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Warranty return data from repairable systems, such as home appliances,
lawn mowers, computers and automobiles, result in recurrent event data. The
nonhomogeneous Poisson process (NHPP) model is used widely to describe
such data. Seasonality in the repair frequencies and other variabilities, how-
ever, complicate the modeling of recurrent event data. Not much work has
been done to address the seasonality, and this paper provides a general ap-
proach for the application of NHPP models with dynamic covariates to pre-
dict seasonal warranty returns. The methods presented here, however, can
be applied to other applications that result in seasonal recurrent event data.
A hierarchical clustering method is used to stratify the population into groups
that are more homogeneous than the overall population. The stratification fa-
cilitates modeling the recurrent event data with both time-varying and time-
constant covariates. We demonstrate and validate the models using warranty
claims data for two different types of products. The results show that our ap-
proach provides important improvements in the predictive power of monthly
events compared with models that do not take the seasonality and covariates
into account.

1. Introduction.

1.1. Background. Predictions of warranty returns, based on recurrent event data from
repairable systems, are often needed by manufacturing companies so they can help to make
decisions on the supply of replacement parts, warranty reserves, pricing of the warranty plans
and so on. Monthly predictions of warranty returns are particularly helpful when repairable
systems have recurrence rates affected by the month of a year and geographical locations.
For example, some products may have a higher recurrence rate in warmer months and in a
warmer location due to higher average usage rate. The predictions could be more accurate
and useful when the variabilities in seasonality and locations are taken into consideration.
Meeker and Escobar ((1998), Chapter 16), without giving details, describe how one might
use a nonhomogeneous Poisson process (NHPP) to make such predictions on the repairable
systems, with the restrictive assumptions that all systems are independent and have the same
recurrence rate function, ν(t). The assumptions of the simple NHPP model tend to be too
strong for realistic complicated data structures when products have staggered entry, different
failure patterns and other system-to-system sources of variability. The purpose of this paper
is to develop a general prediction methodology for applications with these complications. In
addition to applications in warranty prediction, the methods are also applicable to many other
applications, such as the prediction of the number of recurrent visits to hospitals of patients
in health care industry. We use hierarchical clustering to partition the available data into
groups within which there are similar seasonal patterns and then use the NHPP model with
time-varying covariates and random effects to describe the recurrent event warranty data. We
illustrate the methods with two different warranty prediction applications.
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1.2. Related literature and our work. The application of NHPP models to warranty pre-
diction has been discussed extensively in many places in the literature. Rigdon and Basu
(2000) present a general review of NHPP models and their applications, including the power
law process and kinds of tests for the validity of the models. Krivtsov (2007) gives NHPP
models that provide alternatives to the commonly used power law and log-linear processes.
Ross (2014) describes the NHPP model and shows how to simulate data from an NHPP model
based on a homogeneous Poisson process (HPP). Fredette and Lawless (2007) describe mixed
Poisson models for the prediction of the aggregated number of events at specified calendar
times across a population of processes. Koutsellis et al. (2017) present a modified gener-
alized renewal process model for warranty prediction of repairable systems with effects of
production dates and replacement of defective components/subsystems.

In other related literature, Hamada et al. ((2008), Section 6.4) and Ryan, Hamada and
Reese (2011) apply NHPP models without covariates under a hierarchical Bayesian frame-
work to describe the recurrent events on 48 shared-memory computer processors. Rai (2009)
presents a warranty forecasting model with the monthly seasonality modeled by multiplica-
tive seasonal indices based on data from a single representative production month. Wu
((2012), Section 3.5) gives a brief review of different types of coarse warranty data and
methods. Xiao, Kottas and Sansó (2015) develop nonparametric Bayesian methodology us-
ing a seasonal marked point process to predict hurricane occurrences. Cifuentes-Amado and
Cepeda-Cuervo (2015) and Ngailo et al. (2016) use NHPP models with seasonality described
by trigonometric functions of time in health diseases and seasonal rainfall events, respec-
tively. Slimacek and Lindqvist (2016) use a piecewise constant rate of occurrence of failures
(ROCOF) model with both observable and unobservable differences among repairable sys-
tems. Therneau, Grambsch and Pankratz (2003) show that fitting survival models with ran-
dom effects can be done efficiently via penalized likelihood estimation. Klein (1992) presents
an expectation-maximization (EM) algorithm based on a profile likelihood for the semipara-
metric Cox model.

This paper focuses on developing a flexible warranty event prediction methodology by
using the following:

• We develop a parametric recurrent event model to incorporate seasonal effects on the re-
currence rates which can improve the monthly warranty prediction significantly.

• We propose hierarchical clustering on the locations of the systems under warranty to dif-
ferentiate among different seasonal patterns in the recurrent event processes.

• We take other available fixed covariates effects into consideration to further improve the
predictive power of our model.

• We incorporate random effects into our model to describe heterogeneity not accounted for
by the covariates.

1.3. Motivating examples. All companies that offer a warranty for their products are re-
quired, by law, to put into reserves a sufficient amount of cash so that they will be able to pay
their warranty claims. Warranty predictions are extremely important because there are penal-
ties for not having enough cash in reserve and, of course, for holding too much in reserve.
While it is common to use simple methods like the percentage of sales to predict warranty
needs, it is now recognized that there is valuable information in warranty databases that can
be used to predict warranty returns more accurately.

We apply our models to two product warranty applications. These datasets differ in terms
of the type of products, number of systems, number of years of data, recurrence rates and
available covariates. For both applications we hold out the last 12 months of data for model
checking and use only the rest of the data to do exploratory analysis and model fitting.
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For Product A, warranty/production information for 63,191 systems with 8406 events from
year 2011 to year 2016 is available for modeling. The Product A database contains variables
such as in-service date of the systems, start and expiration date of the warranty contracts,
country, model year, retail location, warranty price, model type, event date and event cost.
Approximately 10% of the systems have had at least one warranty-return event.

For Product B, warranty/production information for 33,645 systems with 18,972 events
from year 2014 to year 2016 is available for modeling. Each record in the dataset contains
the start and expiration date of the warranty contracts, product model year, retail location,
warranty price, event date and event cost. All of the Product B systems have a 24-month
warranty term. Approximately 19% of the systems had at least one warranty-return event.

