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TOTAL VARIATION DISTANCE BETWEEN STOCHASTIC
POLYNOMIALS AND INVARIANCE PRINCIPLES

BY VLAD BALLY AND LUCIA CARAMELLINO1

Université Paris-Est and Università di Roma Tor Vergata

The goal of this paper is to estimate the total variation distance between
two general stochastic polynomials. As a consequence, one obtains an in-
variance principle for such polynomials. This generalizes known results con-
cerning the total variation distance between two multiple stochastic integrals
on one hand, and invariance principles in Kolmogorov distance for multilin-
ear stochastic polynomials on the other hand. As an application, we first dis-
cuss the asymptotic behavior of U-statistics associated to polynomial kernels.
Moreover, we also give an example of CLT associated to quadratic forms.
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1. Introduction. Stochastic polynomials. This paper deals with stochastic
polynomials of the following type: given a sequence X = (Xn)n∈N of indepen-
dent random variables which have finite moments of any order and, given N ∈ N
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and k∗ ∈ N, one looks to

QN,k∗(c,X) =
N∑

m=0

�m(c,X) with(1.1)

�m(c,X) :=
k∗∑

k1,...,km=1

∞∑
n1<···<nm=1

c
(
(n1, k1), . . . , (nm, km)

)
(1.2)

×
m∏

j=1

(
X

kj
nj −E

(
X

kj
nj

))
.

The coefficients c are symmetric and null on the diagonals (i.e., if ni = nj for
i �= j) and only a finite number of them are nonnull, so the above sum is finite.
Let us mention that here, for notation simplicity, we take Xn ∈ R, but in the paper
we work with Xn = (Xn,1, . . . ,Xn,d∗) ∈ R

d∗ . Note also that we use the centered
random variables Xk

n − E(Xk
n), k = 1, . . . , k∗, but if the polynomial is given in

terms of Xk
n, we may always rewrite it in terms of centered random variables.

If k∗ = 1 then QN,1(c,X) is a multilinear stochastic polynomial and moreover,
if Xn, n ∈ N, are independent standard Gaussian random variables then �m(c,X)

is an iterated stochastic integral of order m. So, multilinear stochastic polynomials
are a natural generalization of elements of the classical Wiener chaoses. However,
general stochastic polynomials are of interest, for example, in applications to U-
statistics theory (see Section 4.1 and the references cited therein).

Our goal is to estimate the total variation distance between the laws of two
such polynomials, and moreover, to establish an invariance principle. The start-
ing point in our approach is the following general invariance principle. Let Zn =
(Zn,1, . . . ,Zn,k∗), n ∈ N be a sequence of centered independent random vectors
which have finite moments of any order and let

SN(c,Z) =∑ c
(
(n1, k1), . . . , (nm, km)

) m∏
j=1

Znj ,kj

with the sum over all n1, . . . , nm ∈ N and k1, . . . , km ∈ {1, . . . , k∗} with m ≤ N .
So we are back to multilinear polynomials. We prove (roughly speaking) that for
every f ∈ C3

b(R)

(1.3)
∣∣E(f (SN(c,Z)

))−E
(
f
(
SN(c,G)

))∣∣≤ C
∥∥f ′′′∥∥∞δ∗(c),

where δ∗(c) is the “low influence factor” (see the definition (1.6) below) and
Gn = (Gn,1, . . . ,Gn,k∗) are centered independent Gaussian random vectors with
the same covariance matrix as Zn (see Theorem 2.2 for the precise statement). We
stress that the dependence structure in the vector Zn = (Zn,1, . . . ,Zn,k∗) is com-
pletely general. This allows us to take Zn = (Xn − E(Xn), . . . ,X

k∗
n − E(Xk∗

n ))

and to come back to our polynomials. Notice that the Gaussian vector Gn =
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(Gn,1, . . . ,Gn,k∗) does not keep the structure given by the powers in the original
vector Zn.

The estimate in (1.3) concerns smooth functions. The main contribution of our
paper is to replace ‖f ′′′‖∞ by ‖f ‖∞ and so to obtain convergence in total variation
distance. In order to precisely describe the nondegeneracy assumptions, we have
to use the framework of stochastic polynomials.

Doeblin’s condition and Nummelin’s splitting. Since the total variation distance
concerns measurable functions, a “regularization effect” has to be at work. This
leads us to make the following assumption (known as Doeblin’s condition): there
exists ε > 0, r > 0 and xn ∈ R, n ∈ N, such that supn |xn| < ∞ and P(Xn ∈ dx) ≥
ε dx on the ball Br(xn). It is easy to see that this is equivalent with saying that

(1.4) P(Xn ∈ dx) = pψ(x − xn) dx + (1 − p)νn(dx),

where p ∈ (0,1],ψ is a C∞ probability density with the support included in
Br(0) and νn is a probability measure. The decomposition (1.4) being given,
one constructs three independent random variable χn, Vn, Un with Vn ∼ ψ(x −
xn) dx,Un ∼ νn(dx) and χn Bernoulli with parameter p and then employs the
identity of laws

(1.5) Xn
law= χnVn + (1 − χn)Un.

The density ψ may be chosen (see (3.6)) in order that lnψ has nice properties and
this allows one to build an abstract Malliavin-type calculus based on Vn,n ∈ N and
to use this calculus in order to obtain the “regularization effect” which is needed.
We have already used this argument in [4–7]. In an independent way, Nourdin
and Poly in [33] have used similar arguments in a similar problem: they take
ψ = (1/2r)−11Br(0) so Vn has a uniform distribution, and they use a chaos type
decomposition obtained in [2]. Note also that hypothesis (1.4) is in fact necessary:
in his seminal paper [39], Prohorov proved that (1.4) is (essentially) necessary and
sufficient in order to obtain convergence in total variation distance in the central
limit theorem (see [4] for details).

The decomposition (1.5) has been introduced by Nummelin (see [24, 36]) in
order to produce atoms which allow one to use the renewal theory for studying
the convergence to equilibrium for Markov chains—this is why it is also known
as “the Nummelin splitting method.” It has been also used by Poly in his Ph.D.
thesis [38] and, to our knowledge, this is the first place where the idea of using the
regularization given by the noise Vn appears.

