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Abstract. In the present communication, the problem of estimating entropy
of a scale mixture of exponential distributions is considered under the squared
error loss. Inadmissibility of the best affine equivariant estimator(BAEE) is
established by deriving an improved estimator which is not smooth. Using the
integral expression of risk difference (IERD) approach of Kubokawa (The
Annals of Statistics 22 (1994) 290–299), classes of estimators are obtained
which improve upon the BAEE. The boundary estimator of this class is the
Brewster and Zidek-type estimator and this estimator is smooth. We have
shown that the Brewster and Zidek-type estimator is a generalized Bayes es-
timator. As an application of these results, we have obtained improved estima-
tors for the entropy of a multivariate Lomax distribution. Finally, percentage
risk reduction of the improved estimators for the entropy of a multivariate Lo-
max distribution is plotted to compare the risk performance of the improved
estimators.

1 Introduction

It is well known that entropy and information can be considered as a measure of uncertainty of
probability distribution. In the literature, several examples of entropies are proposed. Among
all these entropies the most famous is the Shannon entropy. The Shannon’s entropy of a
random variable X with density function f (x; θ) is defined by

Q(θ) = E
(− lnf (x; θ)

)
. (1)

For a detailed description on the entropy, one may refer to Robinson (2008), Broadbridge and
Guttmann (2009) and Cover and Thomas (2012).

Shannon’s Entropy is widely used in various areas of science and technology such as
ecology, hydrology and water resources, social studies, economics, biology etc. In molecular
sciences, estimation of the entropy of molecules plays an important role to understand various
chemical and biological processes (see Nalewajski (2002)). The concept of entropy is used
in software reliability to measure uncertainty (see Kamavaram and Goseva-Popstojanova
(2002)). In estimating uncertainty of a system with several independent components (con-
nected in parallel/series or both) we need to estimate uncertainty in individual components.
In economics, entropy estimation (see Golan, Judge and Miller (1996)) often allows the re-
searchers to use data for the improvement of the assumptions on the parameters in economet-
ric models.

Similar to mean, standard deviation, variance and quantile, entropy is also an important
characteristic of a parametric family of distributions. Recently, Devi, Kumar and Kour (2017)
derived the entropy of Lomax distribution which is used in business, economics etc. In the
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present article, we are interested to estimate it for further insights into the nature of the dis-
tribution.

In the last decade, several researchers studied the estimation of Shannon’s entropy of var-
ious continuous probability distributions. Misra, Singh and Demchuk (2005) considered the
problem of estimating Shannon’s entropy of a multivariate normal distribution under the
quadratic loss function. They obtained improvements over the BAEE using the techniques
of Stein (1964) and Brewster and Zidek (1974). The problem of estimating the entropy of
an exponential distribution under a linex loss function was considered by Kayal and Kumar
(2011). They proved the minimaxity and admissibility of the best scale equivariant estimator
of the entropy of the negative exponential model. It was shown that for the shifted exponential
distribution the BAEE of the entropy is inadmissible. Kayal and Kumar (2013) considered the
estimation of the entropy of several shifted exponential populations with different locations,
but a common scale parameter with respect to squared error loss function. They proved a
general inadmissibility result for the scale equivariant estimator. Recently Kayal et al. (2015)
have considered the problem of estimating the Renyi entropy of k exponential populations
with a common location but different scale parameters. They derived the uniformly mini-
mum variance unbiased estimator of the Renyi entropy. They also obtained the sufficient
conditions for improvement over affine and scale equivariant estimators. Recently, Kayal and
Kumar (2017) studied the problem of estimating entropy of several exponential distributions
under linex loss function. They have proved that the best affine equivariant estimator is in-
admissible by deriving an improved estimator. For some recent work on the estimation of
entropy of logistic, half-logistic and generalized half-logistic distributions one may also refer
to Kang et al. (2012), Seo and Kang (2014, 2015) and Seo and Kim (2017).