In both examples the main objective is to generate point predictions and prediction inter-
vals of future warranty returns.

1.4. Overview. The remainder of the paper is organized as follows. Section 2 provides
general ways to do exploratory analysis of warranty data to help suggest the form of an appro-
priate model. A clustering methodology to identify different seasonal recurrence rate patterns
is introduced. Section 3 describes the NHPP-based models to be used in this paper. Section 4
presents maximum likelihood estimation of the model parameters with and without random
effects. Section 5 discusses point predictions for the number of future events and compares
the point predictions results for different models of Product A. Prediction intervals of the
point estimates are presented in Section 6. Section 7 describes the application of the same
methodology to Product B. Section 8 studies the effects of missing data on clustering and ex-
plores two different ways to deal with the missing data. Section 9 discusses our conclusions
and ideas for future work.

2. Exploratory analysis. Exploratory analysis is often useful for providing insights into
the structure of a dataset and as an aid for model building. In this section we explore the ef-
fects of the fixed covariates on the recurrence rate by examining the mean cumulative number
of system recurrences for different levels of the covariates and apply clustering analysis for
identifying different seasonal recurrence rate patterns based on warranty locations.

2.1. The mean cumulative function. Nonparametric methods provide useful tools to ex-
plore data without making strong assumptions. Kaplan and Meier (1958) introduced the non-
parametric estimator of a survival function based on censored time-to-event data. Similar to
the survival function for time-to-event data, the mean cumulative function (MCF), giving the
mean number of events across a population of systems as a function of system age, provides
a useful baseline model for recurrence data. Nelson (1988) describes how to compute a non-
parametric estimate using recurrent event data. For more details see Lawless and Nadeau
(1995), Meeker and Escobar ((1998), Chapter 16) and Nelson (2003). The sample MCF can,
for example, be used to compare the behavior of subpopulations defined by different levels
of discrete covariates:

• If the different levels of a covariate have similar MCF curves, then the levels can be com-
bined together for analysis.

• If the different levels of a covariate have importantly different MCF curves, then terms
could be added to the model to take account of the differences. This can be done by either
adding the level information as a covariate of the model or by modeling the different levels
separately.

EXAMPLE (Exploratory analysis for the Product A data). Exploratory analysis based on
MCF curves of different subpopulations, defined by the covariate levels, can help to check
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FIG. 1. MCF versus age of systems in different countries of Product A with 95% pointwise CIs.

if the subpopulations have significantly different behavior. For example, by checking the
MCF curves with confidence intervals (CIs) for different countries (Meeker and Escobar
(1998), Chapter 16), we can gain insights about how the recurrent event process behaves, as
illustrated in Figure 1. There are few reported events for the first 180 days in both countries
because of the nature of the warranty contracts, and the MCF curve for Canadian systems
is higher than that for U.S. systems. The MCF curves suggest that the warranty processes
in the two countries are importantly different. The confidence intervals for the Canadian
warranty process are wider because the size of the population and the number of recurrences
are smaller.

The exploratory analysis using MCF curves provides information about the recurrence rate
behaviors of the different covariate levels on the system age scale. Other tools are needed if
the behavior of the recurrence rate is also affected by factors on the calendar time scale, for
example, the clustering analysis tool, as introduced in Section 2.2.

2.2. Data clustering and seasonality.

2.2.1. Data for clustering analysis. The combination of climate differences and geo-
graphical locations can affect the usage of products and certain failure mechanisms, result-
ing in different seasonal patterns in different regions. For example, the usage rate of certain
products could be higher during summer than in the winter in the northern U.S., while the
seasonal pattern may be less pronounced in the southern U.S. Here, we describe a data-based
approach to group different locations across the U.S. (or other geographical regions) into
several clusters, so locations within a cluster are, with respect to warranty report seasonality,
more homogeneous. The variable to be clustered is the observed overall empirical monthly
recurrence rate (the ratio of the number of claims in each month to the corresponding total
number of repairable systems at risk) for each location, and we ignore the age effects on the
number of events.

The following steps are used to construct the data to be used for clustering. For each
location (for each state or province in our applications):
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1. Use systems that have at least one event to compute the total number of events for each
calendar month.

2. Compute the number of systems at risk for each calendar month.
3. Compute the empirical monthly recurrence rate as the ratio of the number of events to

the number of systems at risk.
4. If the empirical monthly recurrence rates are computed for calendar months across

multiple years, average the rates for each of the 12 months of the year.
5. For each location (e.g., U.S. state and Canadian province), there will be 12 empirical re-

currence rates for months from January to December. Use the rates as covariates (or features)
to cluster the locations.

Note that, if there are locations that have few events, we could observe their behavior and
merge them to the locations with not dissimilar behavior until there is a substantial number
of events in each location to do the clustering analysis.

2.2.2. Data with missing location variables. It is common to have missing values in war-
ranty (and other) databases. For our Product A data, 6.6% of the location variables are miss-
ing. This will affect our location-based clustering analysis. Every application is different, and
there is no general approach for handling missing data that works for all. Three commonly
used approaches are:

1. Group the missing values with a new category.
2. Impute the missing values based on information that is available.
3. Do a random assignment to replace missing values.

One can choose any one or a combination of the above methods, depending on the specific
available data, the missing mechanism, the missing percentage and so on. See Example 2 in
Section 2.2.3 for an example of how we deal with the missing locations for Product A data.

2.2.3. Hierarchical clustering analysis. In unsupervised clustering of different locations,
the empirical recurrence rates for each month of a year per location are the observations. We
need to specify a clustering method in order to identify clusters of similar location groups.
Popular clustering methods include the K-means algorithm (Lloyd (1982), Hartigan (1975),
Hartigan and Wong (1979)), K-medoid, hierarchical clustering (Kaufman and Rousseeuw
(1990)) and so on. K-means and K-medoid methods require specifying the number of clusters
and initial centers of each cluster. In contrast, hierarchical clustering only requires a measure
of the similarity (or, equivalently, dissimilarity) among observations and a definition of how
the dissimilarity of clusters is measured (Hastie, Tibshirani and Friedman (2009) and James
et al. (2013)). We adopt a hierarchical clustering analysis to take advantage of its convenience.

