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Hamiltonian Monte Carlo (HMC) is currently one of the most popular
Markov Chain Monte Carlo algorithms to sample smooth distributions over
continuous state space. This paper discusses the irreducibility and geometric
ergodicity of the HMC algorithm. We consider cases where the number of
steps of the Stormer—Verlet integrator is either fixed or random. Under mild
conditions on the potential U associated with target distribution 7, we first
show that the Markov kernel associated to the HMC algorithm is irreducible
and positive recurrent. Under more stringent conditions, we then establish
that the Markov kernel is Harris recurrent. We provide verifiable conditions
on U under which the HMC sampler is geometrically ergodic. Finally, we
illustrate our results on several examples.

1. Introduction. We consider the Hamiltonian Monte Carlo (HMC), a Metropolis—
Hastings algorithm to sample from a target probability density 7z on R?. This method was first
proposed by [9] in computational physics. It was later introduced to the statistics community
in [22] and quickly gained popularity; see, for example, [15], Chapter 9, [13, 23].

Consider a target probability density 7 on R¢ with respect to the Lebesgue measure, de-
fined for all ¢ € R? by

1(g)=e V@ /fde_U@dé’
R

where U : R — R is a continuously differentiable function. Hamiltonian dynamics describes
the evolution of a physical system which consists in the position ¢ € R? and the momentum
p € R?. The total energy of the system is given by the Hamiltonian function H defined for
(g, p) e RY x R by

H(g.p)=U(@) +Ilpl*/2.

Note that other choices of kinetic energy have been proposed recently; see, for example, [16]
and [17]. The system (g (¢), p()):>0 then evolves according to Hamilton’s equations on RY x
R4,

0 i[q(t)}:[ p(®) }

dr Lp() ~VU(q(1)]
The Hamiltonian flow associated with (1) preserves the extended target distribution (see [23]
and [5]) with density 7 given for any (g, p) € R? by

@ .0 =2 exp(—H@. ). Z= [ exp(~H(g. p)dqdp.
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The distribution 77 is the independent product of 7 and the d-dimensional Gaussian distri-
bution with zero mean and identity covariance matrix. Therefore, sampling from 7 allows to
get samples from 7 by marginalization. Since the Hamiltonian flow leaves 7 invariant, it has
been suggested to sample 7 by sampling independently the momentum variable from a stan-
dard Gaussian distribution and then integrating the Hamiltonian flow during either a fixed or
a random duration leading to an idealized version of HMC. The irreducibility and geometric
ergodicity of this algorithm has been studied in [4]; see Section 3.2 for a discussion.

In most cases, it is not possible to compute explicitly the solutions of (1); discretization
must be used instead. In this paper, we consider the Stormer—Verlet integrator which proceeds
as follows. Let 4 € R be a time step and 7' € N* be a number of iterations. The sequence

(qe, pe)eeio,.... Ty, starting from (qo, po) € R? x R4 is defined by the recursion

pev12=pe — (h/2)VU (qe)
qe+1=q¢ +hpet1)2
Pe+1 = pet+12 — (h/2)VU(qe+1).

This sequence defines a discrete dynamical system given for £ € {0, ..., T — 1} by

1 2 1 1
(Ge+1, pe+1) = \If,(l/)z o \I’;(l Vo ‘l’f,/)z(cu, pe) = <I>,(1 '(qe, po),
where for each t € Ry, llft(l) ) \Ift(z) : R — R are given for all (g, p) € R¥ by
\Ilt(l)(q, p)=1(q,p—tVU(q)) and \I’t(z)(q, p) = (g + tp, p). Define the sequence of iter-
ates {®; : R? x R? - RY x R : ¢ € N*} for £ > 1 by induction

o(d+1) _ xo0(f) o(1)
3) o, =&, 0, .
Set, for all £ > 1,
(4) CTDZ(E) = proj o @Z(Z),

where proj : R? x R? — R? is the projection on the first d coordinates, for all (¢, p) € R¢ x
R, proj(g, p) = q. Thus, with our notation for all £ € {1, ..., T}, (ge¢, pe) = @Zm(qo, Po)

and g¢ = EISZ(D (90, po). We now have all the background required to describe the HMC algo-
rithm. Denote by (Qy, Px) the value of the position and momentum at the kth iteration of the
algorithm. Each iteration of the algorithm may be decomposed into two steps, which are con-
structed to leave the extended distribution 77 invariant; see [23], [12] and [5], Theorem 5.7.
In the first step, we draw G from the d-dimensional normal distribution with zero mean
and identity covariance matrix, independent of {(Q;, P j)}';.:(). In the second step, we set the
initial conditions (Qk, Gk+1) and compute the position and the momentum after 7 leapfrog
steps. This move is accepted with probability oy {(Qk, Gk+1), @Z(T)(Qk, Gi+1)} where for
all (¢, p) eR4 xR?, (¢, p) e R? x RY,

(5) au{(q, p), (G, p)} =min[1,exp(H(q, p) — H(G, P))].

It may be shown that 7 is invariant (see (2)) with respect to the Markov kernel defined by
the HMC algorithm on the extended state space R? x R?; see [12]. Hence, 7 is a stationary
distribution for the Markov chain (Qy)k>0, which is the process which we are interested in.
The number of steps T is either a deterministic quantity or a random variable independent of
the current state. If the number of steps 7' = 1, then the algorithm reduces to the Metropolis
Adjusted Langevin Algorithm (MALA) [25].
Recently, the theory on HMC have been addressed by many authors; see [1, 2, 6, 28,

29] and in depth discussions of the HMC methodology can be found in [1, 5, 23]. This
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paper addresses two important issues in the analysis of HMC algorithm: irreducibility and
geometric ergodicity.

Irreducibility plays an essential role in the theory of Markov chains. In particular, it implies
that the invariant distribution, when it exists, is unique. The classical approach to derive irre-
ducibility of Hastings—Metropolis algorithms on R? outlined, for example, in [20] [26], is to
use that the proposal distribution admits a (sufficiently regular) transition density with respect
to the Lebesgue measure. For HMC, this condition does not necessarily hold. HMC has been
shown to be irreducible in [7] in the case where the state space is compact and the potential is
twice continuously differentiable. In [2], under appropriate conditions, irreducibility is shown
for a version of HMC where the number of leapfrog steps 7 is random, independent of the
proposal, and such that 7 = 1 with positive probability. Under such assumption, irreducibil-
ity of HMC boils down to irreducibility of MALA which has been established in [25]. In this
paper, we establish the irreducibility of the HMC algorithm under a general tail condition
of the target density which significantly relaxes the assumptions of [7] and [2]. This result
follows from a general irreducibility result for iterative Markov models which we believe to
be of independent interest; see the Appendix. Our main tool to establish irreducibility is the
degree theory for continuous maps [24].

