.
Hence, this difference is given by

Bv(m,π, σv) = Iv(m,π) +
∑
w∈

Nv(m,π,σv)

Iw(m,π)−
∑
w∈

Mv(m,π,σv)

Iw,1(m,π), (2.21)

where Iw,1(m,π) = I[dw(m,π) = 1]. Letting 4 denote set difference, we obtain

|Bv(m,π, σv)−Bv(m+ 1, π, σv)|

≤ |Iv(m,π)− Iv(m+ 1, π)|

+

∣∣∣∣ ∑
w∈

Nv(m,π,σv)

Iw(m,π)−
∑
w∈

Nv(m+1,π,σv)

Iw(m+ 1, π)

∣∣∣∣
+

∣∣∣∣ ∑
w∈

Mv(m,π,σv)

Iw,1(m,π)−
∑
w∈

Mv(m+1,π,σv)

Iw,1(m+ 1, π)

∣∣∣∣
≤ I[v ∈ En(π(m+ 1))]

+ |Nv(m,π, σv) ∩ En(π(m+ 1))|

+
∑
w∈

Nv(m,π,σv)4Nv(m+1,π,σv)

Iw(m+ 1, π)

+
∑
w∈

Mv(m,π,σv)

|Iw,1(m,π)− Iw,1(m+ 1, π)|

+
∑
w∈

Mv(m,π,σv)4Mv(m+1,π,σv)

Iw,1(m+ 1, π).

(2.22)

For the first term in (2.22), we have used that for any vertex w ∈ [n] we can only
have Iw(m,π) 6= Iw(m+ 1, π) when w is an endpoint of the additional edge determined
by π(m+ 1), that is, when w ∈ En(π(m+ 1)). For the second term in (2.22) we have used
similarly that∑

w∈
Nv(m,π,σv)

|Iw(m,π)− Iw(m+ 1, π)| ≤ |Nv(m,π, σv) ∩ En(π(m+ 1))|.

Moving now to the third term in (2.22), if v /∈ En(π(m+ 1)) and π(m+ 1) 6∈ Lv(m,π, σv),
then Lv(m + 1, π, σv) = Lv(m,π, σv); indeed, if v /∈ En(π(m + 1)), vertex v has the
same degree in both G(m,π) and G(m + 1, π), and if also π(m + 1) 6∈ Lv(m,π, σv), then
Algorithm 1 will redistribute the edges adjacent to v to the same available pairs of
vertices when v has degree m or m+ 1; indeed, note that between the two cases m and
m + 1, Step 7 changes only if σv(i) = π(m + 1) for any of the i tested there, which is
equivalent to π(m+ 1) ∈ Lv(m,π, σv)). Therefore, if Lv(m,π, σv) 6= Lv(m+ 1, π, σv), we
must either have v ∈ En(π(m+ 1)) or π(m+ 1) ∈ Lv(m,π, σv). Now, if v ∈ En(π(m+ 1)),
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then the degree of v in G(m + 1, π) is one more than its degree in G(m,π), so Lv(m +

1, π, σv) will contain one more edge than Lv(m,π, σv). And if π(m + 1) ∈ Lv(m,π, σv),
then |Lv(m,π, σv)4Lv(m + 1, π, σv)| = 2 since π(m + 1) will be found blocked when
forming Gv(m+ 1, π, σv) and a new non-edge has to be found. Hence,

∑
w∈

Nv(m+1,π,σv)4Nv(m,π,σv)

Iw(m+ 1, π)

≤ |Nv(m+ 1, π, σv)4Nv(m,π, σv)|
≤ 2 I[v ∈ En(π(m+ 1))] + 4 I[π(m+ 1) ∈ Lv(m,π, σv)].

For the fourth term in (2.22) we apply the bound

∑
w∈

Mv(m,π,σv)

|Iw,1(m,π)− Iw,1(m+ 1, π)|

≤
∑
w:

{w,v}∈G(m,π)

|Iw,1(m,π)− Iw,1(m+ 1, π)|.

Finally, for the last term, similarly as for the third, if both v /∈ En(π(m+1)) and π(m+1) 6∈
Lv(m,π, σv), it is easy to see that Mv(m+ 1, π, σv) = Mv(m,π, σv); indeed, under these
conditions, the set of vertices adjacent to v does not change with the addition of edge
m + 1, and moreover, Lv(m + 1, π, σv) = Lv(m,π, σv), which implies Nv(m + 1, π, σv) =

Nv(m,π, σv), so that Mv(m+ 1, π, σv) = Mv(m,π, σv). Hence, if Mv(m,π, σv) 6= Mv(m+

1, π, σv), we must either have v ∈ En(π(m+ 1)) or π(m+ 1) ∈ Lv(m,π, σv).
If v ∈ En(π(m+ 1)), then v has one more neighbour in G(m+ 1, π) than in G(m,π), and

so Lv(m+1, π, σv) will contain one more edge than Lv(m,π, σv). In this case, Mv(m,π, σv)

and Mv(m+ 1, π, σv) can differ by at most three elements. Indeed, they may only differ
by the additional neighbour in G(m + 1, π), and by at most two existing neighbours of
v in G(m,π) which were not assigned an edge in Lv(m,π, σv), but were so assigned in
Lv(m+ 1, π, σv).

If π(m+ 1) ∈ Lv(m,π, σv), then |Lv(m,π, σv)4Lv(m+ 1, π, σv)| = 2, which means that
Mv(m,π, σv) and Mv(m+ 1, π, σv) can differ by at most four elements; hence

∑
w∈

Mv(m,π,σv)4Mv(m+1,π,σv)

Iw,1(m+ 1, π)

≤ |Mv(m,π, σv)4Mv(m+ 1, π, σv)|
≤ 3 I[v ∈ En(π(m+ 1))] + 4 I[π(m+ 1) ∈ Lv(m,π, σv)].

Now recalling (2.18), summing (2.22) over v ∈ [n] and noting that

∑
v∈[n]

I[v ∈ En(π(m+ 1))] ≤ 2,

we obtain

Rg,2 ≤
Cµ2

n,mm

n2
E
{

1 +R2
g,2,1 +R2

g,2,2 +R2
g,2,3

}
, (2.23)
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Stein’s method via induction

where

Rg,2,1 =
∑
v∈[n]

|Nv(m,π, σv) ∩ En(π(m+ 1))|

Rg,2,2 =
∑
v∈[n]

I[π(m+ 1) ∈ Lv(m,π, σv)]

Rg,2,3 =
∑
v∈[n]

∑
w:{w,v}∈G(m,π)

|Iw,1(m,π)− Iw,1(m+ 1, π)|.

For the first term,

ER2
g,2,1 = nE|N1(m,π, σ1) ∩ En(π(m+ 1))|2

+ n(n− 1)E{|N1(m,π, σ1) ∩ En(π(m+ 1))|
× |N2(m,π, σ2) ∩ En(π(m+ 1))|}.

(2.24)

Note that each vertex has at most n− 1 potential edges available where the new edge
π(m + 1) can be placed. Hence, since N1(m,π, σ1) ≤ 2d1(m,π), there are at most
2d1(m,π)(n− 1) potential edges with one end in N1(m,π, σ1), and so

P[N1(m,π, σ1) ∩ En(π(m+ 1)) 6= ∅|d1(m,π), N1(m,π, σ1)] ≤ 2d1(m,π)(n− 1)

N −m
.

Noting that |N1(m,π, σv)∩En(π(m+1))| is bounded by 2 I[N1(m,π, σv)∩En(π(m+1)) 6=
∅], recalling that d1(m,π) ∼ Hyp(N,m, n − 1) and using Lemma 2.2, and also (2.6) of
Condition (G1), which gives that m ≤ n3/2 as c ≤ 1 by (2.5), we therefore have

nE|N1(m,π, σv) ∩ En(π(m+ 1))|2 ≤ C
(

1 +
m

n

)
.

Moreover, with P12[·] = P[·|d1(m,π), d2(m,π), N1(m,π, σ1), N2(m,π, σ2)],

P12[N1(m,π, σ1) ∩ En(π(m+ 1)) 6= ∅, N2(m,π, σ2) ∩ En(π(m+ 1)) 6= ∅]

≤ 4d1(m,π)d2(m,π)

N −m
,

since there are at most 2d1(m,π)×2d2(m,π) potential edges with one end in N1(m,π, σ1)

and the other end in N2(m,π, σ2). Hence, again using m ≤ n3/2 and Lemma 2.2, and
also Cauchy-Schwarz, we obtain

n(n− 1)E{|N1(m,π, σ1) ∩ En(π(m+ 1))||N2(m,π, σ2) ∩ En(π(m+ 1))|}

≤ C
(

1 +
m2

n2

)
,

so that (2.24) results in the bound

ER2
g,2,1 ≤ C

(
1 +

m2

n2

)
. (2.25)

Next, we have

ER2
g,2,2 = nP[π(m+ 1) ∈ L1(m,π, σ1)]

+ n(n− 1)P[π(m+ 1) ∈ L1(m,π, σ1) ∩ L2(m,π, σ2)].
(2.26)

To calculate the first probability, we condition on π and average over σ1. If 1 ∈ En(π(m+

1)), then the conditional probability vanishes, as no edge incident on the (removed) vertex
v gets redistributed. Hence, take π such that 1 6∈ En(π(m+ 1)). To compute P[π(m+ 1) ∈
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L1(m,π, σ1)|π], note that there are N −m non-edges of G(m,π), out of which n − 1 −
d1(m,π) involve vertex 1 and can therefore not be used during the redistribution of
the d1(m,π) edges incident to vertex 1, which is to be removed. This leaves N −m− n+

1 + d1(m,π) potential edges from which to draw our sample of d1(m,π) non-edges. By
uniformity, the probability that π(m+ 1) is in this sample is given by

p(π) := P[π(m+ 1) ∈ L1(m,π, σ1)|π]

=
d1(m,π)

N −m− n+ 1 + d1(m,π)
≤ d1(m,π)

N −m− n
≤ Cd1(m,π)

N
, (2.27)

as we only ask for the probability that one special object is included in a simple random
sample of d1(m,π) objects from a population of size N −m− n+ 1 + d1(m,π), and where
in the final inequality we have used (2.6) of Condition (G1). Averaging over π, for the
first term in (2.26) we obtain the bound

nEp(π) ≤ CnEd1(m,π)

N
=
Cn(n− 1)m

N2
≤ Cm

n2
. (2.28)

Next, as the events π(m+ 1) ∈ L1(m,π, σ1) and π(m+ 1) ∈ L2(m,π, σ2) are conditionally
independent given π, we may handle the second, off diagonal term of (2.26) by using
Lemma 2.2 to give that

EH2 ≤ C
(

1 +
m2

n2

)
when H ∼ Hyp(N,m, n), (2.29)

which, recalling (2.27), results in the bound

n2E
{
P[π(m+ 1) ∈ L1(m,π, σ1)|π]P[π(m+ 1) ∈ L1(m,π, σ2)|π]

}
= n2Ep(π)2 ≤ Cn2Ed1(m,π)2

N2
≤ Cn2

N2

(
1 +

m2

n2

)
.

Thus, using (2.26), (2.28) and the inequality directly above, we obtain

ER2
g,2,2 ≤ C

(
1 +

m2

n2

)
. (2.30)

Finally, in order to bound Rg,2,3, note that the double sum is simply twice the sum
over all the vertices of edges in G(m,π). Note also that, as w must have degree at least
one to be included in the sum, Iw,1(m,π) 6= Iw,1(m+1, π) only if w has degree 1 in G(n,m)

and it receives the additional edge π(m + 1). Thus, since the additional edge has two
endpoints, it is immediate that Rg,2,3 can be no more than 4, so that

ER2
g,2,3 ≤ 16. (2.31)

Recalling (2.23) and applying (2.25), (2.30) and (2.31) yields

Rg,2 ≤
Cµ2

n,mm

n2

(
1 +

m2

n2

)
.