As there are no response variables to characterize each observation, a clear measure of the
degree of similarity among the monthly recurrence rates in different locations also needs to
be specified (e.g., see James et al. (2013)). Possible choices of similarity measures include:

• Euclidean distance: Compute the Euclidean distance for each pair of observations, and use
it as the similarity measure for clustering.

• Correlation-based distance: Compute the correlation between each pair of the observations,
and group together the locations with a large positive correlation.

The choice of a similarity measure depends on the data and the prior knowledge about the
data generating process. In the clustering analysis for different seasonal patterns of recurrent
event data, a measure based on correlation performs better when the empirical recurrence
rates are low (generally less than 0.01) and the rates differences are not obvious. A measure
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based on Euclidean distance performs better when there exist obvious differences in recur-
rence rates across different locations. The largest dissimilarity of all the pairwise observations
between two clusters is used to compare the dissimilarity of clusters.

The hierarchical clustering produces a dendrogram (or a tree-based diagram), in which
each leaf represents one observation and the height (y-axis) is the specified distance metric.
Cutting the dendrogram at different heights can split the observations into different clusters
naturally. The selection of where to cut can be affected by factors such as the desired number
of clusters, the minimum number of observations within each cluster, how many seasonal
patterns exist in the data and the expected degree of dissimilarity in the seasonal patterns
after clustering analysis. The following example shows how the number of clusters can affect
the prediction performance of models:

EXAMPLE (Clustering of Product A seasonal patterns). Because 4142 systems (approx-
imately 6.6% of the Product A data) have missing location variables with no obvious miss-
ing patterns, we group these systems together by country and assign new location variables,
NA.US and NA.CAN, for the U.S. and Canada systems, respectively. For the purpose of com-
parison, we also use the random assignment method for the missing locations; the detailed
explanation and results are in A.3 of the Supplementary Material (Shan, Hong and Meeker
(2020)). We use event data after year 2014 to do clustering analysis, as there are more events
with more repairable systems at risk for most of the locations after 2014. Figure 2 shows the
dendrogram of the hierarchical clustering results for Product A using correlation distance as
similarity measure. Cutting the dendrogram horizontally at around 1.55 naturally separates
the data into four clusters with near balanced number of locations and event counts in each
cluster. Figures 3 and 4 show, respectively, the observed events and the number of systems
at risk by clusters as a function of calendar date. Figure 5 shows the overall monthly em-
pirical recurrence rates for the four clusters, and it indicates that the seasonal patterns vary
considerably.

A sensitivity analysis on the choice of the number of clusters shows that cutting the den-
drogram such that there are more than four clusters gives approximately the same results as
using four clusters. But the amount of computing time required for model fitting can increase
dramatically (e.g., there are 50 parameters to be estimated in a model with four clusters and
122 parameters in the same model in the case of ten clusters). It will take even longer for the
models with random effects involved which requires a more complicated algorithm to find
the parameter estimates. Given that more clusters do not improve the prediction performance
substantially and that it will take a significantly longer time for model fitting, we choose the
number of clusters that provides a good trade-off between model performance and computa-
tion costs.

FIG. 2. Dendrogram of correlation-based hierarchical clustering of Product A. The horizontal line indicates the
cutoff location to divide the locations into different clusters. Denote the clusters from left to right as cluster 4, 3,
2 and 1, respectively.
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FIG. 3. Observed event counts vs. date for the different clusters of Product A.

FIG. 4. Number of systems at risk versus date for the different clusters of Product A.
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FIG. 5. Empirical monthly recurrence rate by clusters of Product A systems since year 2014.

3. General models for recurrence rates. The Poisson process is commonly used for
modeling of repairable systems, but it has the assumption that the numbers of events in
nonoverlapping time intervals are statistically independent. For such situations it is natural to
model event counts with an NHPP model with a nonconstant recurrence rate, as described by
Meeker and Escobar (1998), Chapter 16. We employ and adapt the widely used NHPP model
for our analysis of warranty recurrent event data.

3.1. Notation. Let Ni (t) = Ni (0, t) denote the observed total number of events up to
system age t for repairable system i, where t is the number of days since the system is put
into service. Then, the process recurrence rate function for system i is

(1) νi(t) = lim
�t→0

E[�Ni (t)]
�t

,

where �Ni (t) = Ni(t
− + �t) − Ni (t

−) is the number of events in [t, t + �t). We denote the
parameter vector of a model as θ .

3.2. The simple NHPP model. The simple NHPP model assumes that all K systems have
the same recurrence rate function, and the function is defined as

(2) νi(t; θ) = ν0(t; θ), i = 1, . . . ,K,

where ν0(t; θ) is a function depending only on system age t and parameters θ . Here, we use
the power law process

(3) ν0(t; θ) = β

η

(
t

η

)β−1
,
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with θ = (β, η)T , and β without a subscript is the power law parameter. Subsequently, we will
use β with a subscript to denote regression parameters. The simple NHPP model has strong
assumptions that are rarely appropriate for modeling complicated recurrence data structures,
such as the recurrences in a warranty database.

3.3. NHPP model with common seasonal effects. The NHPP model with simple sea-
sonality assumes that the rate function of each system has the same seasonal behavior over
M = 12 months of each year,

(4) νi(t; θ) = ν0(t;β,η) exp

(
M∑

m=1

βmIm,i(t)

)
,

where ν0(t;β,η) is as defined in (3), θ = (β, η,β1, . . . , βM)T and

(5) Im,i(t) =
{

1 if system i is in calendar month m at age t,

0 otherwise.

We set one of the βm values to be zero in order to have a full rank indicator matrix with
its elements defined in (5). And the same rule applies to the rest of the models. Because the
indicator Im,i(·) is obtained based on the number of days in service and the calendar date
when the system is first put into service, it allows for systems to have staggered entry, as seen
in typical warranty databases.

3.4. NHPP model with seasonal and cluster effects. As described in Section 2.2, the sea-
sonal behavior will depend on the geographical location for some applications. We account
for this by generalizing the seasonal time-varying covariates. In particular, by assuming that
the seasonal recurrence rate patterns vary in both shapes and levels among the clusters, the
recurrence rate function of system i is

(6) νi(t; θ) = ν0(t;β,η) exp

(
M∑

m=1

N∑
n=1

βm,nIm,n,i(t)

)
,

where N is the number of clusters, θ = (β, η,β1,1, β1,2, . . . , βM,N)T and

(7) Im,n,i(t) =
{

1 if system i is in calendar month m at age t and from cluster n,

0 otherwise.