In a second part, we establish the geometric ergodicity of the HMC sampler under the
assumptions that the potential U is homogeneous outside a ball or is a perturbation of a
homogeneous potential. Our assumptions imply that the proposal kernel of HMC satisfies
an “inwards acceptance” property [25]. Our results complement the recent paper [2] which
provides a variety of conditions under which the HMC algorithm is not geometrically ergodic.

In [4], a variant of HMC, referred to as the Randomized Hamiltonian Monte Carlo
(RHMC), is analyzed. This method is associated with a continuous-time Markov process
for which 7 given by (2) is invariant [4], Proposition 3.1. However, sampling such a process
requires the exact Hamiltonian flow which allows to bypass the acceptance-rejection step and
makes the analysis easier. Bypassing the discretization step nevertheless reduces the applica-
bility of the results, since direct integration of the Hamiltonian flow is most of the time not an
option. We discuss a simple example showing that the conditions in [4] upon which RHMC
is geometrically ergodic are not sufficient in the case of HMC.

The paper is organized as follows. In Section 2, conditions upon which the HMC kernel,
associated with (Qx)ren, 1s irreducible, recurrent and Harris-recurrent are given. In Section 3,
conditions under which the HMC kernel is V -uniformly geometrically ergodic are developed
and discussed. The proofs of the main results of Section 2 are gathered in Section 4. Note
that these proofs rely on technical results established in the Supplementary Material [11],
Section S1. Some general irreducibility results which are of independent interest, are stated in
the Appendix. Section S2 of the Supplementary Material contains the proof for the statements
of Section 3. Finally, our results are illustrated through several examples in [11], Section S4.

Notation. Denote by R and R* , the set of nonnegative and positive real numbers respec-
tively. Denote by I,, the identity matrix. Denote by | - || the Euclidean norm on R?. Denote by
B(RY) the Borel o-field of R?, F(R?) the set of all Borel measurable functions on R? and for
feFRY, || flloo = sup,cgrd | f (x)|. Denote by Leb the Lebesgue-measure on R?. For u a
probability measure on (R4, B(R?)) and fe F(RY) a u-integrable function, denote by w(f)
the integral of f w.r.t. . For f € F(R?), set || flloo = Sup,cge | f(x)|. Let V : RY — [1, 00)
be a measurable function. For f € F(R), the V-norm of f is given by || fllv = || f/ V lloo-
For two probability measures p and v on (R?, B(R?)), the V-total variation distance of 7
and v is defined as

lu—vlly= sup
FEFR), | fllv=1

L, feorauew = [ e
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If V=1, then || — v||y is the total variation distance denoted by ||u — v|Tv. For all x €
R and M > 0, we denote by B(x, M), the ball centered at x of radius M. Let M be a
d x m-matrix, then denote by MT and det(M) (in the case m = d) the transpose and the
determinant of M, respectively. Let k > 1. Denote by (R?)®* the kth tensor power of R?,
forall x e RY, y e RY, x ® y € (R)®? the tensor product of x and y, and x® e (R?)®* the
kth tensor power of x. For all xq, ..., x; € R?, set |x1 @+ Qxk|| = Sup; 1, ky 11X Il We let
L((RT)®k RY) stand for the set of linear maps from (R”)®* to R¢ and for L € L((R?)®*, R),
we denote by ||L|| the operator norm of L. Let f : RY — R¢ be a Lipschitz function, namely
there exists C > 0 such that for all x, y € R4, | f(x)— f(»I| <Cllx — y||. Then we denote
1 ILip = inf{[l £ (x) = FOII/llx = yll|x, y € RY, x # y}. Let k > 0 and U be an open subset
of R4. Denote by C kU, RY) the set of all k times continuously differentiable functions from
Uto RE. Let @ € Ck(U, RY). Write J for the Jacobian matrix of ® € C!(R4, RY), and DF® :
U — L([RY)®k RE) for the kth differential of ® € C*(R?, R?). For smooth enough functions
f:RY - R, denote by V f and V2 f the gradient and the Hessian of f, respectively. Let A C
R?. We write A, A° and dA for the closure, the interior and the boundary of A, respectively.
For any n1,n, € N, n1 > ny, we take the convention that ZZ‘:M =0.

2. Ergodicity of the HMC algorithm. For # > 0 and T € N*, consider the Markov
kernel P, 7 associated with the Markov chain of the HMC algorithm (Qy)ken, given for all
g € R? and A € BRY) by

~o(T), = oDy, = e—IpI?/2
Py7(q,A) = /Rd 1a(®), " (¢, P))an{(q, p), @, (q,p)}WdP
(6)
ol e P2
+8,® [ (1 -anl@. 5. 977 q. )T 7 0P
where 5(32(”, CI>Z(T) and oy are defined by (3)—(4) and (5), respectively. In this section, we

establish conditions upon which the Markov kernel Pj, 7 is irreducible or (Harris) recurrent.
For B € [0, 1], we consider the following assumption on the potential U.

H 1 (8). U is continuously differentiable and:
(i) there exists L; > 0 such that for all ¢, x € R4,
IVU(g) = VU )| <Lillg — x||.
(i) there exists M; > 0 such that for all g € R, | VU (¢)|| < M{1 + |lq|f}.

Before going further, we need to briefly recall some definitions pertaining to Markov
chains. Let P be a Markov kernel on (R?, B(R9)). Let n be an integer and @ be a non-
trivial measure on B(R9). A set C € B(R?) is called a (n, w)-small set for P if for all x € C
and A € BRY), P"(x,A) > u(A). A set A € B(R?) is said to be accessible for P if for all
x € RY, Y%, Pi(x,A) > 0. A nontrivial o-finite measure y is an irreducibility measure of
P if and only if any set A € B(R?) satisfying ;(A) > 0 is accessible. The Markov kernel P
is said to be irreducible if it admits an accessible small set or equivalently an irreducibil-
ity measure (in [21], our notion of irreducibility is referred to as ¢-irreducibility, where ¢
is an irreducibility measure; here irreducibility therefore means ¢-irreducibility). P is said
to be a T-kernel is there exists a kernel T on R? x B(R?) and a sequence of nonnegative
numbers (a;);en+ satisfying Z?L:of a; = 1, such that (i) for any x € R4, T(x,R?) > 0; (ii)
for any A € B(RY), x = T(x, A) is lower semicontinuous; (iii) for any x € RY, A € B(RY),
Zf:of a;P'(x,A) > T(x, A). T is referred to as a continuous component of P.
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Let (X,),>0 be the canonical chain associated with P defined on the canonical space
(Q, F, (Py, x € RY). A set A € B(R?) is said to be recurrent if for all x € A, E,[Na] = 400
where Na = Z;;OS’ 1a(X;) is the number of visits to A. The set A is Harris recurrent if for
any x € A, Py(Na = +00) = 1. The Markov kernel P is said to be Harris recurrent if all
accessible sets are Harris recurrent. In this case, for all x € R?, and all accessible sets A,
Py (Na = 400) = 1.