Main results. In order to present our results, we have to introduce some more
notation. Given the coefficient c in (1.3) we denote |c|m and δU,∗ ∗ (c) through

|c|2m =
k∗∑

k1,...,km=1

∞∑
n1<···<nm=1

c2((n1, k1), (n2, k2), . . . , (nm, km)
)
,

(1.6)

δ2∗(c) = max
n

N∑
m=1

k∗∑
k1,...,km=1

∞∑
n1<···<nm=1

c2((n1, k1), (n2, k2), . . . , (nm, km)
)
.



TV DISTANCE BETWEEN STOCHASTIC POLYNOMIALS 3765

|c|m and δ∗(c) are the quantities which come in, in order to estimate the errors.
The quantity |c|m is essentially equivalent (up to a multiplicative factor) with the
variance of �m(c,X) and δ∗(c) is essentially equivalent with the “low influence
factor” as it has first been defined in [40] and then used in [25] (and we follow
several ideas from this paper). Another interpretation, in terms of the Malliavin
derivative D, is as follows. Suppose that k∗ = 1 and let G = (W(k+1)−W(k))k∈N
where W is a Brownian motion (so �m(c,G) is a stochastic iterated integral of
order m). Then

(1.7) δ2∗(c) = sup
s>0

E

(∣∣∣∣∣Ds

( ∞∑
m=1

�m(c,G)

)∣∣∣∣∣
2)

.

For f ∈ C∞
b (Rd), we denote by ‖f ‖k,∞ the supremum norm of f and of its

derivatives of order less or equal to k, and, for two random variables F and G, we
define the distances

(1.8) dk(F,G) = sup
{∣∣E(f (F )

)−E
(
f (G)

)∣∣ : ‖f ‖k,∞ ≤ 1
}
.

For k = 0, d0 = dTV is the total variation distance, and, if F ∼ pF (x) dx and
G ∼ pG(x)dx then dTV(F,G) = ‖pF − pG‖1. d1 is the Fortet–Mourier distance
which metrizes the convergence in law. We also consider the Kolmogorov distance

(1.9) dKol(F,G) = sup
x∈R
∣∣P(F ≤ x) − P(G ≤ x)

∣∣.
We are now able to give our first result, Theorem 3.3, concerning the distance

between two polynomials QN,k∗(c,X) and QN,k∗(d,Y ). Assume that X and Y

satisfy the Doeblin’s condition (see (1.4)), and moreover, assume that the nonde-
generacy condition |c|N > 0, |d|N > 0 holds. Then we prove that for every k ∈ N

and θ ∈ ( 1
(1+k)2 ,1),

dTV
(
QN,k∗(c,X),QN,k∗(d,Y )

)
≤ Const(c, d)(1.10)

× (dk

(
QN,k∗(c,X),QN,k∗(d,Y )

) θ

2kk∗N+1 + e
− |c|2

N

Cδ2∗(c) + e
− |d|2

N

Cδ2∗(d)
)
,

where Const(c, d) denote a quantity which depends on the coefficients c and d in
an explicit way (see (3.19)). Theorem 3.3 is the main result in our paper (in fact,
the statement of this theorem is more general).

In Theorem 3.7 we give a variant of this result in Kolmogorov distance: we
prove that, for k ≥ 3,

dKol
(
QN,k∗(c,X),QN,k∗(d,Y )

)
≤ Const(c, d)(1.11)

× (dk

(
QN,k∗(c,X),QN,k∗(d,Y )

) θ
2Nk+1 + δ

θ
2kN+1∗ (c) + δ

θ
2kN+1∗ (d)

)
,
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Const(c, d) is again a positive quantity explicitly depending on c and d (see
(3.23)). The estimate (1.11) holds for general laws for Xn and Yn (without assum-
ing the Doeblin’s condition). However, now we have to assume that the covariance
matrix of the powers (Xn,X

2
n, . . . ,X

k∗
n ) and (Yn,Y

2
n , . . . , Y k∗

n ) are both invertible.
The proof of (1.11) is a direct consequence of the results of Mossel et al. in [25].

A second result, given in Theorem 3.10, concerns the invariance principle.
We consider a sequence of independent centered Gaussian random vectors Gn =
(Gn,1, . . . ,Gn,k∗) ∈ R

k∗ and we assume that the covariance matrix of Gn co-
incides with the covariance matrix of Zn = (Zn,1, . . . ,Zn,k∗) where Zn,k :=
Xk

n −E(Xk
n). We denote by SN(c,G) the polynomial QN,k∗(c,X) in which Zn =

(Zn,1, . . . ,Zn,k∗) is replaced by Gn = (Gn,1, . . . ,Gn,k∗). We stress that SN(c,G)

is multilinear with respect to Gn,i, i = 1, . . . , k∗ in contrast to QN,k∗(c,X) which
is a general polynomial with respect to Xn. In Theorem 3.10, we prove that, if
|c|N > 0, then for every θ ∈ ( 1

16 ,1),

(1.12) dTV
(
QN,k∗(c,X), SN(c,G)

)≤ Const(c) × δ∗(c)
θ

6k∗m+1 ,

Const(c) being explicitly dependent on c (see (3.24)). A result going in the same
direction was previously obtained by Nourdin and Poly in [33]. They take k∗ = 1,
so QN(c,X) is a multilinear polynomial, and they assume Doeblin’s condition
for Xi . Then they prove that, if cn, n ∈ N is a sequence of coefficients such
that limn δ∗(cn) = 0, then limn dTV(QN,k∗(c,X), SN(c,G)) = 0. The progress
achieved in our paper consists in the fact that we deal with general polynomials on
one hand and we obtain an estimate of the error on the other hand.

Applications. An important consequence of (1.12) is that it allows to replace
the study of the asymptotic behavior of a sequence QN,k∗(cn,X),n ∈ N of general
stochastic polynomials by the study of SN(cn,G),n ∈ N, which are elements of
a finite number of Wiener chaoses. Of course, the central example is the classical
CLT, where N = 1 and k∗ = 1, so S1(cn,G) =∑∞

i=1 cn(i)Gi is just a Gaussian
random variable. But, starting with the proof of the “fourth moment theorem” by
Nualart and Peccati [35] and Nourdin and Peccati [27], a lot of work has been done
in order to characterize the convergence to normality of elements of a finite number
of Wiener chaoses (see [26, 31, 34, 37] or [28] for an overview). Moreover, con-
vergence to a χ2 distribution has been treated in [27]. We study the consequences
of these results in Theorem 3.12 and Theorem 3.15.

