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Bayesian analysis for the covariance matrix of a multivariate normal dis-
tribution has received a lot of attention in the last two decades. In this paper,
we propose a new class of priors for the covariance matrix, including both
inverse Wishart and reference priors as special cases. The main motivation
for the new class is to have available priors—both subjective and objective—
that do not “force eigenvalues apart,” which is a criticism of inverse Wishart
and Jeffreys priors. Extensive comparison of these “shrinkage priors” with
inverse Wishart and Jeffreys priors is undertaken, with the new priors seem-
ing to have considerably better performance. A number of curious facts about
the new priors are also observed, such as that the posterior distribution will
be proper with just three vector observations from the multivariate normal
distribution—regardless of the dimension of the covariance matrix—and that
useful inference about features of the covariance matrix can be possible. Fi-
nally, a new MCMC algorithm is developed for this class of priors and is
shown to be computationally effective for matrices of up to 100 dimensions.

1. Introduction. Estimating the unknown covariance matrix of a multivariate normal
population has been an important issue for more then half a century. It has a wide range of
modern applications including astrophysics ([18, 26]), economics ([23]), the environmental
sciences ([11, 13]), climatology ([15]) and genetics ([30]).

Let y1, . . . ,ym be a random sample of k ×1 vectors from the Nk(0,�) distribution, where
� is the k × k unknown covariance matrix. (For simplicity, we assume the normal mean is
zero, although essentially the same results would hold for a nonzero mean.) Our goal is to
find good prior distributions—objective and subjective—for �.

The historical thread of this work starts with efforts to improve upon the “classical” esti-
mator for �,

�̂0 = 1

m
S = 1

m

m∑
i=1

yiy
′
i .

This is the maximum likelihood estimate, the unbiased estimator and the posterior mean
arising from use of the Jeffreys prior πJ (�) = |�|−(k+1)/2. It has long been known to be
a suboptimal estimator. First, (modest) improvements were obtained through use of the best
equivariant estimator (see Section 4.3 for definition), with major improvements occurring
when [33] discovered the value of shrinking together the eigenvalues of �̂0. Important follow-
up research included [3, 7–9, 16, 17, 24, 25, 29, 34, 35] and [20].

On the Bayesian side, the early priors that were used (and still are used) were the Jeffreys
prior and conjugate inverse Wishart (IW) priors, but they have been criticized in much the
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same way that �̂0 was criticized. Indeed, when transforming to the eigenvalue-eigenvector
parameterization, these priors were seen ([35]) to have a term∏

i<j

(λi − λj )

in the density, where λ1 > λ2 > · · · > λk are the ordered eigenvalues of �. Since this term
becomes zero whenever eigenvalues get close together, these common priors have the effect
of forcing the eigenvalues of � apart. It is thus no surprise that [33] improved on �̂0 by
shrinking the eigenvalues together; Jeffreys prior (for which �̂0 is the posterior mean) had
forced the eigenvalues apart in creating the estimate.

The motivation for this work was twofold. First, to develop a class of priors—which we call
shrinkage inverse Wishart (SIW) priors (including both subjective and objective versions)—
that corrects the “forcing eigenvalues apart” problem. Second, to develop computational
schemes for the new priors that, while not nearly as simple computationally as the IW priors,
allow for computational handling of large dimensional (e.g., k = 100) covariance matrices.
Note that approaching this problem from the Bayesian side carries a number of benefits, in-
cluding the fact that the Bayesian estimates will be guaranteed to be positive definite (a prob-
lem with non-Bayesian approaches) and, as usual, the availability of measures of accuracy of
estimates.

It is important to note here that we are considering the “vanilla” covariance matrix prob-
lem; we are assuming no special structure or sparsity for �. There is a vast modern literature
dealing with priors for structured or sparse covariance matrices (see [27] for discussion of
some of the early contributions).

Some curiosities were observed in this investigation. One such was that the posteriors
for the SIW priors are proper when the sample size, m, is three or more, regardless of the
dimension k of the covariance matrix. It is commonly perceived that one needs k observations
to “identify” �, so the situation is interesting. Indeed, we provide some evidence that certain
features of � (such as its trace) can be learned with much fewer than k observations, which
we call low rank learning.

In Section 2, the new class of priors for � is proposed; interestingly, it is also a conjugate
class. Propriety and moment existence results are obtained for both the prior and posterior
distributions, and a method for subjectively eliciting the parameters of the prior is developed
for an important special case. Computation for the priors and posteriors is considered in
Section 3, with the proposed new method being capable of handling large (e.g., k = 100)
dimensional covariance matrices. Section 4 presents extensive comparisons of the new and
old priors, with the new priors appearing to be much better. In this section, we also explore
issues surrounding low rank learning.

2. A new class of priors.

2.1. Definition. The new class of priors for � consists of densities

(2.1) π(� | a, b,H ) ∝ etr(−1
2�−1H )

|�|a[∏i<j (λi − λj )]b ,

where λ1 > · · · > λk > 0 are the eigenvalues of �, a is a real constant, b is a number in
[0,1], H is a positive semidefinite matrix and etr(A) = exp{trace(A)} for a square matrix A.
If b = 0, this becomes the inverse Wishart density (denoted by � ∼ IW(a,H ))

(2.2) π IW(� | a,H ) = |H |a−(k+1)/2 etr(−1
2�−1H )

2(2a−k−1)k/2πk(k−1)/4 ∏k
i=1 �(2a−k−1

2 )|�|a ,

which is proper if a > k.
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Common objective priors that are in this class include:

• the constant prior, πC(�) = 1 (corresponding to a = b = 0, H = 0);
• the Jeffreys prior ([22]), πJ (�) = |�|−(k+1)/2 (corresponding to a = (k + 1)/2, b = 0

and H = 0);
• the [35] reference prior, πR(�) = |�|−1[∏i<j (λi −λj )]−1 (corresponding to a = b = 1

and H = 0);
• the modified reference prior, πMR(�) = |�|−[1−1/(2k)][∏i<j (λi − λj )]−1 (correspond-

ing to a = 1 − 1/(2k), b = 1 and H = 0), which was suggested in [2] for use with covariance
matrices that occurred at higher levels of a hierarchical model.

2.1.1. Shrinkage inverse Wishart priors. In this paper, we focus on the subclass in (2.1)
when b = 1:

(2.3) πSIW(� | a,H ) ∝ etr(−1
2�−1H )

|�|a ∏
i<j (λi − λj )

.

This will be called the shrinkage inverse Wishart (SIW) class. To see why the label
“shrinkage” is attached to this class, consider the one-to-one transformation from � to
� = diag(λ1, . . . , λk) and the orthogonal matrix � of corresponding eigenvectors; it follows
from [12] that the Jacobian is

(2.4)
∣∣∣∣ ∂�

∂(�,�)

∣∣∣∣ = ∏
i<j

(λi − λj ),

and the prior density (2.1) for � becomes the density of (�,�)

(2.5) π(�,� | a, b,H ) ∝ etr(−1
2��−1�′H )

|�|a[∏i<j (λi − λj )]b−1 1{λ1>···>λk},

with respect to Lebesgue measure on (λ1, . . . , λk) and the invariant Haar measure over the
space of all orthonormal matrices �. The invariant prior on � (essentially a uniform prior
over rotations) is natural and noncontroversial. However, when b = 0 (which corresponds to
the commonly used priors such as inverse Wishart, Jeffreys and constant), the presence of the
term [∏i<j (λi −λj )] in the prior is quite strange; the prior is near zero whenever eigenvalues
are close together, so that the prior effectively forces eigenvalues apart. This seems contrary
to common intuition and typical prior beliefs.

In contrast, the SIW priors have b = 1, so that the questionable term in the density dis-
appears. The SIW priors are essentially neutral as to how the eigenvalues should be spread
out; in that sense, calling them “shrinkage” priors is something of a misnomer, but they are
shrinkage priors compared to the commonly used b = 0 priors.

