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We investigate moment sequences of probability measures on subsets
of the real line under constraints of certain moments being fixed. This cor-
responds to studying sections of nth moment spaces, that is, the spaces of
moment sequences of order n. By equipping these sections with the uni-
form or more general probability distributions, we manage to give for large
n precise results on the (probabilistic) barycenters of moment space sections
and the fluctuations of random moments around these barycenters. The mea-
sures associated to the barycenters belong to the Bernstein–Szegő class and
show strong universal behavior. We prove Gaussian fluctuations and moder-
ate and large deviations principles. Furthermore, we demonstrate how fixing
moments by a constraint leads to breaking the connection between random
moments and random matrices.

1. Introduction. Classical moment problems on the real line pose the question whether
a given sequence of real numbers is the moment sequence of a positive Borel measure with
support in a prescribed set E ⊂ R and whether such a measure, if it exists, is unique. Most
notable are the Hamburger, Stieltjes and Hausdorff moment problems, which correspond to
the sets E = R, E = R+ := [0,∞) and E being a compact interval, respectively. Solutions
to these moment problems have been known for a long time.

In the classical moment problems, one is thus interested in all possible moment sequences.
In contrast, the random moment problem asks how a typical moment sequence looks like. To
make this precise, let us denote by P(E) the set of all Borel probability measures on a Borel
set E ⊂ R possessing moments of all order, and by mj(μ) := ∫

xj dμ(x) the j th moment of
a measure μ ∈ P(E). The set

Mn(E) := {(
m1(μ), . . . ,mn(μ)

) | μ ∈ P(E)
}

is called nth moment space. It is a convex set in R
n with positive Lebesgue measure. Begin-

ning with Karlin and Shapley (1953), Karlin and Studden (1966) and Kreı̆n and Nudel’man
(1977), geometric aspects of Mn(E) have been investigated in many works. A probabilis-
tic investigation was initiated by Chang, Kemperman and Studden (1993), who equipped
Mn([0,1]) with the uniform distribution and studied the behavior of a fixed number of the
now random moments as the dimension n converges to infinity. They observed that in high
dimension such a random moment sequence concentrates near the moment sequence of the
arcsine distribution

μ0(dx) := 1

π
√

x(1 − x)
dx.(1)

Thus the moment sequence of the arcsine distribution may be seen as a probabilistic barycen-
ter of the moment space Mn([0,1]). More precisely, let (m

(n)
1 , . . . ,m

(n)
n ) be drawn from the
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uniform distribution on Mn([0,1]) and l ∈N be fixed. Then, as n → ∞,(
m

(n)
1 , . . . ,m

(n)
l

)→ (
m1
(
μ0), . . . ,ml

(
μ0))(2)

in probability. Moreover, Chang, Kemperman and Studden (1993) proved that
√

n
((

m
(n)
1 , . . . ,m

(n)
l

)− (m1
(
μ0), . . . ,ml

(
μ0)))(3)

converges in distribution to a multivariate normal distribution as n → ∞. Later, Gamboa
and Lozada-Chang (2004) showed fluctuations on the scales of moderate and large devia-
tions principles also for E = [0,1]. Dette and Nagel (2012) studied special distributions on
the unbounded moment spaces Mn(R+) and M2n+1(R) and also proved central limit theo-
rems. They found moment sequences of certain Marchenko–Pastur and Wigner’s semicircle
distributions, respectively, replacing the one of the arcsine measure.

However, to speak of a typical moment sequence it would be desirable to have a certain
universality in the sense that the limiting moment sequences should not strongly depend on
the probability distribution which has been put on the moment space Mn(E). The question
of universality is even more prominent in the case of unbounded E as then Mn(E) is un-
bounded itself and thus cannot carry the “natural” uniform distribution. Therefore, recently
Dette, Tomecki and Venker (2018) gave a unifying view on the random moment problem by
identifying classes of distributions on Mn(E) in all three cases E = [a, b],R+,R that admit
universal behavior: On R+ and R, the moment sequences in these classes always converge in
the large n limit to the moment sequences of the Marchenko–Pastur distributions and those
of the semicircle distributions, respectively. For E = [a, b], the arcsine measure was found in
Dette, Tomecki and Venker (2018) to be rather a special member of the universal family of
Kesten–McKay (or free binomial) distributions than being universal itself.

The occurrence of the three families of Kesten–McKay, Marchenko–Pastur and semicircle
distributions is somewhat curious and suggests a connection to random matrix theory, where
these distributions appear as limits of empirical spectral distributions for the so-called Jacobi,
Laguerre and Wigner ensembles, respectively. They are characterized as equilibrium mea-
sures to certain external fields on R. We will illuminate the connection of random moments
to equilibrium measures, orthogonal polynomials and random matrix theory in the course of
this paper.

From a geometric point of view, moment spaces are interesting convex sets that admit
special parametrizations and therefore allow for a detailed analysis. For instance, the mo-
ment space Mn([0,1]) is a convex body contained in [0,1]n. It is very far from other convex
bodies like balls, hypercubes or cross-polytopes regarding the strength of the dependence
between coordinates. For example, to obtain Gaussian fluctuations of random points in the
three mentioned classical convex bodies, one needs to involve a growing number of coordi-
nates due to the rather mild dependence structure. In striking contrast to that, (3) with l = 1
shows that even the first coordinate m

(n)
1 shows for n → ∞ Gaussian fluctuations under the

uniform distribution on Mn([0,1]), indicating a very strong dependence between all mo-
ments. The analysis of moment spaces generally uses special independent coordinates that
unravel the dependence structure of moments.

In the present work, we investigate the behavior of random moment sequences when cer-
tain moments are fixed by a constraint. This corresponds to the question of a typical moment
sequence when some moments are a priori known. From a more geometric perspective, we
investigate sections of the moment space Mn(E), thereby providing a better insight in its
shape. In particular, constraining moment sequences enables us to study different regions
in moment spaces, see, for example, Figure 1 below, where we show the moment space
M2([0,1]) and constrained moment spaces obtained by fixing the third moment m3. Of spe-
cial interest are existence and structure of (probabilistic) barycenters of these constrained
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FIG. 1. Visualizations of MC
2 ([0,1]) under constraints on m3.

moment spaces as well as volume and more refined probabilistic questions like fluctuation
laws of the random constrained moment sequences.

Let us now make things precise. Under a constraint C we understand a finite collection of
integer indices 1 ≤ i1 < · · · < ik, k ∈ N and corresponding values ci1, . . . , cik ∈ R which we
denote as C := {mi1 = ci1, . . . ,mik = cik }. For instance, the constraint C = {m1 = c1} means
fixing the expectation, whereas C = {m1 = c1,m2 = c2} also fixes the variance. We allow
for k = 0, corresponding to unconstrained moment spaces. We now want to examine the
moments of probability measures whose ij th moment is given by cij , j = 1, . . . , k.

DEFINITION 1.1 (Admissible constraint). For a constraint C, we denote by

PC(E) := {
μ ∈ P(E) | mij (μ) = cij ∀1 ≤ j ≤ k

}
the space of probability measures on E fulfilling constraint C and by

MC
n(E) := {(

m1(μ), . . . ,mn(μ)
) | μ ∈ PC(E)

}
the constrained nth moment space. A constraint C is called admissible for E, if the intersec-
tion MC

ik
(E) ∩ IntMik (E) is nonempty, where here and later on, Int denotes the interior.

For ease of notation, we will assume throughout the article that C is an admissible con-
straint for E with indices i1, . . . , ik and corresponding values ci1, . . . , cik . Note that the notion
of admissibility depends on the set E.

Let us illustrate how a constraint restricts the moment space and allows us to study different
regions of the space. Figure 1 shows MC

2 ([0,1]) for C = {m3 = c3} (encircled in black) inside
of M2([0,1]) (encircled in grey) for two values of c3. In the first plot, c3 = 0.3125 which is
the third moment of the arcsine measure. The second plot is for c3 = 0.1.

This article is structured as follows. In the next section, we will first consider the uniform
distribution on MC

n(E) for a bounded interval E. We will see that a uniformly distributed
random moment sequence converges for n → ∞ in the sense of (2), where the limiting mea-
sure has a density w.r.t. the arcsine measure (1). However, it is in general not the equilibrium
measure under the constraint C to the uniform external field as might be expected from the
appearance of the Kesten–McKay, Marchenko–Pastur and semicircle distributions in the un-
constrained case. While an equilibrium measure under a constraint C should be obtained by
minimizing Voiculescu’s free entropy (from free probability theory; see, e.g., Akemann, Baik
and Di Francesco (2011), Chapter 22, and references therein) to the arcsine measure over the
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set of measures compatible with the constraint, we rather find the Kullback–Leibler diver-
gence or relative entropy from classical probability playing a major role. This parting of the
ways of the random moment problems and random matrix theory is explained in detail in Sec-
tion 3.1 and has its roots in the fact that introducing a constraint breaks the asymptotic equiv-
alence of the spectral measure encountered in the random moment problem and the empirical
spectral measure encountered in random matrix theory. Nevertheless, the limiting measures
we find in this paper belong to a famous class of measures as well, the so-called Bernstein–
Szegő class. Section 2 also provides a computation of the volume of the constrained moment
spaces, a central limit theorem as well as moderate and large deviations principles. Section 3
takes a broader approach and defines more general classes of distributions on the constrained
moment spaces, in particular on the unbounded moment spaces MC

n(R+) and MC
n(R). For

generic densities on these spaces, we identify the universal structures of the limiting mo-
ment sequences and give results on the fluctuations around these limits on several scales. We
provide a detailed and extensive analysis, even in those cases where the random moment se-
quences do not have a single limit but rather concentrate around a finite set of limit points.
Sections 4, 5 and 6 are devoted to the proofs of the results in Section 3, whereas the results in
Section 2 are proved in Section 7. Some proofs are contained in the Supplementary Material
(Dette, Tomecki and Venker (2020)). For ease of notation, equations from the supplement
start with an “S.”

2. Uniformly distributed random moment sequences. In this section, we study the
case of random moment sequences uniformly distributed in MC

n(E) for E being a compact
interval. Without loss of generality, we will choose E = [0,1], since by the linear transfor-
mation t 
→ a + t (b − a) the results for [0,1] can be transferred to any interval [a, b]. Note
that although Section 3 covers more general distributions on the moment spaces, the results
in the present section are more explicit and not easily deduced from the ones of Section 3.

Recall our convention that C is an admissible constraint (see Definition 1.1) of the form
mi1 = ci1, . . . ,mik = cik . We will assume n > k throughout the paper. The constrained mo-
ment space MC

n([0,1]) can be identified canonically with the set of the (n − k)-dimensional
vectors of the unconstrained moments (mj ,1 ≤ j ≤ n, j �= i1, . . . , ik). The set of uncon-
strained moments is a convex and compact subset of the (n − k)-dimensional unit cube and
has due to admissibility of C nonzero Lebesgue measure. Pushing forward the (n − k)-
dimensional Lebesgue measure from the unconstrained moments to MC

n([0,1]), we can
equip MC

n([0,1]) with the uniform distribution, which allows us to investigate the behav-
ior of a “typical” moment sequence on the constrained moment spaces.

Throughout this section, let (m
(n)
1 , . . . ,m

(n)
n ) be drawn from the uniform distribution on

MC
n([0,1]). Here and later on, we will tacitly assume that all random variables are defined

on a common probability space such that we can speak of almost sure convergence.
Our first result is a law of large numbers that identifies the limiting moment sequence to

which the random moment sequence converges.

THEOREM 2.1 (Law of large numbers). For any l ∈ N we have as n → ∞
(
m

(n)
1 , . . . ,m

(n)
l

)→ (
m1
(
μC), . . . ,ml

(
μC)) a.s.,

where μC is a probability measure on [0,1] of the form

μC(dx) = 1

Sik (x)
√

x(1 − x)
dx.(4)
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Here Sik is a polynomial of degree at most ik that is strictly positive on the interval [0,1].
Furthermore, μC is the unique probability measure that minimizes the Kullback–Leibler di-
vergence

K
(
μ0|μ) :=

⎧⎪⎨
⎪⎩
∫

log
dμ0

dμ
dμ0 μ0 � μ,

∞ else,
(5)

among all probability measures μ ∈ PC([0,1]), where μ0 is the arcsine distribution defined
in (1).

REMARK 2.2.

1. The measure μC belongs to the so-called Bernstein–Szegő class on [0,1] which consists
of measures of the form

μ(dx) = (x(1 − x))± 1
2

S(x)
dx,

where S is a polynomial strictly positive on the interval [0,1]. They play a key role in the
theory of orthogonal polynomials and possess many useful properties, for example, explicit
formulae for their orthogonal polynomials. For details and references, we refer to Szegő
(1975), Section 2.6. The connection between moments and orthogonal polynomials is well
known and at the roots of both theories. Theorem 2.1 shows that these important measures
of orthogonal polynomials theory are also central for moment spaces in the sense that their
moments provide the probabilistic barycenters of sections of the moment space. More general
members of the Bernstein–Szegő class will be found in Section 3 when discussing random
moment sequences over the unbounded spaces R+ and R.

2. For the unconstrained random moment problem, the probabilistic barycenter is given
by the moment sequence of the arcsine measure μ0. It is the equilibrium measure on [0,1] to
the external field Qex = 0, where we recall that the equilibrium measure to an external field
Qex : E →R is the unique Borel probability measure μ on E such that∫

E

∫
E

log|t − s|−1 dμ(t) dμ(s) +
∫
E

Qex(t) dμ(t)(6)

is minimal; see, for example, Saff and Totik (1997). The Marchenko–Pastur distributions are
(if there is no atom at 0) the equilibrium measures on E = R+ to Qex(t) = t

z2
− z1−z2

z2
log t

for some constants 0 < z2 ≤ z1. Likewise, the semicircle distributions are obtained as equi-
librium measures on E = R to external fields that are quadratic polynomials with positive
leading coefficient. One might thus expect μC from Theorem 2.1 to be the minimizer of a
constrained equilibrium problem. However, we can deduce from representation (4) that for
constraints C with μ0 /∈ PC([0,1]), μC is not the solution of the constrained equilibrium
problem

inf
μ∈PC([0,1])

∫
[0,1]

∫
[0,1]

log|t − s|−1 dμ(t) dμ(s).(7)

As variational calculus shows, a solution μ ∈ PC([0,1]) of (7) has to fulfill the Euler–
Lagrange equations

2
∫

log|t − s|−1 dμ(s) +
k∑

j=1

λj t
ij

{= c t ∈ supp(μ),

≥ c t /∈ supp(μ),
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for some c and Lagrange multipliers λ1, . . . , λk . Thus, the moment constraint C leads to
the appearance of polynomial external fields. Equilibrium measures to such fields are well
understood; see, for example, Deift, Kriecherbauer and McLaughlin (1998), Theorem 1.38.
The support of the equilibrium measure μ consists of finitely many intervals in [0,1] with
nonempty interior and it has a density of the form

μ(dx) = T (x)
∏

a∈HE

1√|x − a|
∏

b∈SE

√|x − b|1supp(μ)(x) dx.