Finally, we give two more applications. The first one concerns the asymptotic
behavior of U-statistics written on polynomial kernels. Let us mention that number
of results are already known concerning the convergence in Kolmogorov distance
for U-statistics: they represent generalizations of the Berry–Esseen theorem (see
[23]). But the result in total variation distance, which generalizes Prohorov’s theo-
rem for the CLT, seems to be new.

Another subject which is very close, is that of quadratic forms. Here, also the
asymptotic behavior in Kolmogorov distance is well understood (see de Jong [15,
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16], Rotar et al. [19, 41] and Götze et al. [20]) but we have not found results
concerning the convergence in total variation. We present here an interesting ex-
ample, giving a “change of regime” asymptotic behavior either in Kolmogorov
and total variation distance. This example fits in the framework of nonsymmetric
U-statistics discussed in [17, 18] (see Remark 4.4). Moreover, similar stochastic
series appear in some statistical mechanics models; see [10, 11].

Organization of the paper. In Section 2, we fix our settings and we give some
preliminary results. Section 3 is devoted to our main results: we first define the
Doeblin’s condition and the Nummelin splitting (Section 3.1); then we introduce
our main result Theorem 3.3 and its several consequences (Section 3.2); finally,
we analyze the Gaussian and Gamma approximation (Section 3.3). The main ex-
amples are developed in Section 4: Section 4.1 is devoted to U-statistics and in
Section 4.2 we present our example of a quadratic CLT. Finally, Section 5 con-
tains the proof of our main Theorem 3.3, which is given in the last Section 5.4: in
Section 5.1, we introduce the abstract Malliavin calculus and state the regulariza-
tion lemma, Section 5.2 is devoted to proper estimates of the Sobolev norms and
Section 5.3 refers to the nondegeneracy of the Malliavin covariance matrix. The
paper concludes with the Appendix, where an iterated Hoeffding’s inequality for
martingales is studied.

2. Notation, basic objects and preliminary results. In this section, we in-
troduce multilinear stochastic polynomials based on a sequence of abstract in-
dependent random vectors Zn = (Zn,1, . . . ,Zn,m∗) ∈ R

m∗ , n ∈ N. We stress that
no hypothesis concerning the dependence structure of Zn is needed. In the fol-
lowing, when dealing with general polynomials as in (1.1), we will take Zn,k =
Xk

n −E(Xk
n).• The basic noise. We assume that E(Zn,i) = 0 and that Zn has finite moments

of any order: for every p ≥ 1 there exists some Mp(Z) ≥ 1 such that for every
n ∈N and i ∈ [m∗] = {1, . . . ,m∗}
(2.1) ‖Zn,i‖p ≤ Mp(Z).

• Multi-indexes. We will use “double” multi-indexes α = (α1, . . . , αm) with
αi = (α′

i , α
′′
i ) = (ni, ji) with ni ∈ N and ji ∈ [m∗]. We always assume that

n1 < · · · < nm. So we work with “ordered” multi-indexes. We also denote α′ =
(α′

1, . . . , α
′
m) = (n1, . . . , nm), α′′ = (α′′

1 , . . . , α′′
m) = (j1, . . . , jm) and |α| = m. The

set of such multi-indexes is denoted by 
m and we set 
 = ⋃
m 
m. We stress

that we consider also the void multi-index α = ∅ and in this case we put |α| = 0.
Moreover, for a sequence xn = (xn,1, . . . , xn,m∗) ∈ R

m∗, n ∈ N we denote xα =∏m
i=1 xαi

, with xα = 1 if α = ∅.
• Coefficients. We consider a Hilbert space U with norm | · |U and for a U valued

random variable X, we denote ‖X‖U,p = (E(|X|pU )1/p . In a first stage, we have
just U = R but in Section 5, when considering stochastic derivatives, we have to
use some general space U . We denote C(U) = {c = (c(α))α∈
 : c(α) ∈ U}. These
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are the coefficients we will use (we stress again that we work with ordered multi-
indexes). We define

|c|U =
(∑

α

∣∣c(α)
∣∣2
U

)1/2
, |c|U,m =

( ∑
|α|=m

∣∣c(α)
∣∣2
U

)1/2
,(2.2)

δU,∗(c) =
(

sup
n

∑
α

1{n∈α′}
∣∣c(α)

∣∣2
U

)1/2
.(2.3)

The notation n ∈ α′ means that α′
j = n for some j ∈ [m]. When U = R, we shall

omit the subscript U , so we simply write |c|, |c|m and δ∗(c). For several authors
(see, e.g., [25, 30]), δ2

U,∗(c) is called the “influence” factor.
• Multilinear polynomials. Given c ∈ C(U), we define

�m(c,Z) = ∑
|α|=m

c(α)Zα

=
m∗∑

j1,...,jm=1

∑
n1<···<nm

c
(
(n1, j1), . . . , (nm, jm)

) m∏
i=1

Zni,ji
,

(2.4)

SN(c,Z) = ∑
0≤|α|≤N

c(α)Zα =
N∑

m=0

�m(c,Z).(2.5)

In the sequel, we use several times Burkholder’s inequality for Hilbert space
valued martingales: if Mn ∈ U, n ∈ N is a martingale then for every p ≥ 2 there
exists bp ≥ 1 such that

‖Mn‖U,p ≤ bp

(
E

((
n−1∑
k=1

|Mk+1 − Mk|2U
)p/2))1/p

≤ bp

(
n−1∑
k=1

‖Mk+1 − Mk‖2
U,p

)1/2
(2.6)

the second inequality being obtained by using the triangle inequality with respect
to ‖ · ‖p/2.

Moreover, as an immediate consequence of (2.1), for every n ∈ N and every
dj ∈ U, j ∈ [m∗] we have

(2.7)

∥∥∥∥∥
m∗∑
j=1

dj × Zn,j

∥∥∥∥∥
U,p

≤ √
m∗Mp(Z)

(
m∗∑
j=1

|dj |2U
)1/2

.

Using these two inequalities, we obtain the following.

LEMMA 2.1. Suppose that (2.1) holds and denote Mp = bpMp(Z)
√

m∗.
Then

(2.8)
∥∥�N(c,Z)

∥∥
U,p ≤ M

N

p |c|U,N .
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If m∗ = 1 and p = 2, then M2 = 1 and the above inequality becomes an equal-
ity.

PROOF. We proceed by recurrence on N . For N = 0, we have �N(c,Z) =
c(∅) so (2.8) is obvious. For α ∈ 
 with |α| = N − 1, we denote

(2.9) cn,j (α) = c
(
α, (n, j)

)
1{α′

N−1<n}

and we write

(2.10) �N(c,Z) =
∞∑

n=N

m∗∑
j=1

Zn,j�N−1
(
cn,j ,Z

)
.