The model in (6) can be simplified if only the levels of the seasonal patterns change across
different clusters. In this case,

(8) νi(t; θ) = ν0(t;β,η) exp

(
M∑

m=1

βmIm,i(t) +
N∑

n=1

β ′
nIn,i

)
,

where Im,i(·) is as defined in (5), θ = (β, η,β1, . . . , βM,β ′
1, . . . , β

′
N)T and the time indepen-

dent cluster indicator is

(9) In,i =
{

1 if system i is in cluster n,

0 otherwise.
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3.5. NHPP model with seasonal, cluster and random effects. If heterogeneity among
systems cannot be completely explained by the Poisson process model with the adjustment
of covariates, the incorporation of random effects of the repairable systems can be helpful to
explain the system level variation. A model for the recurrence rate for system i, conditional
on the random effects, is introduced in a manner that is similar to the use of frailty models
in the survival analysis (Aalen (1988), Therneau, Grambsch and Pankratz (2003), and Cook
and Lawless (2007)). Then, the intensity is

(10) νi(t; θ, ui) = uiν0(t;β,η) exp

(
M∑

m=1

N∑
n=1

βm,nIm,n,i(t) + xT
i,fixβfix

)
.

Here:

• ui denotes the i.i.d. random effects for system i. Because the ui values are unknown and not
observed, we assume that the random effects have an independent gamma distribution with
mean 1 and variance φ, so the random effects are always positive and the distribution of
the heterogeneity for individual systems can be reflected by the magnitude of the variance.
The density function of ui is

(11) g(ui;φ) = u
φ−1−1
i exp(−ui/φ)

φφ−1
�(φ−1)

.

• xi,fix is a vector of fixed covariates that can help explain additional variability in the re-
currence process, and βfix is the corresponding column vector of regression coefficients.
The fixed covariates can be identified in the exploratory analysis phase, as described in
Section 2.1, or by diagnostics based on model fitting and prediction performance.

In particular, θ = (β, η,β1,1, . . . , βM,N,βT
fix, φ)T is the parameter vector to be estimated.

3.6. Comparison of different models. The NHPP model in (10) can be treated as a general
model from the perspective that all of the other models listed above can be viewed as a special
case of it:

• Set φ = 0, βm,n = 0 for m = 1,2, . . . ,M and any n = 1,2, . . . ,N , and βfix = 0T , (10)
reduces to the simple NHPP model in (2).

• Set φ = 0, βm,n1 = βm,n2 for m = 1, . . . ,M and any n1, n2 ∈ {1,2, . . . ,N} and βfix = 0T ,
(10) reduces to the NHPP model with simple seasonality in (4).

• Set φ = 0 and βfix = 0T , (10) reduces the NHPP model with seasonal and cluster covariates
in (6). Further, set βm,n1 = cn1−n2 + βm,n2 with cn1−n2 a constant related to (n1 − n2) for
m = 1,2, . . . ,M and 1 ≤ n2 < n1 ≤ N , (10) reduces to (8).

4. Maximum likelihood estimation.

4.1. Likelihood function. By extending the approach in maximum likelihood estimation
of the superimposed Poisson process likelihood, which is used for the parameter estimation
in Meeker and Escobar (1998), the total likelihood with the random effects ui for system
i = 1, . . . ,K , given the historical events data, is

(12) L(θ |DATA) =
K∏

i=1

∫ {[
ri∏

j=1

νi(tij ; θ)

]
exp

[−μi(0, tai
; θ)

]}
g(ui;φ)dui,

where g(·) is defined in (11), tij is the j th observed event time for system i with j =
1,2, . . . , ri and tai

is the end-of-observation time or the end of warranty time for system
i, whichever comes first.
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We can rewrite (10) as the multiplication of the random and nonrandom parts, νi(tij ; θ) =
uiνb,i(tij ;β), where νb,i(t;β) = ν0(t) exp(

∑M
m=1

∑N
n=1 βm,nIm,n,i(t) + xT

fixβfix) and β =
(β, η,β1,1, . . . , βM,N,βT

fix)
T . Similar to what is done in Lawless (1987), integrating over

ui for each system i in (12) gives the likelihood

(13) L(θ |DATA) =
K∏

i=1

[
ri∏

j=1

νb,i(tij ;β)

]δij
�(ζi)

φ1/φ�(1/φ)κ
ζi

i

,

where θ = (βT ,φ)T , ζi = ri + 1/φ and κi = μb,i(tai
;β) + 1/φ and μb,i(tai

;β) is short for

μb,i(0, tai
;β) = ∫ tai

0 νb,i(x;β)dx. Details of the derivation are given in Section A.1 of the
Supplementary Material (Shan, Hong and Meeker (2020)).

Note that when there are no random effects (i.e., φ = 0), the likelihood function in (12)
reduces to

(14) L(θ |DATA) =
K∏

i=1

{[
ri∏

j=1

νi(tij ; θ)

]
exp

[−μi(0, tai
; θ)

]}
.

4.2. The EM algorithm. For the model with random effects, we apply the EM algorithm
based on the complete-data likelihood. The derivation of the formulas is based on the work of
Klein (1992) for the semiparametric Cox model. If we could observe the random effects, u =
(u1, . . . , ui, . . . , uK)T , the complete-data log-likelihood of θ = (βT ,φ)T up to a constant is

(15)

L(φ,β|DATA,u)

=
K∑

i=1

ri∑
j=1

{
log(ui) + log

[
νb,i(tij ;β)

]} −
K∑

i=1

uiμb,i(tai
;β) +

K∑
i=1

log
[
g(ui;φ)

]

=
K∑

i=1

{
ri log(ui) + log

[
g(ui;φ)

]} +
K∑

i=1

{
ri∑

j=1

log
[
νb,i(tij ;β)

] + uiμb,i(tai
;β)

}

= L1(φ|DATA,u) +L2(β|DATA,u),

where

L1(φ|DATA,u) = −K

{
1

φ
log(φ) + log

[
�

(
1

φ

)]}
+

K∑
i=1

[(
ri + 1

φ
− 1

)
log(ui) − ui

φ

]
is the part of the likelihood that is related to the parameter φ and

L2(β|DATA,u) =
K∑

i=1

{
ri∑

j=1

log
[
νb,i(tij ;β)

] − uiμb,i(tai
;β)

}

is the part of the likelihood that is related to the parameters in β .
Simple calculations show that the distribution of ui , conditional on the observed event

process data, has a Gamma(ζi, κi) distribution, where ζi and κi are the same as in (13) and
they are shape and rate parameters, respectively. The expected complete-data log-likelihood
in (15) is obtained by replacing the ui values in L1(·) and L2(·) with their expected values,

(16)

L̂1(φ|DATA, û) = −K

{
1

φ
log(φ) + log

[
�

(
1

φ

)]}

+
K∑

i=1

{(
ri + 1

φ
− 1

)[
ψ(ζi) − log(κi)

] − ζi/κi

φ

}
,
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where ψ(·) is the digamma function derived from E[log(ui)|H(tai
)] = ψ(ζi) − log(κi).