Now, by Lemma 2.6, we have µn,m/n ≤ exp(−2m/n), and since x exp(−2x) remains
bounded on the positive real numbers, it follows that mµn,m/n2 is bounded; hence,

Rg,2 ≤ Cµn,m
(

1 +
m2

n2

)
. (2.32)
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Bounding Rf,2 Using the same arguments as those used for Rg,2 to reach (2.18), we
can show that

Rf,2 ≤ CmE
( ∑
v∈[n]

(
Iv(m,π)Bv(m,π, σv)− Iv(m+ 1, π)Bv(m+ 1, π, σv)

))2

Adding and subtracting Iv(m+ 1, π)Bv(m,π, σv), and splitting the sum, we obtain

Rf,2 ≤ CmE
{
R2
f,2,1 +R2

f,2,2

}
,

where

Rf,2,1 =
∑
v∈[n]

(
Iv(m,π)− Iv(m+ 1, π)

)
Bv(m,π, σv),

Rf,2,2 =
∑
v∈[n]

Iv(m+ 1, π)
(
Bv(m,π, σv)−Bv(m+ 1, π, σv)

)
.

In order to bound Rf,2,1, note first that Iv(m,π)− Iv(m+ 1, π) is non-zero, and in that
case equals one, exactly when vertex v is isolated in G(m,π) and the (m + 1)th added
edge is incident on v; that is,

Iv(m,π)− Iv(m+ 1, π) = Iv(m,π) I[v ∈ En(π(m+ 1))].

And since Iv(m,π) = 1 implies Bv(m,π, σv) = 1, we have

Rf,2,1 =
∑
v∈[n]

Iv(m,π) I[v ∈ En(π(m+ 1))].

Squaring, taking expectation and using exchangeability, we obtain

ER2
f,2,1

= nE
{
I1(m,π) I[1 ∈ En(π(m+ 1))]

}
+ n(n− 1)E

{
I1(m,π)I2(m,π) I[1 ∈ En(π(m+ 1))] I[2 ∈ En(π(m+ 1))]

}
=: Rf,2,1,1 +Rf,2,1,2.

For the first term, we have

Rf,2,1,1 = µn,mP[1 ∈ En(π(m+ 1))|d1(m,π) = 0] =
µn,m(n− 1)

N −m
≤ Cµn,m

n
,

while for the second term

Rf,2,1,2 = n(n− 1)P[d1(m,π) = d2(m,π) = 0]

× P[En(π(m+ 1)) = {1, 2}|d1(m,π) = d2(m,π) = 0]

= Hyp(N,m, 2n− 3)({0})n(n− 1)

N −m
≤ Cµn,m

n
,

where we have used that Hyp(N,m, n)({0}), the probability that a hypergeometric
variable with the given parameters takes the value 0, is a decreasing function of the
number of special items n. Hence,

ER2
f,2,1 ≤

Cµn,m
n

In order to handle Rf,2,2, note that if Iv(m+ 1, π) = 1, we necessarily have Iv(m,π) = 1,
so that Bv(m,π, σv) = Bv(m+ 1, π, σv) = 1 whenever Iv(m+ 1, π) = 1; it follows that

Rf,2,2 = 0.
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Therefore,

Rf,2 ≤ Cµn,m
m

n
≤ Cµn,m

(
1 +

m2

n2

)
. (2.33)

Combining the bounds (2.15), (2.16), (2.32) and (2.33) as in (2.12), and then recall-
ing (2.10), we obtain

E
∣∣E(1−GD|W )

∣∣ ≤ C
√
µn,m

σ2
n,m

√
1 +

m2

n2
.

Recalling (1.21) and noting that σ2
n,m ≤ µn,m by Lemma 2.5, the first condition in (1.7)

holds, as

sup
(n,m)∈

rn,m E
∣∣E(1−GD|W )

∣∣ <∞.
Next, it clearly suffices to verify the second condition in (1.7) of (G3) with D replaced

by its absolute upper bound

D =
1 + 2dV
σn,m

(2.34)

obtained in (2.14), and splitting the resulting expression to be bounded into two terms,
we have

E
{

(1 + |W |)|G|D2}
= E

{
|G|D2}

+ E
{
|W ||G|D2}

. (2.35)

Now, let a ≥ 1. Using the given form (2.8) of G, we obtain

E
{
|G|Da}

=
n

σn,m
E
{
|IV −

µn,m
n
|Da}

≤ n

σn,m
E
{
IVD

a}
+
µn,m
σn,m

ED
a ≤ Cµn,m

σ1+a
n,m

(
1 +

(m
n

)a)
,

(2.36)

where, for the final inequality, we used that D = 1/σn,n when IV = 1 and that EIV =

µn,m/n on the first summand, and Lemma 2.2 on the second summand. Setting a = 2 we
obtain the bound

E
{
|G|D2} ≤ Cµn,m

σ3
n,m

(
1 +

(m
n

)2
)

(2.37)

on the first term of (2.35).

The second term in (2.35) likewise leads to two terms, corresponding to the two in
the second line of (2.36), but with an additional factor of |W |. Now setting a = 2, for the
first we have, by applying Cauchy-Schwarz,

n

σn,m
E
{
|W |IVD

2} ≤ µn,m
σ3
n,m

E
{
|W |

∣∣IV = 1
}
≤ µn,m
σ3
n,m

√
E
{
W 2

∣∣IV = 1
}
. (2.38)

Conditional on vertex V being isolated, the distribution of the number of isolated vertices
in the ER(n,m) model is one more than the number of isolated vertices in the ER(n−1,m)

model. Hence, writing

W =
σn−1,m

σn,m
× Y − µn−1,m

σn−1,m
+
µn−1,m − µn,m

σn,m
,

EJP 25 (2020), paper 132.
Page 20/49

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP535
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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and using (x+ y)2 ≤ 2(x2 + y2) twice, we obtain

En,m
{
W 2

∣∣IV = 1
}

≤ 2

(
σn−1,m

σn,m

)2

En−1,m

(
Y − µn−1,m + 1

σn−1,m

)2

+ 2

(
µn−1,m − µn,m

σn,m

)2

≤
4σ2

n−1,m

σ2
n,m

+
4 + 2(µn−1,m − µn,m)2

σ2
n,m

.

Lemma 2.9 yields that the first term is bounded by a constant. For the second term, by
removing all edges from the nth vertex and relocating them among the remaining vertices,
we have a coupling of ER(n,m) and ER(n− 1,m) which yields |Yn−1,m − Yn,m| ≤ 1 + 2dn,
so that

|µn−1,m − µn,m| ≤ 1 + 2Edn ≤ 1 +
2mn

N
≤ C

(
1 +

m

n

)
.

Using that rn,m in (1.21) is lower bounded by r, which is at least 1 by Lemma 2.8, and
that µn,m ≥ σ2

n,m by Lemma 2.5 yields σn,m ≥ (1 + (m/n)2), and using also (2.38), we
conclude that

E[W 2|IV = 1] ≤ C and hence
n

σn,m
E
{
|W |IVD

2} ≤ µn,m
σ3
n,m

. (2.39)

For the corresponding second term of (2.36), with a = 2 and the additional factor of
|W |, using Cauchy-Schwarz and EW 2 = 1,

µn,m
σn,m

E
[
|W |D2

]
≤ µn,m
σn,m

√
E[D4] ≤ Cµn,m

σ3
n,m

(
1 +

(m
n

)2
)
, (2.40)

applying Lemma 2.2. Combining with (2.37) and (2.39) we see the sum is of the order
of (2.40) and it follows that

sup
(n,m)∈

rn,m En,m
{

(1 + |W |)|G|D2
}
<∞.

Condition (G4). Let (n,m) ∈ , and define

Fn,m = σ
(
V, dV(m,π)

)
, (2.41)

the σ-algebra generated by the identity of the vertex chosen to be removed in the
coupling and its degree. Letting G = |G|, and D be as in (2.34), we see that both are
clearly Fn,m-measurable.

For the first condition in (1.8), let

Fn,m,1 = {dV(m,π) ≤ t(n,m)} where t(n,m) = min{n,m}/4. (2.42)

Recall (2.5) and (2.6); in particular, on , we have n ≥ 344 and 28 ≤ m ≤ n3/2. It is
straightforward to check that under these conditions,

t(n,m) :=
4m

n
+ 2 log(m ∧ n) ≤ t(n,m) for all (n,m) ∈ . (2.43)

Indeed, if for m ≤ n, the bound follows using that 2 logm ≤ (1/4− 4/344)m for m ≥ 28,
while for n ≤ m one verifies, for n ≥ 344, that 4

√
n+ 2 log n ≤ n/4.

Now, bounding D by D as given in (2.34), writing F as short for Fn,m,1 and using that
P[IV = 0] = 1− µn,m/n in the final inequality, we obtain

E
{
|G|D2(1− IF )

}
≤ n

σn,m
E
{
|IV − µn,m/n|D

2
(1− IF )

}
≤ n

σn,m
E
{
IVD

2
(1− IF )

}
+
µn,m
σn,m

E
{
D

2
(1− IF )

}
.
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Since V cannot be both isolated and have positive degree, we have IV(1− IF ) = 0 almsot
surely, and so the first term is zero. Applying Cauchy-Schwarz to the second term and
then invoking Lemma 2.2,

E
{
|G|D2(1− IF )

}
≤ µn,m
σn,m

(
ED

4
E(1− IF )

)1/2
≤
Cµn,m

(
1 +

(
m
n

)2)
σ3
n,m

P[dV(m,π) > t(n,m)]1/2. (2.44)

By Lemma 2.2 with γ = 2m/n being the mean of d1(m,π), we have for any t > γ that

P[dV(m,π) > t] ≤ P[dV(m,π) > γ + (t− γ)]

≤ exp

(
− (t− γ)2

t+ γ

)
≤ exp

(
− t− 2γ

2

)
;

trivially, the final expression upper bounds the left hand side for t ≤ γ as well and hence
holds for all t ≥ 0. Hence, with t(n,m) as in (2.43), by (2.44) and recalling rn,m in (1.21),
we obtain

r2
n,mE{|G|D2(1− IF )} ≤

Cσ3
n,m

µn,m(1 + (mn )2)
exp

(
− t(n,m)− 2γ

4

)
≤ C(m ∧ n)1/2

1 + (mn )2
exp

(
− t(n,m)− 2γ

4

)
=
C(m ∧ n)1/2

1 +
(
m
n

)2 exp

(
−1

2
log(m ∧ n)

)
=

C

1 +
(
m
n

)2 ≤ C,
(2.45)

where we have used that σ2
n,m ≤ min{µn,m, 2m} via Lemma 2.5, and trivially µn,m ≤ n,

for the second inequality, thus showing the first condition in (1.8) is satisfied.

From (2.36) with a = 2 it follows that

sup
(n,m)∈

rn,m En,m
{
GD

2}
<∞,

thus showing that the second condition in (1.8) is also satisfied.

Condition (G5). Denote by Gemb,V the “embedded” graph obtained by removing ver-
tex V and all its incident edges; we keep the original vertex labeling. As the remaining
m−dV(m,π) edges are uniformly distributed over the remaining n−1 vertices, conditional
on Fn,m in (2.41), the resulting graph has conditional distribution

L (Gemb,V |Fn,m) ∼ ER(n− 1,m− dV(m,π)) (2.46)

almost surely; this identity is again to be understood up to labeling. In particular, letting
demb,V
w be the degree of vertex w in graph Gemb,V ,

V =
∑

w:w 6=V

I[demb,V
w = 0]

is the number of isolated vertices of Gemb,V , and (2.46) implies

L (V |Fn,m) = LΨ(Y ) where Ψ = (n− 1,m− dV(m,π)).
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Clearly Ψ is Fn,m-measurable. Now set Fn,m,2 = Fn,m,1 as in (2.42), which is also clearly
Fn,m measurable. Condition (1.10) is clearly equivalent to the first condition in (1.8),
which was verified in (2.45).

Condition (G6). Let

B =
dV(m,π) + 1

σn,m
,

which is clearly Fn,m-measurable. Moreover, σ−1
n,m|Y − V | ≤ B since removing any edge

connected to vertex V can make at most one vertex, other than V, isolated; the additional
term of one accounts for the case when vertex V is isolated. Since B ≤ D, as given
in (2.34), by setting a = 3 in (2.36) we obtain

r2
n,mE

{
GD

2
BIFn,m,2

}
≤ r2

n,mE
{
GD

2
B
}
≤ r2

n,mE
{
GD

3}
≤ r2

n,m

Cµn,m(1 + (mn )3)

σ4
n,m

=
Cσ2

n,m

µn,m(1 + m
n )
.