2.1.2. SIW priors with H ∝ I k . Unfortunately, working with the SIW priors is not as
easy as working with the IW priors, but the special case of SIW(a, cI k) priors is quite
tractable. With IW(a,H ) priors, H is very often chosen to be a multiple of the identity,
so this subclass of SIW priors is important. Note, from (2.5), that the density of (�,�) for
this subclass is

π(�,� | a, c) ∝
k∏

i=1

1

λa
i

e
− c

2λi 1{λ1>λ2>···>λk}.
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TABLE 1
Different priors for � and corresponding priors for (�,�) where

A = {(λ1, . . . , λk) | λ1 > · · · > λk}.

Prior for � Prior for (�,�)

π(� | a, b,H ) ∝ etr(− 1
2 �−1H )

|�|a ∏
i<j (λi−λj )b

π(�,� | a, b,H ) ∝ etr(− 1
2 ��−1�′H )1A

|�|a ∏
i<j (λi−λj )b−1

π IW(� | a,H ) ∝ etr(− 1
2 �−1H )

|�|a π IW(�,� | a,H ) ∝
∏

i<j (λi−λj )1A
|�|a etr( 1

2 ��−1�′H )

πSIW(� | a,H ) ∝ etr(− 1
2 �−1H )

|�|a ∏
i<j (λi−λj )

πSIW(�,� | a,H ) ∝ etr(− 1
2 ��−1�′H )1A

|�|a

πJ (�) ∝ 1
|�|(k+1)/2 πJ (�,�) ∝

∏
i<j (λi−λj )

|�|(k+1)/2 1A

πR(�) ∝ 1
|�|∏i<j (λi−λj )

πR(�,�) ∝ 1
|�| 1A

πMR(�) ∝ 1
|�|1−1/(2k)

∏
i<j (λi−λj )

πMR(�,�) ∝ 1
|�|1−1/(2k) 1A

πC(�) ∝ 1 πC(�,�) ∝ ∏
i<j (λi − λj )1A

πU (�) ∝ 1∏
i<j (λi−λj )

πU (�,�) ∝ 1A

REMARK 1. The prior for � is constant, and the marginal prior density of (λ1, . . . , λk)

is

π(� | a, c) ∝
k∏

i=1

1

λa
i

e
− c

2λi 1{λ1>λ2>···>λk},

which will be seen to be equivalent to the eigenvalues, λ1 > · · · > λk , arising as the order
statistics of k observations from the Inverse Gamma(a − 1, c

2) distribution.

2.1.3. Summary of priors. The various priors for � considered above, and the corre-
sponding priors for (�,�), are summarized in Table 1. One additional prior is given therein,
namely πU , labeled as the uniform prior because it corresponds to the constant prior for
(�,�).

2.1.4. SIW posteriors. For a simple random sample, Y = (y1, . . . ,ym), from Nk(0,�)

and using the prior SIW(a,H ), the posterior is given by

(2.6) π(� | Y ) ∝ 1

|�|r [∏i<j (λi − λj )] etr
(
−1

2
�−1H 0

)
,

where r = a +m/2 and H 0 = H +S. This is the SIW(r,H 0) distribution, so the SIW priors
are a conjugate family.

2.2. Propriety of SIW priors and posteriors. The following theorem, whose proof is in
Appendix A.1, gives sufficient conditions for propriety of the SIW prior distribution.

THEOREM 1. For the SIW(a,H ) prior for �, with p = rank(H ) > 0,

(a) when p = k, the prior is proper iff a > 1;
(b) when 0 < p < k, the prior is proper iff 1 < a < 1 + p/2.

It follows from Theorem 1 that, for the priors (2.1) with p = rank(H) < k, a = 1 + p/2 is
the boundary of impropriety.

For propriety of the posterior, we need the following lemma, whose proof is given in
Appendix A.1.
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LEMMA 1. Let H be the prior scale matrix with rank(H ) = p. Then, with probability
one,

(2.7) p∗ = rank(H 0) = rank(H + S) = min{k,m + p}.
Hence the conditions for posterior propriety can be read from Theorem 1 by replacing p

with p∗ and a with a + m/2.

2.3. Moments of SIW priors and posteriors.

2.3.1. Existence of prior and posterior moments. The following theorem gives some nec-
essary and sufficient conditions for the existence of SIW prior and posterior moments.

THEOREM 2. For the SIW(a,H ) prior for �, with p = rank(H ) > 0,

(a) when p = k, E(�−1) exists iff a > 1 while, for any positive integer q , E(�q) exists iff
a > 1 + q;

(b) when 0 < p < k, E(�−1) exists iff 1 < a < p/2 while, for any positive integer q ,
E(�q) exists iff 1 + q < a < 1 + p/2.

Existence results for the posterior moments are found, with probability one, by replacing p

by p∗ from (2.7) and a by a + m/2.

PROOF. For parts (a1) and (b1), it follows from Lemma 4 (see Appendix A.1) that

E
(
�−1) =

∫ ∫
��−1�′|�|−a etr(−1

2�−1�′H�) d� d�∫ ∫ |�|−a etr(−1
2�−1�′H�) d� d�

.(2.8)

Theorem 1 gives a condition when the denominator exists. Let Ehj be the k × k matrix with
1 in the (h, j) entry and 0 elsewhere, and oj be the k-dimensional vector with 1 in the j th
component and 0 elsewhere, for h, j ≤ k. Then the numerator in (2.8) equals

k∑
h=1

k∑
j=1

EhjChj where Chj =
∫ ∫

o′
h�

−1oj

k∏
i=1

1

λa
i

etr
(
−1

2
�−1�′H�

)
d�d�.

Clearly, λ−1
1 ≤ |o′

h�
−1oj | ≤ λ−1

k . Then

Chj ≤
∫ ∫

λ
−(a+1)
k

k−1∏
i=1

λ−a
i etr

(
−1

2
�−1�′H�

)
d�d�,

Chj ≥
∫ ∫

λ
−(a+1)
1

k∏
i=2

λ−a
i etr

(
−1

2
�−1�′H�

)
d�d�.

Proceeding as in the proof of Theorem 1, one can show that Chj is finite if and only if either
(p = k, a > 1) or (0 < p < k,1 < a < 1 + p/2) holds. Parts (a1) and (b1) are proved. The
proofs of parts (a2) and (b2) are similar. �

Recall that the constant prior, πC , the reference prior, πR , the modified reference prior,
πMR, and the uniform prior for (�,�), πU , are improper. Table 2 presents sample sizes m

needed for existence of π(� | S),E(�−1 | S) and E(� | S) under πC , πR,πMR, and πU .
Among the four priors, πMR requires the least number of observations for the posterior to
be proper; indeed, it is surprising that a single (vector) observation suffices to yield posterior
propriety, since the common perception is that a k × k covariance matrix needs k observa-
tions to be “identifiable.” It is equally surprising that the constant prior requires more than
2k observations; the suggestion is that the constant prior is way too diffuse. (See [4] for
discussion.)
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TABLE 2
Sample size, m, needed for the existence of π(� | S),

E(�−1 | S) and E(� | S) under πC , πR , πMR and πU

Existence of Existence of Existence of
Prior π(� | S) E(�−1 | S) E(� | S)

πC m > 2k m > 2k m > 2k + 2
πR m ≥ k m ≥ k m ≥ max(k,3)

πMR m ≥ 1 m ≥ k m ≥ 3
πU m ≥ 3 m ≥ max(k,3) m ≥ 5

2.3.2. Expressions for prior and posterior moments. To work with the SIW priors as
subjective priors, one must assess the parameters a and H . As with inverse Wishart priors,
this is most naturally done by subjectively specifying prior moments, and then solving for a

and H . We first give general expressions for the SIW prior and posterior moments (the proof
in Appendix A.2), and then specialize to the important special case where H ∝ I k .