Note that, if n ≥ N , Zn,j and �N−1(c
n,j ,Z) are independent. So, using (2.6) first

and (2.7) then we get

∥∥�N(c,Z)
∥∥2
U,p ≤ b2

p

∞∑
n=N

∥∥∥∥∥
m∗∑
j=1

Zn,j�N−1
(
cn,j ,Z

)∥∥∥∥∥
2

U,p

≤ b2
pM2

p(Z)m∗
∞∑

n=N

m∗∑
j=1

∥∥�N−1
(
cn,j ,Z

)∥∥2
U,p.

Since
∑∞

n=N

∑m∗
j=1 |cn,j |2U,N−1 = ∑

|α|=N |c(α)|2U , (2.8) follows by recurrence.
�

We give now the basic invariance principle.

THEOREM 2.2. Let Z = (Zn)n∈N,Zn ∈ R
m∗ be a sequence of centered in-

dependent random vectors which verify (2.1) and let G = (Gn)n∈N,Gn ∈ R
m∗

be a sequence of independent centered Gaussian random vectors such that
E(Gn,iGn,j ) = E(Zn,iZn,j ). Then, for every f ∈ C3

b(R),

(2.11)
∣∣E(f

(
SN(c,Z)

)−E(f
(
SN(c,G)

)∣∣≤ K(Z)
∥∥f ′′′∥∥∞ × |c|2 × δ∗(c)

with

K(Z) = 2m∗
3

(
M3

3 (Z) + M3
3 (G)

)
M

3N

3 ,

in which M3 = b3
√

m∗M3(Z) ∨ M3(G).

PROOF. The proof is based on Lindberg’s method (we follow the argument
from [25]). We fix J ≥ N , we denote 
N(J ) =⋃N

m=0{α ∈ 
 : |α| = m,α′
m ≤ J }
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and we define SN,J (c,Z) = ∑
α∈
N(J ) c(α)Zα . For j = 1, . . . , J + 1, we de-

fine the intermediate sequences Zj = (Z1, . . . ,Zj−1,Gj , . . . ,GJ ), with Z1 =
(G1, . . . ,GJ ) and ZJ+1 = (Z1, . . . ,ZJ ), and we write

E
(
f
(
SN,J (c,Z)

))−E
(
f
(
SN,J (c,G)

))
=

J∑
j=1

E(f
(
SN,J

(
c,Zj+1))−E(f

(
SN,J

(
c,Zj ))=:

J∑
j=1

Ij .

We denote 
N(j, J ) = {α ∈ 
N(J ) : j /∈ α′} and, for β ∈ 
N(j, J ) with |β| = m

we define

cj,i(β) =
m∑

k=2

c
(
β1, . . . , βk−1, (j, i), βk, . . . , βm

)
1{β ′

k−1<j<β ′
k}

+ c
(
(j, i), β1, . . . , βm

)
1{j<β ′

1} + c
(
β1, . . . , βm, (j, i)

)
1{β ′

m<j}.

This means that, if β does not contain j , we insert (j, i) in the convenient position.
We put

Aj = ∑
α∈
N(j,J )

c(α)
(
Zj )α, Bj,i = ∑

β∈
N−1(j,J )

cj,i(β)
(
Zj )β

and then

SN,J

(
c,Zj+1)= Aj +

m∗∑
i=1

Zj,iBj,i .

Moreover, with fj :Rm∗ → R defined by fj (x) := f (Aj +∑m∗
i=1 xiBj,i) we get

Ij = E(f
(
SN,J

(
c,Zj+1))−E(f

(
SN,J

(
c,Zj ))= E

(
fj (Zj )

)−E
(
fj (Gj )

)
.

We use now Taylor’s expansion of order three around 0 for both fj (Zj ) and
fj (Gj ). Since Zj and Gj are independent of Aj and Bj,· and the first and second
moments of Zj,i and Gj,i coincide, the first- and second-order terms in the Taylor
expansion cancel and we obtain

|Ij | ≤ 1

2

m∗∑
i1,i2,i3=1

E(�i1i2i3) with

�i1i2i3 =
3∏

r=1

(|Zj,ir | + |Gj,ir |
)

×
∫ 1

0
(1 − λ)2(∣∣∂3

i1i2i3
fj (λZj )

∣∣+ ∣∣∂3
i1i2i3

fj (λGj)
∣∣)dλ.
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We have

∣∣∂3
i1i2i3

fj (λZj )
∣∣= ∣∣f (3)

j (λZj )
∣∣× 3∏

r=1

|Bj,ir | ≤
∥∥f ′′′∥∥∞ ×

3∏
r=1

|Bj,ir |.

The same is true for |∂3
i1i2i3

fj (λGj)|, so (recall that Zj and Gj are independent of
Bj,·)

(2.12) |Ij | ≤ 1

3

∥∥f ′′′∥∥∞(M3
3 (Z) + M3

3 (G)
) m∗∑
i1,i2,i3=1

E

( 3∏
r=1

|Bj,ir |
)
.

Suppose first that N ≥ 2. Using (2.8),

‖Bj,i‖3 ≤ M
N

3

( ∑
β∈
N−1(j,J )

∣∣cj,i(β)
∣∣2)1/2

≤ M
N

3 δ∗(c).

If N = 1 then

|Bj,i | =
∣∣c(i, j))

∣∣≤ max
n

(
m∗∑
l=1

∣∣c((n, l)
)∣∣2)1/2

= δ∗(c).

This gives

E

( 3∏
r=1

|Bj,ir |
)

≤
3∏

r=1

‖Bj,ir ‖3 ≤ M
N

3 δ∗(c)
(‖Bj,i1‖2

3 + ‖Bj,i2‖2
3
)
.

We sum over j and we get

J∑
j=1

|Ij | ≤ 2m∗
3

∥∥f ′′′∥∥∞(M3
3 (Z) + M3

3 (G)
)
M

N

3 δ∗(c)
J∑

j=1

m∗∑
i=1

‖Bj,i‖2
3

≤ 2m∗
3

∥∥f ′′′∥∥∞(M3
3 (Z) + M3

3 (G)
)
M

3N

3 δ∗(c)|c|2.
Since the above estimate does not depend on J , we may pass to the limit with
J → ∞ and we obtain (2.11). �

We recall now the main result from [25] on the invariance principle in Kol-
mogorov distance (see (1.9)).