Define 91 : Ry — R4, for any s € R by

(7) Hi(s)=1+5/2+ s%/4.
We consider below values of the stepsize & and the number of iterations satisfying
(8) [{14hL* 9 (LD} —1] < 1.

Forall 2 > 0 and T € N*, we have
{14nL 29 (hLVH)) — 1 < LT GLIT)

using that 9] is nondecreasing. Then, setting S = chl/ % where ¢ = 0.521 is the unique
positive root of the equation ¢ (¢) =log(2), all T € N* and & € (0, §/T) satisfy (8). Note
that conversely, if 47 > 0 and T € N* satisfies (8), necessarily i € (0, Ll_l/ 2) because for
any s > 0, 91(s) > 1. In addition, since ¢!°2®* < (1 + ) for all s € (0, 1), T and  satisfy
AT <3=1]"2

THEOREM 1. Assume H 1(B) for some B € [0, 1] and that U is twice continuously
differentiable. Then, for all T € N*, and h > 0 satisfying (8) and q € R?, there exists a

Cl(R?, RY)-diffeomorphism § — li’}(lT) (q,q) such that for any p € R?,

. ~o(T = (T
9) ifqr =3."(q,p) then p=9\"(q.qr).
Moreover,

(1) The Markov kernel Py, 1, is a T-kernel; more precisely, for any B € B(Rd),
Py 1(q,B) =Ty 1(q,B)

+3,®eD 2 [ [1-anl@.5). 2" @ pYe 72 dp,

where the kernel Tj, T is a continuous component of P, T and is given by

D =
A Tar@.B=Cm 2 [ anq.pe W CIPD 0 G ag,
B h o

(10)

. ~ - ~ = (T - o(T = (T _
setting for q.q € RY, an(q.q) = anl(q, ¥,"(¢,3), 2, ¢, 9, (q. 9} and
Dy @) =detlgm , (@)

(i) The Markov kernel Py 1 is irreducible and the Lebesgue measure is an irreducibility
measure. Moreover, Py, T is aperiodic, Harris recurrent and all the compact sets are 1-small.
Therefore, for all g € RY,

(12) lim ”‘SqPZ,T — 7|ty =0.

n—-+0o

PROOF. The proof is postponed to Section 4.1. [J

In our next result, we relax the second-order differentiability condition on U, and in the
case B < 1 we even allow for arbitrary large values of the step size # and the number of
iterations 7'. The result is less quantitative and the proof is more involved: we use degree
theory for continuous mapping (the main notions required in the proof are recalled in the
Appendix).
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THEOREM 2. Leth > 0 and T € N* and assume either:

(@) H1 (B) for some B €1[0,1),
(b) H1 (1) and that T € N* and h > 0 satisfy (8).

Then:

(1) the HMC kernel Py, T defined by (6) is irreducible, aperiodic, the Lebesgue measure
is an irreducibility measure and any compact set of R? is small.
(1) Pp 7 is recurrent and for m-almost every q € R, lim,, - 4 oo ||8qP2’T —1|ltv =0.

PROOF. The proof is postponed to Section 4.2. [J

To the best of the author’s knowledge, the first results regarding the irreducibility of the
HMC algorithm are established in [7] under the assumption that U and ||[VU || are bounded
above (in [7] the state space of is a d-dimensional torus). Irreducibility has also been tack-
led in [2]: in this work however, the number of leapfrog steps T is assumed to be random
and independent of the current position and momentum. Under this setting and additional
conditions which in particular imply that the number of leapfrog steps 7" is equal to 1 with
positive probability, [2] shows that the kernel associated with the HMC algorithm is irre-
ducible. Under this condition, the proof is a direct consequence of the irreducibility of the
MALA algorithm—a mixture of Markov kernels is irreducible as soon as one component of
the mixture is irreducible; the irreducibility of MALA kernel has been established in [25].
Finally, [4], Proposition 3.7, shows that RHMC is irreducible under the condition that U is at
least quadratic. Note that Theorem 2 establishes irreducibility of HMC of subquadratic poten-
tial. However, leap-frog integrator is not numerically stable for lighter than Gaussian target
density, therefore, other kind of integrators should be used instead; see, for example, [14],
Chapter VI

Finally, note that our results can be easily extended to the case where the number of steps is
random. We briefly describe the main arguments to obtain such extension. Let (z;);cn+ be a
probability distribution on N* and (/;); <+ be a sequence of positive real numbers. Define the
randomized Hamiltonian kernel Fh,w on (R4, B(R?)) associated with (z0;);en+ and (h;); e
by

(13) Pho = Y @iPh.i.
ieN*

We denote by supp(@) = {i € N*: w; # 0} the support of the distribution @ .

COROLLARY 3. Let B €[0, 1] and assume H 1(B). Let (w;);cn* be a probability distri-
bution on N*, (h;);en+ be a sequence of positive real numbers, and Fh,w be the randomized
Hamiltonian kernel associated with (w;);en+ and (h;);eNx.

(a) Assume that U is twice continuously and there exists i € N* such that [{1 +
hiLi/zﬂl (hiLi/z)}" — 1] < 1 and @; > 0 where ¥ is given by (7). Then the conclusions
of Theorem 1(ii) hold for Pp 4 . B

(b) If B €10, 1), then the conclusions of Theorem 2(a) hold for Py 4 .

(c) If B =1 and there exists i € supp(w) such that [{1 + hiL}/zﬁl (hiL}/z)}" —1] <1,

then the conclusions of Theorem 2(b) hold for l_)h’w.

PROOF. (a) follows from Theorem 1 and Proposition S11. (b) and (c) are straightforward
applications of Theorem 2. [J
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3. Geometric ergodicity of HMC.

3.1. Main results. In this section, we give conditions on the potential U which imply that
the HMC kernel (4) converges geometrically fast to its invariant distribution. Let V : R —
[1, +00) be a measurable function and P be a Markov kernel on (R?, B(R)). The Markov
kernel P is said to be V-uniformly geometrically ergodic if P admits an invariant probability
7 and there exists p € [0, 1) and ¢ > 0 such that for all g € R? and k € N*,

IP*(q, ) — x|y < 5" V(g).

By [21], Theorem 16.0.1, if P is aperiodic, irreducible and satisfies a Foster—Lyapunov drift

condition, that is, there exists a small set C for P, A € [0, 1) and b < 400 such that for all
d

q € R4,

(14) PV <AV +big,

then P is V-uniformly geometrically ergodic. If a function V : R — [1, 0o) satisfies (14),
then V is said to be a Foster—Lyapunov function for P. We first give an elementary condi-
tion to establish the V-uniform geometric ergodicity for a class of generalized Metropolis—
Hastings kernels which includes HMC kernels as a particular example.

Let K be a proposal kernel on (R?, B(R??)) and « : R3¢ — [0, 1] be an acceptance prob-
ability, assumed to be Borel measurable. Consider the Markov kernel P on (R?, B(R?)) de-
fined for all ¢ € R? and A € B(R?) by

(15)  Plg.A) = [ Ta(proi(@)atg. DK(g.d2) +8, 8 [ {1-(q.2)]K(g.d2),

where proj : RY x RY — R? is the canonical projection onto the first d components. For
he R”; and T € N*, P, 7 corresponds to P with K and « given for all ¢, p, x € R4 and
B € B(R*), respectively, by

- X0 ~ -~ —7N2 -
(16) Kh,T(q’ B) - (27[) d/2 \/Rd ]].B((Dh(T)(q’p)’p)e Hp” /de’

a7 aH(q,@ﬁ))::QH{(q’p)’q)z(T)(q’p)}’ it =8;q. )

0 otherwise,
where <I>Z(T), CT)Z(T) and oy are defined in (3), (4) and (5), respectively. Let V : R¢ —
[1, +00) be a norm-like function, that is, a measurable function such that for all M € R, the
level sets {g € R? V(q) < M} are compact. Note that if V is norm-like, for any M € R,
{g € R?:V(q) < M}® is non-empty. The function V naturally extends on R?? by setting for
all (¢, p) e R**, V(q, p) = V(q).Forall g € R?, define:

(18) Z(@)={zeR¥ a(q,2) <1},  Bg) ={zeR*, V(proj(z)) < V(g)}.

The set Z(q) is the potential rejection region. Our next result gives a condition on K and
o which implies that if V is a Foster—Lyapunov function for K then P satisfies a Foster—
Lyapunov drift condition as well. This result is inspired by [25], Theorem 4.1, which is used
to show the V-uniform geometric ergodicity of the MALA algorithm.

PROPOSITION 4. Let V : RY — [1, 400) be a norm-like function. Assume moreover that
there exist ). € [0, 1) and b € R, such that

19) KV <AV +b
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and

(20) lim sup K(q, %(q) N %(q)) = 0.
M=400 4RV ()= M)

Then there exist A € [0, 1) and b € Ry. such that PV <LV + b where P is given by (15).
PROOF. The proof is postponed to Section S2.1. [

We show below that under appropriate conditions, the proposal kernel K, r and the ac-
ceptance probability &g given by (16) and (17) satisfy the conditions of Proposition 4 which
imply that the HMC kernel P, 7 is V-uniformly geometrically ergodic. For m € (1, 2], con-
sider the following assumption:

H 2 (m). There exist Aj € R% and A, € R such that for all ¢ € RY,

(VU(@),q) = A1 llg™ — A, .

Foralla € RY and g € R4, define

(21) Va(g) =exp(allqll).
For h > 0, define

22) 92(h) =My /L)> +Mh/2 +L*Mh?/4.

PROPOSITION 5.

(a) Assume H 1(m — 1) and H 2(m) for some m € (1,2). Then, for all T € N*, h € R% ,
and a € ]Rj_, there exist ). € [0, 1) and b € R, such that

(23) Kin1Va <AV, +b.
(b) Assume H 1(1) and H 2(2). Let S > 0 be such that ®(S’) = A| where the function ©®

is given by

172 1/2
A(s) = 2L, Pa(s)fek 1) 1)
(24)

1/2 1/2
+652(M3 + Lyo3(s)feln @) —1)2),
with 1 and ¥, defined by (7) and (22), respectively. Let Se (0, S'). Then, for all a € R*_,
T e N* and h € (0, S’/ T1], there exist . € [0, 1) and b € R which satisfy (23).

PROOF. The proof is postponed to Section S2.2. [

We now derive sufficient conditions under which the condition (20) of Proposition 4 is
satisfied.
H 3 (m). Thereexist F, G : RY — R such that U = F + G and satisfying:

(i) F € C3(RY) and there exists A3 € R% such that for all g € R? and k = 2,3,

IDXF (@)1l < As{1+ llgl)™~*.
(i) There exist A4 € R} and Ry € R such that for all ¢ € R, ||g|| > Ry,

D*F(@){VF(q) ® VF(q)} > A4 llq P .
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(iii) G € C1(R?) and there exist As € R?% and o € [1,2(m — 1)) such that for any ¢, x €
RY,
|G ()] < As(1+liq11)®, IVG (@) < As(1+lIg1)° ",
[VG(9) — VG| < Asllg — x|

It is easily checked that under H 3, the results of Section 2 can be applied, that is, VU
satisfies H 1(m — 1); see Lemma S5.

Condition H 2(m) and H 3(m) are satisfied by power functions ¢ + c||¢||™. More gen-
erally, they are satisfied by m-homogeneously quasiconvex functions with convex level sets
outside a ball and by perturbations of such functions.

We say that a function F; : R? — R is m-homogeneous quasi-convex outside a ball of
radius R; if the following conditions are satisfied:

(QC-1) forallz > 1 and g € RY, |||l = Ry, Fi(1q) =" Fi(q).
(QC-2) forallg € R, llg|l > Ry, the level sets {x : F1(x) < Fi(gq)} are convex.

PROPOSITION 6. Let m € [1,2] and Ry € Ry. Assume that the potential U may be de-
composed as U(q) = F1(q) + F2(q) + G(q), for any ¢ € R?, ||q|| = Ry, where the functions
Fi.Fh,GeC 3(Rd ) satisfy the following two conditions:

(A) Fy is m-homogeneously quasiconvex outside a ball of radius R| and
limyg - +oc F1(g) = 00.

(B) Fork=2,3,limjg 100 | DX Fa2(q)I/llg|I"* =0.

(C) G satisfies H 3(iii).

Then U satisfies H 2(m) and H 3(m).
PROOF. The proof is postponed to Section S2.3. [J

To show that the condition (20) of Proposition 4 is satisfied under H 3(m), we rely on the
following important result which implies that the probability of accepting a move goes to 1
as [lg|l — oo.

PROPOSITION 7. Assume H 3(m) for some m € (1,2]. Let y € (0,m — 1).

(@ Ifme(1,2), forall T € N*, h € R%, there exists Ry € Ry such that for all qo, po €

R, llgoll = Ry and || poll < liqoll”. H(®;" (q0. po)) — H(qo. po) <0..
(b) Ifm =2, there exists S > 0 such that for any T € N* and h € (0, S/ T3/?], there exists

. . o(T
Ry € Ry satisfying for all qo, po € R?, |lqoll = Ru and || poll < llqoll” » H(@;" (g0, po)) —
H (g0, po) <0.

PROOF. The proof is postponed to Section S2.4. [J

This result means that far in the tail the HMC proposal are “inward.” We illustrate the
result of Proposition 7(a) in Figure 1 for U given by g — (||g||> + 8)* for k =3/4, h=0.9
and po € R?, || poll = 1. Note that this potential satisfies the assumptions of Proposition 7.
We can observe that choosing the different initial conditions gp with increasing norm imply
that T = max{k € N; H(dDZ(k) (g0, po)) — H(qo, po) < 0} increases as well.

However, in the case m = 2, Proposition 7(b) only implies that the HMC proposal is inward
only if the step size & is sufficiently small with respect to the number of leapfrog step 7', that
is, is of order O(T ~3/2). To relax this condition, we strengthen H 3(2) by assuming that U is
a smooth perturbation of a quadratic function.
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H 4. There exist G : R? — R, continuously differentiable, and a positive definite matrix
IT such that for any g € R?, U(q) = (Ilg, q)/2 + G(g) and there exist A5 > 0 and ¢ € [1, 2)
such that for any ¢, x € R?,

G@)| <As(1+1g1)%.  |VG@]| < As(1+llq)° ",

(25)
IVG(q) = VG| < Asllg — xI.

Note that it is straightforward to check that under H 4, the conditions H 1(1) and H 2(2)
hold.

The following result shows that it is enough that the decomposition required in H 4 asymp-
totically holds.

PROPOSITION 8. Assume that there exist T : RY — R?*4 qnd G : R? — R continuously
differentiable such that for any g € R, U(q) = (T (¢)q, q)/2 + G(q) with G satisfying (25)
and there exist a positive definite matrix T1 € R4, Cr > 0 and er > 0 satisfying for any

d
q,x eR?,

(26) IT@) -1 <Ccr(1+1lg)~", | DT(@)| <Cr(1+lql)~ "~
27) | DT(q) — DT ()| < Crllg — xIl/(1 + gl A 1x]l)*.
Then U satisfies H 4.

PROOF. The proof is postponed to Section S2.5. [

PROPOSITION 9. Assume H 4 and let y € (0, 1). There exists a constant S > 0 such that
forall T € N*, h € (0, §/T1, there exists Ry € Ry such that for all qo, po € R?, |lqoll = Ru

and || poll < llgoll”, H(®; (g0, po)) — H(qo, po) <O0.

PROOF. The proof is postponed to Section S2.6. [

We now can establish the geometric ergodicity of the HMC sampler.
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THEOREM 10.

(a) If H 2(m) and H 3(m) hold for some m € (1, 2), then for all a € R* , T € N* and
h > 0, the HMC kernel Py, 1 is V,-uniformly geometrically ergodic, where V, is defined by
(21).

(b) If H2(2) and H 3(2) hold, then there exists S > 0 such that for all a e R% , T € N*
and h € (0, S/T3/?), Py, 7 is Vy-uniformly geometrically ergodic.

(c) If H 4 holds, then there exists S > 0 (depending only on T1 and As) such that for all
aeR}, TeN* andh € (0, S/T), Py.1 is Vy-uniformly geometrically ergodic.

PROOF OF THEOREM 10. It is enough to consider (a) as the proof of (b) and (c) follows
exactly the same lines taking S small enough. Proposition 5 shows that forall 7 € N*, h € R%
and a € R, there exist A € [0, 1) and b € R such that the Foster-Lyapunov drift condition
Kpn,1Va <AV, + b is satisfied. By Proposition 7, there exists Ry > 0 such that forall g € R4,
lgll = R,

/ Kp,7(q,dz) < (2n)—d/2/ e 17122 4,
#(q) {pl=ligl”)

for y € (0,m — 1) where Z(q) = {z € R* : @y (q,z) < 1} (see (17)), which implies that

lim  sup Kn.7(q,dz) =0
M= 400 ig|1>M I %(q)

Since V, is norm-like, Proposition 4 implies that for all 7 > 0 and & > 0, there exists A
and b (depending upon a, & and T') such that P, 7V, < XV + b. For all M > 0 the level sets
{Va = M} are compact, and hence small by Theorem 2. [8], Corollary 14.1. 6, then shows that
there exists a small set C, xe [0, 1) and be [0, 1) such that P, 7V, < AV + b]lc Since Py, 1
is aperiodic, the result follows from [8], Theorem 15.2.4. [J

We finally consider the case where the number of leapfrog steps is a random variable
independent of the current state.

THEOREM 11.

(a) If H2(m) and H 3(m) hold for m € (1, 2), then for all probability distributions @ =
(wi)ien* on N*, all sequences h = (h;);eny of positive numbers, and a € R?_, the randomized
kernel Fh,w (13) is V,-uniformly geometrically ergodic, where V, is defined by (21).

(b) If H2(2) and H 3(2) hold, then there exists S > 0 such that for all probability distri-
butions @ = (w;)ien+ on N*, all sequences h = (h;);ecn+ satisfying max; csupp(aw) i3 < S,
and a € RY., Py o is Vy-uniformly geometrically ergodic.

(c) If H 4 holds, then there exists S > 0 (depending only on T1 and As) such that for
all probability distributions @ = (w;)jen+ on N*, all sequences h = (h;)jen+ satisfying
max; csupp(@) Lhi < S, and a € R* , I_Dh,m is Vy-uniformly geometrically ergodic.

PROOF. It is enough to consider (a) as the proofs of (b) and (c) are along the same lines.
Set a € R%.. It is established in the proof of Theorem 10 that for all i € N* P; ;, satisfies
a Foster—Lyapunov drift condition: there exists A, €[0,1) and b, < oo such that P; 5, V, <
Xi Va4 + b;. By Corollary 3, Pp 4 is irreducible and aperiodic and all the compact sets are
small. We conclude by applying [8], Theorem 15.2.4. [
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3.2. Comparison with the literature. [2], Theorem 2.1, establishes geometric ergodicity
of the HMC kernel but under an implicit assumption on the behavior of the acceptance rate
(see [2], assumption (A3)). Our conditions are directly verifiable on the potential U'.

[18, 19] mainly study different versions of the unadjusted versions of the HMC (based
on the Verlet integrator but omitting the Metropolis—Hastings step). These articles provide
quantitative results (as opposed to our results which are qualitative) with an explicit depen-
dence on the dimension d, but under stringent assumptions on the target distribution, which
is assumed to be strongly log-concave.

Our conditions are different from those given by [4] to establish the geometric ergodicity of
the idealized randomized HMC, for which the Hamiltonian flow (1) is assumed to be known.
In such cases, the proposals are always accepted, which considerably simplifies the proof: by
far the most difficult part of the evidence is indeed to show that the acceleration rate tends
towards 1. The conditions in [4] are as follows:

(i) fpa lglI*dm(q) < 400,
(ii) there exist C; € (0, 1) and C; > 0 such that for all g € R?