Here HE ⊂ {0,1} is the (possibly empty) set of the so-called hard edges, SE ⊂ [0,1]
is a finite set of the so-called soft edges, and T is a polynomial which is strictly pos-
itive on supp(μ). As an example, the minimizer of (7) under the constraint C = {m1 =
c1,m2 = c2} is for c1 ∈ (0,1) and c2 > c2

1 small enough the semicircle distribution μ(dx) =
c
√

(b − x)(x − a)1[a,b](x) dx for some a, b, c. This is very different from the measure μC ,
which we will give in (8) below. This implies that already the supports of the equilibrium
measure under a constraint and of the measure μC can be very different, as the former can
be arbitrarily small while the latter is always [0,1]. We will explain this phenomenon in
Section 3.1.

3. The Kullback–Leibler divergence K(μ0|μ) is also called relative entropy. It is al-
ways nonnegative and can be understood as a distance measure for probability distribu-
tions. Indeed, although not being a metric itself, one has Pinsker’s inequality ‖μ − ν‖TV ≤√
K(ν|μ)/2 (see Csiszár (1967)) and thus convergence of the Kullback–Leibler divergence to

0 implies convergence in the total variation distance ‖·‖TV. It also appears as the rate function
of a large deviations principle in Sanov’s theorem. Note however, that in typical encounters
of K, the minimization is in the first argument. The connection of K to random moment
problems was first observed in Gamboa and Lozada-Chang (2004). There the authors call K
reversed Kullback–Leibler divergence because of the minimization in the second argument.

EXAMPLE 2.3. The proof of Theorem 2.1 is constructive in the sense that the polynomial
Sik can be computed from the constraint C. Here we provide some examples, the computation
of the densities below will be given in Example 7.4. For C1 := {m1 = c1} (fixed mean) with
c1 ∈ (0,1), the limiting measure is

μC1(dx) = c1(1 − c1)

π((1 − 2c1)x + c2
1)

√
x(1 − x)

dx.

For a constraint C2 := {m1 = c1,m2 = c2} (fixed mean and fixed variance) the admissibility
condition reads c2

1 < c2 < c1 and the limiting measure is

(8) μC2(dx) = c1(1 − c1)(c2 − c2
1)(c1 − c2)

π((c1 − c2)2(x − c1)2 + (c2 − c2
1)

2x(1 − x))
√

x(1 − x)
dx.

Finally, if only the second moment is fixed, that is, C3 := {m2 = c2}, then μC3 is given by (8)
with c1 being the unique maximizer of the function

c1 
→ (c2 − c2
1)(c1 − c2)

c1(1 − c1)
on [c2,

√
c2].

The limiting measure μC allows for an effective description of the volume of MC
n([0,1]).

Karlin and Studden (1966), Theorem IV.6.2, gave an expression of the volume of the uncon-
strained space Mn([0,1]) in terms of gamma functions, which can by a direct application of
Stirling’s formula be written as

voln
(
Mn

([0,1]))= n−1∏
m=1

�(m)2

�(2m)
= 2−n2

(
πe

n

)n/2
n−1/8(1 +O(1)

)
,(9)
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voln denoting the n-dimensional Lebesgue measure. We also need to introduce some notation.
Let m1, . . . ,ml ∈ Ml([0,1]). Then the possible range of ml+1 such that (m1, . . . ,ml,ml+1) ∈
Ml+1([0,1]) holds, is an interval, say [m−

l+1,m
+
l+1]. In the next theorem, m±

ik+1(μ
C) will de-

note the numbers m±
ik+1 to the first ik moments of the measure μC introduced in Theorem 2.1.

THEOREM 2.4. As n → ∞,

voln−k(MC
n([0,1]))

voln(Mn([0,1]))

= (
4ik
(
m+

ik+1 − m−
ik+1

)(
μC))n−iknk/2

(
2i2

k+(ik−k)/2

√
dCπk/2

+ o(1)

)

=
{
O
(
e−cn) for some c > 0, if μ0 /∈ PC(E),

O
(
nk/2) if μ0 ∈PC(E),

where dC is a constant independent of n.

Theorem 2.4 can be interpreted as follows: If the constraint C is chosen such that the
arcsine distribution does not lie in PC([0,1]), then the relative volume of the constrained
moment space goes to zero exponentially fast. If the arcsine distribution lies in PC([0,1]),
then the relative volume grows polynomially. The growth of the relative volume in the latter
case reflects the fact that the volume of the (unconstrained) moment space decreases with
increasing dimension. Another way to interpret this is that almost all intersections of the
moment space with hyperplanes orthogonal to the standard basis vectors are “small.” The
only large intersections are those corresponding to a constraint in which mij = mij (μ

0) holds
for all 1 ≤ j ≤ k.

We now return to the probabilistic setting and turn to fluctuations of the random moment
sequence around the limiting measure μC on several scales. For fluctuations of order 1/

√
n

we observe Gaussian laws. Let us adopt the convention that in case of an empty constraint,
that is, k = 0, the condition l ≥ ik will be understood as l ≥ 1.

THEOREM 2.5 (Central limit theorem). Let l ≥ ik . We have as n → ∞
√

n(
(
m

(n)
1 , . . . ,m

(n)
l

)− (m1
(
μC), . . . ,ml

(
μC))→ N (0,�l)

in distribution, where N (0,�l) denotes the multivariate normal distribution with mean 0 and
�l is an l × l matrix of rank l − k that consists of zeros in the columns and rows i1, . . . , ik .

We remark in passing that the condition l ≥ ik is only assumed to state the result, especially
the form of the matrix �l , in a convenient way. Of course, the vector (m1, . . . ,ml) also
exhibits Gaussian fluctuations for any l < ik . For a precise definition of the matrix �l we
first need certain preliminaries like a parametrization of the moment space. For the reader’s
convenience, the expression of �l is given in (69).

For our results on fluctuations on larger scales, we first recall the notion of an LDP. Let X
be a topological space and Pn a sequence of probability measures on X equipped with the
Borel σ -field. Pn is said to satisfy a large deviations principle (LDP) with speed an → ∞
and rate function I if I : X → [0,∞] is lower semicontinuous and for all measurable � ⊂ X
the inequalities

− inf
x∈Int�

I (x) ≤ lim inf
n→∞

logPn(�)

an

≤ lim sup
n→∞

logPn(�)

an

≤ − inf
x∈�

I (x)(10)
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hold. A sequence of random variables with values in X is said to satisfy an LDP with speed
an and rate function I if the sequence of associated distributions satisfies an LDP with speed
an and rate function I . I is called a good rate function, if its level sets I−1((−∞, α]) are
compact for all α ≥ 0. In the following, X = R

l will always be equipped with the Euclidean
topology.

The next result shows that for fluctuations between the order 1/
√

n and order 1, the Gaus-
sian distribution from Theorem 2.5 still provides the leading order asymptotics. Therefore,
such deviations are called moderate. Throughout this paper, At denotes the transpose of the
matrix A.

THEOREM 2.6 (Moderate deviations principle). Let l ≥ ik and (an)n be a sequence with
an → ∞ and an = o(n1/2) as n → ∞. Then the sequence

an

((
m

(n)
1 , . . . ,m

(n)
l

)− (m1
(
μC), . . . ,ml

(
μC)))

satisfies an LDP with speed n
a2
n

and good rate function

I (x) :=
⎧⎨
⎩

1

2
xt�lx xi1 = · · · = xik = 0,

∞ else,

where �l is the covariance matrix from Theorem 2.5.

Note that for l < ik the moderate deviations principle (MDP) can be obtained from The-
orem 2.6 by an application of the contraction principle. This remark extends to all LDPs in
this article.

Finally, for fluctuations of order 1 we can see that the random moment sequences satisfy
a large deviations principle with a rate function that is universal for all C up to an additive
constant. To state it, recall that given (m1, . . . ,ml) ∈ Ml([0,1]), the possible range of ml+1
such that (m1, . . . ,ml+1) ∈ Ml+1([0,1]) holds, is an interval [m−

l+1,m
+
l+1].

THEOREM 2.7 (Large deviations principle). Let l ≥ ik and denote

(11) I (m1, . . . ,ml) :=
{− log

(
m+

l+1 − m−
l+1

)
(m1, . . . ,ml) ∈MC

l

([0,1]),
∞ else.

Then (m
(n)
1 , . . . ,m

(n)
l ) satisfies an LDP with speed n and good rate function I (·) −

I (m1(μ
C), . . . ,ml(μ

C)).

The previous theorem shows an LDP for the first l random moments. By a projective limit
argument it is possible to prove an LDP for the infinite random moment sequence. Since the
Hausdorff moment problem is determinate, that is, each probability measure on a compact
interval is determined uniquely by its moment sequence, we can equivalently obtain an LDP
for probability measures.

THEOREM 2.8 (Functional large deviations principle). Let (μ(n))n be a sequence of
random probability measures in P([0,1]) such that the vector of corresponding moments
(m1(μ

(n)), . . . ,mn(μ
(n))) is uniformly distributed in MC

n([0,1]) for each n. Then (μ(n))n
satisfies an LDP with speed n and good rate function

I (μ) :=
{
K
(
μ0 | μ)−K

(
μ0 | μC) μ0 � μ and μ ∈ PC([0,1]),

∞ else,

on the space P([0,1]) equipped with the weak topology, where the Kullback–Leibler diver-
gence K is defined in (5).
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REMARK 2.9. We have left the particular choice of the distribution of μ(n) open and
only demand that the distribution of its first n moments is uniform on the nth constrained
moment space. This leaves many possible choices for the distribution of μ(n). For example,
μ(n) could be chosen as the upper or lower principal representation of a random moment
vector (m

(n)
1 , . . . ,m

(n)
n ); see, for example, Skibinsky (1986). There is also a nice constructive

approach to μ(n) using spectral measures of Jacobi matrices which we discuss in Section 3.1.

3. General distributions on constrained moment spaces and universality. While
Section 2 dealt exclusively with the uniform distribution on MC

n([0,1]), we will now turn to
more general distributions on MC

n(E) for E = [0,1] as well as the unbounded E = R+ and
E =R. Particular emphasis will be on universal behavior of the random moment sequences.

The first important observation toward general distributions on MC
n(E) consists in the

fact that the ordinary moments m1, . . . ,mn are not good coordinates to define probability
measures on the moment spaces Mn(E). Indeed, the ordinary moments are not independent
but strongly dependent and moreover the possible range for the (l + 1)th moment given
the first l moments decreases exponentially in l (cf. Karlin and Shapley (1953)). For these
reasons, it is desirable to have a new system of independent coordinates that scale with the
available moment range. For the bounded moment space Mn([0,1]), such coordinates have
been introduced by Skibinsky in a series of papers (Skibinsky (1967, 1968, 1969)). To ease
notation, let us denote a vector in bold with a subscript indicating dimension, for example,

mn := (m1, . . . ,mn).

For m+
j �= m−

j , the j th canonical moment is defined as

pj := mj − m−
j

m+
j − m−

j

.(12)

They are left undefined if m+
j = m−

j in which case the corresponding moment sequence lies
on the boundary of Mn([0,1]). The canonical moment simply is the relative position of the
ordinary moment in the available section. In fact, this construction of the canonical moments
induces a smooth bijection

ϕ[0,1]
n :

{
(0,1)n → IntMn

([0,1]),
(p1, . . . , pn) 
→ (m1, . . . ,mn),

between the open unit cube (0,1)n and the interior of the nth moment space.
On the moment space Mn(R+) the range of the (n + 1)th moment is a half-open interval

[m−
n+1,∞) and a good system of coordinates is given by

zj := mj − m−
j

mj−1 − m−
j−1

(13)

with m0 := 1, m−
0 := 0. These parameters are well defined for all moment sequences in the

interior of the moment space. Indeed, they yield a smooth bijection

ϕR+
n :

{
(0,∞)n → IntMn

([0,∞)
),

(z1, . . . , zn) 
→ (m1, . . . ,mn).

Finally, the moment space Mn(R) can be parametrized by the recurrence coefficients of
orthogonal polynomials. Let for a vector mn ∈ Mn(R), μ ∈ P(R) be a measure with the first
n moments given by mn. It is well known that to each μ ∈ P(R) there is a unique sequence of
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monic polynomials (Pj )j with degPj = j that are orthogonal in L2(R,μ). If μ has a finite
support, then the sequence of orthogonal polynomials is finite. Pj is determined by the first
2j − 1 moments of μ which shows that different measures representing a moment sequence
mn have the same (first) orthogonal polynomials. These polynomials satisfy a three-term
recursion

Pj (x) = (x − αj )Pj−1(x) − βj−1Pj−2(x),(14)

where αj ∈ R and βj−1 > 0. Moreover, by Favard’s theorem (cf. Theorem I.4.4 in Chihara
(1978)) each sequence of parameters αj ∈ R, βj > 0 yields a sequence of monic orthogonal
polynomials Pj . This induces smooth bijections

ϕR

2n :
{(
R× (0,∞)

)n → IntM2n(R),

(α1, β1, α2, . . . , αn,βn) 
→ (m1, . . . ,m2n),

ϕR

2n+1 :
{(
R× (0,∞)

)n ×R → IntM2n+1(R),

(α1, β1, α2, . . . , αn,βn,αn+1) 
→ (m1, . . . ,m2n+1).