As σ2
n,m ≤ µn,m via Lemma 2.5, the second bound in (1.11) holds.

Condition (G7). We verify the stronger conditions that (1.12) and the second bound
of (1.13) hold when taking the larger supremum obtained when removing the intersection
with {Ψ ∈ }. This stronger version of (1.12) is an immediate consequence of Lemma 2.9.
As this same lemma shows that the ratios in (1.13) involving means and variances are
bounded by a constant, it is only required to bound the ratios of the remaining factor.
For rn,m/rn−1,m−d, we have

(1 + ((m− d)/(n− 1))2

(1 + (m/n)2)
≤ 1 + 2(m/n)2

1 + (m/n)2
≤ 2,

and for the reciprocal, using that m/n ≤ 2(m− d)/(n− 1) for d ≤ m/4,

(1 + (m/n)2)

(1 + ((m− d)/(n− 1))2
≤ 4.

Conditions (G1)–(G7) have been verified, and Theorem 1.3 now follows from Theo-
rem 1.1.

2.2 Technical results

Lemma 2.1 (Efron-Stein-type variance bound). Let π and the components of the vec-
tor Σ = (σ1, . . . , σn) be independent uniform random permutations of [N ], and let h(π,Σ)

be a real-valued function. Let τ1, . . . , τN−1 be random transpositions independent of
each other and of (π,Σ), where τj transposes j and a uniformly chosen integer in
the set {j, . . . , N}. Let Σ′ = (σ′1, . . . , σ

′
n) be an independent copy of Σ and let Σ′i =

(σ1, . . . , σi−1, σ
′
i, σi+1, . . . , σn). Then

Varh(π,Σ) ≤ 1

2

n∑
i=1

E
(
h(π,Σ)− h(π,Σ′i)

)2
+

1

2

N−1∑
j=1

E
(
h(π,Σ)− h(πτj ,Σ)

)2
.

Proof. Without loss of generality assume Eh(π,Σ) = 0. Let π0 = π and Σ0 = Σ, and let

πj = π0τj · · · τ1, 1 ≤ j ≤ N − 1,
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and

Σi = (σ′1, . . . , σ
′
i, σi+1, . . . , σn), 1 ≤ i ≤ n.

Let B be uniform on {0, 1}, let I be uniform on {1, . . . , n}, let J be uniform on the
set {1, . . . , N − 1}, and assume B, I and J are mutually independent and indepen-
dent of all else. Let W = h(π0,Σ0), let W ′1,i = h(π0,Σ

′
i), and let W ′2,j = h(π0τj ,Σ0),

and W ′ = BW ′1,I + (1 − B)W ′2,J . Let G1,i = n
(
h(πN−1,Σi) − h(πN−1,Σi−1)

)
, let G2,j =

(N − 1)
(
h(πj ,Σ0)− h(πj−1,Σ0)

)
, and let G = BG1,I + (1−B)G2,J . Let g : R→ R be any

bounded measurable function. Then, on the one hand,

−E
{
Gg(W )

}
= −1

2

n∑
i=1

E
{(
h(πN−1,Σi)− h(πN−1,Σi−1)

)
g(W )

}
− 1

2

N−1∑
j=1

E
{(
h(πj ,Σ0)− h(πj−1,Σ0)

)
g(W )

}
= −1

2
E
{(
h(πN−1,Σn)− h(πN−1,Σ0)

)
g(W )

}
− 1

2
E
{(
h(πN−1,Σ0)− h(π0,Σ0)

)
g(W )

}
= −1

2
Eh(πN−1,Σn)Eg(W ) +

1

2
E
{
h(π0,Σ0)g(W )

}
=

1

2
E{Wg(W )},

where we used that (πN−1,Σn) is equal in distribution to and independent of (π0,Σ0);
this follows e.g. from Algorithm P of Knuth (1969, p. 147) since the distribution of πN−1

is uniform conditionally on π0, and therefore independent of π0.

On the other hand, for all i we have (Σi,Σi−1,Σ
′
i) =d (Σi−1,Σi,Σ0) since Σ =d Σ′i,

and for all j that (πj , πj−1, π0τj) =d (πj−1, πj , π0), by recalling the definition of πj and
observing that π0 and π0τj have the same distribution, and that both are independent
of τj−1 · · · τ1, so

E
{
Gg(W ′)

}
=

1

2

n∑
i=1

E
{(
h(πN−1,Σi)− h(πN−1,Σi−1)

)
g(h(π0,Σ

′
i))
}

+
1

2

N−1∑
j=1

E
{(
h(πj ,Σ0)− h(πj−1,Σ0)

)
g(h(π0τj ,Σ0))

}
=

1

2

n∑
i=1

E
{(
h(πN−1,Σi−1)− h(πN−1,Σi)

)
g(h(π0,Σ0))

}
+

1

2

N−1∑
j=1

E
{(
h(πj−1,Σ0)− h(πj ,Σ0)

)
g(h(π0,Σ0))

}
=

1

2
E
{

(h(πN−1,Σ0)− h(πN−1,Σn))g(h(π0,Σ0))
}

+
1

2
E
{

(h(π0,Σ0)− h(πN−1,Σ0))g(h(π0,Σ0))
}

=
1

2
E
{
Wg(W )

}
.

Therefore, (W,W ′, G) is a Stein coupling and, specializing (1.2) to the case f(x) = x and
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applying the Cauchy Schwarz inequality and noting that (Σi,Σi−1) =d (Σ′i,Σ), we have

VarW = E{G(W ′ −W )}

=
1

2

n∑
i=1

E
{(
h(πN−1,Σi)− h(πN−1,Σi−1)

)(
h(π0,Σ

′
i)− h(π0,Σ)

)}
+

1

2

N−1∑
j=1

E
{(
h(πj ,Σ0)− h(πj−1,Σ0)

)(
h(π0τj ,Σ0)− h(π0,Σ0)

)}
≤ 1

2

n∑
i=1

(
E
(
h(πN−1,Σi)− h(πN−1,Σi−1)

)2
E
(
h(π0,Σ

′
i)− h(π0,Σ)

)2)1/2

+
1

2

N−1∑
j=1

(
E
(
h(πj ,Σ)− h(πj−1,Σ)

)2
E
(
h(π0τj ,Σ)− h(π0,Σ)

)2)1/2

,

from which the claim follows.

Lemma 2.2 (Tail and moment bounds for the hypergeometric distribution). Let H have
the hypergeometric distribution Hyp(N,m, n), which equals the number of white balls
among m draws from an urn with N balls, n of which are white and N − n black.
Let γ = EH = nm/N . Then, for any t > 0,

P[H ≥ γ + t] ≤ exp

(
−t2

2γ + t

)
(2.47)

Moreover, for any k ≥ 1, there is a constant Ck independent of γ such that

EHk ≤ Ck(γk + 1).

Proof. To construct a bounded size bias coupling, index the white balls by [n], and
write H =

∑n
i=1 Ii where Ii is the indicator that the ith white ball is sampled. Con-

struct Hs with the H-size biased distribution by uniformly sampling a random index J
from 1 to n independently of I1, . . . , In; if IJ = 1, set Hs = H, otherwise independently
and uniformly select a ball from the sample and swap it with the J th white ball. It is easy
to see that Hs has the size-bias distribution, see for instance, Lemma 2.1 of Goldstein
and Rinott (1996). Moreover, Hs = H + 1 if a sampled black ball was swapped with
the J th white ball, and Hs = H otherwise. Hence, |Hs−H| ≤ 1, and the tail-bound (2.47)
follows readily from Theorem 1.1 of Ghosh and Goldstein (2011).

Now, it is straightforward to check that t2/(2γ + t) ≥ (t− 1)/(γ + 1) whenever t ≥ 1

and γ > 0, so that

P[H ≥ γ + t] ≤ exp

(
−(t− 1)

γ + 1

)
for all t ≥ 1.

Hence, H − γ − 1 is stochastically dominated by an exponential random variable X with
mean 1/(γ + 1), and in particular

EHk ≤ E(X + γ + 1)k ≤ 3k−1(EXk + γk + 1) = 3k−1(k!(γ + 1)k + γk + 1),

from which the second claim easily follows.

A bound similar to (2.47) can be obtained from Greene and Wellner (2017, Corol-
lary 1) with better constants, but under additional conditions on the parameters of the
hypergeometric distribution
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Lemma 2.3. If H ∼ Hyp(N,m, n), then

mn

N
− m2n2

2N2
≤ 1− e−mn/N ≤ P[H > 0] ≤ mn

N

and

e−mn/(N−m−n+1) ≤ P[H = 0] ≤ e−mn/N ,

where the lower bound on P[H = 0] is valid whenever m+ n− 1 < N .

Proof. Since P[H > 0] ≤ EH, the upper bound on P[H > 0] immediately follows. Using
the usual exponential upper bound for the final inequality,(

1− n

N −m+ 1

)m
≤ P[H = 0] =

(
1− n

N

)
· · ·
(

1− n

N −m+ 1

)
≤
(

1− n

N

)m
≤ e−mn/N ,

(2.48)

from which the upper bound on P[H = 0] and first lower bound on P[H > 0] follow.
The second lower bound on P[H > 0] follows from the first lower bound and the
inequality e−x ≤ 1 − x + x2/2 when x ≥ 0. The lower bound on P[H = 0] follows
from the inequality log(1 + x) ≥ x/(1 + x) for x > −1 and the lower bound in (2.48),
which together yield

P[H = 0] ≥ exp
(
− mn

(N −m+ 1)
(
1− n

N−m+1

)) = exp
(
− mn

N −m− n+ 1

)
.

Lemma 2.4. For any x ≥ 0

min{x2, 1}
4

≤ 1− e−x(1 + x) ≤ min{x2, 2}
2

.

Proof. The upper and lower bounds hold trivially at x = 0. With ψ(x) = 1− e−x(1 + x),
by Talyor’s expansion around zero, for all x > 0 there exists ξx ∈ (0, x) such that

ψ(x) = ψ(0) + xψ′(0) +
x2

2
ψ′′(ξx) =

x2

2
ψ′′(ξx),

where ψ′(x) = xe−x and ψ′′(x) = e−x(1− x).

For y ∈ [0, 2] we have |ψ′′(y)| ≤ |1− y| ≤ 1, thus proving the upper bound x2/2 over this
interval. As ψ′′′(y) = e−y(y − 2) ≥ 0 for all y ≥ 2, the function ψ′′(y) is non-decreasing
for y ≥ 2. As ψ′′(2) = −e−2 ∈ (−1, 0), and limy→∞ ψ′′(y) = 0, we have ψ′′(y) ∈ (−1, 0) for
all y ≥ 2, thus proving the upper bound x2/2 on (2,∞). As ψ′(x) ≥ 0 for all x ≥ 0, the
function is non-decreasing on [0,∞), and as ψ(x)→ 1 as x→∞, we have ψ(x) ≤ 1 for
all x ≥ 0.

For the lower bound, for x > 0 letting

q(x) =
1− e−x(1 + x)

x2
, we have q′(x) =

e−x(x2 + 2x+ 2)− 2

x3
.

With p(x) = e−x(x2+2x+2)−2 we have p′(x) = −x2e−x ≤ 0, so q(x) is decreasing for x > 0.
In particular, q(x) ≥ q(1) = 1−2e−1 ≥ 1/4 for x ∈ [0, 1]. As ψ′(x) = xe−x, the function ψ(x)

is non-decreasing, and hence for x ≥ 1 we have ψ(x) ≥ ψ(1) = 1−2e−1 ≥ 1/4, completing
the proof of the lower bound.
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Lemma 2.5. For all (n,m) ∈ Θ and distinct vertices v and w, the indicators I[dw = 0]

and I[dv = 0] that v and w are isolated are negatively correlated, that is,

P[dv = 0, dw = 0] ≤ P[dv = 0]P[dw = 0], and σ2
n,m ≤ min{µn,m, 2m}.

Proof. Vertex v is isolated if and only if none of the n− 1 edges that connect v to another
vertex is included in the set of m edges selected. Likewise, distinct vertices v and w

are both isolated if and only if none of a particular set of (n− 2) + (n− 2) + 1 edges is
selected. Hence, the first claim is equivalent to(

N−2n+3
m

)(
N
m

) ≤
(
N−n+1

m

)2(
N
m

)2 or

(
N

m

)(
N − 2n+ 3

m

)
≤
(
N − n+ 1

m

)2

.