THEOREM 2.3. Let Z = (Zn)n∈N,Zn ∈ R
m∗ be a sequence of centered inde-

pendent random vectors which verify (2.1) and let Cov(Zn) denote the covariance
matrix of Zn. We assume that there exists 0 < λ ≤ 1 such that for every n ∈ N

(2.13) Cov(Zn) ≥ λ.
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Let G = (Gn)n∈N,Gn ∈ R
m∗ be a sequence of independent centered Gaussian

random vectors such that Cov(Zn) = Cov(Gn). Then

(2.14) dKol
(
SN(c,Z), SN(c,G)

)≤ K(Z)λ−m∗N × δ1/(1+3N)∗ (c),

where K(Z) > 0 is a constant depending on N and M3(Z).

PROOF. We denote An = Cov1/2(Zn) and we define Zn = A−1
n × Zn, so that

Zn,1, . . . ,Zn,m∗ are orthonormal. In the formalism in [25], Zn is called an “or-
thonormal ensemble.” Then we define

c
(
(n1, k1), . . . , (nN, kN)

)
=

m∗∑
i1,...,iN=1

c
(
(n1, i1), . . . , (nN, iN)

)
Ai1,k1

n1
· · ·AiN,kN

nN

(2.15)

and we notice that, with this definition,

(2.16) SN(c,Z) = SN(c,Z).

Moreover, one easily checks that

(2.17) |c| ≤ (m∗M2)
N |c| and δ∗(c) ≤ (m∗M2)

Nδ∗(c).

Let us check that Z is hypercontractive in the sense of [25]. We notice that
Mp(Z) ≤ λ−m∗Mp(Z) and we take η−1 = bp(bpλ−m∗Mp(Z))N . Then, for any
coefficients c ∈ C(R) we have (with p = 3)

∥∥SN(c, ηZ) − c(∅)
∥∥
p ≤ bp

(
bpMp(Z)

)N( ∑
1≤|α|≤N

η|α|∣∣c(α)
∣∣2)1/2

≤ bp

(
bpλ−m∗Mp(Z)

)N( ∑
1≤|α|≤N

η|α|∣∣c(α)
∣∣2)1/2

≤
( ∑

1≤|α|≤N

∣∣c(α)
∣∣2)1/2

= ∥∥SN(c,Z) − c(∅)
∥∥

2

and this means, in the formalism from [25] that Z is (2,3, η)-hypercontractive.
Now we are able to use Theorem 3.19 in [25] (which is written in terms of τ =
δ2∗(c)), and this yields (2.14). �
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3. Main results.

3.1. Doeblin’s condition and splitting. We fix d∗ ∈ N and k∗ ∈ N, we denote
m∗ = d∗ × k∗, and we work with a sequence of independent random vectors X =
(Xn)n∈N, Xn = (Xn,1, . . . ,Xn,d∗) ∈ R

d∗ . We deal with general polynomials with
variables Xn,j that is, with linear combinations of monomials

∏m
i=1 X

ki

ni ,ji
, ki ≤ k∗.

Because of the powers ki , this is no more a multilinear polynomial. In order to
come back to multilinear polynomials we define Zn(X) ∈ R

m∗ by

(3.1) Zn,kd∗+j (X) = Xk+1
n,j −E

(
Xk+1

n,j

)
for j ∈ [d∗], k ∈ {0,1, . . . , k∗ − 1}.

With this definition, if α = ((n1, l1), . . . , (nm, lm)), with n1 < · · · < nm and
l1, . . . , lm ∈ {1, . . . ,m∗}, then

Zα(X) =
m∏

i=1

(
X

ki+1
ni,ji

−E
(
X

ki+1
ni,ji

))
,

where (ki, ji) = (k(li), j (li)), i = 1, . . . ,m, with

(3.2) k(l) =
⌊
l − 1

d∗

⌋
and j (l) =

{
l − 1

d∗

}
d∗ + 1,

the symbols �x� and {x} denoting the integer and the fractional part of x ≥ 0,
respectively. We denote

(3.3) QN,k∗(c,X) = ∑
0≤|α|≤N

c(α)Zα(X) = SN

(
c,Z(X)

)
,

that is,

QN,k∗(c,X)

=
N∑

m=0

∑
c
((

n1, (k1 − 1)d∗ + j1
)
, . . . ,

(
nm, (km − 1)d∗ + jm

))

×
m∏

i=1

(
X

ki

ni ,ji
−E

(
X

ki

ni ,ji

))
,

in which the second sum runs over n1 < · · · < nm, k1, . . . , km ∈ {0,1, . . . , k∗} and
j1, . . . , jm ∈ [d∗]. Notice that it agrees with (1.1)–(1.3) when d∗ = 1.

The crucial hypothesis in this section is that for every n ∈ N, the law of Xn is
locally lower bounded by the Lebesgue measure—this is Doeblin’s condition. Let
us be more precise.

HYPOTHESIS D(ε, r,R). Let ε > 0, r > 0 and R > 0 be fixed. We say that
X = (Xn)n∈N satisfies hypothesis D(ε, r,R) if there exist xn ∈ R

d∗, n ∈ N such
that for every measurable set A ⊂ Br(xn)

(3.4) P(Xn ∈ A) ≥ ελ(A),
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λ denoting the Lebesgue measure on R
d∗ , and

(3.5) sup
n∈N

|xn| ≤ R.

Note that there is no assumption about Xn, n ∈ N, being identically distributed,
but the fact that the parameters ε, r and R are the same for every n, represents a
uniformity assumption. Note also that this property never holds for Zn(X). This is
why the Malliavin-type calculus presented in the following is based on Xn only.

HYPOTHESIS M(ε, r,R). We say that X = (Xn)n∈N satisfies hypothesis
M(ε, r,R) if D(ε, r,R) holds and for every p ≥ 1 one has supn∈N ‖Xn‖p < ∞.

Note that if Assumption M(ε, r,R) holds then Zn(X) verifies (2.1).
The interesting point about random vectors which verity D(ε, r,R) is that one

may use a splitting method in order to obtain a nice representation for Xn (in law).
We introduce the auxiliary functions θr ,ψr : R→R+ defined by

(3.6) θr(t) = 1 − 1

1 − ( t
r
− 1)2

, ψr(t) = 1{|t |≤r} + 1{r<|t |≤2r}eθr (|t |)

and we denote

(3.7) mr =
∫
R

ψr

(|z|2)dz.