(17) L̂2(β|DATA, û) =
K∑

i=1

{
ri∑

j=1

log
[
νb,i(tij ;β)

] −
(

ζi

κi

)
μb,i(tai

;β)

}
.

In the maximization step, we maximize (16) and (17) with respect to the parameters φ

and β , and in the expectation step we update the expected values of ui . The EM algorithm
proceeds as follows:

1. Obtain initial estimates of β by setting ui = 1 for all systems (or, equivalently, φ = 0)
and pick a nonzero initial value of φ to avoid infinite values of ζi and κi .

2. Update ζi and κi using the current values of β , φ and ui = (ζi/κi).
3. Update the estimates of φ and β by maximizing (16) and (17), respectively.
4. Repeat Step 2 and 3 until convergence.

EXAMPLE (Model fitting for Product A). We fit the following 13 models, labeled from
(18.1) to (18.13), to the Product A data and check the model prediction performance of differ-
ent combinations of the seasonal effects, cluster effects, fixed covariates and random effects,

νi(t; θ) = ν0(t; θ) = β

η

(
t

η

)β−1
,(18.1)

νi(t; θ) = ν0(t; θ) exp

(
M∑

m=1

βmIm,i(t)

)
,(18.2)

νi(t; θ) = ν0(t; θ) exp

(
M∑

m=1

βmIm,i(t) + xT
i,fixβfix

)
,(18.3)

νi(t; θ) = ν0(t; θ) exp

(
M∑

m=1

βmIm,i(t) +
N∑

n=1

In,iβn

)
,(18.4)

νi(t; θ) = ν0(t; θ) exp

(
M∑

m=1

βmIm,i(t) +
N∑

n=1

In,iβn + xT
i,fixβfix

)
,(18.5)

νi(t; θ) = ν0(t; θ) exp

(
M∑

m=1

N∑
n=1

βm,nIm,n,i(t)

)
,(18.6)

νi(t; θ) = ν0(t; θ) exp

(
M∑

m=1

N∑
n=1

βm,nIm,n,i(t) + xT
i,fixβfix

)
,(18.7)

νi(t; θ) = uiν0(t; θ) exp

(
M∑

m=1

βmIm,i(t)

)
,(18.8)

νi(t; θ) = uiν0(t; θ) exp

(
M∑

m=1

βmIm,i(t) + xT
i,fixβfix

)
,(18.9)

νi(t; θ) = uiν0(t; θ) exp

(
M∑

m=1

βmIm,i(t) +
N∑

n=1

In,iβn,i

)
,(18.10)

νi(t; θ) = uiν0(t; θ) exp

(
M∑

m=1

βmIm,i(t) +
N∑

n=1

In,iβn,i + xT
i,fixβfix

)
,(18.11)
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TABLE 1
Summary computation time of different models for the Product A data

No. Model components T ime(hours)

1 Simple NHPP 0.18
2 NHPP with Common Seasonal Effects 0.28
3 NHPP with Country and Common Seasonal Effects 0.37
4 NHPP with Cluster and Common Seasonal Effects 0.44
5 NHPP with Cluster, Common Season and Country Effects 0.53
6 NHPP with Cluster and Seasonal Interactions 3.23
7 NHPP with Cluster and Seasonal Interactions and Country Effects 3.29
8 NHPP with Common Season and Random Effects 2.26
9 NHPP with Common Season, Country and Random Effects 2.56

10 NHPP with Cluster, Common Season and Random Effects 3.90
11 NHPP with Cluster, Common Season, Country and Random Effects 4.51
12 NHPP with Cluster and Seasonal Interactions and Random Effects 36.5
13 NHPP with Cluster and Seasonal Interactions, Country and Random Effects 37.5

νi(t; θ) = uiν0(t; θ) exp

(
M∑

m=1

N∑
n=1

βm,nIm,n,i(t)

)
,(18.12)

νi(t; θ) = uiν0(t; θ) exp

(
M∑

m=1

N∑
n=1

βm,nIm,n,i(t) + xT
i,fixβfix

)
,(18.13)

where xi,fix, a vector of length 1, denotes the fixed country effect for Product A (i.e., xi,fix
equals 1 if the product is from Canada or 0 otherwise) and βfix is the corresponding regression
coefficient. Table 1 gives the computing time needed to fit each model. The fitting was done in
R with a computer having a single 2.6 GHz core and 128 GB of main memory. The computing
time is generally longer when the EM algorithm is involved, and it will also depend on the
choice of the convergence criterion of the algorithm.

5. Point predictions for the number of future events. Prediction of the number of
recurrences for system i in a future time-in-service interval, [t1, t2), is based on the estimated
expected value of the random variable Ni(t1, t2):

• When there are no random effects, Ni(t1, t2) has a Poisson distribution with mean
μb,i(t1, t2;β) = ∫ t2

t1
νi(x;β)dx.

• When there are random effects in the model, Ni(t1, t2) has a negative binomial distribution
with mean [ζi/κi]μb,i(t1, t2;β) and probability function

(19)

Pr
[
Ni(t1, t2) = n|DATA, θ

]
= �(n + ζi)

�(ζi)n!
[

μb,i(t1, t2;β)

μb,i(t1, t2;β) + κi

]n[
κi

μb,i(t1, t2;β) + κi

]ζi

.

That is, Ni(t1, t2) has a NB(ζi, κi/[μb,i(t1, t2;β) + κi]) distribution (see Section A.2 of
the Supplementary Material (Shan, Hong and Meeker (2020)) for more details).