In order to unify notation in the three different cases E = [0,1],R+,R, we set

yj :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

pj E = [0,1],
zj E =R+,

α(j+1)/2 E =R and j odd,

βj/2 E =R and j even,

Dj :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0,1) E = [0,1],
(0,∞) E =R+,

R E =R and j odd,

(0,∞) E =R and j even,

(15)

so that in all three cases

ϕE
n :
{
D1 × · · · × Dn → IntMn(E),

(y1, . . . , yn) 
→ (m1, . . . ,mn),
(16)

yields a smooth bijection. Throughout this paper, we will call the yj canonical coordinates.
We will give the Jacobians of parametrizations of the constrained moment spaces in

Lemma 4.1 below. At this stage, it suffices to note the remarkable result∣∣∣∣det
[
∂ϕ[0,1]

n (p1, . . . , pn)

∂(p1, . . . , pn)

]∣∣∣∣=
n∏

j=1

(
pj (1 − pj )

)n−j
,(17)

which is due to Skibinsky (1967), page 1f. Consequently, we see that for the uniform dis-
tribution on Mn([0,1]), the random canonical coordinates p

(n)
1 , . . . , p

(n)
n have a density on

[0,1]n proportional to the r.h.s. of (17). In other words, the canonical coordinates are inde-
pendent and p

(n)
j has a beta(n − j + 1, n − j + 1) distribution. As we are interested mostly

in the first l moments as n → ∞, we have j � n and thus the canonical moments are in-
dependent and nearly identically distributed. The class of distributions introduced in Dette,
Tomecki and Venker (2018) and adapted here to the constrained spaces, generalizes from the
uniform distribution on Mn([0,1]) in three ways. First, we include distributions on the un-
bounded spaces Mn(R+) and Mn(R). Second, we generalize from the beta distribution to
rather arbitrary densities while keeping the two key properties of independence and (nearly)
identical distribution. And last, we allow for different densities for even and odd coordinates.
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This originates in the different roles played by even and odd moments. As even moments are
always positive and contain some information about the size of the support of the measure,
odd moments contain information about symmetries.

We can now introduce our general class of distributions on the constrained moment spaces.
Recall that C is always assumed to be an admissible constraint for P(E).

Let V1 : D1 → R, . . . , Vik+2 : Dik+2 → R be continuous functions satisfying for 1 ≤ j ≤
ik + 2 in the cases E = R+,R the integrability conditions

Vj (yj ) ≥

⎧⎪⎪⎨
⎪⎪⎩

(2 + ε) log|yj | E = R+,

(1 + ε) log|yj | E = R, j odd,

(2 + ε) log|yj | E = R, j even,

(18)

for |yj | large enough and some ε > 0. Note that no integrability conditions are needed in the
case E = [0,1]. Recall our assumption n > k and denote by

mC
n := (mj ,1 ≤ j ≤ n, j �= i1, . . . , ik)(19)

the vector of unconstrained moments. Finally, we set for notational convenience

Vik+2j−1 := Vik+1 and V2ik+2j := Vik+2, j ≥ 2

and define the Borel probability measure P
C
n,E,V on the boundary of MC

n(E) by
P
C
n,E,V (∂MC

n(E)) = 0 and on the interior of MC
n(E) by the density

P C
n,E,V (mn) := 1

ZC
n,E,V

exp

(
−n

n∑
j=1

Vj

(
yj (mn)

))

w.r.t. the (n − k)-dimensional Lebesgue measure on MC
n(E) as defined at the beginning of

Section 2. Here yj = yj (mn), j = 1, . . . , n, are the canonical coordinates associated to the
moment sequence mn = (m1, . . . ,mn) and

ZC
n,E,V :=

∫
MC

n (E)
exp

(
−n

n∑
j=1

Vj

(
yj (mn)

))
dmC

n(20)

is the normalizing constant. We will see in Corollary 4.2 that under PC
n,E,V the distribution of

the canonical coordinates has a special structure: Canonical coordinates of order higher than
ik are independent. Moreover, odd and even coordinates (of order higher than ik) are nearly
identically distributed, respectively. The distributions of odd coordinates is given in terms
of Vik+1 if ik is even or Vik+2 else, and vice versa with the distributions of even canonical
coordinates.

P
C
n,E,V is for the empty constraint C = ∅ determined by V1 and V2 and is precisely the

class of distributions found in Dette, Tomecki and Venker (2018) showing universal behavior
and classical limiting measures from random matrix theory or free probability theory. In the
presence of a constraint influencing the first ik moments, the results of this section will show
that PC

n,E,V is an appropriate class of distributions to study MC
n(E). More precisely, we will

find universal behavior within this class for generic functions V1, . . . , Vik+2, given by special
Bernstein–Szegő measures. We remark in passing that the product form of the density of the
first ik moments is not necessary for observing the universal limits and could be extended to
some density of the form exp(−nV (m1, . . . ,mik )). However, the product form is convenient
for notation and the class we consider is exhaustive in the sense that any universal limit law
of the extended class can be observed in the smaller class.

As it is not immediate that 0 < ZC
n,E,V < ∞, we formulate the following lemma which is

proved at the beginning of Section 4.
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LEMMA 3.1. For V1, . . . , Vik+2 satisfying (18), PC
n,E,V is a well-defined probability mea-

sure on MC
n(E).

For the rest of this section, we will assume that (m
(n)
1 , . . . ,m

(n)
n ) has distribution P

C
n,E,V .

Our first result in this setting is a large deviations principle which holds without any further
assumptions. Define the functions Wj : Dj →R, j = 1, . . . , n by

Wj(yj ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Vj (yj ) − log
(
yj (1 − yj )

)
E = [0,1],

Vj (yj ) − log(yj ) E = R+,

Vj (yj ) E = R, j odd,

Vj (yj ) − log(yj ) E = R, j even.

THEOREM 3.2 (Large deviations principle). For any l, the vector (m
(n)
1 , . . . ,m

(n)
l )

satisfies a large deviations principle with speed n and good rate function I
C,E
l (·) −

infml∈MC
l (E)

I
C,E
l (ml), where

I
C,E
l (m1, . . . ,ml) :=

⎧⎪⎪⎨
⎪⎪⎩

l∑
j=1

Wj(yj ) (m1, . . . ,ml) ∈ IntMC
l (E),

∞ else.

(21)

Usually a large deviations principle implies a law of large numbers, provided that the
rate function has a unique minimizer. In the unconstrained case, all canonical coordinates are
independent and uniqueness of the minimizer of the rate function reduces to uniqueness of the
minimizers of W1 and W2. Hence uniqueness of a minimizing moment sequence is actually
a univariate problem. In contrast to that, as a consequence of the constraint C, in general the
first ik canonical coordinates are strongly dependent and thus uniqueness of a minimizer is in
general a truly multivariate problem, involving simultaneously W1, . . . ,Wik+2 and C. Let us
illustrate this with an example for MC

n([0,1]).
EXAMPLE 3.3. The constraint C = {m1 = c} for some c ∈ (0,1) does not induce any de-

pendencies, since m1 = p1. The simplest possible, yet instructive, constraint is C = {m2 = c}
for c ∈ (0,1). From (12), we deduce p1 = m1 and p2 = c−p2

1
p1(1−p1)

. Thus, changing coordi-

nates to p1,p3,p4, . . . , pn, the density P C
n,[0,1],V can using a computation similar to (17) be

expressed as

1

ZC
n,E,V

exp
[
−n

(
W1(p1) + W2

(
c − p2

1

p1(1 − p1)

))]
1[c,√c](p1)(22)

× exp
[
2 log

(
p1(1 − p1)

)− 2 log
(
cp1 + cp2

1 − c2 − p3
1
)]

(23)

× exp

(
−n

n∑
j=3

Wj(pj ) −
n∑

j=3

j log
(
(pj )(1 − pj )

))
.(24)

The indicator function in (22) stems from the fact that m2 = c implies m1 = p1 ∈ [c,√c].
We will see a general version of (22)–(24) in Corollary 4.2 below.

All terms in (23) are sub-leading and do not contribute much to the uniqueness problem.
(24) factorizes and thus uniqueness of minimization over p3,p4, . . . reduces to W3 and W4
separately. However, equation (22) shows that the uniqueness problem for p1 involves W1,
W2 and C. Note that in this simple example minimization over p1 is still one dimensional,
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albeit nontrivial. The constraint C = {m3 = c} would yield dependent p1,p2, and p3 could
be written as a rational function of p1 and p2. Note also that specifying to V1 = · · · = V4 = 0,
that is, to the uniform distribution considered in Section 2, does not simplify things much.

From the previous example, it is far from obvious why the uniform distribution on
MC

n([0,1]) concentrates on a unique moment sequence as n → ∞. This uniqueness will
for general V1, . . . , Vik+2 no longer be true. Fortunately, we can prove equally strong results
without requiring uniqueness of the multivariate minimization problem. The assumptions on
V1, . . . , Vik+2 used later on are formulated in the definition below. As a preparation, let

yCn := (yj ,1 ≤ j ≤ n, j �= i1, . . . , ik)(25)

be the vector of canonical coordinates corresponding to mC
n . It is shown in Lemma 4.1 of

Section 4 that yCn allows for a parametrization of MC
n(E). At this stage, it suffices to note

that knowing yCn determines mn because the “missing coordinates” yij , j = 1, . . . , k are de-
termined by yCn and the constraint C.

DEFINITION 3.4 (Generic V1, . . . , Vik+2). Let the functions Vj ∈ C2(Dj ), j = 1, . . . ,

ik + 2 satisfy (18), if E = R+ or E = R. We call V1, . . . , Vik+2 generic, if the following three
conditions are satisfied:

• (unique univariate minimizers) Wik+1 and Wik+2 have unique minimizers y∗
ik+1 ∈ Dik+1

and y∗
ik+2 ∈ Dik+2, respectively,

• (finitely many multivariate minimizers) if ik > k, yCik 
→ I
C,E
ik

(mik (y
C
ik
)) has finitely many

minimizers

y∗,1, . . . ,y∗,p ∈
ik∏

j=1
j �=i1,...,ik

Dj ,

where the set Dj has been defined in (15) and I
C,E
ik

in (21),
• (nondegeneracy of minimizers) W ′′

j (y∗
j ) �= 0, j = ik + 1, ik + 2 and

det HessC
(

ik∑
j=1

Wj

)(
y∗,q) �= 0, q = 1, . . . , p,

if ik > k. Here, HessC is the (ik − k) × (ik − k)-dimensional Hessian matrix with respect
to the variables in yCik .

REMARK 3.5. The set of yCik such that I
C,E
ik

(mik (y
C
ik
)) �= ∞, that is, the set of potential

minimizers, is an open set on which yi1, . . . , yik are smooth functions of yCik . On this set

we have I
C,E
ik

(mik (y
C
ik
)) =∑ik

j=1 Wj(yj ). It is known from Morse theory that almost all C2

functions have only nondegenerate critical points, meaning that the Hessian determinant does
not vanish at these points. Furthermore, there can be only finitely many such points in any
compact set. From a more practical point of view, if V1, . . . , Vik+2 are not generic, then the
perturbation Ṽ1, . . . , Ṽik+2 with Ṽj (t) := Vj (t) + aj t, j = 1, . . . , ik+2 is generic for almost
all values a1, . . . , aik+2 ∈ R (Matsumoto (2002), Theorem 2.20). In the case of unbounded
E and thus unbounded Dj , the search for minimizers can effectively be restricted to some
compact set thanks to the integrability conditions (18). This justifies calling V1, . . . , Vik+2
with the properties of Definition 3.4 generic.
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Of course, almost all C2 functions will also have a unique multivariate minimizer. Never-
theless, we find it useful to consider the more general case of several multivariate minimizers
as it features a particular aspect of the universality phenomenon (see Theorem 3.6 and Re-
mark 3.7 below).

We can now formulate the main results of this section. The first one is an analog of The-
orem 2.1 in the general setting. It is instructive to briefly review one of the central results of
the unconstrained case: Dette, Tomecki and Venker (2018), Theorems 2.1, 2.5 and 2.7, show
that the first l random moments from P

C
n,E,V with C = ∅ and generic V1,V2 with minimizers

y∗
1 , y∗

2 converge to the first l nonrandom moments of the probability measure μy∗
1 ,y∗

2
, where

μy∗
1 ,y∗

2
(dx) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ
d,[0,1]
p∗

1 ,p∗
2

+
√

(x − a)(b − x)

2πp∗
2x(1 − x)

1[a,b](x) dx

if E = [0,1],
μ

d,R+
z∗

1,z∗
2

+ 1

2πz∗
2

√
(x − a)(b − x)

x
1[a,b](x) dx

if E =R+,
1

2πβ∗
√

(x − a)(b − x)1[a,b](x) dx

if E =R,

μ
d,[0,1]
p∗

1 ,p∗
2

:=
(

1 − p∗
1

p∗
2

)
+
δ0 +

(
p∗

1 + p∗
2 − 1

p∗
2

)
+
δ1,(26)

μ
d,R+
z∗

1,z∗
2

:=
(

1 − z∗
1

z∗
2

)
+
δ0.

Here, (·)+ := max(·,0) and a and b are constants depending on y∗
1 , y∗

2 and E only. To ease
notation, we will with a slight abuse of notation not index the measures with E and instead
trust that the reader will distinguish the three cases E = [0,1],R+,R from the appearance of
p’s, z’s or α,β , respectively. The measure μp∗

1 ,p∗
2

is called Kesten–McKay measure or free
binomial distribution as it is a free convolution power of the Bernoulli distribution. We refer
to Dette, Tomecki and Venker (2018), page 4f, for details. The measures μz∗

1,z∗
2

and μα∗,β∗
are the Marchenko–Pastur and semicircle distributions, respectively, which are well known in
random matrix theory and free probability. The universality of the three measures is apparent
as very different functions V1,V2 lead to the same family of measures.

Let us now formulate an analogous result in the presence of a constraint C that identifies
the limit measures as members of the Bernstein–Szegő class plus some discrete measure. To
state it, define

y∗
1 :=

{
y∗
ik+1 if ik is even,

y∗
ik+2 if ik is odd,

y∗
2 :=

{
y∗
ik+2 if ik is even,

y∗
ik+1 if ik is odd.

(27)

THEOREM 3.6 (Law of large numbers). Let V1, . . . , Vik+2 be generic. Then we have for
any l as n → ∞

(
m

(n)
1 , . . . ,m

(n)
l

)→ p∑
q=1

wqδm∗,q
l

in distribution, where w1, . . . ,wp > 0,
∑p

q=1 wq = 1 are weights and m∗,q
l := (m

∗,q
1 , . . . ,

m
∗,q
l ) is the vector of the first l moments of a probability measure

μq(dx) = μac
q (x) dx + μd

q(dx).



686 H. DETTE, D. TOMECKI AND M. VENKER

The density of the absolutely continuous part is given by

μac
q (x) = 1

Dq(x)
μac

y∗
1 ,y∗

2
(x),

where μac
y∗

1 ,y∗
2

is the density of the absolutely continuous part of the measure μy∗
1 ,y∗

2
defined in

(26) and Dq is a polynomial of degree at most ik , strictly positive on the support of μac
y∗

1 ,y∗
2
.

The measure μd
q is discrete having atoms at the positions of atoms of μy∗

1 ,y∗
2

and at most ik
extra atoms.