In this paper, we consider the problem of estimating Shannon’s entropy of a scale mix-
ture of exponential distributions. Consider the random vector X = (X1,X2, . . . ,Xn), n ≥ 1,
where for a given τ > 0, X1,X2, . . . ,Xn are i.i.d. with common exponential distribution
exp(μ,σ/τ). So the unconditional density function of X1,X2, . . . ,Xn is

f (x1, x2, . . . , xn;μ,σ)

=
∫ ∞

0

τn

σn
exp

{
− τ

σ

n∑
i=1

(xi − μ)

}
I(μ,∞)(x(1)) dG(τ), (2)

where x(1) = min{x1, . . . , xn} and IA(·) denotes the indicator function of the set A. The mix-
ing parameter τ is assumed to have a distribution function G(·) defined on the positive real
line. Here we use the symbol τ to denote either a random variable having distribution function
G(·) and density function ν(·) or a fixed value of this random variable.

The mixture model (2) was proposed by Lindley and Singpurwalla (1986) in connection
with certain reliability problems. For the estimation problem of the parameters of the model
(2), one may refer to Petropoulos and Kourouklis (2005) and Petropoulos (2006, 2010).

Denote by X(1) = min{X1, . . . ,Xn}. Let X = nX(1) and S = ∑n
i=1(Xi −X(1)). A minimal

sufficient statistics for this model is (X,S). For a given τ > 0, X|τ ∼ exp(nμ,σ/τ) and
S|τ ∼ �(n−1, σ/τ). Let V = τS/σ and U = τX/σ , then V and U have respective densities

g(v) = 1

�(n − 1)
vn−2e−v, v > 0 and

h(u,ρ) = e−(u−nτμ/σ), u > nτμ/σ.

(3)

Clearly if G(·) is degenerate at τ = 1, we get the exponential distribution with location
parameter μ and scale parameter σ . We denote ρ = nτμ/σ . In specific situations for the
mixing distribution G(·), we can provide known distributions in the literature such as multi-
variate Lomax distribution and Exponential Inverse Gaussian (EIG) model (see, for instance,
Bhattacharya and Kumar (1986)).
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If G(·) is a gamma distribution with density function τb−1e−τ /�(b), τ > 0, then (2) be-
comes the multivariate Lomax distribution with the density

f (x1, x2, . . . , xn;μ,σ) = �(b + n)

�(b)σn

(
1 + 1

σ

n∑
i=1

(xi − μ)

)−(b+n)

I(μ,∞)(x(1)). (4)

This distribution is also referred as multivariate Pareto type II distribution. For details, see
Johnson, Kotz and Balakrishnan (2002) and Arnold (2015). Nayak (1987) reported several
properties of the multivariate Lomax distribution and he also mentioned their usefulness in
reliability theory. Multivariate Lomax distribution is a generalization of the univariate Lomax
distribution. Lomax (1954) used the univariate Lomax distribution in the analysis of income
data and business failure data. It is seen from Ahmed and Gokhale (1989), that the estima-
tion of the entropy in model (4) is equivalent to the estimation of lnσ for scale mixture of
exponential distributions.

Here we consider the estimation of θ = lnσ under the squared error loss function

L(θ, δ) = (δ − θ)2. (5)

The problem under study, is invariant under the group of affine transformations, given by
Ga,b = {ga,b : ga,b(x) = ax + b;a > 0, b ∈ R}. Under the transformation ga,b, μ → aμ + b,
σ → aσ and consequently lnσ → lnσ + lna. The form of an affine equivariant estimator is

δc(X,S) = lnS + c, (6)

where c is a real number.

Lemma 1.1. Under the squared error loss function (5), the BAEE of θ is δc0 with c0 =
E(ln τ)−ψ(n−1), where ψ(t) denotes the Euler psi (digamma) function, defined as ψ(t) =
d
dt

ln�(t).

Proof. For any real constant the risk of the estimators δc of the form (6) is

R(δc,μ,σ ) = E(lnS + c − lnσ)2. (7)

Differentiating R(δc,μ,σ ) with respect to c and equating to zero, we have the minimizing
choice of c is

c0 = −EτE
[
ln(S/σ)|τ ] = −EτE

[
ln(τS/σ) − ln τ |τ ] = E(ln τ) − E(lnV ), (8)

where V = τS
σ

∼ �(n − 1,1).