Expanding the binomial coefficients and canceling common factors yields the equivalent
form

(N)m(N − 2n+ 3)m ≤ (N − n+ 1)2
m,

where (n)k = n(n−1) · · · (n−k+1), and pairing up the kth factors of the falling factorials
we obtain

m−1∏
k=0

(N − k)(N − 2n+ 3− k) ≤
m−1∏
k=0

(N − n+ 1− k)2.

It suffices to show the inequality holds termwise. Expanding both sides of the kth term
of each side and simplifying yields

N + 2n ≤ n2 + 1 + k.

The case k = 0 implies all others, and reduces to 0 ≤ n2 − 3n+ 2 = (n− 2)(n− 1), and so
holds for all n ≥ 2, thus proving the first claim.

Since the indicators of vertices being isolated are negatively correlated, we have

σ2
n,m ≤ nP[dv = 0]P[dv > 0] ≤ min{nP[dv = 0], nP[dv > 0]},

from which σ2
n,m ≤ µn,m is immediate. As dv ∼ Hyp(N,m, n − 1) for N = n(n − 1)/2,

using Lemma 2.3 we have

σ2
n,m ≤ nP[dv > 0] ≤ nm(n− 1)

N
= 2m,

as claimed.

Lemma 2.6. For n ≥ 6 and 0 ≤ m ≤ n2/4− 3n/2, we have

exp
(
−2m

n
− 8m(m+ n)

n3

)
≤ µn,m

n
≤ exp

(
−2m

n

)
, (2.49)

and

µn,m

[
1− µn,m

n

(
1 +

2m

n
+

78m(m+ n)

n3

)]
≤ σ2

n,m ≤ µn,m

[
1− µn,m

n

(
1 +

2m

n
− 48m(m+ n)

n3

)]
.

(2.50)
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Proof. Since the distribution of each individual degree is Hyp(N,m, n− 1), and as the
hypothesis of Lemma 2.3 holds due to the restriction assumed on m, it follows from that
lemma that

exp
(
− m(n− 1)

N −m− n+ 2

)
≤ µn,m

n
≤ exp

(
−2m

n

)
,

yielding the upper bound in (2.49). Since under the assertions on m and n we have

n2 − 2m− 3n+ 4 ≥ n2/2, (2.51)

it follows that

m(n− 1)

N −m− n+ 2
=

2m

n
+

4m(m+ n− 2)

n(n2 − 2m− 3n+ 4)
≤ 2m

n
+

8m(m+ n)

n3
,

from which we obtain the lower bound in (2.49).

In order to prove the upper and lower bounds on the variance, we use the fact
that Var(W ) = E{G(W ′ − W )} when (W,W ′, G) is a Stein coupling for a mean zero
random variable W ; this identity follows immediately upon setting f(x) = x in (1.2). Now
recall (2.8), (2.9) and (2.21), and that Nv(m,π, σv) in (2.19) is the set of vertices that
receive at least one edge when forming Gv(m,π, σv), and that Mv(m,π, σv) in (2.20) is
the set of all vertices w 6= v such that {v, w} is an edge in G(m,π), and does not receive
a redistributed edge. As when Iv(m,π) = 1 the sets Nv(m,π, σv) and Mv(m,π, σv) are
empty, and recalling that Iw,1(m,π) = I[dw(m,π) = 1], we have

σ2
n,m

= E
∑
v∈[n]

(
Iv(m,π)− µn,m

n

)
×
(
Iv(m,π) +

∑
w∈

Nv(m,π,σv)

Iw(m,π)−
∑
w∈

Mv(m,π,σv)

Iw,1(m,π)

)

= nE

{(
I1(m,π)− µn,m

n

)
×
(
I1(m,π) +

∑
w∈

N1(m,π,σ1)

Iw(m,π)−
∑
w∈

M1(m,π,σ1)

Iw,1(m,π)

)}

= nE

{
I1(m,π)

(
1− µn,m

n

)
− µn,m

n

∑
w∈

N1(m,π,σ1)

Iw(m,π)

+
µn,m
n

∑
w∈

M1(m,π,σ1)

Iw,1(m,π)

}

= µn,m

(
1− µn,m

n
− E

∑
w∈

N1(m,π,σ1)

Iw(m,π) + E
∑
w∈

M1(m,π,σ1)

Iw,1(m,π)

)
.

(2.52)

Now consider the first sum in (2.52). Note that when d1(m,π) = k, of the potential N
edges, n − 1 have vertex 1 as an endpoint, and an additional m − k edges remain in
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G(m,π) and are not redistributed. Hence,

E
∑

w∈N1(m,π,σ1)

Iw(m,π)

= (n− 1)P[2 ∈ N1(m,π, σ1), d2(m,π) = 0]

= µn,m
n− 1

n
P[2 ∈ N1(m,π, σ1)|d2(m,π) = 0]

= µn,m
n− 1

n

n−2∑
k=0

P[2 ∈ N1(m,π, σ1)|d1(m,π) = k, d2(m,π) = 0]

× P[d1(m,π) = k|d2(m,π) = 0]

= µn,m
n− 1

n

n−2∑
k=0

P
[
Hyp

(
N − (n− 1)− (m− k), k, n− 2

)
> 0
]

× P[d1(m,π) = k|d2(m,π) = 0].

(2.53)

To arrive at the hypergeometric expression in the sum in the last equality from the
conditional probability that vertex 2 is incident on any of the k redistributed edges that
were removed from vertex 1 when making the new graph, note that the total number
of edges available is reduced from N first by n− 1, as vertex 1 has been removed, and
also due to the m− k edges that were part of the original graph that are not changed.
Of these remaining edges, n− 2 are incident on vertex 2, which is one fewer than their
original number of n− 1, due to the removal of vertex 1.

Using Lemma 2.3,

k(n− 2)

N − n−m+ k + 1
− k2(n− 2)2

2(N − n−m+ k + 1)2

≤ P
[
Hyp

(
N − (n− 1)− (m− k), k, n− 2

)
> 0
]

≤ k(n− 2)

N − n−m+ k + 1
,

(2.54)

from which we obtain the upper bound

E
∑

w∈N1(m,π,σ1)

Iw(m,π)

≤ µn,m
n

(n− 1)(n− 2)

(N − n−m+ 2)

n−1∑
k=1

kP[d1(m,π) = k|d2(m,π) = 0]

=
µn,m
n

(n− 1)(n− 2)

(N − n−m+ 2)
E{d1(m,π)|d2(m,π) = 0}.

Given d2(m,π) = 0, we have d1(m,π) ∼ Hyp(N − (n− 1),m, n− 2), hence

E{d1(m,π)|d2(m,π) = 0} =
m(n− 2)

N − n+ 1
,

and so,

E
∑

w∈N1(m,π,σ1)

Iw(m,π) ≤ µn,m
n

m(n− 1)(n− 2)2

(N − n−m+ 2)(N − n+ 1)

=
µn,m
n

[4m

n
+

4m(2m+ n− 4)

n(n2 − 2m− 3n+ 4)

]
≤ µn,m

n

[4m

n
+

16m(m+ n)

n3

]
.

(2.55)
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Similarly, using the second moment expression from (2.29)

E
{
d1(m,π)2

∣∣d2(m,π) = 0
}

=
m(n− 2)(N +mn− 2n− 3m+ 3)

(N − n)(N − n+ 1)
,

and so from (2.54) we obtain the lower bound

E
∑

w∈N1(m,π,σ1)

Iw(m,π)

≥ µn,m
n− 1

n

n−2∑
k=1

( k(n− 2)

N − n−m+ k + 1
− k2(n− 2)2

2(N − n−m+ k + 1)2

)
× P[d1(m,π) = k|d2(m,π) = 0]

≥ µn,m
n− 1

n

n−2∑
k=1

( k(n− 2)

N −m− 1
− k2(n− 2)2

2(N − n−m+ 2)2

)
× P[d1(m,π) = k|d2(m,π) = 0]

=
µn,m
n

(
(n− 1)(n− 2)

N −m− 1
E
{
d1(m,π)

∣∣d2(m,π) = 0
}

− (n− 1)(n− 2)2

2(N − n−m+ 2)2
E
{
d1(m,π)2

∣∣d2(m,π) = 0
})

=
µn,m
n

(
(n− 1)(n− 2)

N −m− 1

m(n− 2)

N − n+ 1

− (n− 1)(n− 2)2

2(N − n−m+ 2)2

m(n− 2)(N +mn− 2n− 3m+ 3)

(N − n)(N − n+ 1)

)
.

Now, for the first term in the brackets we have

m(n− 1)(n− 2)2

(N −m− 1)(N − n+ 1)
=

4m

n
+

4m(2m− n+ 2)

n(n2 − 2m− n− 2)

≥ 4m

n
− 4mn

n(n2 − 2m− n− 2)
≥ 4m

n
− 8m

n2
,

where we have used (2.51) for the last inequality. For the second term in the brackets,

m(n− 1)(n− 2)3(N +mn− 2n− 3m+ 3)

2(N − n)(N − n+ 1)(N − n−m+ 2)2
=

4m(n− 2)2(2m+ n− 2)

n(n2 − 2m− 3n+ 4)
2

≤ 8mn2(m+ n)

n(n2 − 2m− 3n+ 4)
2 ≤

32m(m+ n)

n3
,

where again we have used (2.51) for the last inequality. Hence, together with the upper
bound (2.55), we arrive at

µn,m
n

[4m

n
− 40m(m+ n)

n3

]
≤ E

∑
w∈N1(m,π,σ1)

Iw(m,π) ≤ µn,m
n

[4m

n
+

16m(m+ n)

n3

]
.

(2.56)

Now considering the second sum in (2.52), we can write∑
w∈

M1(m,π,σ1)

Iw,1(m,π) =
∑

w:{w,1}
∈G(m,π)

Iw,1(m,π)−
∑
w∈

Mc,1(m,π,σ1)

Iw,1(m,π), (2.57)
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where M c,1(m,π, σ1) = {w : {w, 1} ∈ G(m,π), w ∈ N1(m,π, σ1)}. Taking expectation of
the first sum on the right hand side of (2.57) and noting that the distributions of the
degrees in the graph are hypergeometric, we obtain that

E
∑

w:{w,1}
∈G(m,π)

Iw,1(m,π)

= (n− 1)P[{1, 2} ∈ G(m,π), d2(m,π) = 1]

= (n− 1)P[d2(m,π) = 1|{1, 2} ∈ G(m,π)]P[{1, 2} ∈ G(m,π)]

= (n− 1)P[Hyp(N − 1,m− 1, n− 2) = 0]
m

N

=
µn,m
n

N(n− 1)

N −m− n+ 2

m

N

=
µn,m
n

[
2m

n
+

4m(m+ n− 2)

n(n2 − 2m− 3n+ 4)

]
.

From this equality and using the assertions on m and n, we obtain

µn,m
n

[
2m

n
+

2m(m+ n)

n3

]
≤ E

∑
w:{w,1}
∈G(m,π)

Iw,1(m,π) ≤ µn,m
n

[
2m

n
+

8m(m+ n)

n3

]
. (2.58)

Now taking expectation of the second sum of (2.57),

E
∑
w∈

Mc,1(m,π,σ1)

Iw,1(m,π)

= (n− 1)P[{1, 2} ∈ G(m,π), 2 ∈ N1(m,π, σ1), d2(m,π) = 1]

= (n− 1)

n−1∑
k=1

P[{1, 2} ∈ G(m,π), 2 ∈ N1(m,π, σ1), d2(m,π) = 1, d1(m,π) = k]

=
(n− 1)m

N

n−1∑
k=1

P[2 ∈ N1(m,π, σ1)|d2(m,π) = 1, d1(m,π) = k, {1, 2} ∈ G(m,π)]

× P[d1(m,π) = k|d2(m,π) = 1, {1, 2} ∈ G(m,π)]]

× P[d2(m,π) = 1|{1, 2} ∈ G(m,π)]]

=
(n− 1)m

N

n−1∑
k=1

P[Hyp(N − (n− 1)− (m− k), k, n− 2) > 0]

× P[Hyp(N − (n− 1),m− 1, n− 2) = k − 1]

× P[Hyp(N − 1,m− 1, n− 2) = 0].

We arrive at the first Hypergeomtric expression in the sum in the last equality by the
same reasoning as that given following (2.53); the remaining two expressions in the sum
follow by similar, and simpler, means.

Now, for the first and last terms, using Lemma 2.3 for the upper bound, we have

P[Hyp(N − (n− 1)− (m− k), k, n− 2) > 0] ≤ k(n− 2)

N − n−m+ k + 1

P[Hyp(N − 1,m− 1, n− 2) = 0] =
µn,m
n

N

N −m− n+ 2
,

and thus, using in the final inequality that n2 ≤ 4(N −m− n+ 2), which holds via the
assumption that m ≤ n2/4− 3n/2, and that n2 ≤ 4(N − n), which holds as n ≥ 6, true by
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assumption, we obtain

E
∑
w:

Mc,1(m,π,σ1)

Iw,1(m,π)

≤ µn,m
n

(n− 1)2m

(N −m− n+ 2)2

×
n−2∑
k=0

(k + 1)P[Hyp(N − (n− 1),m− 1, n− 2) = k]

=
µn,m(n− 1)2m

n(N −m− n+ 2)2

(
(m− 1)(n− 2)

(N − (n− 1))
+ 1

)
≤ µn,m

n

16m

n2

(
4m

n
+ 1

)
≤ µn,m

n

16m

n2

(
4m

n
+

4n

n

)
≤ µn,m

n

64(m+ n)

n3
.

(2.59)

Using the estimates from (2.58) and (2.59) in the difference (2.57), and then applying
that result and (2.56) in (2.52) yields the claim.

Lemma 2.7. There exist universal integers m0 and n0, and positive constants C0 and c0
such that, whenever

n ≥ n0 and m0 ≤ m ≤ c0n3/2, (2.60)

we have ∣∣∣ µn,m
ne−2m/n

− 1
∣∣∣ ≤ C0

(m
n2

+
m2

n3

)
(2.61)

and ∣∣∣ σ2
n,m

nϕ(2m/n)
− 1
∣∣∣ ≤ C0

( 1

m
+
m2

n3

)
, (2.62)

where
ϕ(x) = e−x(1− e−x(1 + x)).

Proof. It is easy to verify that

n3/2 ≤ n2

4
− 3n

2
for all n ≥ 27. (2.63)

Hence, with the first inequality in (2.60) holding with n0 replaced by 27, and taking
c0 ≤ 1, Lemma 2.6 can be invoked to yield∣∣∣ µn,m

ne−2m/n
− 1
∣∣∣ ≤ 1− exp

(
−8m(m+ n)

n3

)
≤ 8m(m+ n)

n3
,

from which (2.61) now follows for any C0 ≥ 8.
Turning to (2.62), we first show that the lower bound in (2.50) is positive whenever

n ≥ 78 and m ≥ 78. Indeed, that lower bound is positive whenever

µn,m
n

(
1 +

2m

n
+

78m(m+ n)

n3

)
< 1,

which, recalling the upper bound (2.49), is implied whenever

e−x(1 + x+ y) < 1 (2.64)

with

x =
2m

n
and y =

78m(m+ n)

n3
. (2.65)

EJP 25 (2020), paper 132.
Page 32/49

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP535
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stein’s method via induction

Since (2.64) is equivalent to the inequality y < ex − x − 1, which in turn is satisfied
if y ≤ x2/2, since x2/2 < ex − x− 1, we arrive at the sufficient condition

78m(m+ n)

n3
≤ 2m2

n2
,

which is equivalent to 39 ≤ m(2− 39/n). This inequality holds whenever both n ≥ 78 and
m ≥ 78.

We now proceed to bound the ratio between the upper and lower bounds, say σ2
n,m

and σ2
n,m, respectively, of (2.50). Using the identity (1− a)/(1− b) = 1 + (b− a)/(1− b),

we have

σ2
n,m

σ2
n,m

=
1− µn,m

n

(
1 + 2m

n −
48m(m+n)

n3

)
1− µn,m

n

(
1 + 2m

n + 78m(m+n)
n3

) = 1 +
µn,m
n

126m(m+n)
n3

1− µn,m
n

(
1 + 2m

n + 78m(m+n)
n3

) . (2.66)

We proceed to lower bound the denominator in (2.66). Letting x and y be as in (2.65),
and applying the upper bound in (2.49), we may write

1− µn,m
n

(
1 +

2m

n
+

78m(m+ n)

n3

)
≥ 1− e−2m/n

(
1 +

2m

n
+

78m(m+ n)

n3

)
= 1− e−x(1 + x+ y) ≥ 1− e−x(1 + x)− y.

If 2m/n ≤ 1, we have 0 ≤ x ≤ 1 and thus 1− e−x(1 + x) ≥ x2/4 from Lemma 2.4, so that

1− e−x(1 + x)− y ≥ x2

4
− y =

m2

n2

(
1− 78

n
− 78

m

)
≥ 1

8

(2m

n

)2

when min(n,m) ≥ 312. If 2m/n > 1 and so x > 1, we simply use the lower bound

1− e−x(1 + x) ≥ 1

4
,

and for any positive c0 we can take n0 large enough so that

1− e−x(1 + x)− y ≥ 1

4
− y =

1

4
− 78m2

n3
− 78m

n2
≥ 1

8
.

Hence, writing O(·) with the understanding that the implied bound holds with universal
constants, recalling (2.66), and using Lemma 2.6 to bound µn,m/n in its numerator, we
have

σ2
n,m

σ2
n,m

≤ 1 +
8e−2m/n(
2m
n ∧ 1

)2(126m2

n3
+

126m

n2

)
=


1 + O

( 1

m

)
if 2m/n ≤ 1

1 + O
(m2

n3

)
if 2m/n > 1 ,

(2.67)

where both the O(·) terms are non-negative.
Next, with ϕ(x) = e−x(1− e−x(1 + x)), we show that

σ2
n,m

nϕ(2m/n)
=


1 + O

( 1

m

)
if 2m/n ≤ 1

1 + O
(m2

n3

)
if 2m/n > 1.

(2.68)
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Using (2.61) for the second equality, (2.49) for the third, then (2.61) again and the lower
bound of Lemma 2.4 for the fourth, we obtain

σ2
n,m

nϕ(2m/n)

=
µn,m

ne−2m/n
×

1− µn,m
n

(
1 +

2m

n
+ O

(m
n2

+
m2

n3

))
1− e−2m/n

(
1 +

2m

n

)


=
(

1 + O
(m
n2

+
m2

n3

))

×

[
1−

µn,m
n

(
1 +

2m

n
+ O

(m
n2

+
m2

n3

))
− e−2m/n

(
1 +

2m

n

)
1− e−2m/n

(
1 +

2m

n

) ]

=
(

1 + O
(m
n2

+
m2

n3

))

×

[
1−

(µn,m
n
− e−2m/n

)(
1 +

2m

n

)
1− e−2m/n

(
1 +

2m

n

) + O

(
e−2m/n

(m
n2

+
m2

n3

)
1− e−2m/n(1 + 2m

n )

)]

=
(

1 + O
(m
n2

+
m2

n3

))

×

[
1 + O

(
e−2m/n

(m
n2

+
m2

n3

)(
1 +

2m

n

)
(

2m
n ∧ 1

)2
)

+ O

(
e−2m/n

(m
n2

+
m2

n3

)
(

2m
n ∧ 1

)2
)]

=: (1 +R1)(1 +R2 +R3) = O((1 +R1)(1 +R2)),

as R3 = O(R2). In the case 2m/n ≤ 1, we have

R1 = O

(
m

n2
+
m2

n3

)
= O

(
1

m

(m2

n2
+
m3

n3

))
= O

( 1

m

)
and

R2 = O

(
m/n2 +m2/n3

(2m/n)
2

)
= O

( 1

m
+

1

n

)
= O

( 1

m

)
,

showing the first bound in (2.68). In the case 2m/n > 1,

R1 = O

(
m

n2
+
m2

n3

)
= O

(m2

n3

)
,

and using that x exp(−x) is bounded over [0,∞),

R2 = O

(
e−2m/n

(m
n2

+
m2

n3

)(
1 +

2m

n

))
= O

((m2

n3

)
e−2m/n

(2m

n

))
= O

(m2

n3

)
.

Applying (2.63), the second bound in (2.68) is shown. Now, using that σ2
n,m ≥ σ2

n,m, and
writing

σ2
n,m

σ2
n,m

= 1 + a,
σ2
n,m

nϕ(2m/n)
= 1 + b

and observing that, because the implicit constants in the bounds (2.67) and (2.68) are
universal, and using that the O(·) terms in (2.67) are non-negative, we can choose c0
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small enough and m0 large enough to guarantee that 0 ≤ a < 1 and −1 < b < 1, and
hence obtain the upper and lower bounds

(1− a)(1 + b) ≤
(

1− a

1 + a

)
(1 + b) =

σ2
n,m

σ2
n,m

σ2
n,m

nϕ(2m/n)
=

σ2
n,m

nϕ(2m/n)

≤
σ2
n,m

nϕ(2m/n)
≤

σ2
n,m

nϕ(2m/n)
= 1 + b,

from which the estimate (2.62) follows.

Lemma 2.8. Let rn,m be defined as in (1.21). For any integers n and m and any positive
constant c > 0, there exists r ≥ 1 such that rn,m > r implies

n ≥ n and m ≤ m ≤ cn3/2. (2.69)

Proof. We will show that rn,m ≤ r for r = max
{
n1/2, (2m)3/2, 1/c2, 1

}
if (2.69) is violated.

Indeed, if n < n, we have by Lemma 2.5, and that µn,m ≤ n, then

rn,m =
σ3
n,m

µn,m(1 + (m/n)2)
≤ σn,m ≤ min{n1/2, (2m)1/2}.

Finally, if m > cn3/2, then similarly

rn,m =
σ3
n,m

µn,m(1 + (m/n)2)
≤

√
µn,m

1 + (m/n)2

≤
√
n

1 + (cn3/2/n)2
=

√
n

1 + (c
√
n)2
≤ 1

c2
.

Lemma 2.9. Letting be as in Condition (G1), it holds that

sup
(n,m)∈

0≤d≤min{n,m}/4

(
µ2
n,m

µ2
n−1,m−d

∨
µ2
n−1,m−d

µ2
n,m

)
<∞,

and

sup
(n,m)∈

0≤d≤min{n,m}/4

(
σ2
n,m

σ2
n−1,m−d

∨
σ2
n−1,m−d

σ2
n,m

)
<∞. (2.70)

Proof. First, note that if (n,m) ∈ , then from (2.5) and (2.6) the conclusion of
Lemma 2.7 holds. For the ratio of means, from Lemma 2.6, to upper bound µn,m/µn−1,m−d
it suffices to upper bound the ratio

− 2m

n
+

2(m− d)

n− 1
+

8(m− d)(m− d+ n− 1)

(n− 1)3

=
2m− 2nd

n(n− 1)
+

8(m− d)(m− d+ n− 1)

(n− 1)3
≤ 8

(
2m

n2
+

8m(m+ n)

n3

)
,

which is bounded by a constant via m ≤ c0n
3/2, as in (2.60). Similarly, to upper bound

µn−1,m−d/µn,m it suffices to upper bound the ratio

− 2(m− d)

n− 1
+

2m

n
+

8m(m+ n)

n3

=
2nd− 2m

n(n− 1)
+

8m(m+ n)

n3
≤ 2

(
2d

n
+

8m(m+ n)

n3

)
,
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which, here using that d ≤ n/4, we see is also so bounded.
For the ratios of variances, for 0 ≤ d ≤ min{n,m}/4 let

x =
2m

n
, y =

2m

n
− 2(m− d)

n− 1
=

2(nd−m)

n(n− 1)
,

let ϕ(x) = e−x(1− e−x(1 + x)), and write

σ2
n,m

σ2
n−1,m−d

=
σ2
n,m

nϕ(x)
× (n− 1)ϕ(x− y)

σ2
n−1,m−d

× n

n− 1
× ϕ(x)

ϕ(x− y)
=: R1 ×R2 ×R3 ×R4.

We show that these four terms, and their reciprocals, can be uniformly bounded over
the range of the supremum in (2.70). Since (2.60) holds for n, and m, we can apply
Lemma 2.7, and also (2.5) for the first and final bounds, and obtain

1

2
≤ 1− C0

( 1

m
+
m2

n3

)
≤

σ2
n,m

nϕ(x)
≤ 1 + C0

( 1

m
+
m2

n3

)
≤ 3

2
. (2.71)

Next, since m ≥ 2m0 by (2.5) and d ≤ m/4, we have that m−d ≥ 3m/4 ≥ 3m0/2 ≥ m0.
Since n ≥ 2n0, again by (2.5), we have that n− 1 ≥ n0, and since m ≤ (c0/2)n3/2 by (2.5)
and (n/(n − 1))3/2 ≤ 2 for n ≥ 3, we have that m − d ≤ m ≤ c0(n − 1)3/2. It follows
that (m−d, n−1) also satisfies the hypotheses of Lemma 2.7. Using the lower bound on n
from (2.5), we have 1/(n− 1)3 ≤ 2/n3, and also from (2.6) that C0(2/m+ 2m2/n3) ≤ 1/2,
so also using d ≤ m/4 for the second and second to last inequality,

1

2
≤ 1− C0

( 2

m
+

2m2

n3

)
≤ 1− C0

( 1

m− d
+

(m− d)2

(n− 1)3

)
≤

σ2
n−1,m−d

(n− 1)ϕ(x− y)

≤ 1 + C0

( 1

m− d
+

(m− d)2

(n− 1)3

)
≤ 1 + C0

( 2

m
+

2m2

n3

)
≤ 3

2
.

(2.72)

Hence, (2.71) and (2.72) imply that

1

2
≤ R1 ≤

3

2
and

2

3
≤ R2 ≤ 2.

Clearly, 1 ≤ R3 ≤ 2 for n ≥ 2. Lastly,

R4 =
e−x(1− e−x(1 + x))

e−x+y(1− e−x+y(1 + x− y))
=

1− e−x(1 + x)

ey(1− e−x+y(1 + x− y))
.

Note that by (2.6), and by (2.5) that gives that c ≤ 1, and also using d ≤ n/4,

− 4

n
1/2
0

≤ − 4

n1/2
≤ − 2m

n(n− 1)
≤ y =

2(nd−m)

n(n− 1)
≤ 2d

n− 1
≤ 1. (2.73)

It follows that 1/ey remains bounded on , and therefore, to show R4 is bounded it
suffices to show that

1− e−x(1 + x)

1− e−x+y(1 + x− y)

remains bounded. Using Lemma 2.4,

1− e−x(1 + x)

1− e−x+y(1 + x− y)
≤ 2 min{x2, 2}

min{(x− y)2, 1}
=

2 min{x2, 2}
min{x2(1− y/x)2, 1}

.

But this ratio remains bounded from above, away from 1, as d ≤ m/4 implies

y

x
=

nd−m
m(n− 1)

≤ 2d

m
− 1

n− 1
≤ 1

2
.

The reciprocal 1/R4 is bounded similarly, using that (2.73) shows that ey is bound-
ed.
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3 Jack measure on tableaux

We now turn to the study of the distribution of the standardized sum of the α-contents
over all boxes in a tableaux whose shape is determined by the partition Λn of n, that is,
to

W =
Y√
α
(
n
2

) , where Y =
∑
x∈Λn

cα(x), (3.1)

where
cα(x) = α(column number of x− 1)− (row number of x− 1),

and where the partition Λn is sampled from the Jackα measure in (1.22), as described in
detail in the introduction; see (1.23) for an illustration of cα(x), where x ∈ Λ7.

Our bound is based on the zero bias construction in Fulman and Goldstein (2011),
which itself depends on an exchangeable pair constructed using Kerov’s growth process,
a sequential procedure for growing a random partition distributed according to Jackα
measure.

The state of Kerov’s growth process at times n = 1, 2, . . . is a partition of n, starting
at time 1 with the unique partition (1) of 1. To describe its transition rule from time n− 1

to n for n ≥ 2, given a box x in the diagram of a partition Λn of n, let a(x) denote the
number of boxes in the same row of x and to the right of x (the “arm” of x), and let l(x)

denote the number of boxes in the same column of x and below x (the “leg” of x), as
in (1.22). Now set

cΛ(α) =
∏
x∈Λ

(αa(x) + l(x) + 1), c′Λ(α) =
∏
x∈Λ

(αa(x) + l(x) + α)

and, for Λn−1 a partition of n− 1 obtained from Λn by removing a single corner box, let

ψ′Λn/Λn−1
(α)

=
∏

x∈CΛn/Λn−1
−RΛn/Λn−1

(αaλ(x) + lλ(x) + 1)

(αaλ(x) + lλ(x) + α)

(αaΛn−1
(x) + lΛn−1

(x) + α)

(αaΛn−1
(x) + lΛn−1

(x) + 1)
,

where CΛn/Λn−1
is the union of columns of Λn that intersect Λn − Λn−1 and RΛn/Λn−1

is
the union of rows of Λn that intersect Λn−Λn−1. If at stage n− 1 the state of the process
is the partition Λn−1, a transition to the partition Λn occurs with probability

cΛn−1(α)

cΛn(α)
ψ′Λn/Λn−1

(α).

It is shown in Kerov (1994), see also Fulman (2006), that if Λn−1 is distributed according
to Jackα measure on partitions of n− 1, then the partition Λn obtained by this process at
time n has the Jackα distribution.

In the proof of Theorem 3.1 of Fulman and Goldstein (2011), a variable having the
zero bias distribution of W was constructed as follows. Fix n and α and let Λk be the
state of Kerov’s growth process at time k, and set

V =
∑

x∈Λn−1

cα(x). (3.2)

Denoting by cα(xn) the content of the box xn added at time n to form Λn, we can now
write

W =
V√
α
(
n
2

) + T, where T =
cα(xn)√
α
(
n
2

) . (3.3)
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With dF (t|Λn−1) the conditional distribution of T given Λn−1, constructing the pair

(T †, T ‡) ∼ (t′′ − t′)2dF (t′|Λn−1)dF (t′′|Λn−1) (3.4)

on the same space as Λn−1, and letting U ∼ U [0, 1] be independent of V, T † and T ‡, the
variable

W ∗ =
V√
α
(
n
2

) + T ∗ with T ∗ = UT † + (1− U)T ‡ (3.5)

has the W -zero bias distribution. In fact, the joint distribution on the right hand
side of (3.4) can be achieved by running Kerov’s growth process twice, conditionally
independent on Λn−1. As shown in Fulman and Goldstein (2011), the resulting variables,
say T ′ and T ′′, yield the crucial exchangeable Stein pair in (1.3) via (3.3). Again by
Fulman and Goldstein (2011), both the conditional mean and variance of T given Λn−1

do not depend on Λn−1; specifically,

E{T |Λn−1} = 0 and E{T 2|Λn−1} =
2

n
. (3.6)

It is essentially for this reason that we may construct W ∗ as in (3.5), using V ; for details,
see Fulman and Goldstein (2011).

Proof of Theorem 1.5. We verify the conditions of Theorem 1.2.

Condition (Z1). Fix an ε ∈ (0, 1), suppressed in the notation, and let

Θ = {(n, α) : α > n1+ε, n ≥ 2} and = {(n, α) ∈ Θ : rn,α > 21/2−ε/2}, (3.7)

where
rn,α =

n√
α
, (3.8)

which is positive and measurable. Note that

(n, α) ∈ ⇐⇒ n1+ε < α <
n2

21−ε , (3.9)

which implies in particular that n ≥ 3 if (n, α) ∈ .
From Fulman (2004), the mean and variance of the content Y of a tableaux of a

partition of n under Jackα measure is given, respectively, by

µn,α = 0 and σ2
n,α = α

(
n

2

)
for all (n, α) ∈ Θ. (3.10)

In particular we have that Varn,α Y > 0 for all (n, α) ∈ .

Condition (Z2). The variable Y , given in (3.1) is easily seen to satisfy the needed con-
ditions, and the construction of the zero bias variable W ∗ is outlined above in (3.3), (3.4)
and (3.5).

Condition (Z3). From (3.3) and (3.5) we see that

D = T ∗ − T.

For each (n, α) = let Fn,α be the trivial σ-algebra {∅,Ω}, let

D =
10
√
α

nε
and let Fn,α,1 =

{
λ1 ≤

2

ε

}
, (3.11)
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where λ1 and λ′1 respectively denote the length of the first row and first column of the
tableaux Λn−1 produced by Kerov’s growth process at time n − 1. Clearly D is Fn,α
measurable.

We next argue that |D| ≤ D on Fn,α,1 as follows. With cα(xn), cα(x′n) and cα(x′′n)

the contents of the boxes added to Λn−1 by Kerov’s growth process, all conditionally
independent given Λn−1, with probability one,

{cα(xn), cα(x′n), cα(x′′n)} ⊂ [−(λ′1 + 1), α(λ1 + 1)],

as the extreme values α(λ1 + 1) and −(λ′1 + 1) are achieved, respectively, by adding a
box at the end of first row, and at bottom of the first column. Scaling by σn,α in (3.10) to
obtain T , T ′ and T ′′, respectively, with probability one

{T, T ′, T ′′} ⊂ [−(λ′1 + 1)/σn,α, α(λ1 + 1)/σn,α]. (3.12)

Now note that by (3.4) the distribution of (T †, T ‡) is absolutely continuous with respect
to that of (T ′, T ′′), and hence with probability one

{T, T †, T ‡} ⊂ [−(λ′1 + 1)/σn,α, α(λ1 + 1)/σn,α].

As T ∗ is the convex combination UT †+ (1−U)T ‡ of T †, T ‡, it too must lie in this same
interval, and hence, as the length of the first column of Λn−1 can be no more than n, we
obtain

|D| = |T ∗ − T | ≤ αλ1 + λ′1 + α+ 1

σn,α

≤2α/ε+ n+ α+ 1

σn,α
≤ 5α

εσn,α
≤ D on Fn,α,1 for all (n, α) ∈ .

(3.13)

In what follows, we think of (n, α) ∈ as fixed and suppress the subscript in En,α.
Turning to the moment conditions, we claim that

√
ED2 ≤ C

(
1√
n

+

√
α

n

)
≤ C
√
α

n
. (3.14)

Now,

√
ED2 =

√
E(T ∗ − T )2

≤
√

2(E{(T ∗)2}+ ET 2) ≤
√

2
(√

E{(T ∗)2}+
√
ET 2

)
.

(3.15)

To bound the second moment of T ∗, by the zero bias formula (1.4) with f(x) = x3/3, and
the proof of Theorem 4.1 in Fulman and Goldstein (2011), we obtain

3 Var(T )E{(T ∗)2} = ET 4 ≤ 8

n2
+

4α

n2(n− 1)
.

Hence, by (3.6),

√
E{(T ∗)2} =

√
n

6

(
8

n2
+

4α

n2(n− 1)

)
≤ C

√
1

n
+

α

n2
≤ C

(
1√
n

+

√
α

n

)
.

For the second term of (3.15), by (3.6), we obtain
√
ET 2 =

√
2/n, thus showing first

inequality in (3.14). The final inequality in (3.14) holds as (n, α) ∈ implies α ≥ n.
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To verify the first condition in (1.16), apply the Cauchy Schwarz inequality, (3.8)
and (3.14) to obtain

r2
n,α E

{
|D|(1− IFn,α,1)

}
≤ r2

n,α

√
ED2P[F cn,α,1] ≤ Cn√

α

√
P[F cn,α,1]. (3.16)

To control P[F cn,α,1], with m = n− 1, we apply the inequality

P[λ1 = l] ≤
(m
α

)l αl
l!2

from the proof of Lemma 6.6 in Fulman (2004). Using that α ≥ n1+ε ≥ m1+ε in the third
inequality below we obtain

P[F cn,α,1] ≤ P[λ1 ≥ 2/ε] ≤
∑
l≥2/ε

(m
α

)l αl
l!2

=
α

m2

∑
l≥2/ε

ml+2

αl
l

l!2

≤ α

m2

∑
l≥2/ε

m2−lε l

l!2
≤ α

m2

∑
l≥2/ε

l

l!2
≤ α

m2

∑
l≥0

l

l!2
≤ eα

m2
≤ 4eα

n2
.

Substitution into (3.16) now verifies the first condition in (1.16).
For the second condition in (1.16), using (3.8), the Cauchy Schwarz inequality,

that EW 2 = 1, (3.14) and (3.11) we obtain

sup
(n,α)∈

rn,αE
{
|DW |+D

}
≤ sup
n,α∈

n√
α

(√
ED2 + E|D|

)
<∞.

Condition (Z4). For (n, α) ∈ , let

Ψ(n, α) = (n− 1, α), (3.17)

which is Fn,α measurable, let Fn,α,2 = Ω, and let V be as in (3.2). The conditional
distribution condition (1.17) is satisfied for V with θ = (n, α) by the properties of Kerov’s
growth process. Clearly the set Fn,α,2 is measurable with respect to Fn,α. The moment
condition (1.18) is trivially satisfied, as 1− 1Fn,α,2 = 0 almost surely.

Condition (Z5). By (3.1) and (3.2) we have that (Y −V )/σn,α = T as in (3.3), the scaled
content cα(xn) of the box xn added at time n in Kerov’s growth process. Hence, the
first part of Condition (1.19) holds with B = D in (3.11), as by (3.12), and arguing as
in (3.13), we have

|Y − V |
σn,α

= |T | ≤ αλ1 + λ′1 + α+ 1

σn,α
≤ D on Fn,α,1 for (n, α) ∈ .

The second part of this condition holds easily, as

r2
n,α(D(B +D)) = 2r2

n,αD
2

= 200/ε2 almost surely.

Condition (G7). To verify the variance ratio condition (1.12), recalling σ2
n,α from (3.10)

and Ψ(α, n) from (3.17), we have

σ2
α,n

σ2
Ψ(α,n)

=
α
(
n
2

)
α
(
n−1

2

) =
n

n− 2
≤ 3 for all (n, α) ∈ ,

as n ≥ 3 for all (n, α) ∈ by the comment after (3.9). For this same reason condi-
tion (1.13) holds, as

rα,n
rΨ(α,n)

=
rα,n
rα,n−1

=
n

n− 1
∈ [1, 3/2].
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Conditions (Z1)–(Z5) and (G7) have been verified, and Theorem 1.5 now follows from
Theorem 1.2.

The next result shows that the case when α is taken larger than that in Theorem 1.5
is degenerate; the boundary case ε = 1 is left unresolved.

Theorem 3.1. For all ε > 1, along any sequence {(n, αn), n ≥ 1} for which αn ≥ n1+ε,

lim
n→∞

Pn,αn [λ′1 = n] = 1.

Proof. Note that for all boxes x in the Tableaux with λ′1 = n we have a(x) = 0 and l(x)

takes all values between 0 and n − 1. Hence, from the Jackα measure distribution as
given in (1.22),

1

Pn,αn [λ′1 = n]
=

∏n−1
l=0 (l + 1)(l + αn)

αnnn!
=

∏n−1
l=0 (l + αn)

αnn

=

n−1∏
l=0

(
1 +

l

αn

)
≤
n−1∏
l=0

exp

(
l

αn

)
≤ exp

(
n2

αn

)
.

Substituting the lower bound on αn into this inequality yields

Pn,αn [λ′1 = n] ≥ exp(−n1−ε)→ 1 as n→∞.

Remark 3.2. The Wasserstein bound in (1.25) suggests that a bound in the Kolmogorov
metric should hold with rate function

rn,α =

(
1√
n

+

√
α

n

)−1

for all n ≥ 2 and α > 0. (3.18)

This rate function is equivalent to the one we take in (3.8) for the ‘large α’ parameter
set (3.7), as there n ≤ α and 1/

√
n is dominated by

√
α/n. Directly extending the

arguments used here to cover the ‘small’ alpha regime requires that (3.16) hold for some
choice of Fn,α,1. In particular, (3.14) shows that En,αD2 ≤ C/r2

n,α, with rn,α as in (3.18).
Hence, taking this route, one needs to specify Fn,α,1 as an appropriate restriction on
Λn−1 that satisfies Pn,α[F cn,α,1] < C/r2

n,α, and which gives rise to a bounding D of the

right order. If in this case B may be taken to be D as in (Z5) above, then D needs to be
of order 1/rn,α.

4 Proof of Theorems 1.1 and 1.2

The proofs of Theorems 1.1 and 1.2 ultimately rely on obtaining information about
the solution to a certain recursive inequality. In its simplest form, and closely related to
the argument in Bolthausen (1984), this inequality becomes

an ≤ qan−1 + c for n ≥ 2 and a1 = 1 (4.1)

for some 0 < q < 1 and c > 0. In this simple case, it is not difficult to solve the
corresponding equality explicitly to yield

an = qn−1 + c
1− qn−1

1− q
for n ≥ 1.

What is important here is not the exact form of the solution but rather that an is uniformly
bounded over n ≥ 1. We show below that this property holds in greater generality when
we replace n on the left hand side of (4.1) by a generic parameter θ ∈ Θ, and average

EJP 25 (2020), paper 132.
Page 41/49

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP535
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stein’s method via induction

the right hand side over a randomly chosen parameter Y ∈ Θ, rather than evaluate at
n−1. Although, in the general case, there may exist additional solutions to the inequality
that are unbounded, it turns out that these solutions must grow exponentially fast along
some sequence, which is a behavior that can be excluded in our applications.

Lemma 4.1. Let (Θ, T ) and (Ω,F) be measurable spaces. For each θ ∈ Θ, let Pθ[·] be
a probability measure on Ω. Let X : Θ × Ω → [0,∞) and Ψ : Θ × Ω → Θ be such that,
for each θ ∈ Θ, both X(θ, ·) and Ψ(θ, ·) are measurable functions. Assume there are
constants 0 < q < 1 and c > 0, measurable functions a : Θ → [0,∞) and r : Θ → [0,∞),
and a measurable set ⊂ Θ such that

(A1) EθX = 1 for all θ ∈ , (A2) EθX = 0 for all θ ∈ Θ \ ,

(A3) a(θ) ≤ qEθ{Xa(Ψ)}+ c <∞ for all θ ∈ Θ,

(A4) a(θ) ≤ r(θ) and Pθ − ess sup
{X>0}

r(Ψ) ≤ r(θ)

2q
for all θ ∈ .

Then

sup
θ∈Θ

a(θ) ≤ c

1− q
.

Proof. Note that, for θ ∈ Θ \ , the variable X must be zero Pθ-almost surely by (A2),
and so (A3) yields that

a(θ) ≤ c for θ ∈ Θ \ . (4.2)

We may therefore assume that is non-empty, else the claim in trivial. We argue by
contradiction; so assume Conditions (A1)–(A4) are satisfied and that the opposite of
the conclusion is true. For every θ ∈ , we can use (A1) and consider the probability
measure PXθ specified by its Radon-Nikodym derivative

dPXθ
dPθ

= X, so that Eθ{Xa(Ψ)} = EXθ {a(Ψ)},

where EXθ denotes expectation with respect to PXθ . We argue by contradiction, assuming
that when

sup
θ∈Θ

a(θ) >
c

1− q
(4.3)

and Conditions (A1)–(A4) hold, there exists a sequence {θn}n≥0 ⊂ and a constant C
such that, for all n ≥ 0,

c

1− q
+
cδ

qn
≤ a(θn) ≤ r(θn) ≤ C/(2q)n, (4.4)

which is clearly impossible.
We proceed by induction. For the base case n = 0, we note that since a(·) is bounded

by c on Θ \ by (4.2), from (4.3) that there is θ0 ∈ such that a(θ0) = c/(1− q) + cδ,
for some δ > 0; taking also C = r(θ0), (4.4) is satisfied.

For the induction step, assume that the lower bound in (4.4) is true for n − 1 ≥ 0.
As θn−1 ∈ , Condition (A3) yields that EXθn−1

a(Ψ) ≥ (a(θn−1)−c)/q, and so the integrand

must be at least this lower bound on a set of positive PXθn−1
–measure; that is,

An−1 :=
{
ω ∈ Ω : a

(
Ψ(θn−1, ω)

)
≥ (a(θn−1)− c)/q

}
satisfies PXθn−1

[An−1] > 0.
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Moreover, by the definition of essential supremum,

Bn−1 :=
{
ω ∈ Ω : r

(
Ψ(θn−1, ω)

)
≤ Pθn−1

- ess sup r
(
Ψ
)}

satisfies PXθn−1
[Bn−1] = 1.

Hence PXθn−1
[An−1 ∩Bn−1] = PXθn−1

[An−1] > 0, and we can find θn ∈ Θ satisfying

a(θn) ≥ a(θn−1)− c
q

and r(θn) ≤ PXθn−1
- ess sup r

(
Ψ(θn−1, ·)

)
. (4.5)

Since a(·) ≤ c on Θ \ we conclude that θn ∈ in view of the first inequality of (4.5),
which also completes the induction for the lower bound in (4.3). Applying (4.5) and (A4)
yields

r(θn) ≤ PXθn−1
- ess sup r

(
Ψ(θn−1, ·)

)
≤ 1

2q
r(θn−1),

yielding the upper bound in (4.4), and concluding the induction.

Proof of Theorem 1.1. Throughout the proof, C denotes a constant that does not depend
on θ and can change from formula to formula. Note first that by Condition (G1) the
bound (1.14) trivially holds for every θ ∈ Θ \ by taking C = r. Therefore we need only
show that (1.14) holds for all θ ∈ . Let

δ(θ) =

{
supz∈R |Pθ[W ≤ z]− P[Z ≤ z]| θ ∈

1 θ ∈ Θ \ .
(4.6)

Fix ε > 0, whose exact value is to be chosen later, and for z ∈ R define

hz,ε(x) =


1 if x ≤ z,
1 + (z − x)/ε if z < x ≤ z + ε,

0 if z + ε < x.

Let fz,ε be the unique bounded solution to the Stein equation

f ′z,ε(x)− xfz,ε(x) = hz,ε(x)− Ehz,ε(Z).

Using a standard smoothing inequality, see e.g. the proof of Theorem 5.1 in Chen,
Goldstein and Shao (2011), we have

δ(θ) ≤ sup
z∈R
|Eθ{f ′z,ε(W )−Wfz,ε(W )}|+ ε√

2π
. (4.7)

For ease of notation, we drop the indices z and ε from f .

Bound on |Eθ{f ′(W )−Wf(W )}| Taking an arbitrary θ ∈ and using the defini-
tion (1.2) of a Stein coupling in the second line below, we have

|Eθ{f ′(W )−Wf(W )}|

= |Eθ{(1−GD)f ′(W )−G
∫ D

0

(f ′(W + t)− f ′(W ))dt}|

≤
∣∣Eθ{f ′(W )Eθ[1−GD|W ]

}∣∣+

∣∣∣∣Eθ{G∫ D

0

(
f ′(W + t)− f ′(W )

)
dt

}∣∣∣∣
=: R1 +R2.
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From (4.6) and (4.7) of Chen and Shao (2004) we have, respectively, that ‖f ′‖ ≤ 1 and

|f ′(x+ t)− f ′(x)| ≤ |t|
(

1 + |x|+ 1

ε

∫ 1

0

I[z < x+ ut ≤ z + ε]du
)
, (4.8)

implying, by the first condition in (1.7), that

R1 ≤
C

rθ
for all θ ∈ , (4.9)

and that

R2 ≤ Eθ
{
|G|(1 + |W |)

∫ 0∨D

0∧D
|t|dt

}
+

1

ε
Eθ

{
|G|
∫ 0∨D

0∧D

∫ 1

0

|t| I[z < W + ut ≤ z + ε]dudt

}
=: R2,1 +R2,2.

Using the second condition in (1.7), and that |t| ≤ |D| in the integral, we have

R2,1 ≤ Eθ
{

(1 + |W |)|G|D2
}
≤ C

rθ
for all θ ∈ . (4.10)

Let Fθ = Fθ,1 ∩ Fθ,2. To handle the indicator in R2,2, write

I[z < W + ut ≤ z + ε]

≤ (1− IFθ,1) + (1− IFθ,2) + IFθ I[z < W + ut ≤ z + ε].
(4.11)

Using (4.11), and again that |t| ≤ |D|, we have

R2,2 ≤
1

ε
Eθ

{
|G|
∫ 0∨D

0∧D

∫ 1

0

|t|(1− IFθ,1)dudt+ |G|
∫ 0∨D

0∧D

∫ 1

0

|t|(1− IFθ,2)dudt

}
+

1

ε
Eθ

{
|G|
∫ 0∨D

0∧D

∫ 1

0

|t|IFθ I[z < W + ut ≤ z + ε]dudt

}
≤ 1

ε
Eθ

{
|G|D2(1− IFθ,1) + |G|D2(1− IFθ,2)

}
+

1

ε
Eθ

{
|GD|

∫ 0∨D

0∧D

∫ 1

0

IFθ∩F◦ I[z < W + ut ≤ z + ε]dudt

}
+

1

ε
Eθ

{
|G|D2IFθ∩F c◦

}
=: R2,2,1 +R2,2,2 +R2,2,3, (4.12)

where F◦ = {Ψ(θ, ·) ∈ }. Now, by (1.10) and the first condition of (1.8)

R2,2,1 ≤
C

εr2
θ

. (4.13)

Since Fθ ∩ F◦ is contained in F◦ and σθ > 0 for θ ∈ , on this intersection we may define

W̃ =
V − µΨ

σΨ
,

and thus write

W =
σΨ

σθ
W̃ +

Y − V
σθ

− µθ − µΨ

σθ
=: ρW̃ + T1 − T2,
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where ρ, T1 and T2 are to be understood as random variables on × Ω. By the first
condition in (1.11), we have |T1| ≤ B on Fθ ∩ F◦. Hence,

IFθ∩F◦I[z < W + ut ≤ z + ε] (4.14)

= IFθ∩F◦I

[
z − T1 + T2 − ut

ρ
< W̃ ≤ z − T1 + T2 − ut+ ε

ρ

]
≤ IFθ∩F◦I

[
z −B + T2 − ut

ρ
< W̃ ≤ z +B + T2 − ut+ ε

ρ

]
= IFθ∩F◦I

[
Qz,ut −

B

ρ
< W̃ ≤ Qz,ut +

B + ε

ρ

]
where

Qz,y =
z + T2 − y

ρ

is Fθ measurable by Condition (G5).
Note that F◦ ∈ Fθ since , given in Condition (G1), is in T and Ψ(θ, ·) is Fθ-measurable

by Condition (G5) for θ ∈ . Now using Condition (G4) to bound |D| by D on Fθ,1, and
applying the measurability of G,D and Fθ,2 with respect to Fθ by Conditions (G4)
and (G5), we obtain

R2,2,2

≤ 1

ε
Eθ

{
GD

∫ D

−D

∫ 1

0

IFθ∩F◦ I
[
Qz,ut − B

ρ < W̃ ≤ Qz,ut + B+ε
ρ

]
dudt

}
≤ 1

ε
Eθ

{
GD

∫ D

−D

∫ 1

0

IFθ,2∩F◦Pθ

[
Qz,ut − B

ρ < W̃ ≤ Qz,ut + B+ε
ρ

∣∣∣Fθ]dudt}.
(4.15)

Using (4.6) and (1.9) we obtain

sup
x∈R
|Pθ[W̃ ≤ x|Fθ]− P[Z ≤ x]| ≤ δ(Ψ),

and as the normal density is bounded by 1/
√

2π, using (1.12) we see that the integrand
in (4.15) can be no more than

IFθ,2∩F◦

(
2δ(Ψ) +

2B + ε

ρ
√

2π

)
≤ C IFθ,2∩F◦

(
δ(Ψ) +B + ε

)
.

Therefore, using the second condition in (1.8) and the second inequality in (1.11) for the
fourth inequality below, and then the first condition in (1.13) for the last, we obtain

R2,2,2 ≤
C

ε
Eθ

{
GD

2
IFθ,2∩F◦

(
δ(Ψ) +B + ε

)}
≤ C

ε
Eθ
{
GD

2
IFθ,2∩F◦δ(Ψ)

}
+
C

ε
Eθ
{
GD

2
BIFθ,2

}
+ C Eθ

{
GD

2}
≤
C Eθ

{
GD

2}
ε

Eθ

{
GD

2
IFθ,2∩F◦

Eθ
{
GD

2
IFθ,2

}δ(Ψ)

}
+
C

ε
Eθ
{
GD

2
BIFθ,2

}
+ C Eθ

{
GD

2}
≤ C

εrθ
Eθ

{
GD

2
IFθ,2∩F◦

Eθ
{
GD

2
IFθ,2

}δ(Ψ)

}
+

C

εr2
θ

+
C

rθ

≤ C

εr2
θ

Eθ

{
GD

2
IFθ,2∩F◦

Eθ
{
GD

2
IFθ,2

}δ(Ψ)rΨ

}
+

C

εr2
θ

+
C

rθ
, (4.16)

where R2,2,2 = 0 in the case E
{
GD

2
IFθ,2

}
= 0, by the first line of the display above.
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In order to bound R2,2,3, using that δ(θ) = 1 for θ ∈ Θ \ by (4.6) for the second
equality, that Fθ ⊂ Fθ,2 for the first inequality, the first condition in (1.13) for the second
inequality, and the second condition in (1.8) for the last, we have

R2,2,3 =
1

ε
Eθ
{
GD

2
IFθ∩F c◦

}
=

1

ε
Eθ
{
GD

2
IFθ∩F c◦ δ(Ψ)

}
≤ 1

ε
Eθ
{
GD

2
IFθ,2∩F c◦ δ(Ψ)

}
≤ C

εrθ
Eθ
{
GD

2
IFθ,2∩F c◦ δ(Ψ)rΨ

}
≤
C Eθ

{
GD

2}
εrθ

Eθ

{
GD

2
IFθ,2∩F c◦

Eθ
{
GD

2
IFθ,2

}δ(Ψ)rΨ

}

≤ C

εr2
θ

Eθ

{
GD

2
IFθ,2∩F c◦

Eθ
{
GD

2
IFθ,2

}δ(Ψ)rΨ

}
, (4.17)

where R2,2,3 = 0 when Eθ
{
GD

2
IFθ,2

}
= 0, by the first line of the display.

Collecting the bounds (4.9), (4.10), (4.13), (4.16) and (4.17) and using (4.7) we arrive
at

δ(θ) ≤ R1 +R2,1 +R2,2,1 +R2,2,2 +R2,2,3 +
ε√
2π

≤ C

εr2
θ

Eθ

{
GD

2
IFθ,2

Eθ{GD
2
IFθ,2}

δ(Ψ)rΨ

}
+

C

εr2
θ

+
C

rθ
+ Cε.

(4.18)

Since Condition (G1) implies that r is an upper bound on rθ for θ ∈ Θ \ , and a lower
bound on rθ for θ ∈ , we conclude that

sup
θ∈

Pθ- ess sup
ω∈Fθ,2∩{Ψ∈Θ\ }

rΨ(θ,ω)

rθ
<∞.

Hence, by the second condition in (1.13),

q =
1

2

(
1 ∨ sup

θ∈
Pθ- ess sup

ω∈Fθ,2

rΨ(θ,ω)

rθ

)−1

∈ (0, 1). (4.19)

Choosing ε = C/rθq with C as in (4.18) and multiplying that inequality by rθ on
both sides and then setting a(θ) = δ(θ)r(θ) we obtain, for some possibly different
constant c > 0, which does not depend on θ but may depend on q,

a(θ) ≤ qEθ
{

GD
2
IFθ,2

Eθ
{
GD

2
IFθ,2

}a(Ψ)

}
+ c for all θ ∈ .

We now verify the hypotheses of Lemma 4.1, with the additional identification

X =
GD

2
IFθ,2

Eθ{GD
2
IFθ,2}

I[θ ∈ ]. (4.20)

Conditions (A1) and (A2) follow directly from the definition ofX, while (A3) on is (4.20),
and is satisfied on Θ \ as δ(θ) ≤ 1, and we may replace c by max{r, c}. Condition
(A4) follows from (4.19). The conclusion of Lemma 4.1 now implies that δ(θ) ≤ C/rθ for
all θ ∈ Θ.

Proof of Theorem 1.2. The proof for zero biasing is quite similar, but simpler, than the
proof of Theorem 1.1; we only highlight the important differences.

EJP 25 (2020), paper 132.
Page 46/49

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP535
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stein’s method via induction

Recalling D = W ∗ −W , applying the bound (4.8), and the zero bias characteriza-
tion (1.4), we obtain

|Eθ(f ′(W )−Wf(W ))| = |Eθ(f ′(W +D)− f ′(W ))|

≤ Eθ
(
|D|
(

1 + |W |+ 1

ε

∫ 1

0

1[z,z+ε](W + uD)du

))
. (4.21)

Using (Z3), noting in particular that |D| ≤ |D| on Fθ,1, and the fact that rθ > r for θ ∈
yields 1/r2

θ ≤ C/rθ, for the first two terms in (4.21), we have

Eθ{|D|+ |DW |} ≤ Eθ{|D|(1− IFθ,1)}+ Eθ{D + |DW |} ≤ C

rθ
.

Following the reasoning in (4.12) and labeling the corresponding terms that arise
here in the same manner, for R2,2, the only remaining term, by the first condition
in (1.16), and (1.18), we obtain the bound

R2,2,1 ≤
1

ε
Eθ
(
|D|(1− IFθ,1) + |D|(1− IFθ,2)

)
≤ C

εr2
θ

.

For R2,2,2, as ut in (4.14) is replaced by uD, separating the term that arises from uD

out of Qz,y as defined there, here we obtain

IFθ∩F◦I[z < W + uD ≤ z + ε] ≤ IFθ∩F◦I

[
Qz −

B +D

ρ
< W̃ ≤ Qz +

B +D + ε

ρ

]
,

where Qz = (z + T2)/ρ is Fθ measurable. Now arguing as in (4.16) we obtain

R2,2,2 ≤
C

ε
Eθ

{
DIFθ,2∩F◦

(
δ(Ψ) +B +D + ε

)}
≤ C

εr2
θ

Eθ

{
DIFθ,2∩F◦

E
{
DIFθ,2

}δ(Ψ)rΨ

}
+

C

εr2
θ

+
C

rθ

using the second condition of (1.16) and the first one of (1.13) for the first term, and the
second conditions of (1.19) and (1.16), respectively, to obtain the last two terms in the
bound.

As in (4.17), using the first condition of (1.13) and the second condition of (1.16), we
obtain

R2,2,3 =
1

ε
Eθ
{
DIFθ,2∩F c◦

}
≤ C

εr2
θ

Eθ

{
DIFθ,2∩F c◦
Eθ
{
DIFθ,2

}δ(Ψ)rΨ

}
.

Combining terms as in (4.18) yields

δ(θ) ≤ C

εr2
θ

Eθ

{
DIFθ,2

Eθ{DIFθ,2}
δ(Ψ)rΨ

}
+

C

εr2
θ

+
C

rθ
+ Cε.

The proof can now be concluded as for Theorem 1.1.

Appendix

We illustrate two instances where the conditions in the General Framework of the
Introduction are implicitly invoked. First we show that random version of the random
variable Y at the (random) ‘smaller’ parameter value is a random variable. The maps

(θ, ω)→ (Ψ(θ, ω), ω) and (θ, ω)→ Y
(
Ψ(θ, ω), ω

)
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are measurable, the first as each component is measurable, and the second being a
composition of measurable maps.

Next, we show that if f(θ, ω) is measurable and Pθ-integrable for all θ ∈ Θ, then

θ →
∫

Ω

f(θ, ω)dPθ(ω)

is a measurable function of θ. Indeed, the collectionM of subsets E of Θ× Ω for which
the integral of f(ω, θ) = IE(ω, θ) is measurable with respect to Pθ is a monotone class.
The classM contains the rectangles which are products of measurable sets A and B, as
their indicator

f(θ, ω) = I[θ ∈ A] I[ω ∈ B] has integral

∫
Ω

f(θ, ω)dPθ(ω) = I[θ ∈ A]Pθ[B],

which is a product of measurable functions of θ. HenceM contains the algebra of all
finite disjoint unions of such rectangles, and hence, by the Monotone Class theorem,
the sigma-algebra these rectangle generate, that is, the product sigma-algebra. Given a
non-negative integrable function f(θ, ω), standard arguments using an approximating
sequence of simple functions from below in concert with the Monotone Convergence
Theorem yields the measurability of the integral of f(θ, ω), and then for real valued
functions by breaking up of any given integrable function into positive and negative
parts.
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