REMARK 3.7. Theorem 3.6 shows how strong the universality of (26) is: The limiting
measure needs to fulfil the constraint C and, apart from atoms, the optimal measure from
PC(E) is absolutely continuous w.r.t. μy∗

1 ,y∗
2
. In particular, the support of the absolutely con-

tinuous part of μq , q = 1, . . . , p is always the one of μy∗
1 ,y∗

2
, regardless of the constraint C!

Moreover, as nicely featured in the case of several minimizers, this universality is not even
broken if there are several limiting measures.

EXAMPLE 3.8. The proof of Theorem 3.6 is constructive: A recipe to determine the
weights wq , polynomials Dq and measures μd

q is given in Proposition 4.3 and Proposi-
tion 4.4. As an example, we consider the case E = R with the constraint C := {m1 = 0},
that is, we only consider measures with mean zero. We take the functions V1(α) := (α − 1)2

and V2(β) := 8β2. Then W1(α) = V1(α) has a unique minimizer in α∗ = 1 and W2(β) =
V2(β) − log(β) in β∗ = 1

4 . The limiting measure is

μα∗,β∗(dx) =
√

x(2 − x)

2π(x + 1
4)

1[0,2](x) dx + 3

4
δ− 1

4
.(28)

The computation of this measure will be performed in Example 4.5 following Proposition 4.4,
where the necessary preliminaries are given.

Our next result concerns Gaussian fluctuations. A remarkable fact is that in the case of
several minimizers, the standardization is itself random.

THEOREM 3.9 (Central limit theorem). Let V1, . . . , Vik+2 be generic. Define

m∗
l := arg min

m∗∈{m∗,1
l ,...,m∗,p

l }

∥∥(m(n)
1 , . . . ,m

(n)
l

)− m∗∥∥,
where m∗,q

l , q = 1, . . . , p have been introduced in Theorem 3.6 and ‖ · ‖ denotes the Eu-
clidean norm. Then for any l > ik , as n → ∞

√
n�l

(
m∗

l

)((
m

(n)
1 , . . . ,m

(n)
l

)− m∗
l

)→ N (0,L)

in distribution, where L ∈ R
l×l is the matrix with Luv = 1 if u = v and v /∈ {i1, . . . , ik} and

Luv = 0 else. The matrix �l ∈ R
l×l is given by

�l(ml) := T C
[(

HessC
l∑

j=1

Wj

)1/2(
yCl
)( ∂yCl

∂mC
l

(ml)

)t
]
,

where T C : R(l−k)×(l−k) → R
l×l denotes the insertion of rows and columns of zeros at the

positions i1, . . . , ik , HessC denotes the Hessian with respect to the coordinates in yCl and the
variables mC

l , yCl are defined in (19) and (25), respectively.
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We finish this section with a moderate deviations principle.

THEOREM 3.10 (Moderate deviations principle). Let V1, . . . , Vik+2 be generic and an →
∞ be a sequence with an = o(

√
n). Then for l > ik , the sequence (Zn)n with

Zn := an�l

(
m∗

l

)((
m

(n)
1 , . . . ,m

(n)
l

)− m∗
l

)
satisfies a large deviations principle with speed n

a2
n

and good rate function

I (ml) :=
⎧⎨
⎩

1

2
‖ml‖2 mi1 = · · · = mik = 0,

∞ else.

3.1. Universality and connection to random matrices. There are several universal aspects
of the results in Sections 2 and 3. The first one is the occurrence of Gaussian fluctuations,
which is generic for uniform distributions on convex bodies; see Klartag (2007). As already
briefly mentioned in the Introduction, it is however surprising to find Gaussian fluctuations
for vectors containing only finitely many coordinates (moments). This is a sign of the strong
dependence between moments.

Even more interesting is the universality of the shape of the limiting measures μq, q =
1, . . . , p of Theorem 3.6. Their absolutely continuous parts are all of the form reciprocal of a
polynomial times the universal μac

y∗
1 ,y∗

2
and thus depend on the constraint C and few values of

the functions V1, . . . , Vik+2 only.
As shown in Remark 2.2, the limiting measures for constrained moment spaces are gen-

erally not equilibrium measures, in contrast to the ones obtained in unconstrained spaces.
Let us now shed some more light on this phenomenon. Consider a vector mn ∈ M2n−1(R)

with the corresponding canonical coordinates, that is, recurrence coefficients, and form the
tridiagonal Jacobi matrix

J :=

⎛
⎜⎜⎜⎜⎜⎝

α1
√

β1√
β1

. . .
. . .

. . . αn−1
√

βn−1√
βn−1 αn

⎞
⎟⎟⎟⎟⎟⎠ .

Note that J is symmetric and thus diagonalizable with real eigenvalues x1, . . . , xn and eigen-
vectors v1, . . . ,vn. The probability measure

μ(n) :=
n∑

j=1

〈vj , e〉δxj

is called spectral measure to J and the first standard basis vector e, where 〈·, ·〉 denotes the
Euclidean scalar product. It has the property that its lth moment is ml which is by the spectral
theorem simply the (1,1)-entry of J l , l = 1, . . . , n (see Simon (2011), Chapters 1.2, 1.3).
In particular, if (m

(n)
1 , . . . ,m

(n)
n ) is uniformly distributed in MC

n([0,1]), then the associated
random spectral measure μ(n) fulfills the assumptions of Theorem 2.8. Our laws of large
numbers for random moments imply that for (m

(n)
1 , . . . ,m

(n)
n ) with distribution P

C
n,E,V , the

associated random spectral measure μ(n) converges weakly in distribution toward the limiting
measure c−1∑p

q=1 λqμq from Theorem 3.6.
To make the connection to equilibrium measures and random matrices, we remark that in

random matrix theory equilibrium measures typically occur as limits of empirical spectral
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measures

νn := 1

n

n∑
j=1

δxj
,

where x1, . . . , xn are the eigenvalues of some random n × n matrix. An important class of
random matrix ensembles, the so-called β-ensembles, has eigenvalue densities proportional
to

exp

(
β

2

∑
i �=j

log|xi − xj | − n

n∑
j=1

Qex(xj )

)

(29)

= exp
(
−n2

(
β

2

∫
�=

∫
log|t − s|−1 dνn(t) dνn(s) +

∫
Qex(t) dνn(t)

))
,

where
∫
�=
∫

means that the diagonal is excluded in the double integral, β > 0 and Qex is some
function called external field. They can for certain polynomial Qex even be obtained as eigen-
value distributions of random tridiagonal Jacobi matrices using the very approach mentioned
above; see Krishnapur, Rider and Virág (2016). In view of (29), it is not surprising that for
n → ∞, the ensemble realizes eigenvalue configurations that approach the equilibrium mea-
sure which is a solution to minimizing (6); see, for example, Johansson (1998), Theorem 2.1.
In fact, a large deviations principle can be obtained for this approximation of the equilibrium
measure; cf. Anderson, Guionnet and Zeitouni (2010), Theorem 2.6.1. For our purposes, it is
important to note that the speed of this large deviations principle is n2, a fact that is readily
read off (29). Now, apparently the difference between the spectral measure connected to the
random moment problem and the empirical spectral measure from random matrix theory, is
the weighting of the atoms. In contrast to νn, the weights wj := 〈vj , e1〉 of the spectral mea-
sure μ(n) depend on the eigenvectors and are of course random. In certain cases, more can be
said: For example, for m(n)

2n−1 uniform on M2n−1([0,1]), the eigenvalues of the associated
random matrix J are distributed according to (29) with β = 4 and Qex(t) = 0 for t ∈ [0,1]
and ∞ elsewhere; see Killip and Nenciu (2004), Theorem 2.2. Moreover, the weights are
independent from the eigenvalues and have a Dirichlet(2, . . . ,2)-distribution on the simplex
{wn ∈ [0,1]n :∑n

j=1 wj = 1}. For n → ∞, the weights concentrate around the barycenter
(1/n, . . . ,1/n). However, the speed is n and thus the concentration of the weights is weaker
than that of the eigenvalues. More precisely, it was shown in Gamboa and Rouault (2010)
that the random spectral measure corresponding to the uniform distribution on Mn([0,1])
satisfies an LDP with speed n and good rate function given by the reversed Kullback–Leibler
divergence I (μ) = K(μ0|μ). In view of the close connection between spectral measure and
the random moment problem, this also explains the occurrence of the Kullback–Leibler di-
vergence in Theorem 2.1. However, the question remains why the unconstrained equilibrium
measure μ0 still appears instead of the measure solving the constrained equilibrium prob-
lem. To understand this, let us consider what happens if we force the spectral measure to
fulfil a constraint C. Deviations of the eigenvalue configuration from the energy minimizing
equilibrium measure (or rather its discrete analog, the Fekete points) are far more costly than
deviations of the weights from (1/n, . . . ,1/n). Therefore, the weights have to change dra-
matically from (1/n, . . . ,1/n) to some other values in order to bend the “discretized arcsine
measure” to match the constraint. This results, for example, in a limiting measure μC that is
supported on the full set [0,1] like the arcsine measure, as observed in Remark 2.2.

4. Parametrizations and proof of law of large numbers. The first step toward proving
the results of Sections 2 and 3 is a parametrization of the constrained space MC

n(E). Define



RANDOM MOMENTS UNDER CONSTRAINTS 689

the set Aik ⊂∏ik
j=1 Dj as

Aik := (
ϕE

ik

)−1(relintMC
ik
(E)

)
,

where ϕE
ik

is the parametrization (16) of the unconstrained moment space and relint denotes

the relative interior, that is, relintMC
ik
(E) := MC

ik
(E) ∩ IntMik (E). Define Ãik as the pro-

jection of Aik to the coordinates in yCik and M̃C
n(E) as the projection of MC

n(E) to the coor-
dinates in mC

n . Then we have the following lemma.

LEMMA 4.1. For any n ≥ ik the mapping

ϕE,C
n :

{
Ãik × Dik+1 × · · · × Dn → IntM̃C

n(E),

yCn 
→ mC
n,

is a C∞-diffeomorphism with Jacobian∣∣∣∣det
[
∂mC

n

∂yCn

]∣∣∣∣ :=
∣∣∣∣det

[
∂ϕE,C

n (yCn)

∂yCn

]∣∣∣∣

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∏
j=1

(
pj (1 − pj )

)n−j−dj,C E = [0,1],
n−1∏
j=1

z
n−j−dj,C
j E = R+,

�n/2�∏
j=1

β
n−2j−dj,C
j E = R,

where dj,C := #{l | il > j} and �n/2� is the largest integer smaller or equal n/2.

PROOF. It is straightforward to see that ϕE,C
n is indeed a diffeomorphism and we only

need to calculate its Jacobian. Note that the Jacobian matrix is lower triangular and thus its
determinant is given by the product of the entries on the diagonal

JacϕE,C
n = ∏

1≤j≤n

j /∈{i1,...,ik}

∂mj

∂yj

.(30)

In the case E = [0,1], rearranging (12) yields

mj = pj

(
m+

j − m−
j

)− m−
j .

As m±
j only depends on m1, . . . ,mj−1, we obtain

∂mj

∂pj

= m+
j − m−

j

and the assertion follows by an application of the formula (cf. Skibinsky (1967))

m+
l − m−

l =
l−1∏
j=1

pi(1 − pi)(31)

and rearranging the order of multiplication in (30).
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The proof in the case E = R+ is analogous. Note that formula (13) yields

mj = zj

(
mj−1 − m−

j−1

)+ m−
j

and consequently

∂mj

∂zj

= mj−1 − m−
j−1 =

j−1∏
l=1

ml − m−
l

ml−1 − m−
l−1

= z1 · · · zj−1.

In the case E = R, the calculation of the partial derivatives is slightly more complicated.
As in the proof of Lemma 2.6 in Dette, Tomecki and Venker (2018), the partial derivatives of
the moments with respect to the recursion coefficients can be calculated as

∂m2j−1

∂αj

= β1 · · ·βj−1,

∂m2j

∂βj

= β1 · · ·βj−1.

The assertion again follows by plugging these formulas into (30) and rearranging the order
of multiplication. �

We are now in the position to prove Lemma 3.1.

PROOF OF LEMMA 3.1. We have to show that (20) is finite, positivity is trivial. The
compact case E = [0,1] is clear. From the unbounded cases we exemplarily consider E =
R+. Changing to canonical coordinates with Lemma 4.1, we see that

ZC
n,E,V =

∫
R

n−k+
1
Ãik

(
zCik
)

exp

(
−n

n∑
j=1

(
Vj (zj ) − n − j − dj,C

n
log zj

))
dzCn.

Let us drop the indicator 1
Ãik

(zCik ) from the integral, thereby making it larger, and consider

first the zij , j = 1, . . . , k. Note that by (18), there is a constant c1 ∈ R such that we have for
zij > 1

Vj (zj ) − n − j − dj,C
n

log zj ≥ c1.

By continuity we have for 0 ≤ zij ≤ 1 for some c2 ∈ R and j = 1, . . . , k the bound Vij (zij ) ≥
c2. This shows

ZC
n,E,V ≤ e−knmin(c1,c2)

×
∫
R

n−k+
exp
(
−n

n∑
j=1

j �=i1,...,ik

(
Vj (zj ) − n − j − dj,C

n
log zj

))
dzCn,

which factorizes and is integrable by assumption (18). �

As a direct consequence of Lemma 4.1, we obtain the following.

COROLLARY 4.2. P
C
n,E,V induces via (ϕE,C

n )−1 a probability measure on∏
1≤j≤nj /∈{i1,...,ik} Dj with density

P̃ C
n,E,V

(
yCn
) := 1

ZC
n,E,V

exp

(
−n

n∑
j=1

Wj(yj )

)
1
Ãik

(
yCik
)

(32)
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× exp

(
n∑

j=1

(
Wj(yj ) − Vj (yj )

)
(j + dj,C)

)
(33)

w.r.t. the (n − k)-dimensional Lebesgue measure.

Note that in (32) and (33) the canonical coordinates yi1, . . . , yik corresponding to the con-
strained moments mi1, . . . ,mik are functions of yCn . More precisely, yij depends on all coor-
dinates yd from yCn with d < ij and is determined by the requirement mij = cij , j = 1, . . . , k.
We can also see from (32) and (33) that the coordinates in yCik are dependent. On the one hand,
they are coupled via the indicator function. On the other hand, even apart from the indicator,
in general the density does not factorize as yi1, . . . , yik are functions of the lower canonical
coordinates.

Corollary 4.2 allows for the simple but important observation that the canonical coordi-
nates yCm have a density of the form

Pn(dx) = 1

Zn

e−nW(x)R(x),(34)

where W : Rm → R ∪ {∞}, R : Rm → [0,∞) are some measurable functions and Zn is the
normalization constant.

On the level of canonical coordinates, probabilistic statements can be deduced directly
from the form of the density (34). We will use in Section 7 a different parametrization and thus
obtain functions W and R different from those needed here to prove the results of Section 3.
To avoid duplication, we therefore state and prove a proposition valid for rather general W

and R. It might also be of independent interest.
Assume from here on that W :Rm →R∪{∞} and R :Rm →R+ are measurable and such

that

0 <

∫
e−n0W(x)R(x) dx < ∞ for some n0 ∈N.(35)

PROPOSITION 4.3 (Convergence to discrete distribution). Let W and R satisfy the fol-
lowing conditions:

1. W attains its global minimum exactly in the points θ1, . . . , θp , that is, W(x) > W(θ1)

for x ∈ R
m \ {θ1, . . . , θp} and W(θ1) = · · · = W(θp).

2. W is twice continuously differentiable in a neighborhood of each θq .
3. For all ε > 0 and Mε :=⋃p

q=1 Bε(θq), we have infx∈MC
ε

W(x) > W(θq), where Bε(θq)

denotes the open ε-ball around θq .
4. HessW(θq) is invertible for each 1 ≤ q ≤ p.
5. R is continuous in all θq and does not vanish in all θq simultaneously.

Then Pn from (34) converges as n → ∞ weakly to the distribution

P =
( p∑

q=1

R(θq)det HessW(θq)−1/2

)−1 p∑
q=1

R(θq)det HessW(θq)−1/2δθq .

PROOF. We may assume without loss of generality that W(θ1) = · · · = W(θp) = 0. Let
U ⊂ R

m be an arbitrary open set and ε > 0 so small that the following conditions hold:

(i) If θq ∈ U holds, then also Bε(θq) ⊂ U .
(ii) W is twice differentiable on Bε(θq).
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(iii) HessW(x) ≥ Mq for all x ∈ Bε(θq) and some positive definite matrices Mq , where ≥
stands for the Löwner (partial) order, that is, M ≥ N means that M − N is positive
semidefinite.

To see that the third condition is attainable, note that HessW(θq) is positive semidefinite,
since θq is an absolute minimum of W . Since HessW(θq) is invertible, the matrix is even
positive definite. By Weyl’s inequality (see Theorem 1 in Section 6.7 of Franklin (1968)) there
is a δ > 0 so that HessW(θq) − δIm is positive definite. Since HessW is twice continuously
differentiable near all θq , we may choose ε > 0 such that

∣∣∣∣ ∂2W

∂xi ∂xj

(x) − ∂2W

∂xi ∂xj

(θq)

∣∣∣∣< δ

2m

is satisfied for all x ∈ Bε(θq) and 1 ≤ i, j ≤ m. By Gerschgorin’s theorem (see Theorem 1 in
Section 6.8 of Franklin (1968)), this implies that all eigenvalues of HessW(x) − HessW(θq)

have absolute value less than δ
2 . From Weyl’s inequality we can conclude that all eigenvalues

of HessW(x) − HessW(θq) + δIm must be at least δ
2 . This means that in the Löwner order

the inequalities

HessW(x) > HessW(θq) − δIm > 0

hold for all x ∈ Bε(θq) and we may choose Mi = HessW(θq) − δIm in condition (iii).
Now, with Mε from condition (3) of the proposition,

Pn(U) ≥
∑p

q=1 1U(θq)
∫
Bε(θq) e

−nW(x)R(x) dx∫
(Mε)c

e−nW(x)R(x) dx +∑p
q=1

∫
Bε(θq) e

−nW(x)R(x) dx
.

By a standard application of Laplace’s method, we have as n → ∞
∫
Bε(θq)

e−nW(x)R(x) dx = n−m/2
(
R(θq)

(2π)m/2√
det HessW(θq)

+ o(1)

)
.

Furthermore, with K := infx∈(Mε)c W(x) > 0 we obtain∫
(Mε)c

e−nW(x)R(x) dx ≤ e−(n−n0)K
∫
(Mε)c

e−n0W(x)R(x) dx = o
(
n−m/2),

implying

Pn(U) ≥ (2π
n

)m/2(
∑p

q=1 1U(θq)R(θq)det HessW(θq)−1/2 + o(1))

(2π
n

)m/2(
∑p

q=1 R(θq)det HessW(θq)−1/2 + o(1))
→ P(U).

By Portmanteau’s theorem, this yields Pn
d−→ P. �

We will see that applied to our random moment problem, Proposition 4.3 shows conver-
gence of the random canonical coordinates yC,(n)

n to some discrete distribution concentrated
on the moment sequences of certain limiting measures. The main task now is to identify
these measures from the information on their canonical coordinates. To this end, we make
use of the following proposition which gives information on probability measures with even-
tually constant recurrence coefficients. We remark that similar results are known (see, e.g.,
Geronimo and Iliev (2017), Theorem 2.1 and references therein), yet they are not sufficient
for our purposes.
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PROPOSITION 4.4. Let μ be a probability measure with recursion coefficients α1, . . . , αj

and β1, . . . , βj−1 > 0, such that αl = α and βl−1 = β > 0 for all l > j . Then the Lebesgue
decomposition of μ consists of an absolutely continuous part μac and a discrete part μd . The
absolutely continuous part μac has the density√

4β − (x − α)2β1 · · ·βj−1

2πD(x)

on the interval Iα,β := [α − 2
√

β,α + 2
√

β], where D is the polynomial D(x) := P 2
j (x) −

Pj+1(x)Pj−1(x) and Pi, i = 0,1, . . . are the monic orthogonal polynomials corresponding
to μ. To leading order (with the convention β0 = 0),

D(x) = (α − αj )x
2j−1

+ [(β − βj−1) + (2(α1 + · · · + αj−1) + αj

)
(αj − α)

]
x2j−2

+ O
(
x2j−3).

(36)

Moreover, D is strictly positive on Int Iα,β and possible zeros on the boundary of Iα,β are
simple.

The discrete part μd is a linear combination of dirac measures

μd =
2j−1∑
i=1

λiδxi
,

where the xi are the real roots of D outside of Iα,β . The weights λi are possibly zero and are
given as

λi := lim
x→xi

∣∣∣∣(x − xi)
f (x)

D(x)

∣∣∣∣,(37)

where the function f is defined by

f (x) := Qj(x)Pj (x) − Qj+1(x)Pj−1(x)

+ β1 · · ·βj−1

2

(
(x − α) − z(x)

√
(x − α)2 − 4β

)(38)

with

z(x) :=
{

1 x > α + 2
√

β,

−1 x < α − 2
√

β,
Qi(x) :=

∫
Pi(x) − Pi(t)

x − t
dμ(t).

The polynomials Qi, i ≥ 0 in the proposition are called secondary polynomials and satisfy
the shifted recurrence relation Q0(x) = 0, Q1(x) = 1 and

Qi(x) = (x − αi)Qi−1(x) − βi−1Qi−1(x), i ≥ 2.(39)

The proof of the proposition can be found on pages 1–5 of the Supplementary Material
(Dette, Tomecki and Venker (2020)).

EXAMPLE 4.5 (Continuation of Example 3.8). It remains to compute the measure in
(28) from the information that the sequence of random moments (m

(n)
1 , . . . ,m

(n)
l ) converges

in probability to the sequence of moments (m1(μ), . . . ,ml(μ)), where the measure μ is
uniquely determined by having recursion coefficients α1 = 0, αj = 1 and βj−1 = 1

4 for all
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j > 1. In light of Theorem 4.4, we calculate the orthogonal polynomials Pj as well as the
secondary polynomials Qj up to order 2 as

P0(x) = 1, Q0(x) = 0,

P1(x) = x − α1 = x, Q1(x) = 1,

P2(x) = (x − α2)P1(x) − β1P0(x) = x2 − x − 1

4
,

Q2(x) = x − α2 = x − 1.

Consequently, the polynomial D is given by

D(x) = P 2
1 (x) − P2(x)P0(x) = x + 1

4
.

Therefore μ has a possible point mass in −1
4 . In order to calculate the weight of the point

mass, we determine

f (x) = 1 + 1

2

(
x − 1 − z(x)

√
x2 − 2x

)
.

This yields the weight of the point mass as

lim
x→− 1

4

∣∣∣∣
(
x + 1

4

)
f (x)

x + 1
4

∣∣∣∣= f

(
−1

4

)
= 3

4
.

Hence, the measure μ is given by (28).

We are now in the position to prove Theorem 3.6.

PROOF OF THEOREM 3.6. After a change of variables by Lemma 4.1, an application
of Proposition 4.3 shows the convergence on the level of canonical coordinates. The con-
vergence result can then be transferred back to the ordinary moments with the continuous
mapping theorem.

It remains to show the claimed representation of μq . The measure μq is uniquely deter-
mined by having y∗,q as first ik canonical coordinates, as well as

yj =
{
y∗

1 j odd,

y∗
2 j even,

for all j > ik , where y∗
1 and y∗

2 were defined in (27). We have to distinguish the three cases
of E.

Case E = R: In this case, the representation is a direct consequence of Proposition 4.4.
Case E = R+: In the case E = R+, Dette, Tomecki and Venker (2018), page 18, shows

that the recursion coefficients of the orthogonal polynomials corresponding to μq are given
in terms of the canonical coordinates as

αj = z2j−2 + z2j−1,

βj = z2j−1z2j and moreover(40)

z2j+1 = −Pj+1(0)

Pj (0)
.

Since the odd and even parameters zj are constant for all j > ik , the αj and βj−1 are constant
for all j > l := � ik+3

2 � and we may apply Proposition 4.4. Observing the expansion (36) of
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the polynomial D(x) from Proposition 4.4 for ik even and odd respectively, we can see that
the degree of D is at most ik + 1. To prove that the absolutely continuous part of the measure
is of the claimed form

μac
q (x) = 1

Dq(x)
μac

z∗
1,z∗

2
(x)

for some polynomial Dq of degree at most ik , we have to show D(0) = 0 in order to factor
out the linear polynomial p(x) = x. By (40),

Ps(0) = (−1)s
s−1∏
j=0

(
−Pj+1(0)

Pj (0)

)
= (−1)s

s−1∏
j=0

z2j+1,(41)

which yields

D(0) = P 2
l (0) − Pl−1(0)Pl+1(0) =

(
l−2∏
j=0

z2
2j+1

)
z2l−1(z2l−1 − z2l+1) = 0,

since z2l−1 = z2l+1. Factoring out the polynomial p(x) = x yields the desired result for the
absolutely continuous part with the polynomial Dq(x) := D(x)/x which is of degree at most
ik and is strictly positive at 0 since the root of D in 0 is simple by Proposition 4.4.

For the discrete part of the measure, let x0 be a root of D(x), that is, a number satis-
fying P 2

l (x0) = Pl−1(x0)Pl+1(x0). Since two consecutive orthogonal polynomials have no
common roots, x0 is neither a root of Pl−1, Pl or Pl+1. We then have(

Ql(x0)Pl(x0) − Ql+1(x0)Pl−1(x0)
)
Pl+1(x0)

= Ql(x0)Pl(x0)Pl+1(x0) − Ql+1(x0)P
2
l (x0)

= −Pl(x0)
(
Ql+1(x0)Pl(x0) − Ql(x0)Pl+1(x0)

)= −Pl(x0)hl,

where we have used the Christoffel–Darboux formula (S6) (from the Supplementary Ma-
terial, Dette, Tomecki and Venker (2020)) in the last line. Recalling the definition of the
function f in (38) we therefore obtain

f (x0) = − Pl(x0)hl

Pl+1(x0)
+ β1 · · ·βl−1

2

(
x − α − z(x)

√
(x − α)2 − 4β

)
.(42)

Plugging in the value x0 = 0 and using (41) as well as α = z∗
1 + z∗

2, β = z∗
1z

∗
2 and hj =

β1 · · ·βj , we obtain

f (0) = hl

z2l+1
+ hl−1

2

(
−z∗

1 − z∗
2 +

√(
z∗

1 + z∗
2

)2 − 4z∗
1z

∗
2

)

= hl−1

(
z2l−1z2l

z2l+1
+ 1

2

(−z∗
1 − z∗

2 + ∣∣z∗
1 − z∗

2
∣∣))

= hl−1
(
z∗

2 − z∗
1
)
+,

where we have used that z2l−1 = z2l+1 = z∗
1 and z2l = z∗

2 (note that l was chosen such that
2l − 1 ≥ ik + 1).

Recall that the weight of the point mass of μq in zero can be calculated via the formula

λ = lim
x→0

∣∣∣∣x f (x)

D(x)

∣∣∣∣.
We now have to consider three separate cases:
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1. If μz∗
1,z∗

2
has an atom at 0, then z∗

2 > z∗
1 must hold. In this case, we have f (0) > 0 and

consequently λ > 0. This means that μq has a point mass at zero, as well as up to ik further
point masses at the roots of D outside of zero.

2. If μz∗
1,z∗

2
has no atom at 0 and 0 is not a simple root of D, then D has at most ik distinct

roots and therefore up to ik possible point masses.
3. If μz∗

1,z∗
2

has no atom at 0 and 0 is a simple root of D, then z∗
1 ≤ z∗

2, f (0) = 0 and
D′(0) �= 0 holds. We therefore obtain

λ = lim
x→0

∣∣∣∣x f (x)

D(x)

∣∣∣∣=
∣∣∣∣ f (0)

D′(0)

∣∣∣∣= 0.

Consequently, μq has no point mass in zero and up to ik further point masses in the roots of
D outside of zero.

Common to all three cases is that μq has at most ik point masses more than μz∗
1,z∗

2
, which

yields the desired result.
Case E = [0,1]: In the case E = [0,1], arguments as above show that the recursion coeffi-

cients αj and βj−1 are constant for all j > l := � ik+4
2 �. Similar calculations using (see Dette

and Nagel (2012))

αj = q2j−3p2j−2 + q2j−2p2j−1,

βj = q2j−2p2j−1q2j−1p2j ,
(43)

where qj := 1 − pj and p−1 := p0 := 0, and formula (41) then show that D is a polynomial
of degree at most ik + 2, satisfying D(0) = 0. Furthermore, it is well known that the monic
orthogonal polynomial Ps of order s is given by

Ps(x) = (�s−1)
−1 det

⎛
⎜⎜⎜⎝

m0 m1 . . . ms−1 1
m1 m2 · · · ms x
...

...
. . .

...
...

ms ms+1 · · · m2s−1 xs

⎞
⎟⎟⎟⎠

with �s−1 = det((ma+b)
s−1
a,b=0) and m0 := 1; see, for example, Deift (1999), page 38. This

yields

Ps(1) = (�s−1)
−1 det

⎛
⎜⎜⎜⎜⎜⎜⎝

m0 − m1 m1 − m2 . . . ms−1 − ms 0
m1 − m2 m2 − m3 · · · ms − ms+1 0

...
...

. . .
...

...

ms−1 − m2 ms − ms+1 · · · m2s−2 − m2s−1 0
ms ms+1 · · · m2s−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

= (�s−1)
−1 det

(
(ma+b − ma+b+1)

s−1
a,b=0

)
.

Combined with Dette and Studden (1997), Theorem 1.4.10, Corollary 1.4.6, this results in

Ps(1) =
s−1∏
j=0

q2j q2j+1 and consequently

D(1) =
(

l−2∏
j=0

q2
2j q

2
2j+1

)
q2l−2q2l−1(q2l−2q2l−1 − q2lq2l+1) = 0.

(44)

Factoring out x(1 − x) in D proves the representation of the absolutely continuous part.
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For the discrete part of μq , we observe that by (42), (41) and (44) we have

f (0) = hl−1
(
p∗

2 − p∗
1
)
+,

f (1) = hl−1

(
−p∗

1p∗
2 + 1

2

(
1 − (p∗

1 + p∗
2 − 2p∗

1p∗
2
)− ∣∣1 − (p∗

1 + p∗
2
)∣∣))

= hl−1
(
p∗

1 + p∗
2 − 1

)
+.

Arguments similar to the case E =R+ show that μq has point masses in the point masses of
μp∗

1 ,p∗
2
, as well as up to ik additional point masses. �

5. Proof of the LDP. In this section, we will prove Theorem 3.2. As before, we start with
a general LDP. It will be slightly stronger than a usual LDP in the sense that it establishes
the rate function for any measurable set as an actual limit that is described as an essential
infimum, instead of just lower and upper bounds as in a usual LDP. This is formulated in the
following lemma.

LEMMA 5.1. Let Pn be a sequence of probability measures on R
m and an → ∞ a se-

quence such that

lim
n→∞

1

an

logPn(�) = − ess inf
x∈�

S(x)(45)

holds for all measurable sets � ⊂ R
m and some function S :Rm → [0,∞]. Then Pn satisfies

an LDP with speed an and rate function

I (x) := ess lim inf
y→x

S(y) = sup
{
ess inf
y∈U

S(y) | x ∈ U,U open
}
.

The proof can be found on pages 5–6 of the Supplementary Material (Dette, Tomecki and
Venker (2020)).

PROPOSITION 5.2 (Large deviations principle). Let Pn be given by (34) satisfying (35)
and assume that W : Rm → R ∪ {∞} and R : Rm → [0,∞] are measurable functions such
that:

1. W is essentially lower bounded,
2. R is almost everywhere strictly positive.

Then Pn satisfies for all measurable � ⊂R
m

lim
n→∞

1

n
logPn(�) = − ess inf

x∈�
S(x) where

S(x) := W(x) − ess inf
y∈Rm

W(y).

PROOF. We will first show that

lim
n→∞

1

n
log
∫
�

e−nW(x)R(x) dx = − ess inf
x∈�

W(x)(46)

holds for all measurable sets � ⊂ R
m. Set α := ess infx∈� W(x) and note that the case α = ∞

is trivial. If α < ∞ we have � ⊂ {W ≥ α} ∪ N for some Lebesgue nullset N . This implies
with n0 from (35)

lim sup
n→∞

1

n
log
∫
�

e−nW(x)R(x) dx
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≤ lim sup
n→∞

1

n
log
∫
{W≥α}

e−n0W(x)R(x)e−(n−n0)α dx(47)

≤ lim sup
n→∞

(
logC

n
− α

n − n0

n

)
= −α.

Let ε > 0 be arbitrary. By definition of α we have volm(� ∩ {W ≤ α + ε}) > 0. Since R is
almost surely strictly positive, this implies

0 <

∫
�∩{W≤α+ε}

e−n0W(x)R(x) dx < ∞,

from which we can conclude

lim inf
n→∞

1

n
log
∫
�

e−nW(x)R(x) dx

≥ lim inf
n→∞

1

n
log
∫
�∩{W≤α+ε}

e−n0W(x)e−(n−n0)(α+ε)R(x) dx = −(α + ε).

Now let ε → 0 and combine this equation with (47) to conclude that (46) holds. This yields
the desired result, as

lim
n→∞

1

n
logPn(�)

= lim
n→∞

{
1

n
log
∫
�

e−nW(x)R(x) dx − 1

n
log
∫
Rm

e−nW(x)R(x) dx

}

= − ess inf
x∈�

W(x) + ess inf
y∈Rm

W(y) = − ess inf
x∈�

S(x). �

PROOF OF THEOREM 3.2. This theorem is a consequence of the previously obtained re-
sults and follows in three simple steps. First, change coordinates from (m

(n)
1 , . . . ,m

(n)
l ) to the

vector of unconstrained canonical coordinates yC,(n)
l by means of Corollary 4.2. Second, ap-

ply Proposition 5.2 and Lemma 5.1 to obtain an LDP for the vector of canonical coordinates.
The last step then is to transfer the LDP from canonical coordinates to ordinary coordinates
using the contraction principle.

The compactness of level sets of I is clear for E = [0,1] and follows for unbounded E

from the integrability conditions (18). �

6. Proofs of the CLT and MDP. In this section, we prove the central limit theorem and
the moderate deviations principle of Section 3. As before, for later use we first give results
for the general density Pn of the form (34), satisfying (35).

PROPOSITION 6.1 (Convergence to normal distribution). Let the same conditions and
notations as in Proposition 4.3 hold and let Xn be a random variable having distribution
with density Pn from (34). Let θ∗

n be such that

θ∗
n ∈ arg min

{‖x − Xn‖ | x ∈ {θ1, . . . , θp}}
with the standard Euclidean norm ‖ · ‖ and

Yn := HessW
(
θ∗
n

)1/2√
n
(
Xn − θ∗

n

)
.

If N ∼N (0, Im), then as n → ∞
dTV(Yn,N) → 0,

where dTV denotes the total variation distance

dTV(X,Y ) := sup
A∈B(Rm)

∣∣P(X ∈ A) − P(Y ∈ A)
∣∣.
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PROOF. Choose ε > 0 so that the conditions:

1. Bε(θq) ∩ Bε(θq ′) =∅ for q �= q ′,
2. for all x ∈ Bε(θq) we have HessW(x) ≥ Mq for some positive definite matrices Mq ,
3. R(x) ≤ CR for all x ∈ Bε(θq), q = 1, . . . , p and some CR < ∞,

are satisfied and let A ⊂ R
m be a Borel set. Like in the proof of Proposition 4.3 we may

assume that W(θq) = 0, q = 1, . . . , p. Then∣∣P(Yn ∈ A) − P(N ∈ A)
∣∣

≤ ∣∣P(Yn ∈ A,
∥∥Xn − θ∗

n

∥∥< ε
)− P(N ∈ A)

∣∣+ P
(∥∥Xn − θ∗

n

∥∥≥ ε
)
.

By Proposition 4.3 and Portmanteau’s theorem, the last summand converges to zero. Set

D :=
p∑

q=1

R(θq)det HessW(θq)
−1/2,

dn := D−1
(

n

2π

)m/2 ∫
e−nW(x)R(x) dx.

Then dn → 1 holds by calculations analogous to the ones used to prove Proposition 4.3. To
simplify notation, define

f q
n (y) := exp

(−nW
(
θq + HessW(θq)−1/2n−1/2y

))
× R

(
θq + HessW(θq)−1/2n−1/2y

)
,

Sq
n := HessW(θq)1/2n1/2Bε(0),

Kq
n := HessW(θq)−1/2n−1/2A,

and introduce the decomposition

e−yt y/2 = D−1
p∑

q=1

R(θq)det HessW(θq)−1/2e−yt y/21S
q
n
(y)

+ D−1
p∑

q=1

R(θq)det HessW(θq)
−1/2e−yt y/21(S

q
n )c (y).

(48)

Finally, note that

{
Yn ∈ A,

∥∥Xn − θ∗
n

∥∥< ε
}=

p⋃
q=1

{
Xn − θq ∈ Kq

n ∩ Bε(0)
}
.

Combining all this yields∣∣P(Yn ∈ A,
∥∥Xn − θ∗

n

∥∥< ε
)− P(N ∈ A)

∣∣
=
∣∣∣∣∣

p∑
q=1

P
(
Xn − θq ∈ Kq

n ∩ Bε(0)
)− P(N ∈ A)

∣∣∣∣∣
=
∣∣∣∣∣ nm/2

(2π)m/2dnD

p∑
q=1

∫
K

q
n ∩Bε(0)

exp
(−nW(θq + x)

)
R(θq + x)dx

− 1

(2π)m/2

∫
A

exp
(−xtx/2

)
dx

∣∣∣∣∣, which equals
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(2π)−m/2

∣∣∣∣∣
∫
A

p∑
q=1

d−1
n D−1f q

n (y)1S
q
n
(y)det HessW(θq)−1/2

− exp
(−yty/2

)
dy

∣∣∣∣∣.
By the decomposition (48), we therefore obtain∣∣P(Yn ∈ A,

∥∥Xn − θ∗
n

∥∥< ε
)− P(N ∈ A)

∣∣
≤ (2π)−m/2

p∑
q=1

D−1 det HessW(θq)
−1/2

×
∣∣∣∣
∫
A

(
d−1
n f q

n (y) − exp
(−yty/2

)
R(θq)

)
1S

q
n
(y) dy

∣∣∣∣
+ D−1

p∑
q=1

R(θq)det HessW(θq)
−1/2

P
(
N /∈ Sq

n

)

≤ (2π)−m/2
p∑

q=1

D−1 det HessW(θq)
−1/2

×
∫
S

q
n

∣∣d−1
n f q

n (y) − exp
(−yty/2

)
R(θq)

∣∣dy

+ D−1
p∑

q=1

R(θq)det HessW(θq)
−1/2

P
(
N /∈ Sq

n

)
.

Note that this bound is uniform in A. Clearly P(N /∈ S
q
n ) → 0 as n → ∞. On S

q
n the pointwise

convergence

d−1
n f q

n (y) → exp
(−yty/2

)
R(θq)

holds and the claimed result follows from the dominated convergence theorem, using the
dominating functions

CR

((
sup
n

d−1
n

)
exp
(−ytMqy/2

)+ exp
(−yty/2

))
, q = 1, . . . , p. �

PROOF OF THEOREM 3.9. Changing coordinates by Corollary 4.2 and applying Propo-
sition 6.1 yields a central limit theorem for the canonical coordinates,

√
n

(
HessC

l∑
j=1

Wj

)1/2(
y∗
l

)(
yC,(n)
l − y∗

l

) d−→N (0, Il−k),

where the first ik − k coordinates of y∗
l are given by

arg min
y∈{y∗,1,...,y∗,p}

∥∥yC,(n)
l − y

∥∥(49)

and the remaining coordinates for j > ik are

(
y∗
l

)
j =

{
y∗

1 j odd,

y∗
2 j even.

(50)

To transfer this CLT for yC,(n)
l to one for mC,(n)

l , we use a variant of the delta-method, which
is a common technique in mathematical statistics:



RANDOM MOMENTS UNDER CONSTRAINTS 701

Let (Xn)n, (Yn)n be two sequences of random variables with Xn,Yn ∈ R
m and

√
n(Xn −

Yn) → N ∼ N (0,�) in distribution as n → ∞. Let f : Rm → R
m be a continuously differ-

entiable function. Assume moreover that there is a set B such that for any n, Yn ∈ B almost
surely, y 
→ Df (y) is uniformly continuous on B and ‖Df (y)‖op ≥ c > 0 for some c and
y ∈ B , ‖ · ‖op denoting the operator norm. Then

√
nDf (Yn)

−1(f (Xn) − f (Yn)) is asymptot-
ically N (0,�)-distributed. To see this, let fj denote the j th component of the vector-valued
f , j = 1, . . . ,m, and note that by the mean value theorem,

√
n
(
fj (Xn) − fj (Yn)

)= 〈∇fj (ξj,n),
√

n(Xn − Yn)
〉

for some ξj,n in the line segment [Xn,Yn]. Since
√

n(Xn − Yn) is asymptotically nor-
mal, we have ξj,n − Yn → 0 in probability. Let Mn be the matrix built from the rows
∇fj (ξj,n), j = 1, . . . ,m. By the uniform continuity, Mn − Df (Yn) → 0 in probability and
the asymptotic normality of

√
nDf (Yn)

−1(f (Xn) − f (Yn)) follows from ‖Df −1‖op ≤ c−1

on B and Slutsky’s theorem.
In our case, Xn := yC,(n)

l , Yn := y∗
l and f := ϕ

E,C
l . The assumptions on Df are easily

verified for B being a neighborhood of the set of the p possible values of y∗
l . There is a

small subtlety to consider: As the minimizers y∗
l and m∗

l are determined via yC,(n)
l and m(n)

l

on different spaces, not necessarily ϕ
E,C
l (y∗

l ) = m∗,C
l holds. However, by the continuity of

ϕ
E,C
l the minimizers are identical whenever m(n)

l is in a sufficiently small neighborhood U of

{m∗,1
l , . . . ,m∗,p

l }. Due to Theorem 3.6, we have P(m(n)
l ∈ U) → 1, which implies the stated

result. �

Let us now turn to moderate deviations. The general result is:

PROPOSITION 6.2 (Moderate deviations). With the assumptions and notations of Propo-
sition 6.1, for any sequence an → ∞ with an = o(

√
n), the sequence of random variables

Zn := HessW
(
θ∗
n

)1/2
an

(
Xn − θ∗

n

)
satisfies with bn := n

a2
n

for any measurable set �

lim
n→∞

1

bn

logP(Zn ∈ �) = − ess inf
x∈�

1

2
‖x‖2.

PROOF. Let S
q
ε denote the ellipsoid

Sq
ε := {

x ∈ R
m | ∥∥HessW(θq)1/2(x − θq)

∥∥< ε
}

= θq + HessW(θq)−1/2Bε(0).
(51)

As in the proof of Proposition 6.1, let us assume that W(θq) = 0, q = 1, . . . , p and we choose
0 < ε < 1 so small that the following conditions hold:

(i) S
q
ε ∩ S

q ′
ε = ∅ for q �= q ′,

(ii) θq = arg min1≤i≤p ‖y − θi‖ holds for all y ∈ S
q
ε , 1 ≤ q ≤ p,

(iii) for all x ∈ S
q
ε we have HessW(x) ≥ Mq for some positive definite matrices Mq ,

(iv) there is a K > 0 such that R(x) ≤ K holds for all x ∈ Sε :=⋃p
q=1 S

q
ε ,

(v) infy∈S
q
ε
R(y) > 0 holds for some 1 ≤ q ≤ p.
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For an arbitrary Borel set �, we use the decomposition

P(Zn ∈ �) =
p∑

q=1

P
(
HessW(θq)1/2an(Xn − θq) ∈ �,Xn ∈ Sq

ε

)

+ P(Zn ∈ �,Xn /∈ Sε).

(52)

Observing that

N
max
j=1

1

bn

logAj ≤ 1

bn

log

(
N∑

j=1

Aj

)
≤ N

max
j=1

1

bn

logAj + logN

bn

,(53)

holds for any A1, . . . ,AN ≥ 0, we see that only the largest of the probabilities in (52) matter.
As will become apparent in the course of the proof, the normalization constant of the density
exp(−nW(x))R(x) satisfies

lim
n→∞

1

bn

log
∫

am
n e−nW(x)R(x) dx = 0,(54)

which means that on the exponential scale of a large deviations principle, the integration
constant roughly equals a−m

n . In order to deal with P(HessW(θq)1/2an(Xn − θq) ∈ �,Xn ∈
S

q
ε ), we are therefore interested in approximations for the term

am
n

∫
S

q
ε

1�

(
HessW(θq)1/2an(x − θq)

)
exp
(−nW(x)

)
R(x)dx.(55)

Setting α := ess infx∈� ‖x‖, we eventually want to prove

lim
n→∞

1

bn

logP(Zn ∈ �) = −α2

2
.

The case α = ∞ corresponds to a nullset and the claimed result obviously holds. In the case
α < ∞, we start with an upper bound of (55). Define

λ−
q := λ−

q (ε) := inf
y∈S

q
ε

λmin
(
HessW(θq)−1/2 HessW(y)HessW(θq)−1/2),

λ+
q := λ+

q (ε) := sup
y∈S

q
ε

λmax
(
HessW(θq)

−1/2 HessW(y)HessW(θq)−1/2),
where λmin(M) and λmax(M) denote the smallest and largest eigenvalue of a symmetric
square matrix M , respectively. By continuity λ−

q and λ+
q both converge to 1 as ε → 0 and

by Taylor’s theorem we have for all x ∈ S
q
ε

W(x) = 1

2

(
HessW(θq)

1/2x
)t

× HessW(θq)
−1/2 HessW

(
θq + η(x − θq)

)
HessW(θq)−1/2

× (HessW(θq)
1/2x

)
for some η = η(x) ∈ (0,1), where we used our assumption W(θq) = 0. Since x ∈ S

q
ε , we

have x = θq + HessW(θq)−1/2v for some vector v with ‖v‖ ≤ ε. Therefore,

θq + η(x − θq) = θq + HessW(θq)
−1/2(ηv) ∈ Sq

ε and we can conclude

λ−
q (ε)

‖HessW(θq)1/2(x − θq)‖2

2
≤ W(x) as well as

W(x) ≤ λ+
q (ε)

‖HessW(θq)1/2(x − θq)‖2

2
.
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This yields with K from (iv)

am
n

∫
S

q
ε

1�

(
HessW(θq)1/2an(x − θq)

)
exp
(−nW(x)

)
R(x)dx

≤ am
n

∫
1�

(
HessW(θq)1/2an(x − θq)

)
× exp

(−nλ−
q

∥∥HessW(θq)
1/2(x − θq)

∥∥2
/2
)
K dx

= am
n K

nm/2
√

det HessW(θq)

∫
1�(ant/

√
n) exp

(−λ−
q ‖t‖2/2

)
dt

≤ b
−m/2
n K√

det HessW(θq)

∫
1[nα2/(2a2

n),∞)

(‖t‖2/2
)

× exp
(−(1 − ε)λ−

q nα2/
(
2a2

n

)− ελ−
q ‖t‖2/2

)
dt

≤ b
−m/2
n K√

det HessW(θq)
exp
(−(1 − ε)λ−

q bnα
2/2
)( 2π

ελ−
q

)m/2
.

Consequently,

lim sup
n→∞

1

bn

log
(
am
n

∫
S

q
ε

1�

(
HessW(θq)

1/2an(x − θq)
)
e−nW(x)R(x) dx

)
(56)

≤ −(1 − ε)λ−
q

α2

2
.

To find a lower bound of (55), let n be so large that α+ε
an

< ε holds. Then

am
n

∫
S

q
ε

1�

(
HessW(θq)1/2an(x − θq)

)
e−nW(x)R(x) dx

≥ am
n inf

y∈S
q
ε

R(y)

∫
1�

(
HessW(θq)

1/2anx
)
1[0,ε)

(∥∥HessW(θq)
1/2x

∥∥)

× exp
(−nλ+

q

∥∥HessW(θq)1/2x
∥∥2

/2
)
dx

≥ infy∈S
q
ε
R(y)b

−m/2
n√

det HessW(θq)

∫
1�(ant/

√
n)1[0,α+ε)

(‖ant/
√

n‖) exp
(−λ+

q ‖t‖2/2
)
dt

≥ infy∈S
q
ε
R(y)b

−m/2
n√

det HessW(θq)
exp
(−λ+

q n(α + ε)2/
(
2a2

n

))
volm

(√
bn · (� ∩ Bα+ε(0)

))

= infy∈S
q
ε
R(y)√

det HessW(θq)
exp
(−λ+

q bn(α + ε)2/2
)

volm
(
� ∩ Bα+ε(0)

)
.

By definition of α, � ∩ Bα+ε(0) has positive volume. Therefore, we get

lim inf
n→∞

1

bn

log
(
am
n

∫
S

q
ε

1�

(
HessW(θq)1/2an(x − θq)

)
e−nW(x)R(x) dx

)
(57)

≥ −λ+
q

(α + ε)2

2
,
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if infy∈S
q
ε
R(y) > 0 and −∞ else. For the term P(Zn ∈ �,Xn /∈ Sε) in (52), we obtain

lim sup
n→∞

1

bn

log
(
am
n

∫
(Sε)c

e−nW(x)R(x) dx

)

≤ lim sup
n→∞

1

bn

log
{
am
n

∫
exp
(−n0W(x)

)
R(x)dx

× exp
(
−(n − n0) inf

y /∈Sε

W(y)
)}

,

where n0 is the fixed number from (35). Thus,

lim sup
n→∞

1

bn

log
(
am
n

∫
(Sε)c

e−nW(x)R(x) dx

)

≤ lim sup
n→∞

a2
n

n

(
log
(
am
n

)− (n − n0) inf
y /∈Sε

W(y)
)

≤ lim sup
n→∞

a2
n(m log(an) − n/2 infy /∈Sε W(y))

n

+ lim sup
n→∞

−a2
n(1/2 − n0/n) inf

y /∈Sε

W(y) = −∞.

(58)

In order to see the last equality, note that the first term is negative for sufficiently large n and
the second term diverges to −∞. In view of (53), we conclude that P(Zn ∈ �,Xn /∈ Sε) is
negligible.

It remains to show (54). Using (53) in combination with (56) and (58) for � = R
m yields

lim sup
n→∞

1

bn

log
∫

am
n e−nW(x)R(x) dx

= max
{(

p
max
q=1

lim sup
n→∞

1

bn

log
∫
S

q
ε

am
n e−nW(x)R(x) dx

)
,

lim sup
n→∞

1

bn

log
∫
(Sε)c

am
n e−nW(x)R(x) dx

}
≤ 0.

On the other hand, we obtain from (57) and (53) that

lim inf
n→∞

1

bn

log
∫

am
n e−nW(x)R(x) dx

≥ max
q=1,...,p

lim inf
n→∞

1

bn

log
∫
S

q
ε

am
n e−nW(x)R(x) dx ≥ max

q=1,...,p:
inf

y∈S
q
ε

R(y)>0

{
−λ+

q

ε2

2

}
.

Letting ε → 0, (54) follows. Combining (56), (53) and (54) gives

lim sup
n→∞

1

bn

logP(Zn ∈ �)

≤ lim sup
n→∞

1

bn

log

(
P(Xn /∈ Sε) +

p∑
q=1

P
(
Zn ∈ �,Xn ∈ Sq

ε

))

≤ lim sup
n→∞

max
{(

p
max
q=1

1

bn

log
∫
S

q
ε

am
n 1�

(
HessW(θq)1/2an(x − θq)

)
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× e−nW(x)R(x) dx

)
,

1

bn

log
∫
(Sε)c

am
n e−nW(x)R(x) dx

}

+ lim sup
n→∞

log(p + 1)

bn

+ lim sup
n→∞

{
− 1

bn

log
∫

am
n e−nW(x)R(x) dx

}

≤ p
max
q=1

{
−(1 − ε)λ−

q

α2

2

}
.

Letting ε → 0, we now get

lim sup
n→∞

1

bn

logP(Zn ∈ �) ≤ −α2

2
.(59)

Similarly, (57), (53) and (54) yield

lim inf
n→∞

1

bn

logP(Zn ∈ �)

≥ lim inf
n→∞

1

bn

log

(
n∑

j=1

P
(
Zn ∈ �,Xn ∈ Sq

ε

))

≥ max
q=1,...,p

lim inf
n→∞

1

bn

log
∫
S

q
ε

am
n 1�

(
HessW(θq)

1/2an(x − θq)
)
e−nW(x)R(x) dx

≥ max
q=1,...,p:

inf
y∈S

q
ε

R(y)>0

{
−λ+

q

(α + ε)2

2

}
.

Letting ε → 0 we thus obtain

lim inf
n→∞

1

bn

logP(Zn ∈ �) ≥ −α2

2
.(60)

Combining (59) and (60) now finally shows

lim
n→∞

1

bn

logP(Zn ∈ �) = −α2

2
= −1

2

(
ess inf

x∈�
‖x‖)2 = − ess inf

x∈�

‖x‖2

2
. �

PROOF OF THEOREM 3.10. A change of coordinates by Corollary 4.2 and an application
of Proposition 6.2 and Lemma 5.1 yields the LDP for

Yn := anH
(
y∗
l

) · (yC,(n)
l − y∗

l

)
with y∗

l defined in (49) and (50), good rate function I (x) = −1
2‖x‖2, speed bn = n

a2
n

and

H(yl) :=
(

HessC
l∑

j=1

Wj

)1/2

(yl).

To transfer this to an LDP for the ordinary moments, we first argue that we have the LDP
with same rate function and same speed for Yn under the conditioned probability measures

P
q := P

(·|y∗
l = y∗

l,q

)
, q = 1, . . . , p,
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where y∗
l,1, . . . ,y∗

l,p are the p possible values of y∗
l and P denotes the underlying probability

measure. To see this, note that under Pq we have

Yn = Yq
n := anH

(
y∗
l,q

)(
yC,(n)
l − y∗

l,q

)= an

(
H
(
y∗
l,q

)
yC,(n)
l − H

(
y∗
l,q

)
y∗
l,q

)
.

By Theorem 3.6 there are 0 < c1 < c2 such that for n large enough and all q = 1, . . . , p

c1 ≤ P
(
y∗
l = y∗

l,q

)≤ c2.

The upper bound in (10) for Y
q
n follows for n large from

P
q(Yq

n ∈ �
)≤ c−1

1 P(Yn ∈ �).

For the lower bound, for n large enough

P
q(Yq

n ∈ �
)≥ c−1

2 P
(
Yn ∈ �,Yn ∈ Sq

ε

)
with S

q
ε from (51) and ε chosen as in the proof of Proposition 6.2. It was shown in (52), (54)

and (57) that

lim inf
n→∞

1

bn

logP
(
Yn ∈ �,Yn ∈ Sq

ε

)≥ −λ+
q

(ess infx∈� ‖x‖2 + ε)2

2

and the lower bound follows from letting ε → 0, limε→0 λ+
q = 1 and Lemma 5.1.

Our aim is to transfer the LDPs for Y
q
n , q = 1, . . . , p to one for Zn from Theorem 3.10.

Choosing

f q(x) := H
(
y∗
l,q

)[ ∂yCl
∂mC

l

(
y∗
l,q

)]t
ϕ

E,C
l

((
H
(
y∗
l,q

))−1 · x)
we can apply the delta-method for large deviations (Gao and Zhao (2011), Theorem 3.1), to
obtain an LDP for the sequence

Zq
n := an

(
f q(H (y∗

l,q

)
yC,(n)
l

)− f q(H (y∗
l,q

)
y∗
l,q

))

= anH
(
y∗
l,q

)[ ∂yCl
∂mC

l

(
y∗
l,q

)]t (
mC,(n)

l − ϕ
E,C
l

(
y∗
l,q

))
under Pq , with good rate function I and speed bn. The next step is to extend the LDP to

Z′
n := anH

(
y∗
l

)[ ∂yCl
∂mC

l

(
y∗
l

)]t (
mC,(n)

l − ϕ
E,C
l

(
y∗
l

))
under P. In order to show this LDP, we estimate for an arbitrary measurable set �

c1

p∑
q=1

P
q(Zq

n ∈ �
)≤ P

(
Z′

n ∈ �
)≤ c2

p∑
q=1

P
q(Zq

n ∈ �
)
.

Therefore the LDP for Z′
n holds by (53). The last step in the proof is to augment Z′

n to Zn

by inserting zeros at at positions i1, . . . , ik . Let T denote this operation. The LDP for the
sequence Zn then follows from observing that by Theorem 3.2 we have

lim sup
n→∞

1

bn

logP
(
Zn �= T

(
Z′

n

))≤ lim sup
n→∞

1

bn

logP
(
ϕ

E,C
l

(
y∗
l

) �= m∗,C
l

)= −∞,

where m∗,C
l denotes the vector of unconstrained moments in m∗

l . This proves the asymptotic
equivalence of T (Z′

n) and Zn and concludes the proof. �
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7. Proofs of the results in the uniform case. The uniform distribution on the moment
space MC

n([0,1]) is a special case of the distribution P
C
n,[0,1],V defined in Section 3. It is

however difficult to prove genericity of V1 = · · · = Vik+2 ≡ 0 for any constraint C instead of
just generic constraints. We will therefore consider a special parametrization of MC

n([0,1])
that allows to exploit concavity properties of the density of the canonical moments.

LEMMA 7.1. Recall the definition of mC
ik

in equation (19) and denote by M̃C
l ([0,1]) the

projection of MC
l ([0,1]) to the coordinates in mC

l . For any n ≥ ik the mapping

ϕC
n :
{

IntM̃C
ik

× (0,1)n−ik → IntM̃C
n(E),(

mC
ik
, pik+1, . . . , pn

) 
→ mC
n,

(61)

is a C∞-diffeomorphism with Jacobian

JacϕC
n =

n∏
j=1

(
pj (1 − pj )

)n−max(j,ik).

PROOF. The Jacobian matrix of ϕC
n is lower triangular with determinant

detϕC
n =

ik∏
l=1

l �=i1,...,ik

∂ml

∂ml

n∏
l=ik+1

∂ml

∂pl

=
n∏

l=ik+1

l−1∏
j=1

pj (1 − pj )

=
n∏

j=1

(
pj (1 − pj )

)n−max(j,ik),

where we used the previously applied formula (31) again. �

In order to identify the limiting measures, we need a specialization of Proposition 4.4.

COROLLARY 7.2. Let p1, . . . , pr ∈ (0,1). The probability measure μ on [0,1] corre-
sponding to the infinite sequence of canonical moments

p1, . . . , pr,
1

2
,

1

2
, . . .

is absolutely continuous with density ∏r
i=1 piqi

πRr(x)
√

x − x2
,

where Rr(x) is a polynomial of degree at most r that is strictly positive on the interval [0,1]
and we recall qi := (1−pi). The coefficient of xr in Rr is 1−2pr and all coefficients depend
continuously on p1, . . . , pr . Furthermore, Rr can be expressed as

Rr(x) =
(

(Pj (x) − 1
2(x − 1

2)Pj−1(x))2

x(1 − x)
+ 1

4
P 2

j−1(x)

)
·
{

16 if r is even,

4 if r is odd,

where P1,P2, . . . are the monic orthogonal polynomials corresponding to μ and j := � r+4
2 �.

The proof can be found on pages 6–7 of the Supplementary Material (Dette, Tomecki and
Venker (2020)).

A key observation is contained in the following lemma.



708 H. DETTE, D. TOMECKI AND M. VENKER

LEMMA 7.3. The map

Wn :
{

IntMn

([0,1])→R,

(m1, . . . ,mn) 
→ log
(
4n(m+

n+1 − m−
n+1

))
,

(62)

is strictly concave and the Hessian matrix is negative definite in every point.

The proof can be found on pages 7–9 of the Supplementary Material (Dette, Tomecki
and Venker (2020)). It uses, among other things, the following remarkable sum rule from
Gamboa, Nagel and Rouault (2016), page 523, which we restate here for later use; see (S9)
for more details. It reads

K
(
μ0 | μ)= −

∞∑
i=1

log
(
4pi(1 − pi)

)
(63)

for a measure μ on [0,1] and its sequence (pi)i of canonical moments, where K is the
Kullback–Leibler divergence defined in (5).

Before giving the proofs of the main results of Section 2, a few words on the logic structure
of the proofs are in order. We start with the LDP which will be used in the proof of the law of
large numbers (Theorem 2.1) later on. The limiting measure μC was introduced in Section 2
in Theorem 2.1 but as we already need it in the proof of the LDP, we will define it as the
unique minimizer of the Kullback–Leibler divergence K(μ0|·) over PC([0,1]). In particular,
in the following proof we show that this minimization problem indeed has a unique solution.
The convergence of the random moments to the moments of the minimizing measure and the
representation of the minimizer will then be given in the proof of Theorem 2.1.

PROOF OF THEOREM 2.7. Applying the parametrization of Lemma 7.1 to (m
(n)
1 , . . . ,

m
(n)
n ), we obtain a random vector (mC,(n)

ik
, p

(n)
ik+1, . . . , p

(n)
n ) of independent components,

where we understand mC,(n)
ik

as first component. As p
(n)
j is beta(n − j + 1, n − j + 1)-

distributed and the density of mC,(n)
ik

is using (31) proportional to

exp

(
(n − ik)

ik∑
i=1

log
(
pi(1 − pi)

))
1IntMC

ik
([0,1])

(
mC

ik

)

= exp
(
n log

(
m+

ik+1 − m−
ik+1

))(
m+

ik+1 − m−
ik+1

)−ik 1IntMC
ik

([0,1])
(
mC

ik

)
,(64)

we see that (mC,(n)
ik

, p
(n)
ik+1, . . . , p

(n)
l ) has a distribution of the form Pn from (34) with m = l.

Applying Theorem 5.2 and Lemma 5.1, we obtain an LDP with good rate function

I1
(
mC

ik
, pik+1, . . . , pl

)

:= − log
(
m+

ik+1 − m−
ik+1

)− l∑
j=ik+1

log
(
pj (1 − pj )

)+ K,
(65)

where K is a constant that guarantees the infimum of I1 being zero. By the contraction prin-
ciple and equation (31), the vector (m

(n)
1 , . . . ,m

(n)
l ) therefore satisfies an LDP with good rate

function

I2(m) := I (m) + K,(66)

where I is defined in (11). From (65), we see that

K = log
(
m+

ik+1

(
μ∗)− m−

ik+1

(
μ∗))− (l − ik) log 4,(67)
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where μ∗ is a measure with first ik canonical moments p1(μ
∗), . . . , pik (μ

∗) minimizing

(p1, . . . , pik ) 
→ − log
(
m+

ik+1

(
μ∗)− m−

ik+1

(
μ∗)),

and higher canonical moments pj = 1
2 for all j > ik . It remains to show that there is a unique

such μ∗ and that μ∗ = μC , where

μC := arg min
μ∈PC([0,1])

K
(
μ0|μ).

For the uniqueness, note that since mik 
→ − log(m+
ik+1 − m−

ik+1) is +∞ on the boundary of

MC
ik
([0,1]) and strictly convex on the interior by Lemma 7.3, it has a unique minimizer which

is attained on IntMC
ik
([0,1]). To see μ∗ = μC , recall that whether a measure μ ∈ P([0,1])

fulfills constraint C or not, is determined by the first ik canonical moments p1, . . . , pik only.
Thus by (63), a measure μ ∈ PC([0,1]) minimizing K(μ0|·) has to have canonical moments
pj = 1

2 for all j > ik and hence

K
(
μ0|μ)= −

ik∑
j=1

log
(
4pj (1 − pj )

)

= − log
(
m+

ik+1(μ) − m−
ik+1(μ)

)− ik log 4.

(68)

This implies μ∗ = μC and finishes the proof. �

PROOF OF THEOREM 2.8. By (66), (67), (63) and (68), for any l the sequence
(m1(μ

(n)), . . . ,ml(μ
(n))) satisfies an LDP with good rate function

I (ml) =K
(
μ0 | μ(ml)

)−K
(
μ0 | μC),

where ml is an l-dimensional vector of moments and μ(ml) is the measure that has ml

as its first l moments and canonical moments pj = 1
2 for all j > l. By the Dawson–Gärtner

theorem (Dembo and Zeitouni (1998), Theorem 4.6.1), we then obtain an LDP for the infinite
sequence of moments (m1(μ

(n)),m2(μ
(n)), . . .) with good rate function

I (m∞) = sup
l≥0

K
(
μ0 | μ(ml)

)−K
(
μ0 | μC),

where m∞ is the infinite vector of moments containing the ml’s. By (63) the term

K
(
μ0 | μ(ml)

)= −
l∑

j=1

log
(
4pj (1 − pj )

)
is increasing in l and we therefore obtain

I (m∞) = sup
l≥0

K
(
μ0 | μ(ml)

)−K
(
μ0 | μC)= K

(
μ0 | μ(m∞)

)−K
(
μ0 | μC),

where μ(m∞) is the measure with moments m∞. The theorem now follows from applying
the contraction principle to transfer the LDP from the sequence (m1(μ

(n)),m2(μ
(n)), . . .) to

the measure μ(n). This is possible since μ(n) is compactly supported and hence uniquely
determined by its moments. �

PROOF OF THEOREM 2.1. Recall from the proof of Theorem 2.7 that m(n)
l satisfies an

LDP with good rate function I − I (ml(μ
C)), where μC has been defined as the unique mini-

mizer of K(μ0|·) over PC([0,1]). The convergence stated in Theorem 2.1 now follows from
an application of the Borel–Cantelli lemma. The claimed representation of μC is then pro-
vided by Corollary 7.2. �

Next, we give the computation of the measures in Example 2.3.
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EXAMPLE 7.4 (Continuation of Example 2.3). We will consider the different constraints
C1, C2 and C3 separately.

Case C1 = {m1 = c1}: As seen in the proof of Theorem 2.1, the measure μC1 is uniquely
determined by having canonical moments p1 = c1 and pj = 1

2 for all j > 1. We may thus
apply Corollary 7.2 to obtain the representation of μC1 . By formula (43) the recursion param-
eters of μC1 are given by α1 = c1, α2 = 3−2c1

4 , β1 = c1(1−c1)
2 and αj = 1

2 , βj−1 = 1
16 for all

j > 2. The orthogonal polynomials of μC1 up to order 2 can hence be calculated using (14)
as

P0(x) = 1, P1(x) = x − c1,

P2(x) = (x − α2)P1(x) − β1P0(x) = x2 − 3 + 2c1

4
x + c1

4
and we obtain

R1(x) = 4
(

(P2(x) − 1
2(x − 1

2)P1(x))2

x(1 − x)
+ 1

4
P 2

1 (x)

)
= x(1 − x) + (x − c1)

2.

The stated form of the measure now follows from Corollary 7.2.
Case C2 = {m1 = c1,m2 = c2}: As in the first case, the measure μC2 is uniquely determined

by having canonical moments p1 = c1, p2 = m2−m−
2

m+
2 −m−

2
= c2−c2

1
c1(1−c1)

and pj = 1
2 for all j > 2.

Analogously to the first case, we calculate

R2(x) = (1 − p2)
2(x − p1)

2 + p2
2x(1 − x)

= (c1 − c2)
2(x − c1)

2 + (c2 − c2
1)

2x(1 − x)

c2
1(1 − c1)2

and the representation of the measure follows again from Corollary 7.2. Note here that

p1q1p2q2 = c1(1 − c1)
c2 − c2

1

c1(1 − c1)

c1 − c2

c1(1 − c1)
= (c2 − c2

1)(c1 − c2)

c1(1 − c1)
.

Case C3 = {m2 = c2}: As seen in the proof of Theorem 2.1, the moment m1 of μC3 max-
imizes the moments range m+

3 − m−
3 under all measures satisfying C3. Recalling (31), we

have for any measure with m2 = c2

m+
3 − m−

3 = p1q1p2q2 = (c2 − m2
1)(m1 − c2)

m1(1 − m1)
,

which (as a function of m1) has a unique maximizer m∗
1 by Lemma 7.3. Therefore the canon-

ical moments of μC3 are given by p1 = m∗
1, p2 = c2−(m∗

1)2

m∗
1(1−m∗

1)
and pj = 1

2 for all j > 2. The

assertion now follows from the calculations in the case C2 = {m1 = m∗
1,m2 = c2}.

PROOF OF THEOREM 2.5. Recall that the coordinates(
mC,(n)

ik
, p

(n)
ik+1, . . . , p

(n)
l

)
are independent with p

(n)
j ∼ beta(n− j + 1, n− j + 1) and mC,(n)

ik
has a density proportional

to

exp
(
n log

(
m+

ik+1 − m−
ik+1

))(
m+

ik+1 − m−
ik+1

)−ik 1IntMC
ik

([0,1])
(
mC

ik

)
.

With Lemma 7.3, the theorem follows by an application of Proposition 6.1 and the delta-
method analogously to the proof of Theorem 3.9. Note that the minimizer of the map m 
→
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− log(m+
ik+1 − m−

ik+1) is unique and given by the moments (m1(μ
C), . . . ,mik (μ

C)) by the
same arguments as in the proof of Theorem 2.7. The covariance matrix �l is given as

�l := T C�̃l,

�̃l := Dt diag
(

HessC(Wik )
(
mik

(
μC)), 1

8
, . . . ,

1

8

)
D,

D := DϕC
l

(
mik

(
μC), 1

2
, . . . ,

1

2

)
,

(69)

where T C : R(l−k)×(l−k) → R
l×l denotes the transformation of an (l − k) × (l − k) matrix

by inserting rows and columns of zeros at the positions i1, . . . , ik . The maps ϕC
l and Wik are

defined in (61) and (62) and HessC denotes the Hessian with respect to the coordinates in
mC

ik
. �

PROOF OF THEOREM 2.6. The proof follows by an application of Proposition 6.2 anal-
ogous to the proof of Theorem 2.5. Note that the delta-method for large deviations must be
applied similar to the proof of Theorem 3.10. �

PROOF OF THEOREM 2.4. By Lemma 7.1 and (64), the volume of the constrained space
is given by

voln−k

(
MC

n

([0,1]))
=
∫
MC

ik
([0,1])

exp
(
(n − ik) log

(
m+

ik+1 − m−
ik+1

))
dm

×
n∏

j=ik+1

B(n − j + 1, n − j + 1),

where B(a, b) := ∫ 1
0 xa−1(1 − x)b−1 dx is the beta function. By an application of Laplace’s

method and the minimization property of μC , the first factor satisfies∫
MC

ik
([0,1])

exp
(
(n − ik) log

(
m+

ik+1 − m−
ik+1

))
dm

= n−(ik−k)/2((m+
ik+1 − m−

ik+1

)(
μC))n−ik

(
(2π)(ik−k)/2

√
dC

+ o(1)

)
,

where the constant dC is the determinant of the Hessian of the map m 
→ − log(m+
ik+1 −

m−
ik+1) with respect to the coordinates mC

ik
, evaluated in (m1(μ

C), . . . ,mik (μ
C)). For the sec-

ond factor, observe that by (9)

n∏
j=ik+1

B(n − j + 1, n − j + 1) = voln(Mn([0,1]))∏ik
j=1 B(n − j + 1, n − j + 1)

holds and another application of Laplace’s method yields

B(n − j + 1, n − j + 1) = n−1/24−(n−j)

(√
π

2
+ o(1)

)
.

Combining these equations then gives the desired result. �
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SUPPLEMENTARY MATERIAL

Supplement to “Random moment problems under constraints” (DOI: 10.1214/19-
AOP1370SUPP; .pdf). The supplement contains several proofs. Equations from the supple-
ment are marked with an “S,” for example, equation (S1).
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