But, E(lnV ) = ∫ ∞
0 lnv 1

�(n−1)
vn−2e−v dv = �′(n−1)

�(n−1)
= ψ(n − 1), because �(z) =∫ ∞

0 xz−1e−x dx and �′(z) = ∫ ∞
0 lnxxz−1e−x dx. So, from Equation (8) we have

c0 = E(ln τ) − ψ(n − 1). (9)

This proves the lemma. �

The rest of the paper organized as follows. In Section 2, we have established that the BAEE
of θ is inadmissible by deriving improved estimators. To obtain the improved estimator we
adopt the approach of Stein (1964). In Section 3, we propose another class of estimators and
using the IERD approach of Kubokawa (1994) we derive sufficient conditions under which
the proposed estimators improve upon the BAEE of θ . We have also proved that a generalized
Bayes estimator coincides with the Brewster and Zidek-type estimator. In particular we have
obtained the explicit estimators of the entropy of a multivariate Lomax distribution in Sec-
tion 4. We also provide plots percentage risk reduction of proposed estimators for illustration
purpose.

The following lemma due to Bobotas and Kourouklis (2009) has been used in this paper.
For the sake of completeness, we state it below.
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Lemma 1.2. Let a1(x) and a2(x) be densities supported on the intervals 
1 and 
2 re-
spectively, where 
1 ⊆ 
2 and a1(x)/a2(x) is increasing in x ∈ 
1. If X is a random
variable having density a1(x) or a2(x) and g(x), x ∈ 
1, is increasing (decreasing) then
Ea1g(X) ≥ (≤)Ea2g(X). Moreover, if h(x) and a1(x)/a2(x) are strictly monotone, then
Ea1g(X) > (<)Ea2g(X).

2 Inadmissibility of the best affine equivariant estimator

In this section, we will derive an estimator that dominates the BAEE δc0 . To do so, we explore
a larger class than the affine equivariant estimators. We consider one such class of estimators
as

δφ(X,S) = lnS + φ(W), (10)

where W = X/S. Notice that the BAEE belongs in the above class, corresponding to
φ0(W) = c0. Define

φ1(W) = ln(1 + W) + E(τn ln τ)

Eτn
− ψ(n) for W > 0.

Theorem 2.1. Let φST 1(W) = min{φ1(W), c0}. Then, under the squared error loss function
(5) the best affine equivariant estimator δc0 is inadmissible and is dominated by the estimator

δST 1(X,S) =
{

lnS + φST 1(W), if W > 0,

lnS + c0, otherwise

provided φ1(w) < c0 on a set of positive probability.

Proof. The risk of the estimator δφ(W) given by (10) depends on (μ,σ ) only through μ/σ ,
so without loss of generality we take σ = 1 and the risk function is

R(δ,μ) = EW {
E

[(
lnS + φ(W) − lnσ

)2|W = w
]}

.

The conditional expectation E[(lnS + φ(W) − lnσ)2|W = w] in minimized at

φop(μ,w) = −E[lnS|W = w]. (11)

In the process, we have to find the upper bound of φop(μ,w) as a function of μ for each
w > 0. The joint density of S and W is

f (s,w) = 1

�(n − 1)
sn−1τnenμτ e−τs(1+w), w >

nμ

s
, s > 0.

Now we find the conditional distribution of S given W = w.
Case I: μ ≥ 0, w > 0.
In this case nμ

w
< s < ∞. For a given τ > 0 the conditional distribution of S given W = w

is

f (s|w) = enμτ τnsn−1e−τs(1+w)∫ ∞
0

∫ ∞
nμ/w enμτ τnsn−1e−τs(1+w) ds dG(τ)

.

So we have

φop(μ,w) = −
∫ ∞

0
∫ ∞
nμ/w ln senμτ τnsn−1e−τs(1+w) ds dG(τ)∫ ∞

0
∫ ∞
nμ/w enμτ τnsn−1e−τs(1+w) ds dG(τ)

.
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By the transformation z = τs(1 + w) we get

φop(μ,w) = ln(1 + w) + H1(w) − H2(w), (12)

where

H1(w) =
∫ ∞

0
∫ ∞
ξ ln τenμτ e−zzn−1 dzdG(τ)∫ ∞

0
∫ ∞
ξ enμτ e−zzn−1 dzdG(τ)

, and

H2(w) =
∫ ∞

0
∫ ∞
ξ ln zenμτ e−zzn−1 dzdG(τ)∫ ∞

0
∫ ∞
ξ enμτ e−zzn−1 dzdG(τ)

with ξ = τnμ(1+w)
w

. Now for a given τ > 0∫ ∞
ξ ln ze−zzn−1 dz∫ ∞

ξ e−zzn−1 dz
= Eξ lnZ,

where Z has density g(z, ξ) ∝ e−zzn−1I(ξ,∞)(z). By Lemma (1.2), for ξ > 0 we have
Eξ lnZ ≥ E0 lnZ = ψ(n) and hence∫ ∞

ξ
ln ze−zzn−1 dz ≥ ψ(n)

∫ ∞
ξ

e−zzn−1 dz which implies that H2(W) ≥ ψ(n). (13)

Again by the transformation τp = z and for ξ2 = nμ(1+w)
w

, H1(w) becomes

H1(w) =
∫ ∞

0
∫ ∞
ξ2

ln τenμτ e−τpτnpn−1 dp dG(τ)∫ ∞
0

∫ ∞
ξ2

enμτ e−τpτnpn−1 dp dG(τ)

=
∫ ∞
ξ2

pn−1 ∫ ∞
0 ln ττne−(p−nμ)τ dG(τ) dp∫ ∞

ξ2
pn−1

∫ ∞
0 τne−(p−nμ)τ dG(τ) dp

. (14)

Now for λ = p − nμ > 0 ∫ ∞
0 ln τe−(p−nμ)τ τn dG(τ)∫ ∞

0 τne−(p−nμ)τ dG(τ)
= Eλ ln τ,

where τ have the density f (τ ;λ) ∝ e−λτ τnν(τ ). But, f (τ ;λ)
f (τ ;0)

is nonincreasing in τ , so using
Lemma (1.2) we have

Eμ ln τ ≤ E0 ln τ = E(τn ln τ)

Eτn
. (15)

Using (13) and (15) from (12), we get

φop(w) ≤ ln(1 + w) + E(τn ln τ)

E(τn)
− ψ(n). (16)

Case II: μ < 0, w > 0.
In this case 0 < s < ∞. For a given τ > 0, the conditional distribution of S given W = w

is

f (s|w) = enμτ τnsn−1e−τs(1+w)∫ ∞
0

∫ ∞
0 enμτ τnsn−1e−τs(1+w) ds dG(τ)

.

By the transformation z = τs(1 + w), we get

φop(μ,w) = ln(1 + w) + K1(w) − K2(w), (17)
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where

K1(w) =
∫ ∞

0
∫ ∞

0 ln τenμτ e−zzn−1 dzdG(τ)∫ ∞
0

∫ ∞
0 enμτ e−zzn−1 dzdG(τ)

, and

K2(w) =
∫ ∞

0
∫ ∞

0 ln zenμτ e−zzn−1 dzdG(τ)∫ ∞
0

∫ ∞
0 enμτ e−zzn−1 dzdG(τ)

.

Proceeding in a similar way as in Case I, we have K2(w) = ψ(n) and K1(w) ≤ E(τn ln τ)
Eτn , so

φop(w) ≤ ln(1 + w) + E(τn ln τ)

Eτn
− ψ(n). (18)

Hence for any μ and w > 0, we have

φop(w) ≤ ln(1 + w) + E(τn ln τ)

Eτn
− ψ(n) = φ1(w). (19)

Since the risk function R∗(c,w) = E[(lnS + c − lnσ)2|W = w] is convex in c, then
R∗(c,w) is strictly increasing in c for c > φop(μ,w). Now if φ1(w) ≤ c0 on a set of positive
probability, then we have E[(lnS+φ1(W)− lnσ)2|W = w] ≤ E[(lnS+c0 − lnσ)2|W = w].

This proves the theorem. �

Remark 2.1. When τ = 1 with probability (w.p.) 1, Theorem 2.1 provides the improved
estimator upon the BAEE derived in Kayal and Kumar (2013, Corollary 1) in the case of
k = 1.

3 A class of improved estimators

In this section, we consider a class of estimators of the form

δφ(X,S) =
{

lnS + φ(W), if W > 0,

δc0, otherwise,
(20)

where φ is an absolutely continuous function. Employing IERD approach of Kubokawa
(1994) we prove that the class of estimators defined in (20) dominate the BAEE δc0 for esti-
mating θ under the squared error loss function (5). Define

H(u,ρ) =
∫ u

0
h(x;ρ)I (x > ρ)dx and

H(u) =
∫ u

0
h(x) dx, where h(x) = h(x;0).

Theorem 3.1. The estimator δφ improves upon the BAEE δc0 for estimating θ under the
squared error loss function (5), if the function φ satisfies the following conditions

(i) φ(z) is nondecreasing with limz→∞ φ(z) = E(ln τ) − ψ(n − 1)

(ii) φ(z) ≥ φ∗(z) = E ln τ − ψ(n − 1) − ln(1+z)

(1+z)n−1−1

Proof. For t > 0, the risk difference of δc0 and δφ can be written as

�(δc0, δφ) = 2E

{∫ ∞
1

(
ln

(
S

σ

)
+ φ(Wt)

)
φ′(Wt)W dt

}
I (W > 0)

= 2
∫ ∞

0

∫ ∞
0

∫ ∞
0

∫ ∞
1

(
lny + φ(wt)

)
φ′(wt)wg(yτ)h(wτy;ρ)

× I (wτy > ρ)τ 2y dt dy dw dG(τ).
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Substituting v = τy the risk difference reduces to

�(δc0, δφ) = 2
∫ ∞

0

∫ ∞
0

∫ ∞
0

∫ ∞
1

{
ln(v/τ) + φ(wt)

}
φ′(wt)wvg(v)h(vw;ρ)

× I (vw > ρ)dt dv dw dG(τ).

Making the transformation z = tw and then x = z/t , the risk difference becomes

�(δc0, δφ)

= 2
∫ ∞

0

∫ ∞
0

∫ ∞
0

∫ z

0

{
lnv − ln τ + φ(z)

}
vφ′(z)g(v)h(xv;ρ)

× I (xv > ρ)dx dv dz dG(τ)

= 2
∫ ∞

0
φ′(z)

[∫ ∞
0

∫ ∞
0

{
lnv − ln τ + φ(z)

}
g(v)H(zv;ρ)dv dG(τ)

]
dz.

Under the condition (i), that is, φ′(z) ≥ 0 the risk difference is nonnegative provided

φ(z) ≥
∫ ∞

0
∫ ∞

0 ln τg(v)H(zv;ρ)dv dG(τ)∫ ∞
0

∫ ∞
0 g(v)H(zv;ρ)dv dG(τ)

−
∫ ∞

0
∫ ∞

0 lnvg(v)H(zv;ρ)dv dG(τ)∫ ∞
0

∫ ∞
0 g(v)H(zv;ρ)dv dG(τ)

. (21)

Now we can write ∫ ∞
0

∫ ∞
0 lnvg(v)H(zv;ρ)dv dG(τ)∫ ∞

0
∫ ∞

0 g(v)H(zv;ρ)dv dG(τ)
= Eρ lnV,

where the density of v is fρ(v) ∝ g(v)H(zv;ρ).
In the case μ ≤ 0, that means ρ ≤ 0, I (zv > ρ) = 1, so H(zv;ρ) = eρH(zv) and

Eρ lnV =
∫ ∞

0
∫ ∞

0 lnvg(v)eρH(zv) dv dG(τ)∫ ∞
0

∫ ∞
0 g(v)eρH(zv) dv dG(τ)

=
∫ ∞

0 lnvg(v)H(zv) dv
∫ ∞

0 eρ dG(τ)∫ ∞
0 g(v)H(zv) dv

∫ ∞
0 eρ dG(τ)

.

Or else,

Eρ lnV = ψ(n − 1) + ln(1 + z)

(1 + z)n−1 − 1
. (22)

For ρ > 0, fρ(v)/f0(u) is nondecreasing in v, then from Lemma 1.2 we have

Eρ lnV ≥ E0 lnV = ψ(n − 1) + ln(1 + z)

(1 + z)n−1 − 1
. (23)

Combining (22) and (23), we conclude that for every ρ ∈R,

Eρ lnV ≥ ψ(n − 1) + ln(1 + z)

(1 + z)n−1 − 1
. (24)

Using (24), the inequality (21) holds provided

φ(z) ≥
∫ ∞

0
∫ ∞

0 ln τg(v)H(zv;ρ)dv dG(τ)∫ ∞
0

∫ ∞
0 g(v)H(zv;ρ)dv dG(τ)

− ψ(n − 1) − ln(1 + z)

(1 + z)n−1 − 1
. (25)
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Now we find an upper bound for

J =
∫ ∞

0
∫ ∞

0 ln τg(v)H(zv;ρ)dv dG(τ)∫ ∞
0

∫ ∞
0 g(v)H(zv;ρ)dv dG(τ)

.

Case I: μ < 0
In this case, ρ < 0 and I (zv > ρ) = 1, so H(zv;ρ) = eρH(zv) and we have

J =
∫ ∞

0 eρ ln τ dG(τ)∫ ∞
0 eρ dG(τ)

=
∫ ∞

0 enμτ/σ ln τ dG(τ)∫ ∞
0 enμτ/σ dG(τ)

= Eμ ln τ,

the random variable τ having density pμ(τ) ∝ enμτ/σ ν(τ ). Since μ < 0, pρ(τ)/p0(τ ) is
nonincreasing in τ and so by Lemma 1.2 we have

Eμ ln τ ≤ E0 ln τ = E ln τ.

Case II: μ > 0
In this case, we have

J =
∫ ∞

0 (1 − eρ(1 + z)1−n) ln τ dG(τ)∫ ∞
0 (1 − eρ(1 + z)1−n) dG(τ)

= Erμ ln τ,

where the density of τ is rμ(τ ) ∝ (1 − enμτ/σ (1 + z)1−n)ν(τ ). But, for μ > 0, rμ(τ )/r0(τ )

is nonincreasing in τ and so by Lemma 1.2 we have

Eμ ln τ < E0 ln τ = E ln τ.

Obviously, for μ = 0

Eμ ln τ = E0 ln τ = E ln τ. (26)

Hence, for every μ ∈ R the inequality (25) holds provided

φ(z) ≥ E ln τ − ψ(n − 1) − ln(1 + z)

(1 + z)n−1 − 1
. (27)

This proves the theorem. �

In the following remarks, we give estimators for θ that belong to the class of estimators
(20) and improve upon δc0 , using Theorem 3.1.

Remark 3.1. The estimator δφ∗ is a Brewster and Zidek (1974)-type estimator for θ = lnσ

and the conditions of Theorem 3.1 can be easily verified. Actually, for W > 0, δφ∗ coincides
with the generalized Bayes estimator of θ with respect to the prior π(μ,σ) = 1/σ , μ > 0,
σ > 0. The posterior density of (μ,σ ) given S = s, X = x > 0 and τ , is

π(μ,σ |s, x, τ ) ∝ τn

σn+1 exp
{−τ(s + x)/σ + nτμ/σ

}
, 0 < μ < x/n,σ > 0.

The generalized Bayes estimator of θ under the quadratic loss (5) is given by

δGB = E lnσ,

where the expectations are taken under π(μ,σ |s, x) = ∫ ∞
0 π(μ,σ |s, x, τ ) dG(τ). By direct

computations, it is easy to verify that δGB = δφ∗ .
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Remark 3.2. Let φST 2(W) = min{φ2(W),φ0(W)}, where φ2(w) = ln(1 + w) + E(ln τ) −
ψ(n), then we can choose as an estimator for θ

δST 2(X,S) =
{

lnS + φST 2(W), if W > 0,

lnS + c0, otherwise

=
{

lnS + ln(1 + W) + E ln τ − ψ(n), if 0 < W < e1/(n−1) − 1,

lnS + E ln τ − ψ(n − 1), otherwise.

We notice that φST 2(W) satisfies the conditions of Theorem 3.1, so δST 2 improves upon δc0

for estimating θ under the squared error loss. It is mentioned that the Stein-type improvement
δST 1(W) belongs to the class of estimators (20) but we cannot provide this improvement
through Theorem 3.1. When τ = 1 w.p.1, then δST 2 coincides with δST 1 in Theorem 2.1.

When τ = 1, w.p.1, Theorem 3.1 reduces to the following result.

Theorem 3.2. When τ = 1, w.p.1, we define the estimators of θ as

δ1
c0

= lnS + ψ(n − 1) and δ1
φ =

{
lnS + φ(W), if W > 0,

δ1
c0

, otherwise.
(28)

Then the estimator δ1
φ improves upon the BAEE δ1

c0
for estimating θ under the squared error

loss function (5), if the function φ satisfies the following conditions

(i′) φ(z) is nondecreasing with limz→∞ φ(z) = −ψ(n − 1)

(ii′) φ(z) ≥ −ψ(n − 1) − ln(1+z)

(1+z)n−1−1
.

In the next theorem, we provide some robustness properties of the estimators mentioned
in this section, we show that the improved estimators of θ can be derived from the improved
estimators of θ in the case τ = 1, w.p.1 (this is called the degenerate case), when the con-
ditions of Theorem 3.2 are satisfied. Also, it is verified that the improvement of δ1

φ over δ1
c0

,
shown in Theorem 3.2, is robust in a specified neighborhood of the degenerate case.

Theorem 3.3. Let δ1
φ and δ1

c0
be as in (28), where the function φ satisfies conditions (i′) and

(ii′) of Theorem 3.2. Then we have the following.

(a) The estimator δφ = E ln τ + δ1
φ improves upon δc0 for estimating θ under the loss (5)

(b) The estimator δ1
φ improves upon δ1

c0
for estimating θ under the loss (5), uniformly for all

G(·) such that E ln τ ≤ 0.

Proof. (a) It is an immediate consequence of Theorems 3.1 and 3.2.
(b) From Theorem 3.1, it is easily verified that δ1

φ improves upon δ1
c0

, for all G(·), provided
that condition (i′) of Theorem 3.2 and condition (ii) of Theorem 3.1 hold. The later is true
because of condition (ii′) of Theorem 3.2 and the fact that E ln τ ≤ 0. �

4 Multivariate Lomax distribution

In this section, we obtain the improved estimators of entropy of multivariate Lomax dis-
tribution. Consider the mixing density of τ in the model (2) to be Gamma distribution
�(b,1), then the resulting distribution becomes a multivariate Lomax distribution. In this
case, E(ln τ) = ψ(b), E(τn ln τ) = �(n+b)

�(b)
ψ(n + b) and E(τn) = �(n+b)

�(b)
. So the BAEE is

δc0 = lnS + ψ(b) − ψ(n − 1). (29)
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Now we have

φ1(w) = ln(1 + w) + ψ(n + b) − ψ(n) for w > 0. (30)

The following theorem gives the Stein type improved estimator for θ . It is mentioned that
c0 = ψ(b) − ψ(n − 1).

Theorem 4.1. The estimator

δML
ST 1(X,S) =

{
lnS + min

{
φ1(W), c0

}
, if W > 0,

lnS + c0, otherwise
(31)

improve upon the best affine equivariant estimator δc0 under the squared error loss function
(5).

The following theorem gives a class of improved estimator for estimating θ = lnσ under
the squared error loss function.

Theorem 4.2. The estimator

δML
φ (X,S) =

{
lnS + φ(W), if W > 0,

δc0, otherwise

improves upon the BAEE δc0 for estimating θ under the loss function (5), if the function φ

satisfies the following conditions

(i) φ(w) is nondecreasing with limw→∞ φ(w) = ψ(b) − ψ(n − 1)

(ii) φ(w) ≥ ψ(b) − ψ(n − 1) − ln(1+w)

(1+w)n−1−1
.

From Theorem 4.2 we can derive, at least, two estimators which improve upon δc0

for estimating θ , namely the Brewster and Zidek (1974)-type estimator, δML
BZ (X,S) and a

Stein (1964)-type estimator which is different from the estimator derived in Theorem 4.1,
δML
ST 2(X,S), where

δML
BZ (X,S) =

⎧⎪⎨
⎪⎩

lnS + ψ(b) − ψ(n − 1) − ln(1 + W)

(1 + W)n−1 − 1
, if W > 0,

δc0, otherwise

and

δML
ST 2(X,S) =

{
lnS + min

{
φ2(W), c0

}
, if W > 0,

lnS + c0, otherwise,
(32)

where φ2(w) = ln(1 + w) + ψ(b) − ψ(n). For illustrative purposes, we have com-
puted numerically, using Mathematica v.9, the relative quadratic risk improvement (RI =
R(δc0 ;μ,σ)−R(δ;μ,σ)

R(δc0 ;μ,σ)
100%) of these two estimators. Without loss of generality we have taken

σ = 1. In Figures 1 and 2, we have computed the risk improvement of the estimator δML
ST 2

upon δc0 for estimating θ and for different values of n and b. It is noticed that the best im-
provement is achieved for values of μ near 0 (this is typical for Stein-type estimators). As
n increases, this improvement is getting less in value. Also, as b increases the range of the
values of μ, that this improvement exists, is getting more narrow. In Figures 3 and 4, we have
computed the risk improvement of the estimator δML

BZ upon δc0 for estimating θ and for differ-
ent values of n and b. Of course, in this situation we have no improvement at μ = 0 (this is
typical for Brewster and Zidek-type estimators) and our remarks are similar with those made
for Figures 1 and 2.
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Figure 1 Percentage risk improvement (RI) of δML
ST 2 over δc0 as a function of μ (σ = 1) for b = 4, when n = 5

(—), n = 10 (- - -) and n = 15 (- . -).

Figure 2 Percentage risk improvement (RI) of δML
ST 2 over δc0 as a function of μ (σ = 1) for n = 5, when b = 4

(—), b = 8 (- - -), b = 12 (- . -) and b = 16 (....).

5 Application

In this section, we provide an application of the Multivariate Lomax distribution. We consider
a data set from Lawless (1982), the data are the number of million revolutions before failure
for each of the 23 ball bearing in the life test and they are 17.88, 28.92, 33, 41.52, 42.12,
45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04, 173.40. By straightforward calculations and for different
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Figure 3 Percentage risk improvement (RI) of δML
BZ over δc0 as a function of μ (σ = 1) for b = 4, when n = 5

(—), n = 10 (- - -) and n = 15 (- . -).

Figure 4 Percentage risk improvement (RI) of δML
BZ over δc0 as a function of μ (σ = 1) for n = 5, when b = 4

(—), b = 8 (- - -), b = 12 (- . -) and b = 16 (....).

Table 1 Values of the proposed estimators

b δc0 δML
ST 1 δML

ST 2 δML
BZ

4 5.3187 5.3187 5.3187 5.3182
8 6.0782 6.0782 6.0782 6.0777

12 6.5052 6.5052 6.5052 6.5047
16 6.8036 6.8036 6.8036 6.8031

values of b, we compute the values of the estimators, proposed in the previous section, as in
Table 1

As we can see, improvement upon δc0 can be achieved if we choose the Brewster and
Zidek type estimator δML

BZ .

Remark 5.1. From our calculations, as b increases, we can achieve better improvement upon
δc0 using the Stein-type estimator δML

ST 1, too.
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6 Concluding remarks

In this paper, we have investigated the problem of estimating the entropy in a mixture model
of exponential distributions with respect to squared error loss function. We have proved that
the best affine equivariant estimator is inadmissible by deriving Stein (1964)-type improved
estimators. Further, we considered a class of scale equivariant estimators and sufficient condi-
tions are given under which this class of estimators improves upon the best affine equivatiant
estimators. In this class of estimators, some robust properties are also derived. It has been
seen that a generalized Bayes estimator coincides with the Brewster and Zidek (1974)-type
estimator. Especially, we have considered estimation for the entropy in the multivariate Lo-
max distribution, plots of percentage risk reduction of the improved estimator are given for
implement purpose.
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