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1. Introduction

The linear model is a simple model with strong restrictions. A model which is a
lot more flexible is the general additive model [22], which assumes that the effect
of each covariate is a general univariate function. Let p denote the number of
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covariates, and n the number of observations. The general additive model with
identity link is then

p
YiiﬂoJrzgj(xij)Jrﬁi (i=1,...,n), (L.1)

j=1

where the g;s are unknown smooth functions to be estimated and e; are in-
dependent and identically distributed mean-zero normal random variables. A
natural approach is to fit the functions g; by splines, so that each g; is a linear
combination of spline basis functions. This brings us back to a linear problem,
which there are methods for solving.

In many applications, and especially in the life sciences, effects are however
often naturally subject to some shape restrictions, in particular monotonicity.
In such situations, the g;s in (1.1) are assumed to be smooth and monotone
functions. It is important to have methods which incorporate this restriction
into the model estimation.

In this paper, methods for additive monotone regression in both high (p > n)
and low (1 < p < n) dimensions are presented. Tutz and Leitenstorfer [44]
write that “It is surprising that most of the literature on monotonic regression
focuses on the case of unidimensional covariate x and metrically scaled, contin-
uous response variable y”. There has been some development since then, and
we here give an overview and comparison of the available frequentist methods
in the multidimensional setting, most of them developed very recently. We will
especially consider the methods developed in [11, 39, 45, 44, 25]. These are all
methods developed for the classical regression setting, but the method in [25]
can also be used in the high dimensional case. We will also include two methods
specifically designed for the high dimensional data setting. These two methods
are the liso regression method [18] and the monotone splines lasso regression
method [5]. Even though these are meant for p > n situations, they might be
applied also in the classical setting. We thus include these as possibilities also
for p < n, but keep in mind that these methods per definition automatically
perform variable selection. The methods developed for the classical setting re-
quire the monotonicity directions of the functions. However, such information is
not always available. The high dimensional monotone regression methods can be
used without prior information on the monotonicity direction, and can therefore
potentially be a valuable resource also in the low dimensional setting.

The paper is organised as follows: in Section 2, a short review of methods for
additive monotone regression for p < n and p > n, respectively, is presented.
In Section 3, a qualitative overview and comparison of the various methods is
given. In Section 4, the methods are compared through simulation experiments
in different classical settings. In Section 5, the p > n methods are compared
in a high dimensional setting. In Section 6, the robustness of the methods to
violation of the monotonicity assumptions is studied and in Section 7, the var-
ious approaches are applied to the Boston housing data, which is a classical
data set with house values and different explanatory variables. In Section 8, we
have some additional remarks on monotone regression hypersurfaces, existing



4 S. Engebretsen and I. K. Glad

Bayesian methods for monotone regression and comment on methods for the
partially linear monotone model. In Section 9, we summarise our results with
concluding remarks and recommendations.

2. Monotone regression methods

Often, the relationship between some explanatory variable and a response is
monotonically increasing or decreasing. For example, it is common to assume
that the relationship between some measure of cognitive performance of children
and age is a monotonically increasing function, and it is not plausible that this
relationship is linear [6]. In medicine, we often have monotone relationships
between two variables, for example between the amount of exercise and serum
cholesterol level [43]. It is often assumed that genetic effects on phenotypes are
monotone, like in [34].

As mentioned, many of the methods developed for monotone regression are
developed for the univariate case. For instance, [4] uses isotonic step functions
to fit regression models in the one dimensional setting. He and Shi [23] present a
method for univariate monotone regression using monotone B-spline smoothing
and Meyer [36] develops a method for shape-restricted regression splines using
I-splines, for the one-dimensional case. An alternative to splines is the wavelet
based (univariate) monotone estimator [1].

It is more challenging, but of course more relevant, to consider multiple re-
gression, as we rarely have only one predictor variable. Ramsay [40] develops a
method for monotone regression using I-splines, which can also be used in the
multivariate setting. Bachetti [2] develops a method for additive isotonic regres-
sion. In [2], each function is fitted by an isotonic step function, and the method
is based on an iterative cyclic optimisation scheme, starting with an initial guess
for all the functions. The functions are updated cyclically one by one, keeping
the other functions at their currently best guess, and minimising the loss with
respect to the current function, by a unidimensional isotonic regression method.
This is repeated until convergence is obtained. Dette and Scheder [14] develop
a method for monotone regression where the regression function is a monotone
hypersurface of the covariates. However, in this paper, we focus on the (less gen-
eral, but more widely studied,) additive monotone regression models. Tutz and
Leitenstorfer [44] use the ideas of [40] in combination with monotone boosting,
with optional monotonicity constraints on the functions. A very similar method
is developed in [28], using monotone boosting and B-splines with constraints.
Pya and Wood [39] use P-splines to fit a regression model where some of the
functions are fitted by functions with shape constraints, and the rest have no
shape constraint. Chen and Samworth [11] also develop a method for regression
with different shape constraints on the functions. The method is based on using
different basis functions with different constraints on the parameters, depend-
ing on what shape restriction is imposed. A similar method is developed in [37].
Hofner and others [25] combine boosting with P-splines. Wang and Xue [45]
generalise the method in [23] to the multidimensional setting, where B-spline
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smoothing is used to fit the monotone regression model. All these methods are
developed for lower dimensional regression. When it comes to methods devel-
oped for the high dimensional (p > n) setting, to our knowledge, there are only
three available methods, namely the liso regression method [18], the monotone
splines lasso [5] and the monotone boosting method (mboost) developed in [25].

In this paper, we consider non-Bayesian methods for monotone regression.
However, it should be noted that there exist also various Bayesian methods for
multiple monotone regression models. We provide a short overview of Bayesian
methods for monotone regression in Section 8.2.

We will focus mostly on the methods known as scar, CPS, scam, MonBoost,
mboost, liso and monotone splines lasso, which are introduced in more detail in
the following sections. Some of the methods we consider focus only on mono-
tonically increasing functions. However, if g; is assumed to be monotonically
decreasing, the same method/algorithm can be used, but with reversed sign on
the observed covariates.

2.1. Monotone regression methods for the p < n setting
2.1.1. Scar — Chen and Samworth (2016)

The method developed in [11] estimates the model in equation (1.1), where each
function g; is assumed to satisfy one out of nine possible shape constraints. It is
assumed that it is a priori known which shape constraint each function satisfies.
Among these nine are monotonically increasing and monotonically decreasing
constraints. All the functions are assumed to have zero mean, for unique iden-
tification.

To fit the monotone functions, step basis functions are used. Let X be the de-
sign matrix of the observations, and let x(;y;, i = 1,...,n, be the corresponding
order statistics for each covariate j. The basis functions are given as

(@) = I(x@y; <o) — I(xy; <0), if g; is monotonically increasing,
i) = I(x < w(;);) — 1(0 < x(3y;), if g; is monotonically decreasing,

~

where I is the indicator function. We refer to [11] for the spline basis func-
tions used for the other shape constraints. The spline approximation is given as
Gj(x;) = Soi ) Bijsij(z4j), where x;5, i = 1,...,n, are the observations of co-
variate j. The basis coefficients §;; are all restricted to be positive. The solution
is given by the (positive) 8 minimising
2
P n
B = argming ||y — Z Z Bijsij(x5)| >

=1 =1 9

where y is the observed response. To solve the optimisation problem, an active
set algorithm is used. The detailed algorithm is given in [11]. In the active set
algorithm, one basis function is added in the active set at the time, namely
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the one maximising the local derivative of the likelihood, that is, the one with
the largest slope. In every iteration, the 8 maximising the likelihood is found
by iterative reweighted least squares. If there are any negative elements of 8, a
single basis function is dropped from the active set (the minimiser of a specific
non-linear drop function), and the iterative reweighted least squares solution for
the updated set is found. This is repeated until all elements are positive. The
algorithm stops when all the local derivatives of the likelihood are smaller than
a threshold (smaller than or equal to zero for the Gaussian case, smaller than a
small threshold for other exponential family distributions). Convergence of the
algorithm is guaranteed in the Gaussian setting. The authors also state that
they did not encounter convergence issues in the non-Gaussian setting [11]. The
method was found to be uniformly consistent on compact intervals, under mild
conditions.

The method is implemented in the R-package scar, and we will refer to it as
scar. It should be noted that this method is not restricted to the setting with a
normal distribution for the y, but can be used also for other exponential family
distributions.

2.1.2. Constrained polynomial splines — Wang and Xue (2015)

The method developed in [45] is a generalisation of the method developed by [23],
to the multidimensional setting. This method is thus based on B-spline smooth-
ing and fits the model given in (1.1), where the functions are assumed to be
monotone and have zero mean. The monotonicity directions have to be known
a priori with this method. The authors use a two-stage approach where they
first fit the g; functions using B-splines with no constraints on the parameters,
so that the estimated functions are general smooth functions. Then these esti-
mated functions are used in a one-step constrained backfitting approach. Let By,
denote the B-spline basis functions and ;, denote the corresponding basis co-
efficients. The spline approximations are then given by g;(z) = Y ;- vjkBk(2),
where m is the number of spline basis functions for each covariate. Let Z de-
note the matrix with the x observations represented in the B-spline basis and vy
denote the corresponding vector of basis coefficients. The estimates of the basis
coeflicients are then given by

¥ = argmin, |ly — Z1][3,

which can be solved by ordinary least squares (given a large enough n compared
to p).

Let then y_; =y — 37, gy (xj), where g;(x;) = 32, 41 Br(x;). The
y—; is then an approximation of g;. A sufficient condition for g; to be mono-
tonically increasing is that 7, > 7;x—1. The estimated functions are then given

by §;(x5) = > pey BjkBk(xj), where Bj is given by

:Bj = argminﬂjecHY—j - Zj:BjH%v
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where C' is the set of vectors of length m satisfying the constraint ;. > Bjx—1
and Z; is the matrix with the observed values of covariate j, represented in the
B-spline basis. This is a standard constrained optimisation problem, and can be
solved with the R-function constrOptim.

The constrained fitting could have been done in a one-stage approach in-
stead of using a two-stage approach, but in [45], they argue that fitting the
model in two steps is numerically more stable. Hence, in the implementation of
the method, we will use the two-stage approach. They also show asymptotical
convergence and consistency of the method, under regularity conditions.

For the rest of the paper, we will refer to this method as CPS (constrained
polynomial spline).

2.1.3. Scam — Pya and Wood (2015)

The method developed in [39] estimates the model given in equation (1.1), where

the functions have different optional shape constraints. The shape constraints

on the functions have to be known a priori to use this method. Among these con-

straints are monotonically increasing and monotonically decreasing functions.

The model is fitted using P-splines. P-splines are B-splines with a difference

penalty on adjacent B-spline coefficients. See [17] for more details on P-splines.
Consider first the one dimensional setting, where

Y =g(z) +e

The function g(z) is approximated by a B-spline. Let By, denote the spline basis
functions and ~j, denote the basis coefficients. Then we have

() =Y wB(),
k=1

where m is the number of basis functions, and g is the spline approximation of
g. As mentioned, a sufficient condition for the function ¢ to be monotonically
increasing is that v > vr_1. A reparametrisation is used, so that

v =28,

where B8 = (B1,...,06m)", B = (B1,exp (B2),...,exp (Bm)) and X is such that
Yi; =0if i < jand ¥;; = 1 if ¢ > j. This reparametrisation ensures that the

fitted function is monotonically increasing. Let Z denote the matrix with the x
observations represented in the B-spline basis. Then we have

g(x) = ZZB.

The reparametrisations necessary for other shape constraints are listed in Table
11in [39].