Let Vn,Un ∈ R
d∗ and χn ∈ {0,1} be independent random variables with laws

P(χn = 1) = εmd∗
r , P(χn = 0) = 1 − εmd∗,

P(Vn ∈ dx) = 1

m
d∗
r

d∗∏
k=1

ψr

(|xk − xn,k|2)dx1 · · ·dxd∗,

P(Un ∈ dx) = 1

1 −m
d∗
r

(
P(Xn ∈ dx) − ε

d∗∏
k=1

ψr

(|xk − xn,k|)2
)

dx.

(3.8)

D(ε, r,R) ensures that P(Xn ∈ dx) − ε
∏d∗

k=1 ψr(|xk − xn,k)|2) dx ≥ 0, so that the
law of Un is well defined. It is easy to check that χnVn + (1 − χn)Un has the same
law as Xn. Since all our statements concern only the law of Xn, now on we assume
that

(3.9) Xn = χnVn + (1 − χn)Un.

Let us mention two nice properties for the function ψr . First, it is easy to check
that for each k ∈ N,p ≥ 1 there exists a universal constant Ck,p ≥ 1 such that

(3.10) ψr(t)
∣∣θ(k)

r

(|t |)∣∣p ≤ Ck,p

rkp
,
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where θ
(k)
r denotes the derivative of order k of θr . (3.10) will be useful in order

to give estimates for the Ornstein–Uhlenbeck operator (see Remark 5.1). Second,
θr(|t |) is concave for r < |t | < 2r (direct computation), so that the law of Vn is log-
concave. This allows one to use the Cherbery–Wright inequality (see Lemma 5.6).

We discuss now some nondegeneracy properties (see (3.12) and (3.13) below)
which hold under the hypothesis (3.5). We define the random vector Ṽn = Zn(V )

in R
m∗ , that is,

(3.11) Ṽn,l = V
k(l)+1
n,j (l) −E

(
V

k(l)+1
n,j (l)

)
, l = 1, . . . ,m∗,

where k(l) and j (l) are given in (3.2). Then, one has the following result.

LEMMA 3.1. Let R > 0 be such that (3.5) holds and let Cov(Ṽn) denote the
covariance matrix of Ṽn. Then there exists λR > 0 such that for every ξ ∈ R

m∗ and
n ∈N,

(3.12)
〈
Cov(Ṽn)ξ, ξ

〉≥ λR|ξ |2.

PROOF. For y ∈ R
d∗ and ξ ∈ R

m∗ , we define

el(y) = 1

m
d∗
r

∫
x

k(l)
j (l)

d∗∏
i=1

ψr

(|xi − yi |2)dx, l ∈ [m∗] and

Iξ (y) = 1

md∗
r

∫ (m∗∑
l=1

(
x

k(l)
j (l) − el(y)

)
ξl

)2 d∗∏
i=1

ψr

(|xi − yi |2)dx.

If Iξ (y) = 0, then
∑m∗

l=1(x
k(l)
j (l)−el(y))ξl = 0 for x in an open set, and this imply that

ξ = 0. Since ξ �→ Iξ (y) is continuous, it follows that λ(y) := inf|ξ |=1 Iξ (y) > 0.
And since y �→ λ(y) is continuous, it follows that one may find λR > 0 such that
inf|y|≤R λ(y) ≥ λR . Now, we note that el(xn) = E(V

k(l)
n,j (l)) = E(Ṽn,l) and Iξ (xn) =

〈Cov(Ṽn)ξ, ξ〉. Thus, if |ξ | = 1 then infn〈Cov(Ṽn)ξ, ξ〉 = infn inf|ξ |=1 Iξ (xn) ≥
λR . �

We conclude with an inequality which will be useful later on.

LEMMA 3.2. Let R > 0 be such that (3.5) holds and let λR be given in
Lemma 3.1. Let Ṽ = Z(V ) be defined in (3.11) and SN(d, Ṽ ) given in (2.5). Then
for every d ∈ C(R),

(3.13) E
(∣∣SN(d, Ṽ )

∣∣2)≥ λN
R

N∑
m=0

|d|2m = λN
R |d|2.
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PROOF. We first fix an integer m, n1 < · · · < nm and we consider an arbitrary
family of numbers d(l1, . . . , lm), li ∈ [m∗]. We prove that

(3.14) E

((
m∗∑

l1,...,lm=1

d(l1, . . . , lm)

m∏
i=1

Ṽni ,li

)2)
≥ λm

R

m∗∑
l1,...,lm=1

d2(l1, . . . , lm).

We define the random variable

d̂(lm) =
m∗∑

l1,...,lm−1=1

d(l1, . . . , lm)

m−1∏
i=1

Ṽni ,li .

We notice that d̂(k), k ∈ [m∗] are independent of Ṽnm,l, l ∈ [m∗] and that
m∗∑

l1,...,lm=1

d(l1, . . . , lm)

m∏
i=1

Ṽni ,li =
m∗∑

lm=1

d̂(lm)Ṽnm,lm.

So,

E

((
m∗∑

l1,...,lm=1

d(l1, . . . , lm)

m∏
i=1

Ṽni ,li

)2)

≥ λRE

(
m∗∑

lm=1

d̂(lm)2

)

= λR

m∗∑
lm=1

E

((
m∗∑

l1,...,lm−1=1

d(l1, . . . , lm−1, lm)

m−1∏
i=1

Ṽni ,li

)2)
,

the above lower bound following from (3.12). By iteration, one gets (3.14).
Consider now the general case. We recall that, for any two multi-indexes α and

α, E(Ṽ αṼ α) = 0 if |α| �= |α′| or α �= α′. This gives

E
(∣∣SN(d, Ṽ )

∣∣2)= N∑
m=0

∑
|α|=|α|=m,α′=α′

d(α)d(α)E
(
Ṽ αṼ α)

=
N∑

m=0

∑
n1<···<nm

E

(( ∑
l1,...,lm∈[m∗]

dn1,...,nm(l1, . . . , lm)

m∏
i=1

Ṽni ,li

)2)
,

where we have set dn1,...,nm(l1, . . . , lm) = d((n1, l1), . . . , (nm, lm)). The statement
now follows from (3.14). �

3.2. Main results. Our goal is to estimate the total variation distance between
two polynomials of type QN,k∗(c,X), which we write as in (3.3), that is,

QN,k∗(c,X) = ∑
0≤|α|≤N

c(α)Zα(X),

where Z(X) is defined in (3.1) and α = (α′, α′′) with α′′
i ∈ [m∗], m∗ = d∗k∗.
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We will use the following quantities related to the coefficients c. We work first
with the Hilbert space U = R (so, we drop U from the notation) and we recall
that |c| = |c|U , |c|m = |c|U,m and δ∗(c) = δU,∗(c) are defined in (2.2) and in (2.3).
Moreover, for m ≤ N , we define

|c|m,N =
( ∑

m≤|α|≤N

c2(α)

)1/2
.