@ 'CyH*+ 20 - C/4
2(1 —-Cy)
where 7 > 0 is the duration parameter of the RHMC algorithm.

(28)  (1/2)(VU(q),q)> C1U(g) + lgll* — Ca,

Note that these conditions assumed that the tails of the target density are lighter than those of
a Gaussian. In comparison, our results can be applied to subquadratic potentials. In addition,
it can be shown that HMC is not geometrically ergodic under (28): a counterexample is given
below.

The main difference with the setting of [4] is that HMC has a acceptance/rejection step
and the integrated acceptance ratio

o _ 2 _
q'—>AdaH{(q,p),¢h(T)(q,p)}e IPIP/2 2y~ /2 dp

must not go to 0 as ||g|| goes to +o0o. Assumptions H 3 and H 4 are required to control the
integrated acceptance ratio. Indeed, [26], Theorem 5.1, shows that a an irreducible Markov
kernel P on (R?, B(R?)) is not geometrically ergodic with respect to an invariant measure /.
if

(29) inf{8 >0: u({g eR?: P(q,{g}) = 8}) =0} =1.
Consider the target density 77 with potential U given for all ¢ = (q1, ¢2) € R? by
(30) U(q) = —log(e 4150 4 e=54i-0),

Note that U satisfies the condition (28). On the contrary, we may show that (29) holds and,
therefore, HMC is not geometrically ergodic for such a potential U. However, the detailed
calculations are very technical and not particularly informative and we prefer to present a nu-
merical evidence that (29) holds. Indeed, Figure 2 displays numerical computations of the
mean acceptance ratio, [p2 an{(q, p), CDZ(T)(q, p)}e‘”‘””z/z(Za-[)_l dp=1-"Purq.{g})
for g1 € {200 + j50,j =0,...,6}, g2 € [q1 + 107%,¢1 +2-107#] and T = 1 which cor-
responds to MALA. We can observe that the larger g;, the smaller 1 — P, 7(q, {¢}), which
illustrates that (29) holds for the HMC kernel.

However, our result can be applied to d-dimensional Gaussian mixtures with a dominating
precision matrix. Consider potentials given for any g € R? by

N
U(g) =—logd > w;exp(—(TTi(q — gi). g — qi)/2) { -
i=1
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Acceptance ratio of MALA starting from (g1, q1 + a)
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FI1G. 2. Acceptance ratio for MALA applied to (30).
where for any i € {1,..., N}, w; > 0 and ZlN:1 w;=1,q; € R4, I1; is a positive definite

matrix. Assume that Il; — I is positive definite for i € {2,..., N}. Indeed g — (I1;(g —
q1),q —q1)/2 and its first- and second-order partial derivatives are bounded functions and,
therefore, H 4 is satisfied which shows that the conclusions of Theorem 10c hold. Note that
the Gaussian mixture we consider in (30) has no dominating precision matrix.

Bou-Rabee et al. [3] is more closely related to our work and studies the same (metro-
polized) HMC with a Verlet integrator. Bou-Rabee et al. [3] evaluates the mixing time (with
respect to a carefully designed Kantorovitch distance) for a target distributions which are
log-concave outside a compact set. Two types of results are established. Reference [3], Theo-
rems 2.4, 2.7, establish a contraction for the HMC kernel for smooth potential function U (U
should be 4 times continuously differentiable with bounded second, third and fourth differen-
tial) and additional conditions on the stepsize and the number of integration steps. Moreover,
this result holds only if the initial points are in a compact set. The second result [3], Theorem
2.12, establishes explicit complexity bounds in a specially crafted Kantorovitch distance of
order 1, that is, given a precision parameter € > 0, [3], Theorem 2.12, gives a number of itera-
tions n which is sufficient to ensure that the Kantorovitch distance of order 1 between the nth
iterate of HMC and the target distribution 7 is smaller than €. Note that the discretization step
and the number of iterates are functions of the total number of samples: therefore, the nature
of this result is different from ours. Furthermore, compared to [3] we establish convergence
in total variation distance or V-norm and not in a Kantorovitch distance.

4. Proofs of Section 2. Note that a simple induction (see [2], Proposition 4.2) implies

that for all (go, po) € RY xR? andk € {1, ..., T}, the kth iteration of the leapfrog integration,

(G, pr) = CI)Z(k) (g, p), where <I>Z(k) is defined by (3), takes the form

2
qr = qo + khpy — TVU(QO) — thh,k(QO, Do)
(31) i i o -
pe=po—5{VU(g) + VU o 3, (g0, po)} =1 > VU 0 3,7 (4o, po),
i=1

where Ej 1 : R x RY — R? is given for all (g, p) € R x R? by

k—1
(32) Enilg, p) =Y (k—i)VU o ;7 (q, p).

i=I
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4.1. Proofof Theorem 1. We first prove (9). Under the assumption that U is twice contin-
uously differentiable, it follows by a straightforward induction, that for all # > 0 and ¢ € R¢,

p CTDZ(I() (g, p), defined by (4), and p — Ej (g, p), defined by (32), are continuously
differentiable and for all (¢, p) € R? x R4,
T—1 .
2@ )= 3T =D{V2U 0 &, (q. )|, 5o (4. ).
i=1

where for all g € R, Jp.zni(q, p) (Jp Fow (g, p), resp.) is the Jacobian of the function p —

— ~ ~ ~o(h ~
Enxg. p) (pr> &7 (q, p), resp.) at p e RY.
Under H 1, sup, e || V2U (x)| <Ly, therefore by Lemma S3, we have that for any 7 € N*

and i > 0,
(33) sup  [Jp.m,0 (g, )| < T({1+ AL 01 (L, %)} = 1)/
(q,p)eRdx]Rd

For any ¢ € R?, T € N* and /1 > 0, define ¢, 7.5 (p) for all p € R? by

¢g.1.0(p)=p— (h/T)En1(q, ).
It is a well-known fact (see, e.g., [10], Exercise 3.26) that if

(34) sup  (h/T)|Ip.z,r(a.P)| <1,
(q.p)eRI xRY
then for any g € R4, ¢q4,7,1 1s a diffeomorphism and, therefore, by (31), the same conclusion

holds for p &DZ(T)(q, p). Using (33), if T € N* and h > O satisfies (8), then the condition
(34) is verified and (9) follows.
Denoting for any g € R¢ by \fl}(lT)(q, ) : R? — R the continuously differentiable inverse

of p— 5;0) (g, p) and using a change of variable with \il}(lT) (g, -) in (6) concludes the proof
of (10).

We now show that Tj 7 satisfies the condition which implies that P, 7 is a T-kernel.
We first establish some estimates on the function (g, p) — ¥\ (g, p). By (34) and (31),

for any ¢, p,v € RY, there exists ¢ € (0,1) such that ||E>Z(T)(q,p) - EISZ(T)(Q, V)| >
(hTD)lpg,1.h(P) — Pg,7.n (V)| = (hT)(1 — &)||p — v|| which implies that that there exists
C > 0 satisfying

(35) 195" . p) = B (g v)| < (1 = &) v = pl.
19" @ p)| < clipll+ 8" q. 0]}).
In addition, for g, x, p € R4, we have setting ¢ = \i'}(lT)(q, p) that

19" @, p) =B x, p| = |G — I (x, 3, (q. 9)) |

= 18D (x, 3D (x,5)) = 5T (x, 3D (q. )

B

which implies by (35) and Lemma S1 that there exists C > 0 satisfying
(36) 9”@, p) = ¥ x, p)| = Cllg — xII.

We now can prove that Ty 7 is the continuous component of Py, 7. First by (11), for all
B e B(RY),

_ . — o —IW. (212 _
Ty.7(q,B) = 2m)~*/?Leb(B) x inf{ar (g, g)e "DV 2D (@)},
geB n (q,)
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with the convention 0 x 400 =0 and

an(q, P =anla, ¥ @) 2, (0. 9, @. D)},
Since the function (g, p) — (&)Z(T)(q, P, \fJIET) (. p), D\i/,(l”(q,.)(p)) is continuous on R¥ x
R? by Lemma S1, (35) and (36), and for any ¢, p € R¢, JE)Z(T)(q’_)(\iJ}(lT)(q, p))‘]\i';(,’)(q,-)(p) =

I,, we get that T, 7(¢q,B) > O for all g € R? and all compact sets B satisfying Leb(B) > 0.
Therefore, using that the Lebesgue measure is regular which implies that for any A € B(R?)
with Leb(A) > 0, there exists a compact set B C A, Leb(B) > 0, we can conclude that P, 7 is
irreducible with respect to the Lebesgue measure. In addition, we get T, 7 (g, RY) > 0 and,
therefore, we obtain that P;, 7 is aperiodic. Similarly, we get that any compact set is 1-small.

It remains to show that for any B € B(RY), q — Tu.1(gq,B) is lower semi-continuous
which is a straightforward consequence of Fatou’s lemma and that for any p € R?, ¢ >

o(T = (T . .
(th( '(q, p), \I';(, '(q, p), D@}('T)(q’.)(P)) is continuous.

Finally, the last statements of (ii) follows from Proposition S11 in [11], Section S3, which
implies that P;, 7 is Harris recurrent and [21], Theorem 13.0.1, which implies (12).

4.2. Proof of Theorem 2. We use Corollary 14 of the Appendix. Indeed Py, r is of form
(37) and it is straightforward to check that it satisfies G 1 (note that Lemma S1 shows that
(IDZ(T) is a Lipshitz function on R??).

We now check that P, 7 satisfies G 2(R, 0, M) for all R, M € R* using Proposition 15.
By (31), forall T e N*, h > 0, ¢, p € R¢,

~o(T
&g, p)=Thp + g4.1.4(p),

where g, 7.4(p) = q — (Th*/2)VU(q) — h*Ep,1(q, p) where Ej 1 is defined by (32).
Lemma S3 shows that for any 7 € N* and 4 > 0, it holds that
sup &g, 7.n(P) — &q.7.n (V)| < Th[{1 +hL}/2z?1 (hLi/Z)}T _1).
p.v,geR? Ilp — vl

which implies that the condition Proposition 15(i) is satisfied. To check that condition Propo-
sition 15(ii) holds, we consider separately the two cases: 8 <1 and 8 =1.

e Consider first the case 8 < 1. By H 1(ii), forany 7 € N* and & > 0, we get

r-1 T—-1
1Bhr@, P <T Y VU3, (q, p| <MiT Y {1+ 8,7 (q, p|”}.

i=I i=l

Hence, by Lemma S2(i) there exists C > 0 such that forall R e R} and ¢, p € RY, ¢l < R,

leq.r.n(p)| < C{1+ RP + | p|IF},

which implies that condition (ii) of Proposition 15 holds for any 7 € N* and & > 0.
e Consider now the case 8 = 1. Forany T e N*, h > 0, ¢, p € R? we get using H 1(i)

lgq.m0 (| < gl + Th*Liliql/2 + Th*| VU (0)] /2

+ 12| Enr(q. p) — Enr(q. 0| +h?|En1(g. 0.

Therefore, using Lemma S3, for any ¢, p € R?, |l¢|| < R for R > 0, for any T € N* and
h > 0 satisfying (8), there exists C > 0 such that

lgq.r.n(p)| < C+hT[{1+hL{*9 (ALY} = 1]l pll,

showing that condition (ii) of Proposition 15 is satisfied.



3560 A. DURMUS, E. MOULINES AND E. SAKSMAN

Therefore, Proposition 15 can be applied and for any 7 € N* and 4 > 0 if 8 < 1 and for
any h > 0 and T € N* satistying (8) if B = 1, Py, 7 satisfies G 2(R, 0, M) for all R, M € R
Corollary 14 concludes the proof of (a) and (b). The last statement then follows from [21],
Theorem 14.0.1.

APPENDIX: IRREDUCIBILITY FOR A CLASS OF ITERATIVE MODELS

In this section, we establish the irreducibility of a Markov kernel associated to a random
iterative model. These results are of independent interest. Let f : R? x R? — R? and « :
R4 x R — [0, 1] be Borel measurable functions and ¢ R? — [0, +00] be a probability
density with respect to the Lebesgue measure. Consider the Markov kernel K defined for all
x € R? and A € B(R?) by

(37) K(x,A) = /Rd La(f (x, 2))a(x, 2)¢ () dz + @ (x)8: (A),

where @(x) = [ga @(x, 2)¢(z) dz. Define for all x € RY, f, : RY — RY by fr = f(x, ).

First, we give a result from geometric measure theory together with a proof for the reader’s
convenience, which will be essential for the proof of the statements of this section. Let U C
R? be an opensetand ®:U — R? be a measurable function such that there exist yg, yo € R?
and M, M > 0 satisfying B(¥yp, M) C U and

(38) B(y0, M) C ©(B(5o, M)).
Define the measure Ag on (R?, B (Rd )) by setting for any A € B (RY),
ro(A) & Leb{0~!(A) N B0, M)}

Note that Ag is a finite measure. Therefore, by the Lebesgue decomposition theorem (see

[27], Section 6.10) there exist two measures A(a) A(S) on (R¢, B (Rd)) which are absolutely
continuous and singular with respect to the Lebesgue measure on R?, respectively, such that

ho =2y +15).