To control the wiggliness of g(z), a penalty term is introduced, penalising
the squared differences between adjacent 8. The penalty is given as ||DB||3,
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where D is such that all elements are zero, except from D; ;11 = —D; ;40 =1
for i =1,...,m — 2. Note that the penalty is on the 8 and not on the ,B

In the multidimensional setting, it is assumed that all the functions have zero
mean, for unique identification of the functions. Let each shape constrained
function be represented by a model matrix on the form g;(x;) = Z;X;8; =
M j,é i, where x; are the observed values of covariate j. Let M denote the matrix
with all the M; and B the vector with all the ;. If there are linear covariates in
addition, the design matrix with the linear covariates and the linear parameters
are also included in M and the parameter vector 8. There are no penalties on
the linear parameters. In a similar manner, functions with no shape constraints
can also be added to the model, given as B-spline approximations, so that we
have a design matrix with the observations represented in the B-spline basis and
a parameter vector for the covariates with no shape constraints. The penalty
for the covariates with no shape constraints is given in [47]. The penalty term is
on the form BTS,B, where Sy = Z?:l A;S; and S; = D?Dj. The parameters
A; are smoothing parameters. Given the A;, the solution, ﬁ, is given as the
minimiser of

B = argming||y — M3||2 + BTS,B. (2.1)

This is solved by a Newton-Raphson scheme. The smoothing parameters \;
are estimated by the AIC criterion or the generalised cross-validation (GCV).
See [39] for the algorithm for solving the problem and details on the GCV. As
for scar, the method is not restricted to the setting with a normal distribution
for the y, but can be used also for other exponential family distributions.

This scheme is implemented in the R-package scam, and we will refer to this
method as scam.

2.1.4. MonBoost — Tutz and Leitenstorfer (2007)

The method developed in [44] is called the MonBoost method. MonBoost also
estimates the model given in equation (1.1), where some of the functions g; are
restricted to being monotone.

Let g; be approximated by a basis expansion, where the basis functions are
I-spline basis functions. These are monotonically increasing basis functions. A
sufficient condition for monotonicity is then that all the basis coefficients are of
the same sign. Another option for MonBoost is sigmoidal basis functions. Since
we only consider monotonically increasing functions, we seek a solution where
all the basis coefficients are nonnegative. The basis expansion is given by

i) =3 Bl (@),
k=1

where 1. ,il) are the basis functions, ! is the order of the basis functions, g;(z) is
the approximation of g;, and m is the number of basis splines used. We will use
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I-spline basis functions of order two. In [40] and [5], a small number of knots is
used. In MonBoost, many interior knots are used, and boosting is used to avoid
overfitting. Since MonBoost is based on boosting, it has an in-built variable
selection property.

The concept of boosting is to combine many weak learners (in classification,
a weak learner is one that is only slightly better than random guessing), to
obtain a good predictor. Componentwise boosting is used, so that each weak
learner only changes the contribution of one basis spline. The more iterations,
the closer will the model be fitted to the training data. Thus, we need a stop-
ping criterion for determining when to stop. In [44], both AIC and the g-prior
minimum description length (gMDL) are suggested. gMDL is a hybrid between
AIC and BIC, see [44] or [10] for more details. It is also possible to regularise
by using a shrinkage parameter which shrinks the learner for each iteration. In
MonBoost, this is done by using a ridge regression estimate as the weak learner,
with a quite large value of the ridge penalty parameter .

The estimated functions are constructed by ensuring that all the estimated
parameters are positive, so the estimated function will necessarily be mono-
tone. If there are no shape constraints on the function, we do not need to
consider only the subset of positive estimated parameters in the algorithm. An
R-implementation of the algorithm was made available by the authors [44], but
has recently been removed. We base our implementation on this R-code. The al-
gorithm in the one dimensional case with Gaussian response is provided in [44],
and we restate it here in Algorithm 1 in Appendix B.

It should be noted that even though [44] only considers applications in the
classical setting, the algorithm would also work when p > n. However, MonBoost
has to be provided the monotonicity directions for every covariate a priori, and
in a high dimensional setting, it can be challenging to have an intuition about
the monotonicity directions for all the covariates.

Just as scam and scar, MonBoost is not restricted to having normal response,
but can be used with any response from an exponential family.

2.1.5. Mboost — Hofner and others (2016)

The method developed in [25] is a combination of scam and MonBoost, and thus
combines boosting with P-splines. It estimates the model given in equation (1.1),
with optional monotonicity constraints on the g;. It also supports other shape
constraints, for instance linearity and periodicity.

The functions are estimated by spline approximations, where P-splines are
used to estimate the monotone functions. As with MonBoost, many interior
knots are used, and boosting is used to avoid overfitting. The method is based
on componentwise boosting, hence it performs variable selection intrinsically,
like MonBoost.

Since componentwise boosting is used, the contribution of one basis spline
is changed in each boosting iteration. As with MonBoost, the more iterations,
the closer will the model be fitted to the training data, and cross-validation is
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used as a stopping criterion for the number of iterations. Similar to MonBoost,
regularisation is also obtained by using a shrinkage parameter which shrinks
the learner for each iteration, with a difference penalty as in equation (2.1) in
the scam method, and an additional penalty term to ensure monotonicity. The
additional monotonicity penalty term ensures that the differences in adjacent
coefficients are either all positive or all negative, due to a fixed, high penalty for
solutions which do not fulfil this. For other shape constraints than monotonicity,
other penalty terms are used. See [25] for details on the penalty terms. The
penalty parameter for the P-splines difference penalty is found by fixing the
degrees of freedom to a low number. The default value for the degrees of freedom
is four, and we will use this in our applications of the method.

In [25], they point out that the method can be used in the high dimensional
setting, however the method is not tried out in this setting. Note that the
monotonicity directions must be provided a priori (as with MonBoost), which
can be difficult, especially in the high dimensional setting. It can for instance
be reasonable to assume a monotone relationship between a response variable
and gene expressions, however it is not straightforward to know a priori the
monotonicity directions for all the 20 000 different genes.

This method is not restricted to gaussian response. It is not even restricted
to exponential family distributions, see [26] for details on the possible families
of distributions that are implemented. The method is implemented in the R-
package mboost, and we will refer to it as mboost.

2.2. Monotone regression methods specifically designed for the high
dimensional p > n setting

2.2.1. Liso — Fang and Meinshausen (2012)

The most common method for modelling monotone relationships is to use iso-
tonic regression, which produces step functions instead of smooth functions.
For high dimensional data, there has been developed a method, lasso isotone
(liso) [18], which combines isotonic regression with lasso. It is defined as the
minimisation of the liso loss, Ly, with respect to (g1, 92,...,9p). The liso loss
Ly is given by

2
1 p ) p
LA(ﬁnglvagp):§ y_ﬂo_zgj(x(])) +)\ZA(9])7
=1 , =

where X is the jth column of X, and the g;s are bounded, univariate and
monotonically increasing functions. The A(g;) denotes the total variation in g;

A(g;) = sup gj(z) — inf g;(z).
zER x€ER

The residual error only considers the value of g; at the observed points.
Thus for optimality, the bounds for the estimated g; should be at the extremal
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observed value of the covariate. Outside the interval between the smallest and
the largest observed value of the covariate, the function should be flat. Any
interpolation function between the points minimising L, will be an optimal
solution. Therefore, for simplicity, right-continuous step functions are used, with
knots at the observation points. To perform the fitting of the liso method, we
need to know a priori whether the covariates are monotonically increasing or
monotonically decreasing. The liso method can be improved by an adaptive
procedure. This improved method is called adaptive liso, and it can be used
without prior knowledge about the monotonicity directions of the functions.
The adaptive liso thus has the advantage over the lower dimensional methods
for monotone regression that it does not need to be provided the monotonicity

directions. Let g}nit for j = 1,...,p be initial liso fits for the functions. Let then
] oo if Ag}n“ =0,
Wy = ﬁ, otherwise,
J

for j =1,...,p. The adaptive liso fit is then given by

2

R R R ' 1 p ) p

(91792’-~-’9p) :a’rgmln(g17g27,,.,gp)§ y —Bo— E gj(X(j)) +A g ij(gj)~
2 =1

j=1

A univariate liso solution is found by a thresholded version of the pool adja-
cent violator algorithm (PAVA) [3], which fits a univariate isotone step function.
The thresholds depend on the regularisation parameter A, which can be chosen
by cross-validation. The thresholded PAVA algorithm is then extended to mul-
tiple dimensions by an iterative backfitting algorithm. The authors show that
with this algorithm, the liso loss converges to its global minimum [18]. How-
ever, if there is no unique solution, the backfitting algorithm is not guaranteed
to converge. For the adaptive liso under unknown monotonicity directions, the
function is decomposed into a sum of a monotonically increasing function and a
monotonically decreasing function, by including both the original covariate and
the sign-opposite covariate as covariates in the liso fit. The estimated effect of
the covariate is then the combination of the estimated monotonically increasing
function, and the estimated monotonically decreasing function.

Even though the adaptive liso does not have to be provided the monotonicity
directions, it does have the disadvantage of not guaranteeing a monotone fit,
but it shrinks the estimated functions towards monotone functions. Both liso
and adaptive liso perform automatic variable selection, as opposed to most of
the classical methods. The resulting estimated functions are step functions.

2.2.2. Monotone splines lasso — Bergersen and others (2014)

The monotone splines lasso method [5] is a recently developed method for mono-
tone regression in high dimensions. With this method, the fitted functions are
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smooth, monotone functions. In applications, it is often more reasonable to as-
sume that the true underlying function is smooth (rather than a step function
as in liso). To apply the monotone splines lasso method, the monotonicity direc-
tions do not need to be known a priori. Consider again the model in equation
(1.1), and assume that the functions g; can be approximated by m I-spline basis
functions of order [, so that

i) =Y Bl (@),
k=1

where I,gl) are the basis functions, B, k = 1,...,m, are the basis coefficients
for covariate j in the spline basis and g; is a spline approximation of g;. As
mentioned, since the I-spline basis functions are monotonically increasing, g;
will be monotone as long as for each j, all the coefficients 3,5, k = 1,...,m,
have the same sign. So B, k = 1,2,...,m, are either all nonnegative, all
nonpositive or all zero. We will use the I-spline basis functions of order two. As
in [5], the I-spline basis functions are centred so that E[g;(x)] = 0, to ensure
unique identification of the functions.

Let Z = (Z1,...,Z,) be the n x pm design matrix with the covariates repre-
sented in the I-spline basis, where Z; is the n x m design matrix for covariate
j, represented in the I-spline basis. Let 8 be the corresponding vector of basis
coefficients. Then consider the minimisation problem

B = argming|ly — ZB]3 + Al1Bllcoop-

where A\ controls the regularisation as before, and a cooperative lasso penalty
is used to ensure that the estimated coeflicients for each covariate are sign-
coherent.

The cooperative lasso [13] is an enhancement of the group lasso, which can be
used to obtain sign-coherent parameter estimates within a group, when fitting
a linear regression model. The cooperative lasso penalty is given by

k
1Bllcoon = 1185, 112 + 115, Il
j=1

where ,B;j = max(By;,,0), By = max(—By,,0) and ¥; denotes the group.

This penalisation scheme favours sign-coherent solutions, in the sense that it
penalises more on sign-incoherent solutions. When the penalty parameter goes
to zero, sign-coherence is no longer guaranteed [13]. So if the regularisation
parameter is small, the solution might be sign-incoherent, resulting in a non-
monotone fit.

In [5], A is chosen by cross-validation. Since the cooperative penalty has
the variable selection property, the monotone splines lasso method can perform
variable selection. If the covariate j is selected by the method, all the parameters
within one group will be nonnegative or nonpositive, provided that the penalty
parameter is large enough.
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The monotone splines lasso can also be improved by an adaptive procedure.

A~ init
This improved method is called adaptive monotone splines lasso. Let ﬂ;m be the
initial fit for the basis coefficients for covariate j, for j = 1,...,p. The adaptive
monotone splines lasso estimates are then given by

p
B = argming|ly — ZB|I3 + A Y w; (11812 + 18 |l2),

=1
where B; are the m basis coefficients corresponding to covariate j, and
~init
0, lfHIB] ||2:O7

wj = —L otherwise.
118, "Il

The authors show that, conditional on some assumptions, the monotone
splines lasso estimator is consistent and has the property of exact support recov-
ery, that is, the set of selected variables is correct with probability converging
to one. See [13] or [5] for details on the assumptions.

The algorithm for solving the cooperative lasso problem is an active set
algorithm combined with a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton with box constraints, or proximal methods, for solving the cooperative
lasso optimisation problem in each step. An R-implementation of monotone
splines lasso is provided by [5], see http://www.mn.uio.no/math/english/
people/aca/glad/r-scripts/mslasso/. It is based on the R-package scoop
for cooperative lasso [13], see http://julien.cremeriefamily.info/scoop.

3. Qualitative overview and comparison of monotone methods

An overview of properties of the various methods is given in Table 1. The meth-
ods are compared through the type of basis functions used, which settings they
can be applied in (p < n and/or p > n), whether they have to be provided
the monotonicity directions for the functions, whether they support other con-
straints than monotonicity, whether there exists an R-package with an imple-
mentation of the method, whether the methods require choices or parameter
values that have to be specified a priori, and the default options, if any, for
the specifications required. If there is an R-package for the method, we have
marked whether the implementation also can handle a generalised response.
The different specifications for the methods are the number of knots for the
spline methods, penalisation parameters and stopping criterion for the boosting
methods.


http://www.mn.uio.no/math/english/people/aca/glad/r-scripts/mslasso/
http://www.mn.uio.no/math/english/people/aca/glad/r-scripts/mslasso/
http://julien.cremeriefamily.info/scoop
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TABLE 1. Overview of properties for the different methods. “Needs direction” means that the method has to be provided the monotonicity direction
for each covariate. “Other shapes” means that the method can also be used to fit functions with other shapes than monotone. “R-package” is whether
or not the method is implemented in an R-package, and “(+ Generalised)” means that the implementation has the possibility for other families
than normal response. “Required specifications” are choices or parameter values that have to be specified a priori. “Default option/method” are the
corresponding default parameter values or methods for determining the parameters. “MS-lasso” is the monotone splines lasso.

Method Basis functions Dimensions Needs Other R-package Required Default option/
direction shapes specifications method
Scar Step functions 1<p<n Yes Yes Yes None -
(+ Generalised)
CPS B-splines p<n Yes No No Number of knots None
Scam P-splines 1<p<n Yes Yes Yes Number of knots None
(+ Generalised) A GCV
MonBoost I-splines 1<p<n Yes Yes No Number of knots 20
Sigmoidal (and p > n) Stopping criterion, AIC
functions 20
Mboost P-splines 1<p<n Yes Yes Yes Number of knots 20
and p > n (+ Generalised) Stopping criterion 10-fold CV
deg. of freedom 4
Adaptive  Step functions 1<p<n, No No Yes A 10-fold CV
liso and p > n
MS-lasso  I-splines 1<p<mn, No No No Number of knots None
and p > n A 10-fold CV
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4. Numerical comparison of monotone methods when 1 < p < n

We here study the performances of all the methods in the classical multiple
setting, where there are less parameters than observations. This is done by
performing simulation experiments with n observations and p parameters. The
methods are compared by estimation performance, prediction performance and
variable selection performance. Though prediction and estimation errors might
often be the primary interests in p < n regression settings, there are also many
settings where variable selection is important, especially when the number of
predictors is large [49] (which can of course also be the case when p < n). Par-
simonious models are easier to interpret and provide better understanding of
the relationship between the response and the explanatory variables [49, 24].
Hence, in most (but not all) of the settings we consider, there are some noise
covariates. The simulation set up is similar to [31]. We draw random vari-

ables v. = (v1,v2,...,0,),u = (ug,ug,...,u,) and w = (wy1, w12, .., Wiy,
.y Wpl, ..., Wpy), Where u;,v; and w;; are drawn from a normal distribution
with mean 0.5 and standard deviation 1, truncated to [0, 1].
We let
wij + tuy .
Lij 1——‘,—15 for VRS o 5
and .
Wi; + tv; .
r;; = —— for o
7 L+t i ¢

where &7 is the set of true covariates. We let the set of true covariates be z1, xo,
3 and 4. The dependence between the covariates is controlled by ¢, and with
t = 0, the covariates are independent. The covariance between two variables is
then 0 if they are not in the same set, and ¢2/(1 + t2) if they are in the same
set. We will for simplicity only consider ¢ = 0 and ¢ = 1, that is, independent
covariates, and covariates with a within-set covariance of 0.5. We let the true
additive regression model be

Yi = 91(wi1) + g2(wi2) + 93(w43) + ga(wia) + €,

where ¢; ~ N(0,0?), and o is chosen to control the signal-to-noise ratio (SNR),
where SNR is the ratio between the standard deviation of the signal and o. The
functions are given as

g1(x) = —exp (2?),
g2(z) = —log(z + 0.1),
g3(x) = 2tanh(2022) + 0.5 exp(z?),

and
2exp(10x — 5
gule) = 2200 2D)
1+ exp(10z — 5)

as in [5]. The functions are centred for the assumption of zero mean.
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The methods that are compared are monotone splines lasso, adaptive mono-
tone splines lasso, adaptive liso, scam, scar, CPS, MonBoost, mboost and classi-
cal linear regression using ordinary least squares. We do not use the liso method
for comparison, since it needs prior knowledge about the monotonicity direc-
tions of the functions, while adaptive liso does not. Scam, scar, CPS, MonBoost
and mboost also need to be provided the monotonicity directions, but since
there are no alternative versions of these methods which do not need this, these
methods will still be included in the comparison. In the classical linear regres-
sion setting, linear functions are fitted. For scam, MonBoost and mboost, the
noise covariates are fitted without any monotonicity assumption. Scar has no
option of no constraint, so we fit the noise covariates with a linear function. CPS
has to be provided with monotonicity directions for all the covariates, so we fit
the noise covariates by monotonically increasing functions. It should be kept
in mind that the results for these rely on additional (and correct) information
about the direction of the active variables, as opposed to the monotone splines
lasso and adaptive liso.

To estimate the optimal penalisation parameter for monotone splines lasso
and adaptive liso, a 10-fold cross-validation scheme is used. The smoothing pa-
rameters for scam are chosen by the default GCV option in the implementation.
For MonBoost, AIC is used as a stopping criterion and the default value A = 20
is used as a penalty parameter for the ridge estimate. For mboost, 10-fold cross-
validation is used as a stopping criterion for the boosting iterations. We use
B-splines of order three for CPS.

In addition, we have to specify the number of knots to use for the spline
methods. MonBoost has an automatic, data-driven selection of basis functions
and hence also the number of knots [44]. We use the default value of the max-
imum number of knots, m = 20. The same is true for mboost, and we also use
the default value of the maximum number of knots, m = 20. For monotone
splines lasso, scam and CPS, we select the number of knots as the minimiser
of a prediction performance measure, as in [41]. For monotone splines lasso,
we use 10-fold cross-validation, for CPS we use leave-one-out cross-validation
and for scam we use the GCV. The reason why we use 10-fold cross-validation
for monotone splines lasso and GCV for scam is because these are the default,
implemented options. For CPS, we use leave-one-out cross-validation, since it is
dependent on having a large n compared to p.

We simulate 500 times and a different design matrix is drawn in each simu-
lation, to cover more situations and to give a fair comparison.

4.1. Estimation performance

We explore situations with large noise (SNR = 2), with less noise (SNR ~ 4),
dependent covariates (¢ = 1) and independent covariates (t = 0). The specific
settings we consider are given in Table 2. The true model is the same in all
settings, except case 6, where one of the functions is replaced by a non-monotone
function, to investigate robustness to the monotonicity assumptions. Cases Oa-
¢ are the only cases with no noise covariates. The number of true covariates
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selected, the number of false covariates selected and the mean squared estimation
errors from the estimated functions to the true functions in the observed points
are recorded for comparisons.

TABLE 2
The different simulation settings for the comparisons of the monotone regression methods.

Name n P N01se. SNR t  Description
covariates
Case 0a 80 4 0 4 0 Strong signal, }ndependent covariates,
no noise covariates
Case Ob 150 4 0 4 0  As case 0a, more observations
Case Oc 50 4 0 4 0  As case Oa, fewer observations
Case la 80 7 3 4 0 Strong signal, independent covariates
Case 1b 150 7 3 4 0  As case la, more observations
Case 1c 150 7 3 4 0  As case la, fewer observations
Case 2a 80 7 3 4 1  Strong signal, dependent covariates
Case 2b 150 7 3 4 1 As case 2a, more observations
Case 3 80 7 3 2 0  Weak signal, independent covariates
Case 4 200 20 16 4 0  Many noise covariates
Case 5 50 1000 996 4 0 High dimensional setting
Case 6 80 7 3 4 0 Non-monotone setting

4.1.1. Case 0: The ideal case

In the first setting, we have a strong signal, independent covariates and no
noise covariates. The mean squared estimation errors for the different methods
are given in Table 3. Considering the estimation errors, we find that the scam
method performs the best for all four functions. MonBoost and mboost perform
second best and adaptive liso performs fourth best. CPS performs the worst.
We also include, for completeness, the results of variable selection where appro-
priate. The methods which perform automatic variable selection do not have
problems with selecting all four variables, as they should. Prediction results are
also available in Table 3, but will be commented on separately in Section 4.2 on
prediction performance for all the cases 0-4.

We investigate how sensitive the results are to the number of observations,
by increasing the number of observations to n = 150 (case Ob) and decreasing
the number of observations to n = 50 (case Oc). The relative ranking was quite
robust to the number of observations, though as expected, all methods perform
worse with less information (cf. Table A2 in Appendix A), and better with
more information (cf. Table Al in Appendix A). As before, scam performs best
in estimation and CPS performs worst, for both settings. There were minor
variations in the relative rankings of the other methods. With n = 150, all the
true covariates are selected for all the methods which perform variable selection.
When n = 50, the adaptive monotone splines lasso performs worse in selecting
all the true covariates.
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TABLE 3
Case Oa. Average number of total true positives, mean squared prediction errors and mean
squared estimation errors for the estimated functions, in the simulation considered in
Section 4.1.1, where n = 80, p =4, SNR x4 and t = 0. Standard deviations are given in
parenthesis. Monotone splines lasso selected 1 interior knot, scam selected 13 interior knots
and CPS selected 9 interior knots. “Lin. mod” is the ordinary least squares fit, “MS-lasso”
is the monotone splines lasso, “Ad. MS-lasso” is the adaptive monotone splines lasso and
“Ad. liso” is the adaptive liso.

Selection Mean squared prediction error
TP

Lin. mod - 0.38 (0.043)

MS-lasso 4.0 (0) 0.28 (0.047)

Ad. MS-lasso  3.99 (0.10) 0.27 (0.052)

Ad. liso 4.0 (0) 0.21 (0.050)

Scam - 0.16 (0.046)
Scar - 0.37 (0.73)
CPS - 0.60 (0.28)
MonBoost 4.0 (0) 0.19 (0.044)
Mboost 4.0 (0) 0.19 (0.037)

Mean squared estimation error

g1 g2 g3 g4
Lin. mod 0.038 (0.012) 0.037 (0.013) 0.12 (0.019) 0.041 (0.011)
MS-lasso 0.024 (0.015) 0.023 (0.014) 0.046 (0.016) 0.052 (
Ad. MS-lasso  0.034 (0.025) 0.020 (0.016) 0.031 (0.014) 0.048 (0.018)
Ad. liso 0.015 (0.0073) 0.018 (0.0076) 0.019 (0.0066) 0.016 (0.0067)

/\/\/\/\
Py

Results with correct information on monotonicity direction provided for each covariate:

Scam 0.0059 (0.0049)  0.0048 (0.0045)  0.0079 (0.0057)  0.0070 (0.0055)
Scar 0.018 (0.0082)  0.020 (0.0084)  0.022 (0.0091)  0.020 (0.0087)
CPS 0.063 (0.053) 0.084 (0.079) 0.13 (0.14) 0.16 (0.15)

MonBoost 0.012
Mboost 0.010

0.0060)  0.014
0.0072)  0.011

0.0063)  0.015 (0.0068)  0.014 (0.0069)
0.0077)  0.019 (0.0081)  0.015 (0.0088)

,\AAA
Py

4.1.2. Case 1: Easy case

In the remaining situations, we will include noise covariates. We first consider
the situation with a strong signal and independent covariates. The number of
true positives, the number of false positives and the estimation errors for the
estimated functions for case la are given in Table 4. Since the scar, scam, CPS
and linear regression method do not perform variable selection, these methods
are not compared through variable selection properties, but we compare them
through mean squared estimation errors of the fitted functions. The 500 fitted
functions for g, with all the different methods are given in Fig 1 and the 500
fitted functions for g3 are given in Fig 2. A box plot of the mean squared
estimation error for g, and g3 is provided in Fig 3, corresponding to Table 4.
We see from Table 4 that all the methods perform well in selection of the true
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covariates. The adaptive monotone splines lasso method outperforms the other
methods in false covariates. Hence in variable selection, the adaptive monotone
splines method seems to perform the best. Adaptive liso performed second best
in terms of selection. The boosting based methods, MonBoost and mboost, select
the most false covariates. Note that even though MonBoost and mboost perform
variable selection, boosting methods are developed for good predictions and not
necessarily capturing the true underlying effects of each covariate. There is no
additional penalty for including a new covariate instead of changing one that is
already included in the boosting algorithm. MonBoost and mboost thus do not
directly penalise the number of covariates included in the model, and including
small contributions of false covariates is not costly for the methods.

Considering the estimation error in terms of mean squared error, we find that
the estimated functions with scam are a lot closer to the true functions than
the estimated functions with any of the other methods. Second best are mboost
and MonBoost, which perform equally well. Adaptive liso performs fourth best.
As before, CPS has the largest estimation errors. We see from Figs 1 and 2 that
all the monotone regression methods are good at recovering the true shapes of
g2 and g3, except the CPS method, which clearly performs the worst among the
monotone methods. We also observe that the estimated functions with scam are
the most accurate. This can also be seen in Fig 3.

We investigate how sensitive the results are to the number of observations,
by increasing the number of observations to n = 150 (case 1b) and decreasing
the number of observations to n = 50 (case 1lc). The estimation errors for
n = 150 are smaller than the estimation errors for n = 80 (cf. Table A3 in
Appendix A), and larger for n = 50 (cf. Table A2 in Appendix A). The relative
ranking was again quite robust to the number of observations. Scam performs
best in estimation and CPS performs the worst. There are minor variations in
the relative ranking for the other methods. For n = 150, all the methods are
good at selecting the true covariates, and adaptive monotone splines lasso selects
fewest false covariates. For n = 50, adaptive monotone splines lasso performs
worse in selection of true covariates, and hence adaptive liso performs the best
in selection. MonBoost and mboost select the most false covariates.

4.1.3. Cases 2-4: Difficult cases

Case 2. Strong signal, dependent covariates The results for case 2a are
given in Table A5 in Appendix A. When it comes to variable selection when
we have SNR = 4 and dependent covariates (¢ = 1), adaptive liso seems to be
the best method. It selects all the true covariates, and has few false covariates.
Adaptive monotone splines lasso selects no false covariates, but it has problems
selecting all the true covariates. Monotone splines lasso performed better than
adaptive monotone splines lasso, in that it was better at selecting the true
covariates, while still selecting relatively few false covariates. Again, MonBoost
selects the most false covariates, but as noted before, it is not really penalised
for including more covariates in the same way as the other methods. Mboost
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Fic 1. Case 1a. Estimated functions for ga in the simulation considered in Section 4.1.2 with
n=280,p="7, SNR=~4 and t = 0, for all the different methods. The true function is given
in black. Monotone splines lasso selected 1 interior knot, scam selected 12 interior knots and
CPS selected 3 interior knots. “MS-lasso” is the monotone splines lasso and “Ad. MS-lasso”
is the adaptive monotone splines lasso.

also selects quite many false covariates, but performs better than MonBoost.
When it comes to estimation error, scam outperforms all the other methods,
MonBoost performs second best, while scar performs third best. CPS has the
largest estimation errors. Note that the estimation errors are actually smaller
here than in the setting with independent covariates, for all methods except
mboost.

If n is increased to 150 (case 2b), we get the results in Table A6 in Ap-
pendix A. All the methods manage to capture the true model well here, except
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Fic 2. Case 1a. Estimated functions for gs in the simulation considered in Section 4.1.2 with
n=280,p=7, SNR=~4 and t = 0, for all the different methods. The true function is given
in black. Monotone splines lasso selected 1 interior knot, scam selected 12 interior knots and
CPS selected 3 interior knots. “MS-lasso” is the monotone splines lasso and “Ad. MS-lasso”
is the adaptive monotone splines lasso.

from MonBoost, which selects too many false variables. Mboost does not have
a problem with false covariates in this setting. Adaptive monotone splines lasso
selects no false covariates, and adaptive liso also selects almost no false covari-
ates. The relative estimation performance of the methods was quite robust to
increased sample size.

Case 3. Weak signal, independent covariates In Table A7 in Appendix A,
we see that when we have SNR ~ 2 and ¢ = 0, all the methods are good at
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TABLE 4
Case 1a. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions in the simulation considered
in Section 4.1.2, where n =80, p =7, SNR~ 4 and t = 0. Standard deviations are given in
parenthesis. Monotone splines lasso selected 1 interior knot, scam selected 12 interior knots
and CPS selected 3 interior knots. “Lin. mod” is the ordinary least squares fit, “MS-lasso”
is the monotone splines lasso, “Ad. MS-lasso” is the adaptive monotone splines lasso and
“Ad. liso” 1is the adaptive liso.

Selection Mean squared prediction error
TP FP

Lin. mod - - 0.38 (0.045)

MS-lasso 4.0 (0) 0.15 (0.40) 0.28 (0.047)

Ad. MS-lasso  3.99 (0.1) 0.004 (0.089) 0.26 (0.048)

Ad. liso 4.0 (0) 0.098 (0.32) 0.21 (0.046)

Results with correct information on monotonicity direction provided for each covariate:

Scam - - 0.17 (0.047)
Scar - - 0.31 (0.29)
CPS - - 0.46 (0.16)
MonBoost 4.0 (0) 2.97 (0.27) 0.21 (0.046)
Mboost 4.0 (0) 1.24 (0.80) 0.19 (0.038)

Mean squared estimation error

g1 g2 g3 g4
Lin. mod 0.038 (0.012) 0.038 (0.013) 0.12 (0.019) 0.040 (0.011)
MS-lasso 0.025 (0.016) 0.023 (0.014) 0.046 (0.016) 0.051 (0.016)
Ad. MS-lasso  0.034 (0.024) 0.021 (0.016) 0.031 (0.014) 0.047 (0.017)
( ( (

Ad. liso 0.015 (0.0065)  0.018 (0.0070)  0.019 (0.0069)  0.016 (0.0065)

Results with correct information on monotonicity direction provided for each covariate:

Scam 0.0069 (0.0061)  0.0048 (0.0045)  0.0083 (0.0051)  0.0071 (0.0056)
Scar 0.019 (0.0090)  0.021 (0.0083)  0.023 (0.0087)  0.021 (0.0090)
CPS 0.045 (0.049) 0.081 (0.080) 0.074 (0.085) 0.12 (0.13)

MonBoost 0.013 (0.0063)  0.015 (0.0071)  0.016 (0.0081)  0.014 (0.0071)
Mboost 0.011 (0.0077)  0.012 (0.0080)  0.020 (0.0089)  0.016 (0.0091)

,\AAA
Py

selecting the true covariates. Adaptive monotone splines lasso outperforms the
other methods when it comes to false covariates (but also selected slightly fewer
true covariates). Again, mboost and MonBoost select the most false covariates
and a lot more than the other methods. When considering estimation error,
we find again that scam outperforms all the other methods in estimation error,
while mboost performs second best and MonBoost third best. CPS has the
largest estimation error among all the methods.

Case 4. Many noise covariates We also consider a setting with more noise
covariates, so n = 200, p = 20, SNR =~ 4 and ¢t = 0. The results are given
in Table A8 in Appendix A. In this setting, MonBoost, mboost and monotone
splines lasso have problems with false covariates. Adaptive liso performed the
best in terms of selection. In terms of estimation error, scam again performs the
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Fic 3. Case 1a. Mean squared estimation error for gz and g3, in the 500 simulations consid-
ered in Section 4.1.2 withn =80, p =7, SNR ~ 4 and t = 0, for all the different methods.
“MS” is the monotone splines lasso, “AMS” is the adaptive monotone splines lasso, “MonB”
is the MonBoost method and “Lin” is the linear model.

best, with MonBoost performing second best and adaptive monotone splines
lasso third best. Adaptive liso performs better than monotone splines lasso,
mboost, scar, the linear method and CPS.

4.2. Prediction performance

To compare the methods, their prediction performances are also studied. This
is done by generating 500 new observations, (X"V y™®¥) from the same dis-
tribution as the training data, and estimating the prediction error, PE, as

500

1
PE = new __ osnew)2
=00 ;:1(% 4)%
where gV are the predicted values of y*V, using the fitted models. We draw

500 such sets of size 500, and estimate the mean prediction error over all the
sets, refitting the model in each replication. The true underlying model is the
same as before.

The prediction errors for all the settings are given in Tables 3, A1, A2, 4, A3,
A4, A5, A6, A7 and AS8. Box plots with the prediction errors for the different
methods are given in Fig 4, for the case la (easy case) setting SNR ~ 4, t = 0,
n = 80 and p = 7. We see from Tables 3, A1, A2, 4, A4, A5, A6 and Fig 4 that
in the settings with SNR ~ 4, ¢ = 0, n = 80 and p = 4 (case 0a), SNR = 4,
t =0,n = 150 and p = 4 (case Ob), SNR ~ 4, ¢t = 0, n = 50 and p = 4
(case Oc), SNR ~ 4, ¢ = 0, n = 80 and p = 7 (case 1la), SNR = 4, ¢t = 0,
p="Tand n = 150 (case 1b), SNR =~ 4, ¢ = 0, n = 50 and p = 7 (case lc),
SNR ~ 4,t =1, n =80 and p = 7 (case 2a) and SNR =~ 4, t = 1, n = 150
and p = 7 (case 2b), scam is best at prediction for all cases. In most of these
settings, it is closely followed by mboost and MonBoost. Adaptive liso seems to
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Fic 4. Case 1a. Mean squared prediction error in the 500 simulations considered in Sec-
tion 4.1.2 with n = 80, p = 7, SNR =~ 4 and t = 0, for all the different methods. “MS” is
the monotone splines lasso, “AMS” is the adaptive monotone splines lasso, “MonB” is the
MonBoost method and “Lin” is the linear model.

overall perform fourth best. Monotone splines lasso and its adaptive version also
perform overall better than scar, the linear method and CPS. CPS performs the
worst among the methods. In the setting with more noise given in Table A7, so
SNR ~ 2, t =0, n = 80 and p = 7 (case 3), mboost performs best in terms of
prediction, scam performs second best, while adaptive monotone splines lasso
performs third best in this setting. Adaptive liso also outperforms MonBoost
here. Scar performs the worst, and CPS performs second worst. From Table A8,
we see that when there are more noise covariates (case 4), the prediction error
is smallest for adaptive monotone splines lasso, closely followed by mboost,
monotone splines lasso and adaptive liso. MonBoost and scam only have slightly
larger prediction errors. So the prediction error is slightly smaller with adaptive
monotone splines lasso when there are many noise covariates, but when there
are few noise covariates, scam performs the best.

5. Case 5: The high dimensional case

The only methods available for additive monotone regression when p > n are, as
mentioned, liso, monotone splines lasso and mboost. An extensive comparison
of liso and monotone splines lasso when p > n is given in [5]. However, since
the mboost method is more recent, it was not included in that comparison. We
therefore perform a simulation study with a similar set-up as before (the easy
case), with n = 50, p = 1000, SNR ~ 4, t = 0. The true underlying model is the
same as before, so we have four true covariates and 996 noise covariates.

The results in this setting are given in Table 5. We see that in selection, mono-
tone splines lasso selects the most true positives, followed by adaptive monotone
splines lasso. Adaptive liso selects fewest true positives. In false positives, adap-
tive monotone splines lasso outperforms all the other methods, with adaptive
liso performing second best. Mboost and monotone splines lasso select a lot more
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TABLE 5
Case 5. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions, in the simulation
considered in Section 5, where n = 50, p = 1000, SNR =~ 4 and t = 0. Standard deviations
are given in parenthesis. The number of interior knots selected by the monotone splines
lasso method was one. “MS-lasso” is the monotone splines lasso, “Ad. MS-lasso” is the
adaptive monotone splines lasso and “Ad. liso” is the adaptive liso.

Selection Mean squared prediction error
TP FP

MS-lasso 3.83 (0.51) 15.88 (10.38)  0.65 (0.24)

Ad. MS-lasso  3.65 (0.63) 3.55 (6.18) 0.49 (0.25)

Ad. liso 3.07 (0.95) 5.21 (3.51) 0.79 (0.43)

Results with correct information on monotonicity direction provided for each covariate:

Mboost 3.30 (1.06) 15.24 (20.70)  0.87 (0.42)

Mean squared estimation error

g1 92 93 94
MS-lasso 0.090 (0.061)  0.094 (0.073)  0.13 (0.079) _ 0.13 (0.083)
Ad. MS-lasso  0.085 (0.074)  0.064 (0.077)  0.068 (0.064)  0.075 (0.070)
Ad. liso 0.13 (0.085)  0.13 (0.12) 0.14 (0.14) 0.091 (0.12)

Results with correct information on monotonicity direction provided for each covariate:

Mboost 0.14 (0.076)  0.17 (0.12) 0.20 (0.15) 0.19 (0.16)

false covariates. The method performing best in selection is adaptive monotone
splines lasso. Considering the mean squared errors of the estimated functions,
adaptive monotone splines lasso performs the best, and mboost the worst. When
considering prediction errors, adaptive monotone splines lasso also performs the
best, while mboost performs worst. Hence, the mboost method performs worse
than the other high dimensional methods, and we refer to the thorough com-
parison of monotone splines lasso and adaptive liso in [5] for performance of the
methods in other settings, where it is concluded that the adaptive monotone
splines lasso performs the best in most high dimensional settings.

6. Case 6: Robustness to monotonicity assumptions

To test the robustness of the methods to violation of the monotonicity assump-
tions, we perform a simulation where the simulation set-up and model are the
same as in the previous settings, but g4 is replaced by a non-monotonous func-
tion g4p, such that,

yi = g1(xi1) + g2(xi2) + g3(wi3) + gap(wia) + €,
where g1, go and g3 are the same as before, and

gap(x) = 10(z — 0.5)%.
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For scam, scar, MonBoost, mboost and CPS, we assume a positive mono-
tonicity direction for g4p. The results are given in Table A9 in Appendix A. All
the methods perform well in selecting the true covariates. As before, MonBoost
and mboost are inferior in the selection of false covariates. Adaptive monotone
splines lasso selects no false covariates, and adaptive liso and monotone splines
lasso also select few false covariates, however more than in the setting with only
monotone effects (case la).

Considering estimation error for the three monotone functions, adaptive liso
performs the best, mboost performs second best and CPS performs third best.
The linear method has the largest estimation errors and second worst is scar.
Considering the estimation error for g45, adaptive liso again performs best, fol-
lowed by adaptive monotone splines lasso and monotone splines lasso. These
three methods are clearly best at estimating g45, and hence most robust to viola-
tion of the monotonicity assumption. This is also seen in Fig A1 in Appendix A,
where the estimated functions for all the methods are given. The estimated func-
tions with monotone splines lasso, adaptive monotone splines lasso and adaptive
liso are not monotone, while the other methods have fitted monotone functions.
Hence, the fact that these methods do not guarantee a monotone fit can also
be beneficial, since it makes them more robust to violation of the monotonicity
assumptions.

Comparing the prediction errors in this setting, we find that adaptive liso and
(adaptive) monotone splines lasso clearly perform much better than the other
methods when the monotonicity assumption is violated. Adaptive liso had the
smallest prediction error.

7. Boston housing data (p < n)
7.1. Data description

We now try out the different methods for additive monotone regression using the
well known Boston housing data set. The data consists of a response variable
which is the house value, and different explanatory variables. This classical
data set is from [21] and is available in the R-library MASS. It consists of
n = 506 observations, 13 covariates and the house value (response). We will
consider the explanatory variables crime (crime rate by town), zn (proportion
of a town’s residential land zoned into lots greater than 25 000 square feet),
indus (proportion of non-retail business acres per town, serves as a measure
of amount of industry), NOX (a pollution variable representing air quality as
the concentration of nitrogen oxides), the mean number of rooms, age (the
proportion of owner units built prior to 1940), distance to employment centres,
rad (index of accessibility to radial highways), tax (the cost of public services),
pupil-teacher ratio and the proportion of the population that is considered as
lower status. We will not consider the covariate which is the proportion of the
population being black, since this covariate is expected to have a parabolic
effect [21] (and we focus only on monotone effects). In addition, an indicator
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variable for whether or not it is a riverside location is given in the data set,
but we will only consider numerical covariates. We will thus consider eleven
predictors.

The methods that are used are monotone splines lasso, adaptive monotone
splines lasso, adaptive liso, scam, scar, CPS, MonBoost and mboost. The data
set was also used with adaptive liso in [18].

7.2. Monotonicity directions and parameter choices

For scam, scar, CPS, MonBoost and mboost, we have to provide the monotonic-
ity directions. In [21], they propose that crime should have a negative effect on
the house value, zn should have a positive effect, indus should have a negative
effect, the mean number of rooms should have a positive effect, the distance
should have a negative effect, rad should have a positive effect, tax should have
a negative effect and the pupil-teacher ratio should have a negative effect. In
addition, we assume that NOX and the proportion of the population having
lower status will have a negative effect on the house value. For age, we do not
know the monotonicity direction (it may well be that the relationship is not
even monotone), so with scam, MonBoost and mboost we do not use any shape
constraint on age, while we set a linear shape constraint on age with scar, and
we assume a decreasing effect for CPS (since the univariate correlation between
age and house value is negative, and we have to make a choice). CPS would not
estimate the effect of rad, because there were not enough unique observations.
Rad is thus left out as a covariate for the CPS method.

The optimal tuning parameters for monotone splines lasso, adaptive mono-
tone splines lasso and adaptive liso are estimated by 10-fold cross-validation.
The smoothing parameter for scam is chosen by the default GCV option. For
monotone splines lasso, scam and CPS, the number of knots minimising the
10-fold cross-validation, GCV and leave-one-out cross-validation is selected, re-
spectively. This results in 14 interior knots for monotone splines lasso, 22 interior
knots for scam and 3 interior knots for CPS. For MonBoost, I-splines of order
two with 20 knots are used to estimate the functions, A = 20 is used as a penalty
parameter for the ridge estimate and AIC is used as a stopping criterion (all
default options). For mboost, 20 knots are used to estimate the functions and
10-fold cross-validation is used as a stopping criterion (default options).

7.3. Results

The estimated effects of the different covariates are given in Figs 5 and 6. All
the variables are centred. The estimated effects of crime and NOX with adaptive
liso are not monotone, which is also noted for crime in [18].

The estimated effects of crime, the mean number of rooms, the distance, tax
and the proportion of lower status clearly deviate from linear functions, while
the pupil-teacher ratio seems to be well approximated by a linear function.
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The estimated functions with the different methods are quite similar for the
variables that were selected by a majority of the methods. The estimated effects
of scam deviate most from the other methods, and scam seems to be more
sensitive to extreme/influential observations. This is especially prominent in
the estimated effects of NOX, mean number of rooms, rad and tax. CPS and
MonBoost also seem to be affected by influential observations, which can be
seen in the estimated effects of for instance crime, indus, NOX and proportion
of lower status for MonBoost and zn and indus for CPS.

We know from the previous simulation experiments that the adaptive mono-
tone splines lasso is good at not selecting false covariates. We therefore trust
that all covariates selected by the adaptive monotone splines lasso method are
important covariates for explaining the house value. We thus believe that crime,
the mean number of rooms, distance, tax, pupil-teacher ratio and proportion of
lower status should be kept in the final model. Adaptive liso only selects one
more variable than adaptive monotone splines lasso, NOX, which is selected by
all the methods except adaptive monotone splines lasso. However, the estimated
function with adaptive liso is very non-monotone and not very reasonable, so we
do not believe that this covariate is important for predicting the house value.
Mboost and monotone splines lasso selects one additional variable, which is rad.
However, the estimated effects of rad with mboost and monotone splines lasso
are very small. MonBoost selects all the covariates, which is in accordance with
our simulation experiments, where it was found that MonBoost selected more
false positives than the other methods.

7.4. Prediction performance

In order to assess prediction performance of the additive monotone regression
methods on the Boston housing data, we randomly split the data into a test set
and a training set, and use the model fitted on the training set to predict the
housing values in the test set. We let the training set consist of two thirds of
the data (339 observations) and the test set consist of the remaining one third
(167 observations). The splitting into a training set and a test set is repeated
100 times, to evaluate different alternative subsets of the data, in order to avoid
sensitivity to the particular split. For monotone splines lasso, scam and CPS,
the number of knots minimising the 10-fold cross-validation, GCV and leave-
one-out cross-validation, respectively, is selected for every training set partition.
The prediction variables, assumed monotonicity directions and different param-
eter and model choices are the same as before. Monotone splines lasso selected
14.9 (3.6) knots on average, scam selected 21.5 (4.6) knots on average and CPS
selected 2.2 (0.6) knots on average, where the standard deviations are given in
parentheses.

The prediction errors for the various methods are given in Table 6. For scar,
approximately half of the time the model fitting resulted in an error message, so
we had to run more iterations in order to obtain 100 training/test set replicates.
We also encountered some issues with scam, with some fits (nine out of the 100
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repetitions) resulting in very large prediction errors, possibly due to convergence
issues. In these situations, we refitted the model by restricting the number of
knots to be maximum 10, solving the problem of extreme predictions. Scam thus
seems more robust and stable with fewer number of knots. MonBoost obtained
the smallest prediction errors, scam performed second best, adaptive liso per-
formed third best and monotone splines lasso performed fourth best. As in the
simulation settings, scar and CPS performed the worst. Note however that the
comparison is not completely fair, since we have removed the extreme results
for scam. If we had included these, scam would have been judged to perform the
worst among the methods, with a mean prediction error of 31.6 and a standard
deviation of 84.9.

TABLE 6
Prediction errors in the Boston housing data example in Section 7. “MS-lasso” is the
monotone splines lasso, “Ad. MS-lasso” is the adaptive monotone splines lasso and “Ad.
liso” is the adaptive liso.

Method Mean squared prediction error  Standard deviation
MS-lasso 17.4 4.5
Ad. MS-lasso  19.9 4.2
Ad. liso 16.1 3.7

Results with information on monotonicity direction provided for each covariate:

Scam 14.8 3.3
Scar 20.5 4.7
CPS 26.4 6.2
MonBoost 14.0 3.3
Mboost 18.2 4.7

8. Additional remarks
8.1. Monotone regression hypersurfaces

A more general monotone regression model is the model
Yi=m(za,...,zp)+e ((=1,...,n),

where m is a smooth, monotone function of the p predictors. The function m
is then a monotone hypersurface of the predictors. The additive monotone re-
gression model considered in this study is a special case of this model. This
model has been less studied than the additive monotone regression model, but
some methods for fitting this more general, monotone model have been pro-
posed. Dette and Scheder [14] develop a method for the general monotone re-
gression model, where they first fit a non-parametric unconstrained estimate for
m, and then use successive one-dimensional isotonisation procedures, resulting
in a (strictly) monotone hypersurface of the predictors. An even more general
method for fitting the general monotone regression model, which can also be
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used for other shape constraints than monotonicity, is developed in [16], build-
ing on non-parametric kernel regression. There are also some Bayesian methods
for the general monotone model, mentioned in the following section.

8.2. Bayesian methods for monotone regression

The monotone regression methods we have considered in this overview are all
non-Bayesian methods. However, it should be noted that there exist also vari-
ous Bayesian methods for multiple monotone regression models. A multivariate
monotone regression method using Bayesian Additive Regression Trees is pro-
posed in [12], where the relationship between one or more predictors and the
outcome is assumed to be a monotone function of the predictor(s). A Bayesian
monotone regression method for estimating monotone surfaces of predictors us-
ing Gaussian process projections is proposed in [30]. In [42], they use a Bayesian
estimation procedure to fit a monotone regression model where the regression
function is a general monotone function of the covariates. The function is esti-
mated by a piecewise constant regression surface. These three Bayesian regres-
sion methods estimate monotone regression hypersurfaces, without any addi-
tivity assumption. Bornkamp and Ickstadt [7] develop a Bayesian method for
univariate monotone regression, and the method is generalised to the multi-
variate setting in [8], for an additive monotone regression model. Meyer and
others [38] propose a Bayesian approach for fitting partially linear models with
restrictions on the non-linear covariates, for instance monotonicity. This is done
by fitting shape-restricted splines. In [9], a method for additive monotone regres-
sion using Bayesian P-splines is proposed. More examples of Bayesian methods
for monotone regression can be found in [42] and [38], but as also noted in [42],
most of those methods seem to be developed for the univariate case.

8.3. Partially linear monotone models

In additive partially linear models, some covariates are assumed to have a linear
effect on the response, and the rest are assumed to have a non-linear effect on
the response. Let y be the observations of the response. Let X denote the design
matrix for the covariates assumed to have a linear effect on the response, and
Z the design matrix for the covariates assumed to have a non-linear effect on
the response. Let d; be the number of covariates with linear effect, and dy the
number of covariates with non-linear effect. Then the additive partially linear
model is

da
Y =XB+> g;(ZY)+e,
j=1

where Z) is the jth column of Z and g1, g, . . ., gd, are unknown, smooth func-
tions. Again it is assumed that E[g;(x)] = 0 for all j, for unique identification.

In the p < n setting, there are many methods for estimating partially linear
models with no shape constraints on the non-linear effects, see for instance [27]
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for an overview. There are also some existing methods which can be used to
fit additive partially linear models in the high dimensional setting. Methods
for fitting additive partially linear models with variable selection for the linear
covariates are developed in [32] and [20]. In [15] and [35], methods for fitting
the additive partially linear model with variable selection in both the linear and
the non-linear covariates are proposed. A method for additive partially linear
models with grouped linear covariates performing automatic variable selection
in the linear covariates is proposed in [46].

In some situations, it might be reasonable to assume that the non-linear func-
tions in an additive partially linear model are monotone. Out of the methods
we have considered in this paper, scam, scar and mboost can be used to fit ad-
ditive partially linear monotone models. As before, mboost performs automatic
variable selection in both the linear and the non-linear covariates.

The ideas of monotone splines lasso can be extended to the partially linear
monotone model. The method performs variable selection simultaneously in
both the linear and the non-linear variables. I-splines of order [ are used to
represent the monotone functions, with m basis splines for each function, so g;
is approximated by

~ - l
gi(@) =l (@),
k=1

where ;i are the coefficients for covariate j in the spline basis and g; is a
spline approximation of g;. Let now X' = (X,Z’) be the design matrix with
the linear covariates as the first d; columns, and the monotone non-linear co-
variates represented in the I-spline basis in the last dy - m columns (Z’). Let
¢ = (B,7), where B is the vector with linear parameters, and 4 is the vector of
basis coefficients. Let &;, j = 1,...,d1,d1 +1,...,d; + d2, denote the groups
of the covariates. Then ¢g, = f; for j = 1,...,d1 and ¢y, = (V;1,--.,Vjm) for
j=di+1,...,dy + ds. Consider the problem

¢ = argming|ly — X'8||3 + A[¢]|coop-

Note that there is one, common penalty parameter, A, for the linear and
non-linear components. The penalty term is

dy+da
Wlleop = 3 5116 12 + 151165, I,
j=1

where, as in Section 2.2.2, ¢§j = max(dy,,0) and by, = max(—dy,,0). Weights
on the penalty terms are now used, since the group sizes are not equal. The stan-
dard group lasso weights can be used, namely square roots of group sizes. Note
that for the linear terms, the penalty reduces to an L; penalty (as in lasso). As
before, A is a tuning parameter controlling the regularisation, and can be chosen
by for instance cross-validation. It follows by properties of the cooperative lasso
that, under appropriate assumptions, the estimated parameters are consistent,
and the method will, with probability converging to one, select the true model.
See [13] for details on the assumptions.
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In the extension of the monotone splines lasso to the partially linear setting,
and for scam, scar and mboost, we assume that we know a priori which covariates
have a linear effect on the response, and which covariates have a monotone
non-linear effect. However, as noted in [29], such knowledge is rarely available,
especially in a high dimensional setting. In [48], a method for separating the
covariates into covariates with linear effects and general non-linear effects is
developed, with a focus on the p < n case. Methods which separate the covariates
into linear and non-linear effects which can be used for the high dimensional
case are proposed in [29] and [33]. An idea for future work is thus to combine
this with a monotone shape restriction on the non-linear functions.

This extension of the monotone splines lasso method to the partially linear
monotone model and mboost are then, to our knowledge, the only two meth-
ods which can be used in the p > n case, to fit a partially linear monotone
model. Since genetic effects on phenotypes are often assumed to be monotone
(as in [34]), one application for the model is the setting where the predictors
are both gene expressions and clinical covariates. The gene expressions could
enter the non-linear, monotone component, and the clinical covariates could
enter the linear component. Note that mboost would have to be provided the
monotonicity directions for the different genes a priori.

9. Discussion and recommendations

We conclude that among the methods developed for the classical regression set-
ting (p < n), scam performed the overall best in our simulation experiments.
Scam had the smallest estimation errors, and the smallest prediction errors (but
mboost and MonBoost only performed slightly worse in prediction). However,
in the Boston housing data example, we found that scam seemed to be sen-
sitive to influential observations, and there were also some tendencies for this
with MonBoost and CPS. In the Boston housing data application, even though
scam performed well in prediction on most of the training/test splits, scam also
sometimes resulted in extremely large prediction errors.

Among the methods developed for the high dimensional data setting, the
adaptive monotone splines lasso performed the best in selection in the classi-
cal setting. Adaptive liso outperformed monotone splines lasso in estimation.
However, the (adaptive) monotone splines lasso method does have the advan-
tage over adaptive liso that the estimated functions are smooth. MonBoost and
mboost performed worse than adaptive liso and (adaptive) monotone splines
lasso in variable selection, selecting too many false covariates.

We found that scam outperformed all the other methods in estimation, and
also performed well in prediction. It is not surprising that scam outperforms the
adaptive liso and monotone splines lasso, since scam is designed for the p < n
setting (and, in addition, it is provided with the monotonicity directions for the
functions). Since MonBoost and mboost are designed for good predictions, it is
also not surprising that the estimation errors are smaller for scam than for the
boosting methods. It is, however, slightly surprising that the boosting methods
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do not outperform scam in prediction. The reason why scam performs better
than scar and CPS might be due to the additional smoothing penalty term for
scam, which is not present for scar and CPS.

We have seen that scam outperforms the adaptive monotone splines lasso
and the adaptive liso in the classical low dimensional setting, given the true
monotonicity directions of each variable. Monotone splines lasso and adaptive
liso have the advantage of performing automatic variable selection, which scam
does not do. They also have the advantage that they do not need to be provided
the monotonicity directions of the functions, as opposed to scam. This also
makes the comparisons unfair for monotone splines lasso and adaptive liso, since
scam is provided with more information about the functions. However, scam and
all the other methods except CPS, monotone splines lasso and liso, are able to fit
models where some of the functions are monotone, while the rest can have other
or no shape constraints, making them more flexible. We also tried providing
scam with the wrong monotonicity direction for x; (for the case la and the case
2a settings). The estimation errors for the other functions were much larger
when scam was provided with wrong information, but still smaller than the
estimation errors for monotone splines lasso. The prediction errors were larger
(results not shown here). Scam outperformed the adaptive monotone splines
lasso and adaptive liso in estimation error in all the simulation experiments,
except the non-monotone setting (case 6). Monotone splines lasso and adaptive
liso have the disadvantage that they do not guarantee a monotonic fit, while the
estimated functions with scam will always be monotone. This does however make
the methods more robust to violation of the monotonicity assumption. In the
Boston housing data example, we found that adaptive monotone splines lasso
and adaptive liso are more robust to influential observations than scam. When
considering prediction error, scam performed better than adaptive monotone
splines lasso and adaptive liso when we did not have many noise covariates, but
when we increased the number of noise covariates, (adaptive) monotone splines
lasso (and adaptive liso) performed slightly better than scam.

So even though the monotone splines lasso and liso methods did not out-
perform the classical methods in the lower dimensional setting, they are still
a contribution also to the tools for performing analysis when p < n. To our
knowledge, there are no other methods for monotone regression than monotone
splines lasso and adaptive liso which properly perform variable selection. The
mboost and the MonBoost methods do have the variable selection property, but
as we have seen, they often include contributions from false covariates. Though
prediction error and estimation error might often be the primary interests in
classical regression settings, there are many situations where variable selection
is also of importance and parsimony is often desirable. The simpler the model,
the easier it is to interpret and understand the relationship between the response
and the explanatory variables [49, 24]. Parsimony is especially important when
the number of predictors is large (for instance p in the order of 100 and n in
the order of 1000) [49]. In addition, measuring variables can be both time and
resource demanding, and variable selection can be used to help inform clinicians
about which variables they have to collect [19]. If a variable can be omitted, it
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should therefore not be included. Hence, when variable selection is of interest,
we recommend using adaptive monotone splines lasso.

Most of the methods considered require the monotonicity directions of the
functions. However, we do not always have such information. Monotone splines
lasso and adaptive liso can be applied without knowing the monotonicity di-
rections a priori, as opposed to all the classical methods. This is particularly
important for instance in settings with potential confounding effects, or when
testing a hypothesis. If the aim of a study is to test the effect of a new treat-
ment on an outcome, assuming a positive or negative effect is a source of bias.
In addition, the treatment might interact with other (measured or unmeasured)
covariates, resulting in uncertainty about the direction of the effect. Hence, when
the direction of the effect is unknown, or one does not want to provide prior
information about the direction, (adaptive) monotone splines lasso or adaptive
liso should be used.

In the high dimensional setting, we found that adaptive monotone splines
lasso performed the best in terms of selection, estimation and prediction in the
setting we studied. Mboost was clearly inferior, and we thus refer to the thor-
ough comparison of monotone splines lasso and adaptive liso in [5], where they
conclude that adaptive monotone splines lasso is the best method for mono-
tone regression in most high dimensional settings. Note however that mboost is
more flexible, since it can fit other shape constraints than monotone functions.
Hence, in settings where some of the variables are assumed to have a monotone
effect and other variables are assumed to have other shapes, mboost might be a
good alternative. Mboost does however need directions for the various monotone
variables, which can be difficult in settings with many predictor variables.

Some of the spline based methods we have presented, require the number of
knots to be specified a priori (e.g. scam, monotone splines lasso and CPS). In
the comparisons in this paper, we selected the number of knots based on opti-
misation of a prediction error measure. This was done to make the comparison
of the methods more fair. In practice, one might however want to choose the
number of knots without using information in the data. A greater flexibility for
the function is obtained the more knots used to fit it. However, the more data
points there are to estimate each spline, the better will each spline estimate
be [40]. In addition, if too many knots are used, the estimated functions might
overfit the data. Both scam and monotone splines lasso include penalty terms,
which make them less sensitive to the number of knots. In the case of I-splines,
Ramsay [40] argues that it is more important to fit each curve well, since there
is little to gain in having many knots if the function is poorly estimated between
the knots. He also claims that in practice, there is often enough flexibility in the
curve with just a single knot, and thus not many interior knots are needed. This
is in accordance with monotone splines lasso often selecting one interior knot
in our simulations. Meyer [36] argues that when there are shape constraints on
the functions (such as monotonicity), then the restricted regression splines are
robust to the number of knots.
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Appendix A: Tables and figures

In this appendix, various tables from different simulation experiments are re-
ported. Table A1l contains the results for the setting with no noise covariates
and n = 150 (case Ob), while Table A2 contains the results for the setting with
no noise covariates and n = 50 (case Oc), belonging to Section 4.1.1. Table A3
contains the results for the setting with strong signal and independent covariates
with n = 150 (case 1b), while Table A4 contains the results for the setting with
strong signal, independent covariates and n = 50 (case 1c), belonging to Sec-
tion 4.1.2. Table A5 contains the results from the simulations with dependent
covariates when n = 80 (case 2a). Table A6 contains the results from the simula-
tions with dependent covariates when n = 150 (case 2b). Table A7 contains the
results from the simulations with independent covariates and large noise (case
3). Table A8 contains the results from the simulation setting with many noise
covariates (case 4). These tables belong to Section 4.1.3. Table A9 contains the
results from the simulation setting with a non-monotone covariate effect from
Section 6, and Fig Al contains the estimated non-monotone function, g4, for
all the methods.
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TABLE Al
Case 0b. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions, in the simulation
considered in Section 4.1.1, with n = 150, p =4, SNR =~ 4 and t = 0. Standard deviations
are given in parenthesis. Monotone splines lasso selected 1 interior knot, scam selected 13
and CPS selected 17. “Lin. mod” is the ordinary least squares fit, “MS-lasso” is the
monotone splines lasso, “Ad. MS-lasso” is the adaptive monotone splines lasso and “Ad.
liso” is the adaptive liso.

Selection Mean squared prediction error
TP

Lin. mod - 0.37 (0.032)

MS-lasso 4.0 (0) 0.17 (0.028)

Ad. MS-lasso 4.0 (0) 0.17 (0.028)

Ad. liso 4.0 (0) 0.17 (0.028)

Scam - 0.14 (0.026)
Scar - 0.21 (0.19)
CPS - 0.47 (0.36)
MonBoost 4.0 (0) 0.16 (0.026)
Mboost 4.0 (0) 0.16 (0.023)
Mean squared estimation error
91 92 g3 94
Lin. mod 0.037 (0.0082) 0.037 (0.0086) 0.12 (0.013) 0.040 (0.0079)
MS-lasso 0.0066 (0.0053)  0.0061 (0.0041)  0.021 (0.0075) 0.024 (0.011)
Ad. MS-lasso  0.0081 (0.0073)  0.0055 (0.0041)  0.015 (0.0056) 0.025 (0.011)
Ad. liso 0.0087 (0.0032)  0.011 (0.0034) 0.011 (0.0038) 0.0094 (0.0032)

Results with correct information on monotonicity direction provided for each covariate:

Scam

Scar

CPS
MonBoost
Mboost

0.0031 (0.0029)
0.0099 (0.0037)
0.041 (0.027)

0.0068 (0.0030)
0.0069 (0.0045)

0.0024 (0.0021)
0.012 (0.0043)
0.057 (0.043)
0.0082 (0.0032)
0.0076 (0.0045)

0.0042 (0.0024)
0.013 (0.0042)
0.097 (0.096)
0.0084 (0.0034)
0.016 (0.0053)

0.0036 (0.0024)
0.012 (0.0043)
0.12 (0.096)
0.0079 (0.0034)
0.011 (0.0055)
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TABLE A2
Case Oc. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions, in the simulation

considered in Section 4.1.1, with n =50, p =4, SNR~ 4 and t = 0. Standard deviations are
given in parenthesis. Monotone splines lasso selected 1 interior knot, scam selected 12 and

CPS selected 4. “Lin. mod” is the ordinary least squares fit, “MS-lasso” is the monotone
splines lasso, “Ad. MS-lasso” is the adaptive monotone splines lasso and “Ad. liso” is the

adaptive liso.

Selection Mean squared prediction error
TP

Lin. mod — 0.40 (0.067)

MS-lasso 3.99 (0.089) 0.40 (0.078)

Ad. MS-lasso  3.83 (0.39) 0.40 (0.13)

Ad. liso 4.0 (0) 0.27 (0.076)

Scam - 0.20 (0.073)
Scar - 0.41 (0.43)
CPS - 0.76 (0.17)
MonBoost 4.0 (0) 0.24 (0.074)
Mboost 4.0 (0) 0.22 (0.056)

g1 g2 g3 g4
Lin. mod 0.039 (0.014) 0.038 (0.015) 0.12 (0.025) 0.042 (0.014)
MS-lasso 0.045 (0.030) 0.044 (0.027) 0.074 (0.031) 0.074 (0.027)
Ad. MS-lasso  0.073 (0.060) 0.046 (0.043) 0.055 (0.035) 0.066 (0.037)
Ad. liso 0.025 (0.015) 0.028 (0.013) 0.030 (0.014) 0.026 (0.014)

Results with correct information on monotonicity direction provided for each covariate:

Scam 0.0099 (0.0082)  0.0080 (0.0076)  0.012 (0.0080)  0.012 (0.0091)
Scar 0.028 (0.015) 0.032 (0.016) 0.033 (0.015)  0.033 (0.017)
CPS 0.086 (0.073) 0.12 (0.11) 0.16 (0.16) 0.22 (0.20)
MonBoost 0.019 (0.011) 0.022 (0.0099)  0.023 (0.012)  0.021 (0.012)
Mboost 0.014 (0.011) 0.015 (0.011) 0.024 (0.013)  0.020 (0.013)
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TABLE A3
Case 1b. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions, in the simulation
considered in Section 4.1.2, with n = 150, p =7, SNR =~ 4 and t = 0. Standard deviations
are given in parenthesis. Monotone splines lasso selected 1 interior knot, scam selected 16
and CPS selected 6. “Lin. mod” is the ordinary least squares fit, “MS-lasso” is the
monotone splines lasso, “Ad. MS-lasso” is the adaptive monotone splines lasso and “Ad.
liso” is the adaptive liso.

Selection Mean squared prediction error
TP FP

Lin. mod - - 0.36 (0.031)

MS-lasso 4.0 (0) 0.43 (0.71) 0.18 (0.027)

Ad. MS-lasso 4.0 (0) 0.010 (0.12) 0.17 (0.028)

Ad. liso 4.0 (0) 0.056 (0.24) 0.17 (0.030)

Scam - - 0.14 (0.026)
Scar - - 0.20 (0.13)
CPS - - 0.37 (0.12)
MonBoost 4.0 (0) 2.98 (0.21) 0.16 (0.027)
Mboost 4.0 (0) 0.53 (0.66) 0.16 (0.024)

Mean squared estimation error

g1 g2 g3 94
Lin. mod 0.036 (0.0075) 0.036 (0.0088) 0.12 (0.013) 0.039 (0.0078)
MS-lasso 0.0070 (0.0054)  0.0070 (0.0049)  0.022 (0.0078) 0.025 (0.010)
Ad. MS-lasso  0.0082 (0.0069) 0.0063 (0.0049)  0.015 (0.0064) 0.025 (0.012)
Ad. liso 0.0090 (0.0033)  0.011 (0.0033) 0.011 (0.0036) 0.0094 (0.0033)

Results with correct information on monotonicity direction provided for each covariate:

Scam 0.0033 (0.0026)  0.0027 (0.0022)  0.0047 (0.0027)  0.0038 (0.0025)
Scar 0.010 (0.0041)  0.012 (0.0041)  0.013 (0.0042)  0.012 (0.0044)
CPS 0.033 (0.037) 0.059 (0.058) 0.066 (0.079) 0.084 (0.096)
MonBoost 0.0069 (0.0031)  0.0090 (0.0037)  0.0089 (0.0037)  0.0080 (0.0035)

Mboost 0.0073 (0.0048)  0.0085 (0.0051)  0.016 (0.0060)  0.012 (0.0058)




44 S. Engebretsen and I. K. Glad

TABLE A4
Case 1c. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions, in the simulation

considered in Section 4.1.2, withn =50, p =7, SNR~ 4 and t = 0. Standard deviations are
given in parenthesis. Monotone splines lasso selected 1 interior knot, scam selected 8 and

CPS selected 1. “Lin. mod” is the ordinary least squares fit, “MS-lasso” is the monotone
splines lasso, “Ad. MS-lasso” is the adaptive monotone splines lasso and “Ad. liso” is the

adaptive liso.

Selection Mean squared prediction error
TP FP

Lin. mod — - 0.39 (0.058)

MS-lasso 3.98 (0.13) 0.14 (0.37) 0.39 (0.086)

Ad. MS-lasso  3.76 (0.48) 0 (0) 0.41 (0.15)

Ad. liso 4.0 (0) 0.14 (0.38) 0.27 (0.070)

Scam - - 0.22 (0.079)
Scar - - 0.50 (0.65)
CPS - - 0.59 (0.20)
MonBoost 4.0 (0) 2.96 (0.29) 0.28 (0.073)
Mboost 4.0 (0) 1.70 (0.83) 0.23 (0.058)

g1 92 g3 94
Lin. mod 0.040 (0.016)  0.038 (0.017) 0.12 (0.024) 0.042 (0.014)
MS-lasso 0.046 (0.033)  0.044 (0.030) 0.073 (0.032)  0.075 (0.029)
Ad. MS-lasso  0.076 (0.065) 0.052 (0.055) 0.057 (0.042)  0.070 (0.042)
Ad. liso 0.024 (0.014) 0.028 (0.012) 0.030 (0.013)  0.025 (0.011)

Results with correct information on monotonicity direction provided for each covariate:

Scam 0.012 (0.011)  0.0098 (0.0093)  0.018 (0.017)  0.013 (0.011)
Scar 0.031 (0.021)  0.035 (0.020) 0.039 (0.024)  0.037 (0.021)
CPS 0.060 (0.054)  0.099 (0.096) 0.062 (0.049)  0.20 (0.18)

MonBoost 0.021 (0.011)  0.026 (0.013) 0.027 (0.013)  0.025 (0.013)
Mboost 0.016 (0.013)  0.019 (0.014) 0.027 (0.013)  0.023 (0.015)
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TABLE A5
Case 2a. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions, in the simulation
considered in Section 4.1.3, where n =80, p =7, SNR~ 4 and t = 1. Standard deviations
are given in parenthesis. Monotone splines lasso selected 2 interior knots, scam selected 11
and CPS selected 3. “Lin. mod” is the ordinary least squares fit, “MS-lasso” is the
monotone splines lasso, “Ad. MS-lasso” is the adaptive monotone splines lasso and “Ad.
liso” is the adaptive liso.

Selection Mean squared prediction error
TP FP

Lin. mod - - 0.18 (0.021)

MS-lasso 3.99 (0.11) 0.17 (0.42) 0.14 (0.027)

Ad. MS-lasso  3.80 (0.47) 0 (0) 0.14 (0.046)

Ad. liso 4.0 (0) 0.042 (0.21) 0.087 (0.021)

Results with correct information on monotonicity direction provided for each covariate:

Scam - - 0.058 (0.020)
Scar - - 0.18 (0.38)
CPS - - 0.25 (0.12)
MonBoost 4.0 (0) 2.98 (0.20) 0.078 (0.017)
Mboost 4.0 (0) 0.42 (0.58) 0.087 (0.017)

Mean squared estimation error

g1 g2 g3 94
Lin. mod 0.017 (0.0074) 0.015 (0.0085) 0.060 (0.019) 0.025 (0.0086)
MS-lasso 0.021 (0.012) 0.025 (0.016) 0.029 (0.013) 0.040 (0.019)
Ad. MS-lasso  0.031 (0.025) 0.026 (0.025) 0.023 (0.018) 0.043 (0.039)
Ad. liso 0.0092 (0.0053)  0.011 (0.0052) 0.011 (0.0054) 0.010 (0.0044)

Results with correct information on monotonicity direction provided for each covariate:

Scam 0.0031 (0.0029)  0.0027 (0.0022)  0.0035 (0.0035)  0.0031 (0.0026)
Scar 0.0094 (0.0055)  0.010 (0.0055)  0.010 (0.0059)  0.011 (0.0049)
CPS 0.026 (0.031) 0.050 (0.052) 0.013 (0.020) 0.13 (0.15)
MonBoost 0.0070 (0.0042)  0.0095 (0.0052)  0.0085 (0.0042)  0.0097 (0.0053)

Mboost 0.014 (0.0080)  0.018 (0.012) 0.019 (0.0090)  0.022 (0.013)
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TABLE A6
Case 2b. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions, in the simulation
considered in Section 4.1.3, where SNR~ 4, t =1, p="T and n = 150. Standard deviations
are given in parenthesis. Monotone splines lasso selected 2 interior knots, scam selected 16
and CPS selected 4. “Lin. mod” is the ordinary least squares fit, “MS-lasso” is the
monotone splines lasso, “Ad. MS-lasso” is the adaptive monotone splines lasso and “Ad.
liso” is the adaptive liso.

Selection Mean squared prediction error
TP FP

Lin. mod - - 0.17 (0.018)

MS-lasso 4.0 (0) 0.056 (0.24) 0.093 (0.014)

Ad. MS-lasso  3.99 (0.089) 0 (0) 0.088 (0.015)

Ad. liso 4.0 (0) 0.008 (0.089) 0.061 (0.0090)

Results with correct information on monotonicity direction provided for each covariate:

Scam - - 0.040 (0.017)
Scar - - 0.14 (0.32)
CPS - - 0.19 (0.097)
MonBoost 4.0 (0) 2.95 (0.31) 0.055 (0.0085)
Mboost 4.0 (0) 0.050 (0.22) 0.076 (0.010)

Mean squared estimation error

g1 g2 g3 g4
Lin. mod 0.015 (0.0052) _ 0.013 (0.0059) _ 0.061 (0.014) 0.024 (0.0057)
MS-lasso 0.012 (0.0057)  0.014 (0.0065)  0.018 (0.0061)  0.024 (0.0082)
Ad. MS-lasso  0.015 (0.0093)  0.012 (0.0078)  0.010 (0.0054)  0.026 (0.0098)
Ad. liso 0.0051 (0.0023)  0.0061 (0.0024)  0.0060 (0.0023)  0.0055 (0.0018)

Results with correct information on monotonicity direction provided for each covariate:

Scam 0.0013 (0.0013)  0.0013 (0.0011)  0.0016 (0.0012)  0.0014 (0.0011)
Scar 0.0048 (0.0021)  0.0052 (0.0018)  0.0055 (0.0020)  0.0060 (0.0024)
CPS 0.021 (0.028) 0.044 (0.042) 0.013 (0.021) 0.10 (0.12)

MonBoost 0.0039 (0.0019)  0.0052 (0.0023)  0.0047 (0.0022)  0.0050 (0.0021)

Mboost 0.013 (0.0057) 0.016 (0.0073) 0.017 (0.0065) 0.019 (0.0074)
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TABLE A7
Case 3. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions, in the simulation
considered in Section 4.1.3, where n =80, p =7, SNR ~ 2 and t = 0. Standard deviations
are given in parenthesis. Monotone splines lasso selected 1 interior knot, scam selected 12
and CPS selected 2. “Lin. mod” is the ordinary least squares fit, “MS-lasso” is the
monotone splines lasso, “Ad. MS-lasso” is the adaptive monotone splines lasso and “Ad.
liso” is the adaptive liso.

Selection Mean squared prediction error
TP FP

Lin. mod - - 0.71 (0.092)

MS-lasso 4.0 (0) 0.51 (0.71) 0.63 (0.093)

Ad. MS-lasso  3.93 (0.26) 0.04 (0.24) 0.62 (0.11)

Ad. liso 4.0 (0) 0.68 (0.89) 0.64 (0.12)

Results with correct information on monotonicity direction provided for each covariate:

Scam - - 0.60 (0.12)
Scar - — 0.90 (0.57)
CPS - — 0.87 (0.20)
MonBoost 4.0 (0) 2.98 (0.20) 0.65 (0.12)
Mboost 4.0 (0) 2.16 (0.74)  0.56 (0.089)

Mean squared estimation error

91 g2 g3 94
Lin. mod 0.042 (0.017)  0.040 (0.019) 0.13 (0.022) 0.043 (0.016)
MS-lasso 0.033 (0.026)  0.030 (0.024)  0.054 (0.025) 0.060 (0.027)
Ad. MS-lasso  0.046 (0.046) 0.030 (0.030) 0.040 (0.024) 0.055 (0.031)
Ad. liso 0.035 (0.019)  0.042 (0.020) 0.045 (0.021)  0.041 (0.021)

Results with correct information on monotonicity direction provided for each covariate:

Scam 0.023 (0.019)  0.017 (0.015)  0.028 (0.021)  0.024 (0.018)
Scar 0.048 (0.030)  0.052 (0.026)  0.057 (0.026)  0.055 (0.028)
CPS 0.063 (0.058)  0.10 (0.093)  0.079 (0.078)  0.16 (0.15)

MonBoost 0.029 (0.017)  0.033 (0.018)  0.036 (0.019)  0.032 (0.019)
Mboost 0.021 (0.016)  0.022 (0.018)  0.032 (0.018)  0.028 (0.020)
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TABLE A8

Case 4. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions, in the simulation

considered in Section 4.1.3, where SNR~ 4, t =0, p =20 and n = 200. Standard deviations

are given in parenthesis. Monotone splines lasso selected 1 interior knot, scam selected 11
knots and CPS selected 2 interior knots. “Lin. mod” is the ordinary least squares fit,

“MS-lasso” is the monotone splines lasso, “Ad. MS-lasso” is the adaptive monotone splines

lasso and “Ad. liso” is the adaptive liso.

Selection Mean squared prediction error
TP FP

Lin. mod — — 0.35 (0.030)

MS-lasso 4.0 (0) 3.80 (2.78) 0.15 (0.019)

Ad. MS-lasso 4.0 (0) 0.25 (1.14) 0.14 (0.019)

Ad. liso 4.0 (0) 0.014 (0.12) 0.15 (0.022)

Scam - - 0.16 (0.032)
Scar - - 0.20 (0.16)
CPS - - 0.19 (0.050)
MonBoost 4.0 (0) 12.78 (5.18) 0.16 (0.025)
Mboost 4.0 (0) 1.18 (1.05) 0.15 (0.021)
Mean squared estimation error
g1 92 g3 94
Lin. mod 0.034 (0.0058) 0.033 (0.0064) 0.12 (0.012) 0.037 (0.0059)
MS-lasso 0.0035 (0.0026)  0.0040 (0.0024)  0.016 (0.0049) 0.016 (0.0071)
Ad. MS-lasso  0.0031 (0.0028) 0.0032 (0.0020) 0.011 (0.0033) 0.013 (0.0087)
Ad. liso 0.0072 (0.0024)  0.0085 (0.0023)  0.0090 (0.0026)  0.0073 (0.0024)

Results with correct information on monotonicity direction provided for each covariate:

Scam 0.0039 (0.0038)
Scar 0.0087 (0.0032)
CPS 0.0073 (0.0073)
MonBoost 0.0060 (0.0025)
Mboost 0.0062 (0.0035)

0.0028 (0.0032)
0.010 (0.0032)
0.015 (0.019)
0.0077 (0.0031)
0.0074 (0.0038)

0.0098 (0.0082)
0.011 (0.0033)
0.018 (0.0073)
0.0078 (0.0031)
0.015 (0.0050)

0.0066 (0.0060)
0.0098 (0.0033)
0.029 (0.36)
0.0073 (0.0032)
0.010 (0.0045)
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Case 6. Average number of total true and false positives, mean squared prediction errors
and mean squared estimation errors for the estimated functions, in the simulation
considered in Section 6 with a non-monotone covariate effect g4y, where SNR~ 4, t =0,
p =7 and n = 80. Standard deviations are given in parenthesis. Monotone splines lasso
selected 1 interior knot, scam selected 12 interior knots and CPS selected 3 interior knots.
“Lin. mod” is the ordinary least squares fit, “MS-lasso” is the monotone splines lasso, “Ad.
MS-lasso” is the adaptive monotone splines lasso and “Ad. liso” is the adaptive liso.

Selection Mean squared prediction error
TP FP

Lin. mod - - 0.89 (0.068)

MS-lasso 4.0 (0) 0.25 (0.50) 0.34 (0.066)

Ad. MS-lasso  3.95 (0.21) 0 (0) 0.34 (0.087)

Ad. liso 4.0 (0) 0.18 (0.40) 0.23 (0.054)

Scam - - 0.74 (0.13)
Scar - - 0.87 (0.53)
CPS - - 0.71 (0.080)
MonBoost 4.0 (0) 2.95 (0.36) 0.65 (0.087)
Mboost 4.0 (0) 2.28 (0.71) 0.58 (0.059)
Mean squared estimation error
91 92 93 94b
Lin. mod 0.047 (0.037) 0.041 (0.019) 0.13 (0.026) 0.53 (0.066)
MS-lasso 0.022 (0.015) 0.019 (0.014) 0.043 (0.016) 0.097 (0.037)
Ad. MS-lasso  0.054 (0.039) 0.030 (0.022) 0.040 (0.020) 0.051 (0.036)
Ad. liso 0.017 (0.0077)  0.020 (0.0075)  0.020 (0.0072) 0.033 (0.011)

Results with correct information on monotonicity direction provided for each covariate:

Scam 0.025 (0.018)
Scar 0.052 (0.030)
CPS 0.017 (0.023)
MonBoost 0.030 (0.018)
Mboost 0.022 (0.021)

0.026 (0.020)
0.058 (0.030)
0.033 (0.045)
0.035 (0.018)
0.022 (0.018)

0.034 (0.025)  0.46 (0.13)

0.062 (0.031)  0.40 (0.051)
0.030 (0.035)  0.51 (0.066)
0.037 (0.019)  0.35 (0.069)
0.033 (0.020)  0.36 (0.071)
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Fic Al. Case 6. Estimated functions for g4y in the simulation considered in Section 6 with
n =280, p =7, SNR ~ 4 and t = 0, for all the different methods, with a non-monotone
function. The true function is given in black.
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Appendix B: Algorithm for MonBoost

The algorithm in the one dimensional case with Gaussian response is provided
in [44], and is restated in Algorithm 1, where M denotes the number of iterations,
y is the vector with observed responses and x is the vector with observations of
the predictor, and the covariate index j is dropped for notational convenience.
The extension to the multivariate case is straight forward, with m x p basis
functions instead of only m.

Algorithm 1 MonBoost

Initialise:
Standardise y to have mean zero, so i{®) = (7, ..., 7). Let
Bo = (0,...,0).
Iteration:
for r=1 to M do
ul =y — [l.(rfl) > Compute the current residuals

for k=1 to m do )
Compute the ridge estimators 85 with
tuning parameter A\ for the model

ul” = ,Bkllgl)(x) +e€.

end for
From the subset of components that fulfill the constraint
,BA,(CT) = ﬂA](Cril) + Bk > 0, choose the component ’y(r) which
minimises |[u(") — Bkllgl)(x)ﬂg.
if ") <0 for all k then

stop iteration.

else
A = k.
end if
Set
B = B%“” + B, if k=40,
Bkrfl), otherwise,
and

I-A"(r) = ﬂ(r_l) + Bry(r) Iél()r) ().

end for
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