THEOREM 3. Consider the priors SIW(a,H ) for � with p = rank(H ) > 0. Consider the
eigenvalue-eigenvector decomposition H = Z�Z′. For any integer q ≥ −1, if (a,p) satisfies
the conditions of Theorem 2,

(2.9) E
(
�q) = Z diag(φq,1, . . . , φq,k)Z

′,

where for i = 1, . . . , k,

(2.10) φq,i(a,�) = k�(a − q − 1)

2q�(a − 1)

∫
t2
i1‖t̄1‖2q ∏k

j=1 ‖t̄j‖−2(a−1) dT∫ ∏k
j=1 ‖t̄j‖−2(a−1) dT

,

with T = (tij ) being orthogonal and ‖t̄j‖2 = ∑k
h=1 δht

2
hj , where the δh are the diagonal

elements of �.
The posterior moments are found by replacing (above) p by p∗ from (2.7), a by a + m/2,

and H by H 0 = H + S.

COROLLARY 1. Consider the priors SIW(a, cI k) for �.

(a) If a > 1, E(�−1) = 2(a−1)
c

I k .
(b) If a > 2, the first moment of (2.1) is E(�) = c

2(a−2)
I k .

(c) If a > 3, the second moment of (2.1) is E(�2) = c2

4(a−2)(a−3)
I k .

PROOF. When H = cI k , ‖t̃j‖2 = c in (2.10) so, for any integer q ≥ −1 and a > q ,
(2.10) becomes

(2.11) φq,i = k�(a − q − 1)

2q�(a − 1)
cq

∫
t2
i1 dT = cq�(a − q − 1)

2q�(a − 1)
.

The results hold. �

2.4. Eliciting prior parameters for IW and SIW priors. We confine consideration to the
case H ∝ I k . First, for � ∼ IW(α,βI k), a natural way to specify α and β is to subjectively
specify the mean, μ, and variance, τ 2 (smaller than μ2), of a diagonal element of � (noting
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that all diagonal elements have the same distribution). Noting that the prior mean and variance
of, say, σ11 are (for α > k + 2)

E[σ11] = β

2(α − k − 1)
and Var[σ11] = β2

4(α − k − 1)(α − k − 2)
,

we equate these with the subjectively specified μ and τ 2 and solve to obtain

(2.12) α = k + 2 − μ2

μ2 − τ 2 and β = 2μ(α − k − 1).

The variance of σ11 from the SIW(a, cI k) prior is not readily available, but E[�2] is
available from Corollary 1, so we can equate the first and second moments of � for the
SIW(a, cI k) and IW(α,βI k) priors, and solve to obtain a and c, in terms of (2.12). The
result is in the following lemma.

LEMMA 2. � has the same first two moments for the SIW(a, cI k) and IW(α,βI k) pri-
ors, when α > k + 2, if

a = 2 + (2α − k − 2)(α − k − 1)

α(k + 1) − k(k + 2)
and c = β(2α − k − 2)

α(k + 1) − k(k + 2)
.

PROOF. The first two moments of the SIW(a, cI k) prior are given in Corollary 1. The
first two moments of the inverse Wishart distribution are (from Section 5 of [28])

E(�) = β

2(α − k − 1)
I k if α > k + 1,

E
(
�2) = β2(2α − k − 2)

4(2α − 2k − 1)(α − k − 1)(α − k − 2)
I k if α > k + 2.

Equating the moments and solving for a and c gives the result. �

2.5. Bayes estimation under loss functions. The most common loss function for estimat-
ing � by �̂ is the entropy loss ([32])

(2.13) L1(�, �̂) = tr
(
�̂�−1) − log

∣∣�̂�−1∣∣ − k.

Sinha and Ghosh [31] studied the similar entropy loss,

(2.14) L2(�, �̂) = tr
(
��̂

−1) − log
∣∣��̂

−1∣∣ − k,

which we utilize herein because the Bayesian estimator is the posterior mean

(2.15) �̂B2 = E(� | Y ).

A third common loss is the quadratic loss ([35]),

(2.16) L3(�, �̂) = tr
(
�̂�−1 − I k

)2
.

In the risk analyses, all three losses gave similar results so we only present the results for L2
in this paper; the results for L1 and L3 are in the Supplementary Material [5].

For the SIW(a, cI ) prior (including πR , πMR and πU ), Theorem 3 immediately gives
expressions for the Bayes estimates under L2; just choose q = 1. Those expressions can also
be used to prove the following lemma.
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LEMMA 3. For a SIW(a, cI ) prior, the frequentist risks (letting �̂Bj denote the Bayes
estimator under Lj ) Rj(�, �̂Bj ) = E[Lj(�, �̂Bj )], j = 1,2,3, are equivariant, that is, they
depend only on the eigenvalues of �.

PROOF. For any orthogonal transformation of the data, ỹ = �̃y, the loss Lj and its
Bayesian estimate �̂Bj (S) are both equivariant, where j = 1,2. In fact, it follows from

(2.10) that �̃
′
�̂Bj (S)�̃ = �̂Bj (�̃

′
S�̃); also Lj(�, �̂Bj (S)) = Lj(�̃

′
��̃, �̃

′
�̂Bj (S)�). If

one chooses �̃ = �, it yields

Rj

(
�, �̂Bj (S)

) = ES|�[
Lj(�, �̂Bj (S)

] = ES|�[
Lj

(
�′��,�′�̂Bj (S)�

)]
= ES|�[

Lj(�, �̂Bj

(
�′S�

)] = Rj

(
�, �̂Bj

(
�′S�

))
.

Since the distribution of �′S� depends only on �, the result holds. �

The value of this lemma is that, in the extensive later simulations, it suffices to consider
only diagonal covariance matrices �.

3. Computation with the SIW posterior. The posterior distribution for the SIW(a,H )

prior can be written

(3.1) π(� | Y ) ∝ 1

|∏k
i=1 λi |r [∏i<j (λi − λj )]

etr
(
−1

2
�−1H 0

)
,

where r = a + m/2 and H 0 = H + S. In this section, methods for simulating from this
posterior are discussed. Of course, the methods can also be used to simulate from the prior.

3.1. Previously suggested sampling methods for �. Method 1. Metropolis–Hastings Al-
gorithm ([19]). Let �0 be some starting point (e.g., the marginal maximum likelihood esti-
mate or just I k). At iteration t = 0,1,2, . . . ,

Step 1. Generate �∗ ∼ Inverse Wishart (m+k+1
2 ,H 0).

Step 2. Let λ∗
i and λt

i be the eigenvalues of �∗ and �t , respectively. Define

α = min

{
1,

∏
i<j

λt
i − λt

j

λ∗
i − λ∗

j

·
k∏

i=1

(
λ∗

i

λt
i

) k+1−2a
2

}
.

Step 3. Let

�t+1 =
{
�∗ with probability α,
�t otherwise.

Method 2. Hit-and-Run (see [6, 35]). Define �∗ = log(�), or � = exp(�∗), in the sense
that

� =
∞∑
i=1

(�∗)i

i! .

By Lemma 2 of [35], the posterior density of �∗ = ��∗�′, where �∗ = diag(λ∗
1, . . . , λ

∗
k),

λ∗
1 ≥ · · · ≥ λ∗

k , and � is orthogonal is then

π∗(
�∗ | H 0

) ∝ 1∏
i<j (λ

∗
i − λ∗

j )
etr

{
−

k∑
i=1

(r − 1)λ∗
i − 1

2
� exp

(−�∗)
�′H 0

}
.

The sampling procedure proceeds as follows:
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Step 1. Select a starting p.d. matrix �0, set �∗
0 = log�0 and t = 0.

Step 2. At iteration t , simulate a random direction symmetric matrix U0 = (uij )k×k , whose

elements are uij = gij /
√∑

1≤l≤h≤k g2
lh, where glh

i.i.d.∼ N(0,1), 1 ≤ l < h ≤ k.
Step 3. Generate x ∼ N(0,1). Set X = �∗

t + xU0 and

�∗
t+1 =

{
X with the probability min

(
1, π∗(X)/π∗(

�∗
t

))
,

�∗
t otherwise.

Step 4. Set �t+1 = exp(�∗
t+1).

3.2. A new method. The Metropolis and hit-and-run methods work only for small or
moderate dimensional covariance matrices. Here, we consider a new Gibbs sampling method
(drawing heavily on [21]) that has considerable promise for much higher dimensions.