PROPOSITION 12. Let U C R? be open and © : U — R? be a Lipschitz function satisfy-

ing (38). For any version ¢e of the density of Ag) with respect to the Lebesgue measure on
R4, it holds

¢ () = 1B mMIOIE,  Leb-ae.
PROOF. Denote by L = ||®||jp. Let y € B(yo, M). By (38), we may pick z € B(Jo, ]\71)

such that ®(z) = y. Let 89 > 0 be such that B(z, §o/L) C B(yo, 1\71). Since ® is Lipschitz
continuous, for all § e R%, ®(B(z,8/L) NU) C B(y, §). Hence, for all § € (0, 5], we have

2o (B(y,8)) > L™ Leb(B(z,8)) = L9 Leb(B(y, 8)).

The claim follows from the differentiation theorem for measures; see [27], Theorem 7.14.
O

We can now state our main results. Let R, M € R* and yo € R¢. Consider the following
assumptions.

G 1. ¢ and « are lower semicontinuous and positive on R¢ and R?¢, respectively.

G2 (R, yo, M).
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(i) There exists L s € Ry such that for all x € B(0, R), fy is L ¢-Lipschitz, that is, for all
21,22 €RY | felz) = fe@)ll < Lyllz = 2l
(ii) There exist yg € R? and M € Ri, such that for all x € B(0, R), B(yp, M) C

fxBGo, M)).

THEOREM 13. Assume G 1 and that there exist yg € R, R >0 and M > 0 such that
G 2(R, yo, M) is satisfied. Then B(0, R) is 1-small for K: for all x € B(0, R) and A € B(R%),

K(x,A) > L;d min a(x, 2)¢(2)} Leb{ANB(yo, M)},
(x,2)€B(0,R) x B(30, M)

where (3o, M) e R4 x R% is defined in G 2(R, yo, M).
PROOF. For all x € B(0, R) and A € B(R?), we get

KA = [ (/e 0ot 8@ dz = [ 10, @atx 9@ dz

\

> min  {a(x, )¢ @)} Leb{ £ (A) NB(Go. M)}.
(x,2)€eB(0,R)xB(y9,M)

The proof follows from Proposition 12 and G 2(R, yp, M)(i) which imply Leb{ fxfl(A) N
B(Jo, M)} = L7 Leb{AN B(yo, M)}. O

The following corollary is a straightforward consequence of Theorem 13.

COROLLARY 14. Assume G 1 and that there exists (yo, M) € RY x R* such that for all
R e R G 2(R, yo, M). Then K is irreducible with irreducibility measure Leb{- N B(yo, M)}.
In addition, all the compact sets are 1-small.

In the next proposition, we give examples of functions f which satisfy G 2.

PROPOSITION 15.  Let g a function from RY x R¢ to R? and R € R% . Assume that:
(i) there exists Lg g € Ry such that for all z1,z2, x € R4, x| <R,
lg(x,z1) — g(x,z2)| < Lg rllz1 — 221l
(i1) there exist CRr,0, Cr.1 € Ry such that for all x, z € R4, x|l <R,
[sGx. )| < Cro+ Crallzll-
Let b € R and define £ :R? x RY for all x,z € R? by
fé(x,2) =bz+g(x,2).
If ||b]l > CRg,1, then f§ satisfies G 2(R, 0, M) for all M € R%_ with yo =0 and
(39) M = {M + Cro}/(Ibll = Cr.1)-
We preface the proof by recalling some basic notions of degree theory. Let D be a bounded
open set of R?. Let f : D — R be a continuous function on D continuously differentiable on
D. An element x € D is said to be a regular point of f if the Jacobian matrix of f at x, J r(x),

is invertible. An element y € f(D) is said to be a regular value of f if any x € f~'({y}) is a
regular point.
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Let f:D — RY be a continuous function, C*®-smooth on D. Let y € R¢ \ f(3dD) be a
regular value of f. It is shown in [24], Proposition and Definition 1.1, that the set f~!({y})
is finite. The degree of f at y is defined by

deg(f,D,y)= > sign{det(Jr(x))}.
xef~tdyh

PROPOSITION 16 ([24], Proposition and Definition 2.1). Let f :D — R? be a continu-
ous function and y € R4 \ f(3D).

(a) Then there exists g € C(D, R?) N C®(D, RY) such that v is a regular value of g and
sup, g |f (x) — g(x)| < dist(y, f(dD)).
(b) For all functions g1, g» : D — R¥ satisfying (a),

deg(g1,D, y) =deg(g2.D, y).

Under the assumptions of Proposition 16, the degree of f at y is then defined for any
g : D — R satisfying (a) by

deg(f,D,y) =deg(g,D, y).

PROPOSITION 17 ([24], Proposition 2.4). Let f, g : D — R? be continuous functions.
Define H: [0, 1] x RY — R? forall t € [0, 1] and x € R¢ by H(t,x) =tf (x) + (1 — t)g(x).
Let y € R4\ H([O, 1] x 9D). Then

deg(f,D, y) =deg(g, D, y).
We have now all the necessary results to prove Proposition 15.

PROOF OF PROPOSITION 15.  Since f8(x, z) =bz+g(x, z) and g(x, -) is Lipschitz with
a Lipschitz constant which is uniformly bounded over the ball B(0, R), fxg is Lipschitz with
bounded Lipschitz constant over this ball. Hence G 2(R, 0, M)(i) holds.

For all x € R?, denote by £ :z+ f&(x,z) where f&(x,z) =bz+ g(x,z). Let M € R%.
We show that for all x € B(0, R), B(0, M) C f£(B(0, M)), where M is given by (39), which
is precisely G 2(R, 0, M)(ii).

Let x € B(0, R) and consider the continuous homotopy Hé : [0, 1] x R? between the func-
tions z — bz and fxg defined for all z € [0, 1] and 7 € RY by

Hé(t,z2) =tbz+ (1 —1) f8(2) =bz+ (1 —1)g(x, 2).
Then by (ii), since |b| > Cg 1, forall € [0, 1] and z ¢ B(0, M), where M is given by (39),
IH8(1,2)| > |bz] — (1 = ){Cro + Cr.1lzl} = M.

In particular, we have HE ([0, 1] x d B(0, M)) c R4 \ B(0, M). Let z € B(0, M), then by
Proposition 17 we have

deg(f2,B(0, M), z) = deg(b1d, B(0, M), z) = 1.

Besides, by [24], Corollary 2.5, Chapter IV, deg( fxg, B(O, M ), z) # 0 implies that there exists
y € B(0, M) such that ff (y) = z. Finally G 2(R, 0, M )(ii) follows since this result holds for
allze B(O,M). O
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SUPPLEMENTARY MATERIAL

Supplement to ‘“Irreducibility and geometric ergodicity of Hamiltonian Monte
Carlo” (DOI: 10.1214/19-A0S1941SUPP; .pdf). Supplementary information and postponed
proofs.
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