Finally, we assume that X verifies D(ε, r,R) and we denote

(3.15) em,N(c) = exp
(
−
(

εmr

2

)2m |c|2m
δ2∗(c)

)
.

Notice that one may find a constant C, depending on ε, mr and on m such that

(3.16) em,N(c) ≤ C
δ2∗(c)
|c|2m

.

If X and Y satisfy D(ε, r,R), respectively, D(ε′, r ′,R′), then they both satisfy
D(ε ∧ ε′, r ∧ r ′,R ∨ R′) so we may assume that ε, r and R are the same.

For k ∈ N, we recall the distance dk(F,G) in (1.8). We give now our first result.

THEOREM 3.3. Suppose that X and Y verify Hypothesis M(ε, r,R) and let
c, d ∈ C(R) be two families of coefficients. We fix k, k∗ and N and we take m ≤ N

and m′ ≤ N such that |c|m > 0 and |d|m′ > 0. We denote m = m ∨ m′. We set

(3.17) dk = dk

(
QN,k∗(c,X),QN,k∗(d,Y )

)
and we assume that

(3.18) ak := dk ∨ (|c|2m+1,N + |d|2m′+1,N

) 2kk∗m+1
k∗m ≤ 1.

Let θ ∈ (( 1
1+k

)2,1). Then there exist C > 0 and a ∈ ( 1
1+k

,1], which depend on the
parameters ε, r , R, k, k∗, N , m, m′, θ and the moment bounds Mp(X), Mp(Y ) for
a suitable p > 1, but independent of the coefficients c, d ∈ C(R), such that∣∣E(f (QN,k∗(c,X)

))−E(f
(
QN,k∗(d,Y )

)∣∣
≤ C max

(
1,
(|c|− 2

k∗m
m + |d|−

2
k∗m′

m′
)a)‖f ‖∞

(
1 + |c| + |d|)5k

× (d θ
1+2kk∗m

k + ea
m,N(c) + ea

m′,N (d) + |c|
2θ

k∗m

m+1,N + |d|
2θ

k∗m

m′+1,N

)
,

(3.19)

em,N(c) and em′,N (d) being defined in (3.15).

The proof of Theorem 3.3 is done by using a Malliavin-type calculus based on
Vn,n ∈ N which we present in Section 5, so we postpone it for Section 5.4. It
represents the main effort in our paper.
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We investigate now the consequences of Theorem 3.3. First, we give the fol-
lowing estimate of the total variation distance between two multiple stochastic
integrals. We consider a m∗ dimensional Brownian motion W = (W 1, . . . ,Wm∗),
we fix κ = (k1, . . . , km) ∈ [m∗]m, and, for a symmetric kernel f ∈ L2[0,1]m, we
denote

Iκ(f ) = m!
∫ 1

0
dWkm

sm

∫ sm

0
dW

km−1
sm−1 · · ·

∫ s2

0
f (s1, . . . , sm) dWk1

s1
.

THEOREM 3.4. Let m ∈ N∗ and f,g ∈ L2p[0,1]m,p > 1. Then, for every
k ∈ N∗ and θ ∈ (( 1

1+k
)2,1) there exist C > 0 and a ∈ ( 1

1+k
,1) (both depending on

θ , m and k) such that

dTV
(
Iκ(f ), Iκ(g)

)≤ C max
(
1,
(‖f ‖−2/m

2 + ‖g‖−2/m
2

)a)
× (1 + ‖f ‖2 + ‖g‖2

)5k
dk

(
Iκ(f ), Iκ(g)

)θ/(1+2km)
.

(3.20)

REMARK 3.5. In the case k = 1, the above result has first been announced in
[14] (see also the recent paper [13]) with the power 1

m
instead of θ

2m+1 above, but

the proof was only sketched. It has rigorously been proved in [32] with power 1
2m+1

and recently improved in [9] where the power 1
m

× (lnm)d is obtained, d being a
suitable constant. So (3.20) is not the best possible estimate. This also indicates
that the power in (3.19) is not optimal (but the approach in [9] does not seem to
work in our general framework, so for the moment we are not able to improve it).

REMARK 3.6. Theorem 3.4, with exactly the same proof, extends to general
random variables which live in a finite sum of Wiener chaoses: let F and G be two
random variables belonging to

⊕N
m=0 Wm where Wm is the chaos of order m. We

denote by Pm the projection on Wm and we put m(F) = max{m : PmF �= 0} and
α(F ) = ‖Pm(F)F‖−2/m(F)

2 . Then, with N = m(F) ∨ m(G),

dTV(F,G) ≤ C max
(
1,
(
α(F ) + α(G)

)a)
× (1 + ‖F‖2 + ‖G‖2

)5k
d

θ/(1+2kN)
k (F,G),

(3.21)

where a ∈ ( 1
1+k

,1) and C > 0 depend on θ , k, N .

PROOF OF THEOREM 3.4. Let n ∈ N. For α′ = (α′
1, . . . , α

′
m) ∈ [n − 1]m, we

denote Iα′ =∏m
j=1[

α′
j

n
,

α′
j+1
n

) and we define

fn(s) =∑
α′

dn,f

(
α′)1Iα′ (s) with dn,f

(
α′)= ∫

Iα′
f (u)du.
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Note that fn is the conditional expectation of f with respect to the partition Iα′
and to the uniform law on [0,1]m. Take now α = (α1, . . . , αn) with αi = (α′

i , α
′′
i )

and (α′′
1 , . . . , α′′

m) ∈ [m∗]m. We denote

cn,f (α) = m!n−m/2dn,f

(
α′)1α′

1<···<α′
m<n

m∏
i=1

1α′′
i =ki

,

Gα′
i ,α

′′
i
= n1/2 ×

(
Wα′′

i

(
α′

i + 1

n

)
− Wα′′

i

(
α′

i

n

))
so that

Iκ(fn) =∑
α

cn,f (α)Gα = �m(cn,f ,G).

We are now in the framework of Theorem 3.3 and we compare �m(cn,f ,G) and
�m(cn,g,G). We take k∗ = 1, d∗ = m∗ and N = m = m′. Then |cn,f |m+1,N =
|cn,g|m+1,N = 0. Let us estimate the parameters associated to cn,f . By the conver-
gence theorem for martingales, |cn,f |2m = m!‖fn‖2

2 → m!‖f ‖2
2 > 0. We estimate

now δ∗(cn,f ). By using Hölder’s inequality,

δ2∗(cn,f ) = max
i∈[n]

m∑
j=1

∑
α′:α′

j=i

(m!)2n−m

(
nm
∫
Iα′

f (s) ds

)2

= max
i∈[n](m!)2

m∑
j=1

∑
α′

n−m

(
nm
∫
Iα′

f (s)1
sj∈[ i

n
, i+1

n
)
ds

)2

≤ max
i∈[n](m!)2

m∑
j=1

∑
α′

∫
Iα′

f 2(s)1
sj∈[ i

n
, i+1

n
)
ds

≤ max
i∈[n] m! max

j∈[m]

∫
[0,1]m

f 2(s)1
sj∈[ i

n
, i+1

n
)
ds

≤ m!‖f ‖2
2p

1

n1−1/p
→ 0

so that em,m(cn,f ) → 0 and em,m(cn,g) → 0 as n → ∞. Now, (3.19) gives, for
θ < 1, and n,n′ ∈ N,

dTV
(
Iκ(fn), Iκ(gn′)

)
≤ C(m!)5k/2 max

(
1,
(‖fn‖− 2

m

2 + ‖gn′‖− 2
m

2

)a)(1 + ‖fn‖2 + ‖gn′‖2
)5k

× (ea
m,m(cn,f ) + ea

m,m(cn′,g) + d
θ/(1+2km)
k

(
Iκ(fn), Iκ(gn′)

))
,

(3.22)

where a ∈ ( 1
1+k

,1). We take n′ > n and we notice that dk(Iκ(fn), Iκ(fn′)) ≤ ‖fn −
fn′‖2 → 0 so that the above inequality gives dTV(Iκ(fn), Iκ(fn′)) → 0 as n,n′ →
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∞. It follows that the sequences Iκ(fn) and Iκ(gn), n ∈ N are Cauchy in dTV and
we may pass to the limit in (3.22) in order to obtain (3.20). �

We give now the analogous of Theorem 3.3 but in terms of Kolmogorov dis-
tance. Here, one needs no more Doeblin’s condition nor nondegeneracy conditions.

THEOREM 3.7. Suppose that X and Y verify (2.1) and are such that Z(X)

and Z(Y ) both satisfy (2.13). Let c, d ∈ C(R) be two families of coefficients such
that |c|N > 0 and |d|N > 0 and such that δ∗(c), δ∗(d) ≤ 1. Then, for every k ≥ 3,
and θ ∈ (( 1

1+k
)2,1) there exist C > 0 and a ∈ ( 1

1+k
,1) such that

dKol
(
QN,k∗(c,X),QN,k∗(d,Y )

)
≤ C

(
1 + |c|−2N

N + |d|−2N
N

)(
1 + |c| + |d|)5k+1

× (δθ/(2kN+1)∗ (c) + δθ/(2kN+1)∗ (d) + d
θ/(2kN+1)
k

)(3.23)

dk being defined in (3.17), where C > 0 denotes a constant depending on N , suit-
able moments of X and Y and on the lower bounds λ in (2.13) applied to Z(X)

and Z(Y ).

REMARK 3.8. Note that (3.23) is in terms of δ
θ/(2kN+1)∗ (c) whereas in (3.19)

it appears em,N(c), which is much smaller. But we need that Xn and Yn satisfy
Doeblin’s condition D(ε, r,R).

REMARK 3.9. Another tempting approach to inequalities of type (3.23) is the
following (we thank to the referee for this suggestion). One would like to use the
classical inequality dKol(A,B) ≤ √

Cd1(A,B) where A and B are random vari-
ables and B ∼ p(x)dx with the density p bounded by C (see [1] for a proof). In
our framework, one has to take B = QN,k∗(d,Y ) where Y = (Yk)k∈N is a sequence
of independent standard normal random variables. Although it is known that the
law of multiple stochastic integrals is absolutely continuous, it is not clear that
the density is bounded, so we are not able to use this approach directly here. The
counterpart of this regularity assumption is hidden in the influence factor which
represents a bound for the Malliavin derivative (see (1.7)).

PROOF OF THEOREM 3.7. We consider the Gaussian random vectors GX and
GY corresponding to Z(X) and Z(Y ), respectively, and we use Theorem 2.3 (see
(2.14)) in order to obtain

dKol
(
QN,k∗(c,X),QN,k∗(d,Y )

)
≤ C

(
δ1/(1+3N)∗ (c) + δ1/(1+3N)∗ (d)

)+ dKol
(
SN(c,GX),SN(d,GY )

)
.

Using the same argument as in the proof of Theorem 2.3 (Cov(GX) and Cov(GY )

are invertible), we may assume that GX and GY are standard Gaussian random
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vectors so that SN(c,GX) and SN(d,GY ) are multiple stochastic integrals. By
dKol ≤ dTV and by (3.21)) first and (2.11) (recall that QN,k∗(c,X) = SN(c,Zn(X)

and dk ≤ d3), then

dKol
(
SN(c,GX),SN(d,GY )

)
≤ dTV

(
SN(c,GX),SN(d,GY )

)
≤ C

(
1 + |c|−2N

N + |d|−2N
N

)(
1 + |c| + |d|)5k

× d
θ/(2kN+1)
k

(
SN(c,GX),SN(d,GY )

)
≤ C

(
1 + |c|−2N

N + |d|−2N
N

)(
1 + |c| + |d|)5k+1

× (δθ/(2kN+1)∗ (c) + δθ/(2kN+1)∗ (d)

+ d
θ/(2kN+1)
k

(
QN,k∗(c,X),QN,k∗(d,Y )

)
. �

We give now the invariance principle.

THEOREM 3.10. Let X = (Xn)n∈N be a sequence of independent and cen-
tered R

d∗ valued random vectors which verify Hypothesis M(ε, r,R) and GX =
(Gn,X)n∈N,Gn,X ∈ R

m∗ a sequence of independent and centered Gaussian ran-
dom vectors such that Cov(Gn,X) = