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Abstract

If the step distribution in a renewal process has finite mean and regularly varying
tail with index −α, 1 < α < 2, the first two terms in the asymptotic expansion of
the renewal function have been known for many years. Here we show that, without
making any additional assumptions, it is possible to give, in all cases except for
α = 3/2, the exact asymptotic behaviour of the next term. In the case α = 3/2 the
result is exact to within a slowly varying correction. Similar results are shown to hold
in the random walk case.
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1 Introduction and results

We consider a renewal process (Sn, n ≥ 0), i.e. a random walk with non-negative, i.i.d.
increments X1,X2, · · · with a distribution F whose tail F ∈ RV (−α) (i.e. is regularly
varying at infinity with index −α) where α ∈ (1, 2). We write EX1 = m and define a
distribution Φ via its density function

φ(y) =
P (X1 > y)

m
:= m−1F (y), y ≥ 0, and write Φ(x) =

∫ ∞
x

φ(y)dy. (1.1)

The object of our study is the renewal function U(x) := U([0, x]), where the renewal
measure is defined by

U(dx) :=

∞∑
0

P (Sn ∈ dx), (1.2)

with S0 ≡ 0. Since Φ is the limiting and stationary distribution in the process of
overshoots in S, its importance is well-known, and the following result dates from the
70s: see Mohan, [3], who improves earlier results in [6].

U(x)−m−1x−m−1
∫ x

0

Φ(y)dy = o(

∫ x

0

Φ(y)dy) as x→∞. (1.3)

Later Sgibnev showed, in [5], that (1.3) actually holds whenever m is finite and EX2
1 =∞,

so that the assumption of a regularly varying tail is redundant. This in turn suggests
that if we do make this assumption we should be able to improve on (1.3). Under our
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The remainder in the renewal theorem

assumptions Φ ∈ RV (−β), where β = α − 1, so any statement that the LHS of (1.3) is
O(xγ) with γ < 1− β would be an improvement. In fact we can be much more precise
than this.

We write φ2 for the convolution φ ∗ φ and define real-valued functions g and G on
[0,∞) by

g(y) = 2φ(y)− φ2(y), (1.4)

G(x) =

∫ ∞
x

g(z)dz, so that G(0) =

∫ ∞
0

g(z)dz = 1. (1.5)

To state our result, we set

U(x)−m−1x−m−1
∫ x

0

Φ(y)dy = m−1V (x), (1.6)

so that the known result (1.3) says that V (x) = o(Φ(x)), where Φ(x) :=
∫ x
0

Φ(y)dy ∈
RV (1− β).

Theorem 1.1 (Renewal processes). Recall that α ∈ (1, 2) and β = α− 1.

(i) Define a constant by

cα = (1− 2β)

∫ 1

0

dw

wβ(1− w)β
=

(1− 2β)Γ(1− β)2

Γ(2− 2β)
.

Then

lim
x→∞

G(x)

Φ(x)2
= cα.

(ii) V ∈ RV (1− 2β) unless β = 1/2. More precisely, as x→∞,

V (x) v
|cα|xΦ(x)2

|2β − 1|
if β 6= 1/2, (1.7)

V (x) →
∫ ∞
0

G(y)dy if β = 1/2 and

∫ ∞
0

Φ(y)2dy <∞, (1.8)

V (x) = o

(∫ x

0

Φ(y)2dy

)
if β = 1/2 and

∫ ∞
0

Φ(y)2dy =∞. (1.9)

Remark 1.2. Since Φ(x)2 ∈ RV (−1) when β = 1/2 we see that in (1.9)
∫ x
0

Φ(y)2dy is
slowly varying. Also in (1.8)

∫∞
0
G(y)dy = 0 iff

1− φ̂(λ)√
λ

=

∫∞
0

(1− e−λx)F (x)dx

m
√
λ

→ 0 as λ ↓ 0. (1.10)

Remark 1.3. If we consider the case that α = 2 and
∫∞
0
y2dF (y) =∞, we cannot give

the exact behaviour of V , but it is not difficult to show that V (x) = o(xε−1) for any fixed
ε > 0.

2 Proofs

(i) Recall that φ(x) = m−1F (x) is decreasing, bounded and is in RV (−α). Then write

G(x) =

∫ ∞
x

(2φ(y)−
∫ y

0

φ(y − w)φ(w)dw)dy

=

∫ ∞
x

(2φ(y)

∫ y/2

0

φ(w)dw − 2

∫ y/2

0

φ(y − w)φ(w)dw)dy + 2

∫ ∞
x

φ(y)Φ(y/2)dy.

: = I1 + I2.
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Since Φ(y/2) v 2βΦ(y), we see that I2 v 2βΦ(x)2. Also

−I1 = 2

∫ ∞
x

dy

∫ y/2

0

(φ(y − w)− φ(y))φ(w)dw

= 2

∫ ∞
0

φ(w)dw

∫ ∞
2w∨x

(φ(y − w)− φ(y))dy

= 2

∫ x/2

0

φ(w)(Φ(x− w)− Φ(x))dw + 2

∫ ∞
x/2

φ(w)(Φ(w)− Φ(2w))dw.

As Φ(w) − Φ(2w) v (1 − 2−β)Φ(w) we see that the second term is asymptotic to (1 −
2−β)Φ(x/2)2, or equivalently 2β(2β − 1)Φ(x)2. Also we can write the first term as

2

∫ x/2

0

φ(w)dw

∫ x

x−w
φ(y)dy = 2(xφ(x))2

∫ 1/2

0

φ(xw)

φ(x)
dw

∫ 1

1−w

φ(xy)

φ(x)
dy. (2.1)

Now take a fixed ε > 0 such that α + ε < 2, and use Potter’s bounds (see [1], p. 25) to
see that the integrand on the RHS here is bounded above by a multiple of

w−(α+ε){(1− w)−(β+ε) − 1) for wx > 1.

Since ∫ 1/x

0

wφ(xw)

φ(x)
dw ≤

∫ 1/x

0

wdw

φ(x)
→ 0

we conclude that the double integral converges to

Jα =

∫ 1/2

0

w−αdw

∫ 1

1−w
y−αdy = β−1

∫ 1/2

0

w−α{(1− w)−β − 1}dw

= −β−22β(2β − 1) + β−1
∫ 1/2

0

w−β(1− w)−αdw.

Since xφ(x) v βΦ(x), we see that the the RHS of (2.1) is asymptotic to 2(βΦ(x))2Jα,
which establishes the result, and gives

cα = 22β − 2βIα, where Iα =

∫ 1/2

0

dw

(1− w){w(1− w)}β
. (2.2)

But

Iα =

∫ 1/2

0

w + (1− w)dw

(1− w){w(1− w)}β
=

∫ 1/2

0

w1−βdw

(1− w)1+β
+

∫ 1/2

0

dw

wβ(1− w)β

= β−122β−1 + β−1(β − 1)

∫ 1/2

0

w−βdw

(1− w)β
+

∫ 1/2

0

dw

wβ(1− w)β

= β−122β−1 + (1− (2β)−1)

∫ 1

0

dw

wβ(1− w)β
,

so cα = (1− 2β)B(1− β, 1− β), as required.
(ii) We start by noting that the stationarity of φ gives

∫ x
0
φ(x− y)U(y)dy = m−1x, and

then ∫ x

0

φ2(x− y)U(y)dy =

∫ x

0

∫ x−y

0

φ(x− y − z)φ(z)dzU(y)dy

=

∫ x

0

φ(z)dz

∫ x−z

0

φ(x− y − z)U(y)dy

= m−1
∫ x

0

(x− z)φ(z)dz = m−1(x−
∫ x

0

Φ(y)dy).
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Thus ∫ x

0

g(x− y)U(y)dy = m−1(x+

∫ x

0

Φ(y)dy),

and

m−1V (x) = U(x)−m−1(x+

∫ x

0

Φ(y)dy) = U(x)−
∫ x

0

g(x− y)U(y)dy, (2.3)

so integration by parts gives

V (x) = m

∫
[0,x)

G(x− y)U(dy). (2.4)

Although statement (1.7) unifies the cases β ∈ (0, 1/2) and β ∈ (1/2, 1) their proofs

differ. In the first case
∫ x
0

Φ
2
(y)dy → ∞, and we can use (2.4) in conjunction with the

following, which is Theorem 4 in [5], and shows that Theorem 2.1 in [3] holds without
assuming asymptotic stability.

Lemma 2.1 (Sgibnev). Let Q be a non-negative, non-increasing bounded function and
put A(x) =

∫ x
0
Q(y)dy. Then if A(∞) =∞.∫ x

0

Q(x− y)dU(y) v m−1A(x) as x→∞. (2.5)

If β ∈ (0, 1/2) we have cα > 0, so given ε > 0 ∃x0 such that for all x > x0

(cα − ε)Q(x) ≤ G(x) ≤ (cα + ε)Q(x), (2.6)

where Q(x) = Φ
2
(x) satisfies the conditions of Lemma 2.1. Since the contribution to the

integral in (2.4) from [0, x0] is O(G(x)), which is neglible, it follows that

m−1V (x) ∼ m−1
∫ x

0

Q(y)dy, so V (x) ∼
cαxΦ

2
(x)

1− 2β
,

and (1.7) holds. If β = 1/2 we have ca = 0 but (2.6) still holds and provided
∫∞
0
Q(y)dy =

∞ the conditions of Lemma 2.1 are satisfied and the proof of (1.9) follows. In the
remaining cases it is clear that G is Directly Riemann Integrable, so the Key Renewal
Theorem applies to (2.4) to give V (x)→

∫∞
0
G(y)dy, and we need only show when this is

0. From (1.4) we see that the ordinary Laplace transforms of φ and g are related by

1− ĝ(λ) = (1− φ̂(λ))2 ∼ λ2βL(λ) as λ→ 0,

where L is slowly varying at zero, so we have (1 − ĝ(λ))/λ → 0 as λ → 0 iff β > 1/2 or
β = 1/2 and (1.10) holds. But since g is bounded in absolute value by the integrable
function 2φ+ φ2, we can interchange orders of integration to see that

(1− ĝ(λ))/λ =

∫ ∞
0

e−λxG(x)dx,

and the conclusion follows by letting λ go to 0.
For the case β ∈ (1/2, 1) we write g∗, G∗ for −g,−G, and we claim first that G∗ is

eventually positive and monotone, which follows from the fact

lim inf
x→∞

g∗(x)

2xφ(x)2
≥ −cα

β
> 0. (2.7)
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To see that (2.7) holds, write

g∗(x) = 2

(∫ x/2

0

φ(w){φ(x− w)− φ(x)}dw − φ(x)Φ(x/2)

)

= 2xφ(x)2

(∫ 1/2

0

φ(xw)

φ(x)
{φ(x− xw)

φ(x)
− 1}dw − Φ(x/2)

xφ(x)

)
.

Since the integrand converges pointwise to w−α{(1− w)−α − 1} it follows from Fatou’s
Lemma that

lim inf
x→∞

g∗(x)

2xφ(x)2
≥

∫ 1/2

0

w−α{(1− w)−α − 1}dw − β−12β

= Iα + βJα − β−12β =
−cα
β

,

as claimed. So we can fix x0 with g∗(x) > 0 for x > x0, and then, as in the above
referenced proof in [5], given any ε > 0 we can find x1 > x0 with∫ x

x1

G∗(x− y)dU(y) ≤ 1 + ε

m

∫ x

x1

G∗(x− y)dy

=
1 + ε

m

∫ ∞
x−x1

G(z)dz v
1 + ε

m

cαxΦ(x)2

2β − 1
,

where we have used
∫∞
0
G(z)dz = 0, and

∫ x
x−x1

G(z)dz = O(Φ(x)2). Using a correspond-

ing lower bound and the fact that
∫
[0,x1)

G∗(x− y)dU(y) = O(Φ(x)2), (1.7) follows.

3 The random walk case

If the variables X1, X2, · · · can take positive and negative values, we will still define
the renewal measure by (1.2), and study U(x) = U([0, x]) as x → ∞. (For a different
interpretation of the renewal function see [4].) In this case it is also shown in [5] that
(1.3) holds only assuming m = EX1 ∈ (0,∞) and E(X+

1 )2 =∞. The idea of that proof is
to express U in terms of U↑ and U↓, the renewal measures for the process of increasing
and decreasing ladder heights, and then use (1.3) for U↑. We will use a similar argument
to give an extension of (ii) of our Theorem 1.1 to the random walk case.

To clarify, for n ≥ 1 we write τn for the nth strict increasing ladder epoch (i.e. the
time at which the nth strict maximum occurs) and σn for the nth weak decreasing ladder
epoch, and put τ0 = σ0 = 0. The corresponding ladder height processes are defined by

H↑n = Sτn and H↓n = |Sσn
|,

and we denote their renewal measures by

U↑(dx) =

∞∑
0

P (H↑n ∈ dx) and U↓(dx) =

∞∑
0

P (H↓n ∈ dx).

Since m > 0 we know that S drifts to∞ : thus H↓1 is improper and U↓ is a finite measure,
whereas H↑1 is proper. Everything depends on the following simple observation:

Lemma 3.1. We have

U(dx) =

∫ ∞
0

U↓ (dy)U↑(y + dx), x > 0. (3.1)
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Proof. Since the Fourier transforms of the measures U,U↑ and U↓ are (1− E(eiθS1))−1,

(1−E(eiθH
↑
1 ))−1, and (1−E(eiθH

↓
1 ))−1, this is immediate from the Wiener-Hopf factorisa-

tion, which states that

1− E(eiθS1) = (1− E(eiθH
↑
1 ))(1− E(eiθH

↓
1 )): (3.2)

see e.g. [2] chapter XVIII, p. 605.

Remark 3.2. This paraphrases the Lemma on p. 790 of [5].

If we divide (3.2) by θ and let θ ↓ 0 we see immediately that P (H↓1 < ∞) = m/m↑,
where m↑ = EH↑1 , and this yields∫ ∞

0

U↓ (dy) = C, where C =
m↑

m
.

Moreover it follows from the duality lemma (see [2] chapter XII, p. 395) that

P (H↑1 > w) =

∫ ∞
0

U↓ (dy)P (S1 > w + y),

so since P (S1 > w + y) v P (S1 > w) for each fixed y we see that P (H↑1 > w) v CP (S1 >

w) as w →∞. Thus if we set

Φ↑(z) =
1

m↑

∫ ∞
z

P (H↑1 > w)dw

we get

Φ↑(z) v
C
∫∞
z
P (S1 > w)dw

m↑
= Φ(z) as z →∞. (3.3)

Remark 3.3. Actually what is shown in [5] is that

U(x)−m−1x v m−1
∫ x

0

Φ↑(y)dy, (3.4)

and then a version of (3.3) is used to obtain (1.3). But in examining the remainder it is
important that we use the exact expression (3.4).

Notice in the following extension of Theorem 1.1 there is no restriction on the left-
hand tail of F , other than that imposed by the existence of the mean. So we are not
assuming that S is asymptotically stable.

Theorem 3.4 (Random walks). Assume that ES1 = m ∈ (0,∞) and the right-hand tail
F ∈ RV (−α) with α ∈ (1, 2). Write Φ↑ and G↑ for the functions Φ and G evaluated for
the renewal process (H↑n, n ≥ 0), and set

Ψ(x) =
1

m↑

∫ ∞
0

U↓(dy)

∫ x+y

y

Φ↑(z)dz −K, where

K = 0 if

∫ ∞
0

Φ(y)2dy =∞, K =

∫ ∞
0

U↓(dy)V ↑(y) if

∫ ∞
0

Φ(y)2dy <∞.

Then if we put

m−1Ṽ (x) = U(x)− x

m
−Ψ(x),

we have that the statements (1.7), (1.8) and (1.9) of Theorem 1.1 hold with V replaced
by Ṽ .
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Proof. From (3.1) we have

U(x) =

∫ ∞
0

U↓ (dy)
(
U↑(y + x)− U↑(y)

)
,

so that if we substitute (1.6) for U↑ we get

U(x) =
1

m↑

∫ ∞
0

U↓ (dy)

(
x+

∫ x+y

y

Φ↑(z)dz + V ↑(x+ y)− V ↑(y)

)
=

Cx

m↑
+ Ψ(x) +

1

m↑

∫ ∞
0

U↓ (dy)(V ↑(x+ y)− V ↑(y)) +
K

m↑

: =
x

m
+ Ψ(x) +

I(x)

m↑
,

and we need to examine the behaviour of I(x). Note that for β > 1/2 we have K =∫∞
0
U↓ (dy)V ↑(y) ∈ (0,∞), and

∫∞
0
U↓ (dy)V ↑(x + y) v CV ↑(x). For β < 1/2 we have

K = 0, V ↑(x)→∞ and
V ↑(x+ y)− V ↑(y)

V ↑(x)
→ 1,

and we can modify the argument in [5] to show that dominated convergence applies to
give the result. Similar arguments deal with the case β = 1/2.

4 Concluding remarks

It is easy to see that in the renewal case we can expand
∫∞
0
e−λxU(x)dx in powers of

1− φ̂(λ) as follows:

Û(λ) =
1

λ
+

1

mλ2

(
1 +

∞∑
1

(1− φ̂(λ))r

)
Now

(1− φ̂(λ))

mλ2
= m−1

∫ ∞
0

e−λx
∫ x

0

Φ(y)dy,

(1− φ̂(λ))2

mλ2
= m−1

∫ ∞
0

e−λx
∫ x

0

G(y)dy,

and in fact for any r ≥ 2

(1− φ̂(λ))r

mλ2
= m−1

∫ ∞
0

e−λx
∫ x

0

Gr(y)dy,

where Gr(y) =
∫∞
y
gr(z)dz and the sequence of functions gr are defined by

g2 = g = 2φ− φ ∗ φ and gr+1 = φ+ gr − φ ∗ gr, r ≥ 2.

If one could justify inverting the transform, writing G1 for Φ, this would yield a complete
asymptotic expansion

U(x) = 1 +
x

m
+

1

m

∞∑
1

∫ x

0

Gr(y)dy,

and our results involve only the first two terms in the sum. The crux of our result
is the justification of the relation G2(y) v cαΦ(x)2, so a natural question is whether
one can show that Gr(y) v cΦ(x)r. This seems to be impossible without making extra
assumptions, but it seems that the not unnatural assumption that F has a monotone
density would permit verification of this when r = 3. This would then give an extra term
in our result when β < 1/2.
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