Although the recurrence rate function contains time-dependent covariates, month-by-
month integration is possible because the time dependent covariates remain unchanged within
each calendar month. The total expected number of events in a future month is the sum of the
expected number of events for each system at risk. Similarly, the total expected cumulative
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number of events for all systems, up to a specified future month, is the sum of the cumula-
tive number of events for each system at risk. A point prediction for these quantities can be
obtained by replacing θ = (βT ,φ)T with the maximum likelihood estimates.

In order to compare the prediction accuracy of different models, we compute the root mean
square error (RMSE), mean absolute error (MAE) and mean absolute percent error (MAPE)
of prediction errors for the hold-out data. Denote the nonnegative observed and predicted
monthly number of events as Yh and Ŷh, h = 1,2, . . . ,H , respectively, then

RMSEH =
√∑H

h=1(Yh − Ŷh)2

H
,

MAEH = 1

H

H∑
h=1

|Yh − Ŷh|,(20)

MAPEH = 1

H

H∑
h=1

|Yh − Ŷh|
Yh

× 100.

EXAMPLE (Comparisons of point predictions on Product A). Table 2 gives a compari-
son of the prediction performances of different models on the hold-out data. By incorporating
the cluster information and assuming different seasonal effects for different clusters, the pre-
dictions on the hold-out data can be improved with smaller prediction errors. Model 7 has
the best prediction performance, especially for the first six months of the hold-out data. This
model assumes both the shapes and levels of the seasonal patterns in the recurrence rates are
different across clusters and that the recurrence rates vary in different countries. The incor-
poration of the random effects does not improve the prediction performance for this specific
example. Figures 6 and 7 show the fitted Model 7 of the monthly and cumulative event counts,
respectively. The fitted model deviates from the observed counts between January 2013 and
January 2015. The agreement is better after January 2015.

In order to select an appropriate model, one should take the business goal, data size, model
fitting time, model prediction performance, computation costs and other factors into consid-
eration. For example, if our goal is to find a model with reasonably good prediction perfor-
mance with as little computation costs as possible, Model 7 (sometimes even Model 3) could

TABLE 2
Summary results of point predictions on different models for the Product A hold-out data. The superscript 6 and

12 indicate the RMSE/MAE/MAPE of the first six and 12 months, respectively. The model with the smallest
RMSE/MAE/MAPE values is marked in bold

No. RMSE6 RMSE12 MAE6 MAE12 MAPE6 MAPE12

1 58.2 46.2 46.5 38.7 16.4 15.3
2 45.7 38.8 39.9 33.6 15.0 14.1
3 39.4 31.8 33.1 28.0 12.6 11.8
4 41.2 34.9 34.5 29.5 13.1 12.5
5 38.9 32.8 32.9 27.8 12.5 11.8
6 39.7 34.1 34.0 29.6 12.8 12.4
7 37.0 31.9 30.9 27.2 11.6 11.5
8 50.0 39.9 41.3 34.7 15.6 14.6
9 40.8 34.3 34.2 29.0 13.0 12.3

10 42.7 36.1 36.2 30.8 13.7 13.0
11 40.6 34.2 34.1 29.0 13.0 12.3
12 41.4 35.7 35.9 31.1 13.6 13.1
13 38.9 33.4 32.9 28.8 12.5 12.2
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FIG. 6. Monthly prediction of the event counts for Product A based on Model 7.

be a good trade-off between a complicated model and computation time. As we will see in
the Product B example in Section 7, more complicated models sometimes lead to better per-
formance; however, it will also take a longer time for model fitting due to the need to estimate
the random effects. As is usually the case, the modeling process requires judgment combined
with experimentation and sensitivity analysis.

6. Prediction intervals.

6.1. Prediction interval basics. Prediction intervals (PIs) for random variables and the
calibration of PIs are introduced in literature such as Beran (1990), Meeker and Escobar
(1998), Lawless and Fredette (2005), Fredette and Lawless (2007) and Fonseca, Giummolè

FIG. 7. Cumulative prediction of the event counts for Product A based on Model 7.
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and Vidoni (2014). In our applications the random variable of interest, Y , is the total number
of monthly events or the cumulative number of events up to a specified month across all
systems at risk.

Producing prediction intervals requires the distribution of the sum of the number of events
across systems within specified intervals. Under the NHPP model without random effects,
the number of events in nonoverlapping intervals has a Poisson distribution, and the sum of
independent Poisson random variables also has a Poisson distribution. In contrast, when the
model includes random effects u, the sum is a convolution of K negative binomial distribu-
tions which does not have a closed form.

Teerapabolarn (2014) shows that, when {ζi · μb,i(·;β)/[μb,i(·;β) + κi]} is small for each
i, the distribution of the sum of independent negative binomial random variables can be ap-
proximated by a Poisson distribution with mean,

∑
i[(ζi/κi)μb,i(·;β)], where the sum is

across all systems at risk. We use this approximation for the distribution function of random
variables when there are random effects in the model.

Here, we compare plug-in prediction intervals, simple normal-approximation prediction
intervals and calibrated prediction intervals procedures for a random variable Y with the
distribution function G(Y ; θ).

6.2. Plug-in prediction intervals. The simple plug-in prediction interval is obtained by
simply using the quantiles of G(Y ; θ). Specifically, a two-sided 100(1 −α)% plug-in predic-
tion interval of a random variable Y is [L,U ], so that

(21) G[L < Y ≤ U ; θ̂ ] = 1 − α.

The actual coverage probability of this procedure will generally be less than (1 − α) because
plug-in method ignores the uncertainty in θ . It is generally good practice to choose L and U

such that L = Yα/2 and U = Y1−α/2.

6.3. Normal approximate prediction intervals. A normal approximate 100(1 −α)% pre-
diction interval for Y assumes that Y

·∼ Normal(Ŷ , se2
Ŷ
), so the prediction interval is

(22) [L,U ] = Ŷ ± z1−α/2ŝeŶ ,

where z1−α/2 is the (1 − α/2) quantile of the standard normal distribution, Ŷ is the point

prediction and ŝeŶ =
√

V̂ar(Ŷ ), where V̂ar(Ŷ ) is estimated variance of Y .

6.4. Calibrated prediction intervals. Bootstrap procedures to calibrate prediction inter-
vals have been described by literature such as Beran (1990), Meeker and Escobar (1998),
Lawless and Fredette (2005) and Fredette and Lawless (2007). Xu, Hong and Meeker (2015)
give the following algorithm which is a simulation implementation of the general prediction
calibration method described in Section 3 of Lawless and Fredette (2005):

1. Simulate the model estimates θ∗
i with i = 1, . . . ,B using a parametric bootstrap

method.
2. Sample Y ∗

i from the distribution function of the random variable, G(Y ; θ̂), where θ̂ is
the ML estimate of the parameters from the original data.

3. Compute wi = G(Y ∗
i ; θ∗

i ) for i = 1, . . . ,B .
4. Let wL and wU be the α/2 and (1 − α/2) quantiles of the empirical distribution of

(w1, . . . ,wB).
5. Solve L and U from wL = G(L; θ̂) and wU = G(U ; θ̂).
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FIG. 8. Monthly predictions of the event counts for Product A on the hold-out data based on Model 7.

In Step 1, the parameters θ∗
i are estimated from the simulated data sets based on θ̂ which

would require a huge amount of computation time in our application. We approximate this
procedure by simulating the model estimates θ∗ from the asymptotic multivariate normal
distribution of the ML estimates. That is, let L(θ) denote the total log likelihood of a specified
model from K independent systems. Then,

(23) Î θ̂ = −∂2L(θ)

∂θ∂θT

∣∣∣∣̂
θ

is the observed Fisher information matrix for θ evaluated at the ML estimate θ̂ . Then draws
from the multivariate normal distribution MVN(θ̂ , Î

−1
θ̂

) can be used in the calibration pro-
cess. Because of the large amount of data, the approximation will be good.

FIG. 9. Cumulative predictions of the event counts for Product A on the hold-out data based on Model 7.
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EXAMPLE (Prediction intervals for Product A). The monthly and cumulative event pre-
dictions from Model 7 for Product A are shown in Figures 8 and 9, respectively. The cal-
ibrated prediction intervals are based on B = 5000 simulations. Asymptotic theory (e.g.,
Beran (1990)) suggests that the calibrated prediction interval procedure has coverage proba-
bilities that will be close to the nominal (1 − α) confidence interval. For this example, nine
out of 12 observed event counts are within the calibrated prediction intervals, and all ob-
served cumulative event counts are within the calibrated prediction intervals. The plug-in and
normal approximate predictions intervals are narrower when compared with the calibrated
ones.

7. Models and predictions for Product B. In this section we present a second example
based on warranty data from Product B, initially described in Section 1.3. The models used
in this section are similar to those that were applied to Product A, while the seasonal patterns
and fixed covariates differ.

7.1. Exploratory analysis. Similar to what we have done for Product A, Figure 10 gives
the MCF for different model years with 95% pointwise confidence intervals. Although we
observed only the mean cumulative number of recurrences per system up to the first year for
data of model year 2016, we could tell that the curves of the two different model years behave
differently which indicates that the model year information should be taken into account for
modeling.

7.2. Clustering for the seasonal models. Figure 11 shows the dendrogram of the hierar-
chical clustering results for Product B based on warranty information of the most recent year.
The observed events and the number of systems at risk by clusters as a function of calendar
time are shown in Figures 12 and 13, respectively. The empirical monthly recurrence rates of
the two clusters have similar shapes but different levels as shown in Figure 14.

FIG. 10. MCF versus system age for systems in model years 2015 and 2016 of Product B with 95% pointwise
CIs.
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FIG. 11. Dendrogram of hierarchical clustering for Product B. The horizontal line indicates the cutoff location
to split the observations into different clusters. From left to right, the cluster numbers are 1 and 2, respectively.

7.3. NHPP model fitting. In this subsection we fit the 13 models in (18) with xi,fix, a
vector of length 1, being the product model year indicator (i.e., xi,fix equals 1 if system i

has model year 2015 or 0 otherwise). Table 3 shows the model prediction performance for
the hold-out data. Model 9 with the common seasonal covariates, model year effects and
random effects provides the best predictions among all of the models. The model with cluster
factors does not improve the predictions. An explanation is that we only have two years
of data for clustering and model fitting. When doing prediction, we implicitly assume that
the seasonal patterns in the future behave like the past. Prediction accuracy may suffer if
the future seasonal patterns behave in a different manner. The model fitting of monthly and
cumulative event counts based on Model 9 are shown in Figures 15 and 16, respectively.

7.4. Prediction intervals. Figures 17 and 18 give the prediction intervals of the monthly
and cumulative events, respectively, while the calibrated prediction intervals are based on
B = 5000 simulations. Six out of eight observed counts fall within the calibrated prediction
intervals for the first eight months of hold-out data. The numbers of events for three out of
the last four months, however, fall outside of the prediction intervals. Delayed event reports

FIG. 12. Observed event counts as a function of date for the two different clusters of Product B systems.
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FIG. 13. Number of systems at risk as a function of date for the two different Product B clusters.

could be a reason why the monthly predictions are much higher than the observed events for
June and July of 2017. The higher number of observed events for April and May could be
because more of the product warranties expire in these two months, compared with previous
years which encourages people to use the warranty shortly before the expiration dates.

8. Simulation to study larger amounts of missing data. In this section we study the
effects of missing data on the prediction performance of new data: we randomly erase be-
tween 10% and 30% of location variables from the original data of Product A and use these
data to fit the models based on two different ways to handle missing locations data when
clustering:

1. Assign all the missing locations to a new location category.
2. Make a random weighted assignment for the missing locations.

FIG. 14. Empirical monthly recurrence rate for Product B since year 2015.
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TABLE 3
Summary results of point predictions on different models for the Product B hold-out data. The model with the

smallest RMSE/MAE/MAPE values is marked in bold

No. RMSE6 RMSE12 MAE6 MAE12 MAPE6 MAPE12

1 606.5 454.5 547.1 369.7 43.0 31.2
2 226.2 235.1 194.4 197.7 12.1 17.2
3 101.9 194.7 94.0 146.4 6.9 15.3
4 225.1 236.9 193.9 200.2 12.1 17.5
5 121.8 199.0 112.0 155.2 7.9 15.6
6 224.2 236.6 193.1 200.2 12.1 17.6
7 120.4 198.9 110.9 155.2 7.9 15.6
8 210.2 229.1 182.0 192.8 11.5 17.1
9 84.2 192.4 76.1 137.5 6.4 15.1

10 206.5 228.9 179.3 193.1 11.4 17.2
11 120.6 198.1 110.9 154.3 7.9 15.5
12 204.5 227.7 177.4 192.0 11.3 17.1
13 115.3 196.4 106.0 151.9 7.5 15.3

FIG. 15. Monthly prediction of the event counts for Product B based on Model 9.

FIG. 16. Cumulative prediction of the event counts for Product B based on Model 9.
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FIG. 17. Monthly prediction of the event counts on the hold-out data based on Model 9 for Product B.

In order to compare the prediction metrics, such as the RMSE, on the hold-out data, we
keep using four clusters and compare the prediction performance of Model 7 with different
missing percentages. Figures 19 and 20 show the scatter plots of the six-month and 12-month
RMSE values based on the above two ways of handling the missing locations. We experiment
with 10%, 15%, 20%, 25% and 30% missing locations. The random assignment methods
shown in A.3 of the Supplementary Material (Shan, Hong and Meeker (2020)) are used to
fill the missing locations. We experiment by repeatedly doing both the random erasing and
assignment of the location data 20 times. Scatter plots of other prediction metrics such as
MAE and MAPE are presented in the Supplementary Material (Shan, Hong and Meeker
(2020)) in Figures 22, 23, 24 and 25. The results of this simulation study can be summarized
as:

1. The model using the original data with the 6.6% missing locations assigned to separate
categories by their country information has better prediction performance than the models
with higher missing percentages.

FIG. 18. Cumulative prediction of the event counts on the hold-out data based on Model 9 for Product B.
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FIG. 19. Scatter plots of 20 experimental prediction results with weighted random assignment and separate
categories for RMSE6. The cross marks indicate the prediction metrics in Model 7 of Section 5.

2. When the missing percentage is relatively small (e.g., less than 15%), the average pre-
diction metrics from two different ways to handle the missing data are close to each other.
The random assignment of missing data gives prediction metrics with less variation over the
20 experiments. When the missing percentage is larger, there is no best way to handle the
missing data.

3. When the missing percentage increases to around 30%, all of the performance metrics
have similar prediction performance with Model 3 in Section 5. An explanation for this is that,
when we randomly erase 30% location variables and randomly assign a location to each of
the missing values, we introduce noise for the seasonality clustering as the actual seasonality
pattern in the data may be corrupted by the random assignment or the separate categories of
missing locations. The clustering may not help any more, and the model will behave more
like Model 3, where all repairable systems have the same seasonality pattern.

4. In general, the model has better prediction performance in terms of the six-month pre-
diction metrics when the percentage of missing locations is small(e.g., 10%). The differences
in the 12-month prediction metrics among different missing percentages are relatively small.
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FIG. 20. Scatter plots of 20 experimental prediction results with weighted random assignment and separate
categories for RMSE12. The cross marks indicate the prediction metrics in Model 7 of Section 5.

5. When the missing percentage increases from 20% to 30%, the prediction performance
degrades. For example, the MAPE12 values for the 25% missing data are slightly smaller than
that of 20%, while the RMSE6 values for 25% are larger than that of 20%.

9. Concluding remarks. In this paper we introduce a general model for the recurrence
rate of repairable systems that can be used to predict the number of future events. Depending
on the characteristics of the recurrent event processes, the model can be applied to vari-
ous applications. Our approach allows the use of covariates that may affect the recurrence
rate (e.g., the different seasonal trends for different locations) and provides better prediction
results than the simple NHPP models. In particular, the use of the cluster and seasonality
information improves the predictions of future monthly events for more useful decisions in
industry.

Possible extensions of our current work include:

1. In this paper we model the seasonal trends in the recurrence rate based on the calendar
month, and we assume, implicitly, that each month has the same number of business days.
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The number of business days varies from month to month because of holidays and the number
of weekends in a month. Taking the number of business days of each month and the exact
calendar entry dates of the product warranty into the model could lead to more accurate
modeling and prediction of events.

2. In some applications, claims are not reported immediately after the system failure. This
introduces extra variability in the time-dependent seasonal patterns in the model and can lead
to inaccuracies for data near the data-freeze date. Also, there can be spikes of warranty claims
near to the end-of-warranty date. Such factors might be included in the prediction model.

3. Our paper focused on the prediction of future events. Sometimes, it is important to
predict future costs as well. Our model can be extended to a compound mixed Poisson process
like that described in Grandell (1997). Marked point processes can also be used for claim
cost prediction, as described in Brémaud (1981) and Karyagina, Wong and Vlacic (1998).
Information about failure modes could be helpful for claim cost prediction.

4. Two-dimensional warranty policies are widely used (e.g., in the North American au-
tomobile market). For example, the observation of a warranty contract will end when the
mileage of a product reaches 36,000 miles or three years after the purchase date, whichever
comes first. A model based on both system age and usage would be more appropriate. How-
ever, usage data are often not complete, as the usage information may not be available until
there is a claim and some of the systems may not have any claims before the end of the war-
ranty period. Also, automobiles with claims may not be a representative sample of the entire
population. Lawless and Crowder (2010) proposed joint models on the age and usage di-
mensions for the warranty data for dependence assessment and model parameter estimation.
Some work has also been done on using a synthesized scale based on both age and usage as
described in Ahn, Chae and Clark (1998) and Duchesne and Lawless (2000).

5. The investigation of NHPP models with time-varying covariates and random effects un-
der the Bayesian framework would be useful. The hierarchical modeling together with tools
such as Markov chain Monte Carlo (MCMC) can then be used conveniently for estimating
model parameters and producing prediction intervals.
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SUPPLEMENTARY MATERIAL

Supplement to “Seasonal warranty prediction based on recurrent event data” (DOI:
10.1214/20-AOAS1333SUPPA; .pdf). Derivation of Equations (13) and (19) (A.1 and A.2).
Random assignment of missing locations (A.3) and more simulation results for Section 8
(A.4).

Code and data (DOI: 10.1214/20-AOAS1333SUPPB; .zip). This supplement includes all
the code and data used in our paper.
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