From (2.4) and Lemma 4 (in the Appendix), (3.1) can be transformed to

π(�,� | H 0) ∝ 1∏k
i=1 λr

i

etr
(
−1

2
�−1�′H 0�

)
,(3.2)

with the understanding that the λi are to be ordered after they are drawn from this distribution.

3.2.1. Simulating � given (�,Y ). To sample � from the full conditional given �, note
that

1

2
tr

(
�−1�′H 0�

) =
k∑

i=1

ci

λi

,

where ci is the (i, i) element of �′H 0�/2. Thus

(3.3) π(� | �,H 0) ∝
k∏

i=1

1

λr
i

e−ci/λi .

For given �, we can directly sample λi independently from Inverse Gamma (r − 1, ci). Then
rearrange λi , so that λ1 ≥ · · · ≥ λk .

3.2.2. Simulating � given (�,Y ). To sample from π(� | �,H 0), note that

π(� | �,H 0) ∝ etr
(
−1

2
�−1�′H 0�

)
.(3.4)

Here, without loss of generality, assume that H 0 = diag(h1, . . . , hk).
Hoff [21] proposed a Gibbs sampler for simulating � from (3.4). His method was to ran-

domly select two columns i < j of �, and then does a Gibbs update of the columns.
We use a slight modification of his method, namely updating the rows of �. When m is

large, there is no real difference in the speed of the methods but recall that, for SIW, m can
be much less than k, in which case sampling the rows can be much faster; see Remark 2 for
an explanation.

From (3.4), the conditional density of �, given � and H 0, can be rewritten

π(� | �;H 0) ∝ etr
(
−1

2
H 0��−1�′

)
.(3.5)

To update the first two rows of �, we write � = diag(X, I k−2)(T
′
12,T

′−12)
′, where T 12 is

the first 2 rows of �, T −12 is the remaining k − 2 rows of �, and

X = DεXθ ≡
(

ε1 0
0 ε2

)(
cos θ − sin θ

sin θ cos θ

)
.
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Here, θ ∈ (−π
2 , π

2 ] and εi = ±1 for i = 1,2. Write H 1 = diag(h1, h2) and H 2 =
diag(h3, . . . , hk). Then the conditional posterior of θ is

π(θ | T 12,T −12,�;H 0)

∝ etr
{
−1

2

(
H 1 0
0 H 2

)(
X 0
0 I k−2

)(
T 12
T −12

)
�−1(

T ′
12,T

′−12
)(

X′ 0
0 I k−2

)}

∝ etr
{
−1

2
H 1XT 12�

−1T ′
12X

′
}

= etr
{
−1

2
H 1XθT 12�

−1T ′
12X

′
θ

}
.

Write

T 12�
−1T ′

12 =
(

cosω − sinω

sinω cosω

)(
s1 0
0 s2

)(
cosω sinω

− sinω cosω

)
,

where ω ∈ (−π/2, π/2], and s1 > s2. Then the conditional posterior of θ is

(3.6) π(θ | T 12,T −12,�;H 0) ∝ exp
{
c0 cos2(θ + ω)

}
, θ ∈ (−π/2, π/2],

where c0 = −1
2(s1 − s2)(h1 −h2) ≤ 0. Let α = cos2(θ +ω). Then the full conditional density

of α is

(3.7) π(α | O−12,D;H 0) ∝ ec0αα− 1
2 (1 − α)−

1
2 , α ∈ (0,1).

As [21] discussed, sampling α ∈ (0,1) can be done by rejection sampling, with the proposal
being the Beta(1

2 , 1
2) distribution.

For updating any other i and j rows, the corresponding conditional density of θ has a
similar formula as in (3.6), with c0 = −1

2(s1 − s2)(hi −hj ) and (s1, s2) being the eigenvalues
of T ij�

−1T ′
ij , and T ij consists of the (i, j)th rows of �.

REMARK 2. When p ≡ rank(H 0) < k, hp+1 = · · · = hk = 0. To update (i, j) rows with
i ≤ p and j > p, the conditional density of θ is of the form (3.6) with c0 = −1

2(s1 − s2)hi .
Furthermore, to update (i, j) rows with i > p and j > p, the conditional density of θ is
then simply Uniform[−π/2, π/2]! Therefore, updating the rows of � are more efficient than
Hoff’s method of updating the columns of �, when p � k. This will be the case, for the
reference prior and modified reference prior of � and the uniform prior for (�,�), when m

is small compared to k.

3.3. Comparing the three sampling methods. To compare the three simulation methods,
we choose �0 and obtain a sample Y = (y1, . . . ,ym) from Nk(0,�0). Then we simulate �
from the posterior under the modified reference prior, πMR(�).

Instead of looking at the convergence of the posterior for various components of �, we
monitor the convergence of L2(�̂B1,�0), namely the entropy loss in (2.13) evaluated at
the Bayes estimate, �̂B2, computed by simulation. This provides an overall assessment of
convergence of the simulation. Convergence was judged using the criterion in [14].

The following four cases of (k,m) and �0 are considered:
Case I: (k,m) = (5,15) and �0 = diag(16,8,4,2,1). The observed S has the eigenvalues

(286,223,39,16,15).
Case II: (k,m) = (10,40) and �0 = diag(512, 256, 128,64,32,16,8,4,2,1). The ob-

served S has the eigenvalues (15,255,11,170,5185,3447,1085,577, 159,128,49,43).
Case III: (k,m) = (50,100) and �0 = diag(50, . . . ,2,1). The first and last five eigenvalues

of S are (8083,7903,7104,6871,6352) and (207,181,131, 98,60), respectively.
Case IV: (k,m) = (100,300) and �0 = diag(100, . . . ,2,1). The first and last five eigen-

values of S are (46,293,45,558,44,045,42,976,41,887) and (827,684,529,440,221), re-
spectively.
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TABLE 3
Comparison of computing time for the three methods

Time (seconds) # of iterations Total time
Method for 103 cirles to convergence (seconds)

Case I Metropolis 1.61 2.0 × 107 3.22 × 104

(k = 5) Hit-and-Run 3.01 2.0 × 107 6.02 × 104

New Method 2.88 1.5 × 105 4.32 × 102

Case II Metropolis 1.79 4.0 × 107 7.16 × 104

(k = 10) Hit-and-Run 4.73 3.5 × 107 1.65 × 105

New Method 5.85 7.0 × 105 4.09 × 103

Case III Metropolis 4.68 stop at 1.5 × 108 >7.02 × 105

(k = 50) Hit-and-Run 18.20 4.0 × 107 7.28 × 105

New Method 43.96 1.0 × 106 4.39 × 104

Case IV Metropolis 23.84 stop at 1.2 × 108 >2.86 × 106

(k = 100) Hit-and-Run 80.42 stop at 1.2 × 108 >9.65 × 106

New Method 262.03 1.5 × 106 3.93 × 105

The results are given in Table 3. While the new method can be substantially more expensive
per iteration, it requires many fewer iterations for convergence (i.e., mixes much better), so
its overall computational time is less. For the k = 5 case, the new method was 1000 times
faster. But its real benefit was in the high dimensional cases: for k = 50, Metropolis simply
failed to converge, and both Metropolis and Hit-and-Run failed for k = 100.

The story is told, perhaps even more clearly, by looking at the trace plots of L2(�̂B1,�0),
for the three methods and the four cases; these are plotted in Figure 1. The much faster con-
vergence of the new method (blue curves) is clear, as is the poor performance of Metropolis
(black curves) and its utter failure in higher dimensions. Hit-and-Run (red curves) does better,
converging for k = 50 and getting reasonably close for k = 100; but a much longer running
time would be needed for actual convergence.

4. Comparing the IW and SIW priors and posteriors. In this section, we compare the
IW and SIW priors and posteriors. In all sections, the two priors will have been matched to
two moments, using Lemma 2.

FIG. 1. Trace plots of the three computational algorithms for k = 5,10,50,100.
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In Section 4.1, we look at contours of the largest and smallest eigenvalues of �, from the
prior and posterior distributions. The point is to see if the eigenvalues are, indeed, consider-
ably more spread for the IW priors and posteriors than for those of SIW.

In Section 4.2, we compare Bayes risks arising in estimating �, using either IW or SIW as
the true parameter-generating prior, and then doing the Bayesian analysis under both priors.
Of course, the Bayesian analysis using the true prior will be optimal, but it is instructive to
see how much worse the results are under the other prior.

In Section 4.3, we consider the usual m > k situation and compare the frequentist risks of
IW and SIW in a variety of situations. We also include in the risk comparison the other priors
that were earlier discussed.

In Section 4.4, we investigate the m < k scenario, calling this low rank learning. That
many fewer observations than the dimension of the covariance matrix can result in proper
posteriors was a surprise, and studying the resulting posteriors is of considerable interest; can
we learn anything useful about � in this situation and do certain priors result in a better job
of low rank learning than others?

In all four comparisons, SIW does considerably better than IW. This is—at the same
time—puzzling and expected. It is puzzling because the IW priors that are considered are
proper, and hence, cannot uniformly be improved upon. Yet we seem to be unable to con-
struct a scenario in which they do better (except that of generating from the IW prior and
using it for analysis). But this is perhaps expected, in that we began the paper by saying that
the eigenvalue inflation property of IW priors is counterintuitive, and our inability to create
scenarios where the IW priors are better reflects this.

4.1. Comparing eigenvalue contours for the priors and posteriors. It is of interest to see
the extent to which IW priors spread eigenvalues apart more so than do SIW priors. One way
to look at this is to match the two priors via Lemma 2, and then examine contour plots of the
resulting largest and smallest eigenvalues, λ1 and λk .

For the SIW(a, cI k) prior, let f (x) and F(x) be the probability density and cumulative
distribution function of IG(a − 1, c/2), respectively. It follows from Remark 1 that the joint
density of (λ1, λk) is of the form

π(λ1, λk) = k(k − 1)
[
F(λ1) − F(λk)

]k−2
f (λ1)f (λk),(4.1)

where λ1 > λk > 0. For the comparison, we chose

(4.2) E(�) = I k and E
(
�2) = 2I k.

From Corollary 1, we get, as the matching SIW parameters, (a, c) = (4,4) (regardless of the
dimension k). The corresponding matching IW parameters (solving in Lemma 2) are

(4.3) α = 3

2
+ 5

4
k + 1

4

√
(2 + k)2 + 16 and β = 2(α − k − 1).

We consider both k = 5 and k = 50 dimensional covariance matrices, for which, respectively,

(4.4) (α,β) = (9.7656,7.5311) and (α,β) = (77.0384,52.0768).

Figure 2 shows the contour plots of the moment matched IW(α,βI k) and SIW(a, cI k)

prior densities of (λ1, λk), for k = 5 and 50. The contours for SIW(a, cI k) are based on
(4.1), while those for IW(α,βI k) are based on 100,000 simulated values of � from the prior.
For k = 5 (the left two plots), it is clear that the smallest eigenvalue, λk , is typically much
smaller for IW than for SIW. The largest eigenvalue for IW is clearly typically larger than
that for SIW when k = 5. For k = 50 (the right two plots), the situation is somewhat muddied,
because apparently the SIW prior has fatter tails that the IW prior; but note that for, say, the
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FIG. 2. Contour plots of moment matched IW(α,βI k) and SIW(a, cI k) prior densities of (λ1, λk), when
E(�) = I k and E(�2) = 2I k for k = 5 (left two plots) and k = 50 (right two plots).

central level 2 contour, it is clear that the IW largest eigenvalue tends to be much larger
than that from SIW. So the figure clearly supports the presumption that IW will force the
eigenvalues apart more so than will SIW.

Next, we look at posterior contour plots for the above priors. For economy of space, we
only present the k = 50 results; the results for k = 5 exhibited the same pattern and are
available in the Supplementary Material [5]. The sample sizes used are m = 50 (first and
fourth columns) and m = 200 (second and third columns). To obtain the posteriors, the data
was generated from I 50 (compatible with the prior distributions) and �50 = diag(50, . . . ,1)

(incompatible with the priors) by sampling S from Wishart50(m, I k) and Wishart50(m,�k).
For each of the cases, we simulate 106 values of � from the posteriors, π(� | S), under the
two priors.

Figure 3 presents the contour plots of posterior densities of (λ1, λ50) based on these 106

points. The first row of each table presents the results for IW; the second row, those for SIW.
The first two columns are with I 50; the last two are with �50. These figures clearly show the
expected pattern: λ1 tends to be much larger—and λ50 much smaller—for the IW posteriors
than for the SIW posteriors.

FIG. 3. Posterior contour plots for (λ1, λk) of moment matched IW(α,βI50) (top) and SIW(a, cI50) (bottom)
prior densities, when E(�) = I50 and E(�2) = 2I50. Here, k = 50, m = 50 or m = 200, and the true � was
either I50 or �50 = diag(50, . . . ,1).
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4.2. Comparing Bayes risks under IW and SIW priors. We choose k = 5,20, m = 2k +
3,5k. For the IWk(α,βI k) and SIW(a, cI k) priors, we match

(4.5) E(�) = I k and E
(
�2) = 3I k.

Corollary 1 yields (a, c) = (3.5,3) and, solving in (Lemma 2), yields (α,β) = (8.3228,

4.6457) for k = 5 and (α,β) = (26.8776,11.7552) for k = 20.
To compute the Bayes risks, we repeatedly draw � from the true prior (either IW or SIW),

simulate S | � ∼ Wishartk(m,�), compute the Bayes estimators for both priors for the loss
L2, from the expressions in Section 2.5 and finally compute the actual losses of the Bayes
estimators. This is repeated 10,000 times, and the losses averaged to obtain an estimate of
the Bayes risks, which are denoted r2(πT , �̂

π

B2), πT being the true prior, πW being the other
prior, and π being the prior used to compute the Bayes estimate �̂

π

B2 under that loss. Of
course, the smallest risks are obtained when the true prior is used to compute the Bayes
estimates, but it is useful to look at the ratio

r2(πT , �̂
πW

B2 )

r2(πT , �̂
πT

B2)
,

where the denominator is this optimal risk for the true prior and the numerator is the Bayes
risk when the wrong prior is used.

These ratios are presented in Table 4. The first entry, 1.133, shows that the SIW prior’s
performance is 13.3% worse than that of the IW prior, when the IW prior is the true prior. The
interesting feature of this table is that the IW performance, when SIW is true, is considerably
worse than the SIW performance, when IW is true. The most extreme case is when k = 20
and m = 43, in which case the SIW risk is only 7.5% worse when IW is the true prior, but the
IW risk is 44.8% worse when SIW is the true prior. This asymmetry strongly suggests that
SIW is the more robust prior.

4.3. Comparing risk functions for m ≥ k. We compare the frequentist risk (expected
loss), R2(�, �̂B2), of the Bayes estimates under the seven priors, πR , πMR, πU , πJ , πC and
IWk(α,βI k) and SIW(a, cI k) as in the previous section, under loss L2 when m ≥ k. The
results for losses L1 and L3 exhibit the same pattern, and are available in the Supplementary
Material [5]. We also consider the risk function of the best equivariant estimator, �̂E2, of �.
From [10], the best equivariant estimator of �, under the loss function L2, utilizing the lower
triangular Cholesky decomposition S = KK ′, is �̂E2 = K�E2K

′, where �E2 is a diagonal
matris with elements λ2i = (m − 1)/[(m − i − 1)(m − i)], i = 1, . . . , k.

TABLE 4
Comparison of Bayes risks for matched SIW and IW priors (matching to E(�) = I k , E(�2) = 3I k ), using first

one and then the other as the truth, under L2

k = 5 k = 20

(α,β) = (8.322,4.645) (α,β) = (26.877,11.755)

Loss Bayes risk ratio m = 13 m = 25 m = 43 m = 100

L2
r2(IW,�̂

SIW
B2 )

r2(IW,�̂
IW
B2)

1.133 1.109 1.075 1.033

r1(SIW,�̂
IW
B2)

r1(SIW,�̂
SIW
B2 )

1.254 1.243 1.448 1.316
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TABLE 5
Risks (expected losses under L2) of Bayes estimates under the indicated priors and the equivariant estimator E,

for k = 5,20, m = 2k + 3,5k,10k, � = Ik , �k1 = diag(8k − 7, . . . ,9,1), and

�k2 = diag(
 k+1
2 �, 
 k+1

2 � − 1, . . . ,1, 1
2 , . . . , 
 k+1

2 �−1
)

Loss k (m,�) π IW πSIW πR πMR πU πJ πC E

L2 5 (13, I5) 0.78 0.23 0.48 0.47 0.50 1.74 7.19 1.51
(25, I5) 0.54 0.16 0.23 0.22 0.23 0.72 1.04 0.68
(50, I5) 0.30 0.09 0.10 0.10 0.11 0.33 0.38 0.32
(13,�k1) 3.13 1.51 1.12 1.11 1.24 1.75 7.19 1.51
(25,�k1) 1.07 0.64 0.55 0.54 0.57 0.73 1.04 0.68
(50,�k1) 0.41 0.30 0.28 0.28 0.29 0.33 0.38 0.32
(13,�k2) 0.94 0.85 1.11 1.09 1.06 1.76 7.19 1.51
(25,�k2) 0.55 0.51 0.59 0.58 0.57 0.73 1.05 0.68
(50,�k2) 0.29 0.27 0.30 0.29 0.29 0.33 0.38 0.32
(43, I20) 4.27 0.39 0.56 0.55 0.50 7.48 5.20 6.10
(100, I20) 2.17 0.19 0.21 0.21 0.20 2.45 3.32 2.29
(200, I20) 1.09 0.10 0.10 0.10 0.09 1.13 1.28 1.09

20 (43,�k1) 16.99 3.61 3.25 3.24 3.24 7.49 5.22 6.10
(100,�k1) 3.66 1.63 1.60 1.60 1.60 2.45 3.32 2.29
(200,�k1) 1.40 0.89 0.88 0.88 0.88 1.13 1.28 1.09
(43,�k2) 5.67 4.85 5.14 5.14 4.93 7.48 20.19 6.10
(100,�k2) 2.33 2.06 2.12 2.11 2.09 2.46 3.32 2.29
(200,�k2) 1.12 1.03 1.05 1.04 1.04 1.13 1.28 1.09

We chose k = 5,20, m = 2k + 3,5k,10k, and evaluated the risks at the three covari-
ance matrices � = I k , �k1 = diag(8k − 7, . . . ,9,1) and �k2 = diag(
 k+1

2 �, 
 k+1
2 � − 1,

. . . ,1, 1
2 , . . . , 1


 k+1
2 �), where 
·� is a floor function. The identity covariance matrix is com-

pletely compatible with the IW and SIW priors, but might be thought to favor SIW, since the
eigenvalues are the same. The second covariance matrix is completely incompatible with the
IW and SIW priors, and serves to measure the robustness of the priors to misspecification
of their inputs. The third covariance matrix is reasonably compatible with the IW and SIW
priors, but has spread eigenvalues and so was thought to perhaps favor the IW prior.

The risks of the seven Bayesian estimators, together with that of �̂E2, are given in Table 5.
They were computed by averaging the losses over 3000 draws of S ∼ Wishartk(m,�) and
using 2 ∗ 105 posterior draws to compute �̂B2. Some observations from the table:

• SIW always has smaller risk than IW—often by a large margin—even for �k2, which
was included as a guess of a covariance matrix that would be better for IW.

• The constant prior is almost always the worst; this is yet another warning that this com-
monly used prior is problematical.

• Of the objective priors, πMR and πR are very close, with πMR being slightly better.
But, surprisingly, πU is a strong competitor, being modestly better and worse than πMR, in
roughly equal proportions.

• The Jeffreys prior was decidedly inferior.
• While SIW could be expected to be optimal (and was) in estimating the identity matrix,

its strong performance for the other two covariance matrices was unexpected. Especially
surprising were the results for �k1, which was far out in the tails of the SIW prior, and yet
the risks using SIW were only moderately higher than those using πMR.

4.4. Low rank learning. When the sample size m is smaller than k, we saw that the pos-
terior distributions of � could be proper under the priors IWk(α,βI k), SIW(a, cI k), πMR
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and πU . Clearly, such posteriors cannot illuminate all of � (we know that at least m observa-
tions are needed to “identify” �), but the posteriors might be able to illuminate some features
of �. This is explored in Section 4.4.1.

The low rank case is also an interesting domain in which to investigate estimation risks of
the various priors, as low rank might be expected to exacerbate problems with a prior. This is
studied in Section 4.4.2.

4.4.1. Posterior distributions of features of �. We consider here the largest eigenvalue,
λ1, and the trace, tr(�); these were chosen as often being of interest and because they were
representative of two extremes involving low rank learning. To challenge the possibility of
learning features of the posteriors under the four priors, we chose k = 100 with much smaller
sample sizes. For the IWk(α,βI k) and SIW(a, cI k) priors, we follow (4.5) in Section 4.3,
and set (a, c) = (3.5,3) and (solving in Lemma 2) (α,β) = (126.78,51.56).

For the true �1 = I k (compatible with IW and SIW) and �k = diag(k, . . . ,1) (not compat-
ible with IW and SIW), we sample S from Wishartk(m, �j ), for j = 1,2 and m = 5,20,100.
Then we generate 2 ∗ 105 posterior samples of � given S under the IW, SIW, πMR and πU

priors. Table 6 summarizes the corresponding posterior means and standard deviations of λ1
and tr(�), under the four priors.

None of the posteriors for λ1 are accurate, in the sense of the mean being close to the true
value and the mean plus or minus two standard deviations covering the true value. For tr(�),
however, many of the posteriors are reasonably accurate especially those from SIW, covering
the true value in four of the six cases, and only missing moderately in the other two cases.

We repeated this exercise with numerous other features of �, and the above results seemed
to generalize. One cannot use low rank learning effectively with individual elements of �—
such as variances, covariances or eigenvalues—but overall properties of �—such as the trace
or determinant—are approachable with low rank learning.

4.4.2. Comparison of estimation risks under loss L2. We next compare the risks,
R2(�, �̂B2), in lower rank learning under loss L2 under the five priors IWk(α,βI k),
SIW(3.5,3I k), πR , πMR and πU . We fix m = 5 and choose k = 5 (for which the matching

TABLE 6
Posterior means and standard deviations of λ1 and tr(�) under IW(126.78,51.56I k), SIW(3.5,3I k) πMR and

πU priors, for k = 100, m = 5,20,100 and � = Ik and �k = diag(k, k − 1, . . . ,1)

IW SIW πMR πU

� Feature of � m Mean sd Mean sd Mean sd Mean sd

I k λ1 = 1 5 5.2 0.47 5.9 2.7 22.0 23.7 147.6 1112
20 5.0 0.43 4.2 1.1 7.5 1.9 6.4 1.9

100 4.1 0.27 2.2 0.3 2.3 0.3 2.4 0.3

tr(�) = 100 5 100.2 1.93 101.8 6.4 172.8 33.6 517 1122
20 99.9 1.80 99.7 3.5 110.7 6.4 124 6.1

100 99.4 1.31 98.9 1.5 100.9 1.6 103 1.6

�k λ1 = 100 5 80 9.55 997 438 2339 2470 7567 40,000
20 216 28.78 401 87 395 105 342 100

100 161 12.39 167 24 173 25 176 26

tr(�) = 5050 5 344 16.93 3015 711 8923 3160 26,668 41,231
20 1511 68.60 4491 301 5726 339 6437 318

100 2509 42.21 4781 82 5070 89 5175 90
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TABLE 7
Risks (expected losses using L2) for π IW, πSIW, πMR, πR and πU , when m = 5, k = 5,20 and � = Ik or

�1k ≡ diag(8k − 7, . . . ,9,1)

(k,�) π IW πSIW πR πMR πU

(5, I5) 0.7457 0.2422 29.6682 3.7089 3.6429
(5,�1k) 6.6057 2.3119 39.3877 5.9465 5.5438
(20, I20) 1.9201 0.4720 NA 6.9858 15.3567
(20,�1k) 157.7758 37.0476 NA 12.9270 22.6516

(α,β) = (8.3228,4.6457)) and k = 20 ((α,β) = (26.8776,11.755)) and � = I k (compatible
with the prior information) and �1k = diag(8k − 7, . . . ,9,1) (not compatible).

The risks of the Bayes estimators are given in Table 7 and were obtained by averaging
the expected losses over 3000 draws of S ∼ Wishartk(m,�), and utilizing 2 ∗ 105 posterior
draws, for each given S, to compute the Bayes estimate. The performance of SIW continues
to impress, soundly beating IW, and even beating the objective priors, except when k = 20
and �1k (a matrix far in the tail of the SIW prior) is the true covariance matrix.

5. Generalizations. While we were just considering the vanilla covariance matrix prob-
lem here, there have been many generalizations of the vanilla IW prior to structured IW
priors, especially in high dimensions ([29] and [27] being two examples). A major difficulty
in similar extensions of the SIW prior is that marginal and some conditional distributions
are considerably more difficult to work with for the SIW priors; in particular, the marginal
distribution of a diagonal block of � does not have a SIW distribution (a diagonal block of
an IW distribution is IW).

At one level, generalizing a highly structured IW prior to a highly structured SIW prior
is trivial; just replace every IW component in the IW prior with a SIW component. But
important interconnections between the IW components or important update considerations
could be destroyed by this. Thus one would need to go through each structured IW scenario
carefully, determining the extent to which IW could be replaced by SIW. Such an exploration
is beyond the scope of this paper.

There is also much more work that could be done involving low rank learning. The key,
however, is finding a structured way to investigate the problem. For instance, one could con-
sider the k > m scenario, with m growing, but the focus now being on low rank learning
without sparsity assumptions. Perhaps consistency results (e.g., for the trace of �) are avail-
able.

APPENDIX

A.1. Proofs of Theorem 1 and Lemma 1. We will need the following lemmas.

LEMMA 4. Let R = (rij ) be I × J random matrix, whose element rij is a function of
���′ with final integral with respect to (�,�). Then∫ ∫

R1{λ1>···>λk} d�d� = 1

k!
∫ ∫

R d�d�.

PROOF. For any given (i, j), by Lemma 3.4 in [2],∫ ∫
rij 1{λ1>···>λk} d�d� = 1

k!
∫ ∫

rij d�d�.

The proof is complete. �
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LEMMA 5. Let X be a random variable and fi be a nonnegative function satisfying∑k
i fi(x) = C for any x ∈ �. If all g′

is are monotone increasing or decreasing on [0,C],

(A.1) E

(
k∏

i=1

gi

(
fi(X)

)) ≤
k∏

i=1

E
(
gi

(
fi(X)

))
.

PROOF. It is enough to show the result for k = 2. In fact, for any x1 and x2 ∈ �, we
have [g1(f1(x1)) − g1(f1(x2))][g2(f2(x1)) − g2(f2(x2))] ≤ 0. Therefore,E[g1(f1(X1)) −
g1(f1(X2))][g2(f2(X1)) − g2(f2(X2))] ≤ 0, which implies that

(A.2) E
[
g1

(
f1(X)

)
g2

(
f2(X)

)] ≤ E
[
g1

(
f1(X)

)]
E

[
g2

(
f2(X)

)]
.

This proves the result for k = 2. �

Proof of Theorem 1. First, we consider the sufficient conditions of parts (a) and (b). From
(2.4), we get∫

πSIW(�) d� =
∫ ∫

|�|−a etr
(
−1

2
�−1�′H�

)
1{λ1>···>λk} d�d�.

It follows from Lemma 4 that∫
πSIW(�) d� = 1

k!
∫ ∫

|�|−a etr
(
−1

2
�−1�′H�

)
d�d�.

Write H = Z�Z′, where Z is an orthogonal matrix and � = diag{δ1, . . . , δp,0, . . . ,0}
and δ1 ≥ · · · ≥ δp > 0. We define T = (tij ) = �′Z. Clearly, tr(�−1�′H�) =
tr(�−1�′Z�Z′�) = tr(�−1T �T ′). Then∫

πSIW(�) d� = 1

k!
∫ ∫

|�|−a etr
(
−1

2
�−1T �T ′

)
d�dT .

For i = 1, . . . , k, let t̃ i = (ti1, . . . , tip)′ be the first p components of the ith row of T . Then

(A.3)

∫
πSIW(�) d� = 1

k!
∫ ∫

|�|−a exp

{
−1

2

k∑
i=1

∑p
j=1 δj t

2
ij

λi

}
d�dT

≤ 1

k!
∫ ∫

|�|−a exp

{
−δp

2

k∑
i=1

‖t̃ i‖2

λi

}
d�dT .

If p = k, ‖t̃ i‖ = 1 and
∫

dT = 1. From (A.3), it yields

∫
πSIW(�) d� ≤ 1

k!
∫ k∏

i=1

λ−a
i exp

{
−δk

2

k∑
i=1

1

λi

}
d�,(A.4)

which is proper if a > 1.
Next, we consider the case when 0 < p < k. From (A.3), if a > 1, note that

(A.5)

∫
πSIW(�) d� ≤ 1

k!
∫ [

k∏
i=1

∫ ∞
0

λ−a
i exp

{
−δp

2

‖t̃ i‖2

λi

}
dλi

]
dT

≤ C

∫ k∏
i=1

‖t̃ i‖−2(a−1) dT ,
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where C = 1
k!(δp/2)−k(a−1)[�(a−1)]k . By Lemma 5, since ‖t̃1‖2 +· · ·+‖t̃k‖2 = p, it yields

(A.6)
∫

πSIW(�) d� ≤ C

k∏
i=1

∫
‖t̃ i‖−2(a−1) dT = C

(∫
‖t̃k‖−2(a−1) dT

)k

.

It suffices to verify that
∫ ‖t̃k‖−2(a−1) dT is finite. Note that

T = (T 12T 13 · · ·T 1k)(T 23 · · ·T 2k) · · · (T k−1,k)�ε,

where T ij is a simple orthogonal matrix such as

T ij = T ij (θij ) =

⎛
⎜⎜⎜⎜⎜⎝

I 0 0 0 0
0 cos θij 0 − sin θij 0
0 0 I 0 0
0 sin θij 0 cos θij 0
0 0 0 0 I

⎞
⎟⎟⎟⎟⎟⎠ .(A.7)

Here, −π/2 < θij ≤ π/2 and �ε being a diagonal matrix with diagonal elements 1 or −1
(see [1]). It follows from [1] that the Jacobian is∣∣∣∣ ∂T∏

i<j ∂θij

∣∣∣∣ =
k−1∏
i=1

p∏
j=i+1

cosj−i−1 θij .

Define � = {−π
2 ≤ θij ≤ π/2, i < j}. Therefore, we get

∫
‖t̃k‖−2(a−1) dT =

∫
�

‖t̃k‖−2(a−1)

(
k−1∏
i=1

k∏
j=i+1

cosj−i−1 θij dθij

)
(A.8)

≤
∫
�

‖t̃k‖−2(a−1)

(
k−1∏
i=1

k∏
j=i+1

dθij

)
.(A.9)

For i < j < l < k, it is easy to verify T ikT j l = T j lT ik = T ik + T j l − I k . Using the rela-
tionship, it yields

T =
(

k−2∏
j=1

k−1∏
l=j+1

T j l

)(
k∏

i=1

T ik

)
�ε.

Note that, the kth row of
∏k−2

j=1
∏k−1

l=j+1 T j l is (0,0, . . . ,0,1) and the kth row of
∏k

i=1 T ik is

(A.10)

(
sin θ1k, sin θ2k cos θ1k, . . . , sin θk−1,k

k−2∏
i=1

cos θik,

k−1∏
i=1

cos θik

)
.

Therefore, ‖t̃k‖2 is the sum of squares of the first p components of (A.10), that is,

(A.11)

‖t̃k‖2 = sin2 θ1k + cos2 θ1k sin2 θ2k + · · · +
(p−1∏

i=1

cos2 θik

)
sin2 θpk

= 1 −
p∏

i=1

cos2 θik.

Defining �k = {(θ1k, . . . , θpk) : 0 ≤ θik ≤ π/2, i = 1, . . . , p}, (A.9) implies
∫

‖t̃k‖−2(a−1) dT ≤ 2p
∫
�k

‖t̃k‖−2(a−1)
p∏

i=1

dθik.
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From (A.11), it yields

(A.12)
‖t̃k‖2 ≥ 1 −

( p∏
i=1

cos2 θik

) 1
p

≥ p

p
− 1

p

(
cos2 θ1k + · · · + cos2 θpk

)

= 1

p

(
sin2 θ1k + sin2 θ2k + · · · + sin2 θpk

)
.

The second step follows the mean value inequality. Therefore, it yields that

∫
�k

‖t̃k‖−2(a−1)
p∏

i=1

dθik ≤ 2ppa−1
∫
�0

∏p
i=1 dθik

(sin2 θ1k + · · · + sin2 θpk)a−1
,

where �0 = {0 ≤ θik ≤ π/4, i ≤ p}. If p = 1, define x = sin θ1k , so dθ1k = √
1 − x2 dx, and∫

�k

‖t̃k‖−2(a−1) dθ1k ≤ 2
∫ π

4

0
(sin θ1k)

−2(a−1) dθ1k ≤
∫ 1

0
x−2(a−1)(1 − x)−1/2 dx,

which is finite if a < 3/2. For p > 1, we make the transformations xi = sin θik for i =
1, . . . , p, and get

(A.13)

∫
�k

‖t̃k‖−2(a−1)
p∏

i=1

dθik

≤ 2
3p
2 pa−1

∫
{x2

1+···+x2
p≤p,xi≥0,i≤p}

1

(x2
1 + · · · + x2

p)a−1

p∏
i=1

dxi.

Let z = x2
1 + · · · + x2

p and yi = x2
i /z for i < p. From (A.13), we have

∫
�k

‖t̃k‖−2(a−1)
p∏

i=1

dθik

≤ 2
3p
2 pa

∫ p

0
z−a+p

2 dz

∫
{yi>0,y1+···+yp−1<1}

(
1 −

p−1∑
i=1

yi

)− 1
2 p−1∏

i=1

y
− 1

2
i dyi,

which is finite if a <
p
2 + 1. The proof of the sufficient condition is completed.

For the necessary condition of parts (a) and (b), note that

∫
πSIW(�) d� ≥ 1

k!
∫ [

k∏
i=1

∫ ∞
0

λ−a
i exp

{
−δ1

2

‖t̃ i‖2

λi

}
dλi

]
dT ,

the integration with respect to d� is infinite if a ≤ 1. Furthermore, if 0 < p < k, note that
‖ti‖2 ≤ 1 and a > 1. Then we get

∫
πSIW(�) d� ≥ C1

∫ k∏
i=1

‖t̃ i‖−2(a−1) dT ≥ C1

∫
‖t̃k‖−2(a−1) dT ,

where C1 = (k!)−1(δ1/2)−k(a−1)�k(a − 1). Define �1 = {0 ≤ θij ≤ π/4, i < j}, from (A.8),
we have

∫
‖t̃k‖−2(a−1) dT ≥ 2−k(k−1)

∫
�1

‖t̃k‖−2(a−1)

(
k−1∏
i=1

k∏
j=i+1

dθij

)
.
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From (A.11), we have ‖t̃k‖2 ≤ ∑p
i=1 sin2 θik . Therefore,

(A.14)

∫
πSIW(�) d� ≥ 2−k(k−1)C1

∫
�1

∏k−1
i=1

∏k
j=i+1 dθij

(sin2 θ1k + · · · + sin2 θpk)a−1

≥ 2−k(k−1)C1

∫
�0

∏p
i=1 dθik

(sin2 θ1k + · · · + sin2 θpk)a−1
.

By an argument similar to that for proving sufficiency, (A.14) is infinite if a ≥ 1 + p/2.

PROOF OF LEMMA 1. If p = 0, or p = k, Lemma 1 holds. For 1 < p < k, write H =
O ′DO , where O is orthogonal matrix, and D is diagonal matrix with last p diagonal elements
greater than 0, and the rest 0. Clearly, r0 = rank(D + OSO ′). The matrices D, OSO ′ and
O�O ′ can be partitioned as

D =
(

D1 0
0 D2

)
, OSO ′ =

(
S̃11 S̃12

S̃
′
12 S̃22

)
, O�O ′ =

(
�̃11 �̃12

�̃
′
12 �̃22

)
,

where D1, S̃11 and �̃11 are m × m diagonal matrices. S̃11 ∼ Wishartm(m, �̃11), so
rank(S̃11) = m with probability one. Note that

D + OSO ′ =
(

D1 + S̃11 S̃12

S′
12 D2 + S̃22

)
,

and(
Im 0

−S′
12(D1 + S̃11)

−1 I k−m

)(
D1 + S̃11 S̃12

S′
12 D2 + S̃22

)(
Im −(D1 + S̃11)

−1S̃12
0 I k−m

)

=
(

D1 + S̃11 0
0 D2 + �

)
,

where � = S̃22 − S̃
′
12(D1 + S̃11)

−1S̃12. Since rank(OSO ′) = rank(S̃11) = m, rank(S̃22 −
S̃

′
12S̃

−1
11 S̃12) = rank(OSO ′) − rank(S̃11) = 0 with probability one. Therefore, � is nonnega-

tive definite, and

r0 = rank(D1 + S̃11) + rank(D2 + �) ≥ m + rank(D2).

Since rank(D2) = min(k −m,p), r0 ≥ min{k,m+p}. It is clear that r0 ≤ min{k, rank(H )+
rank(S)} = min{k,m + p}. The lemma is proved. �

A.2. Proof of Theorem 3. From Theorem 2, E(�q | Y ) exists. From Lemma 4, we have

E
(
�q) =

∫ ∫
��q�′|�|−a etr(−1

2�−1�′H�) d�d�∫ ∫ |�|−a etr(−1
2�−1�′H�) d�d�

.

Recall H = Z�Z′, we define T = Z′�. Then ��q�′ = ZT �qT ′Z′ and E(�q) = Z�Z′,
where

� =
∫ ∫

T �qT ′ ∏k
i=1 λ−a

i etr(−1
2�−1T ′�T ) d�dT∫ ∫ ∏k

i=1 λ−a
i etr(−1

2�−1T ′�T ) d�dT
.

We now show that � is diagonal. In fact, for i �= i ′, we have

�
(
i, i′

) =
k∑

h=1

∫ ∫
λ

q
htihti′h

∏k
i=1 λ−a

i exp{−∑k
j=1

‖t̄j‖2

2λj
}d�dT∫ ∫ ∏k

i=1 λ−a
i exp{−∑k

j=1
‖t̄j‖2

2λj
}d�dT

.
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For any given �, we have

∫
tihti′h

k∏
i=1

exp

{
−

k∑
j=1

‖t̄j‖2

2λj

}
dT

=
{∫

tihti′h>0
+

∫
tihti′h<0

}
tihti′h

k∏
i=1

exp
{
−‖t̄j‖2

2λj

}
dT = 0.

Thus the off diagonal elements are 0. For the (i, i)th diagonal element of �,

�(i, i) =
k∑

h=1

∫ ∫
λ

q
ht2

ih

∏k
i=1 λ−a

i exp{−∑k
j=1

‖t̄j‖2

2λj
}d�dT∫ ∫ ∏k

i=1 λ−a
i exp{−∑k

j=1
‖t̄j‖2

2λj
}d�dT

= �(a − q − 1)

2q�(a − 1)

k∑
h=1

∫
t2
ih‖t̄h‖2q ∏k

j=1 ‖t̄j‖−2(a−1) dT∫ ∏k
j=1 ‖t̄j‖−2(a−1) dT

= φq,i .

The last equality holds since the integration in the numerator is equal for each h = 1, . . . , k.
The theorem is proved.
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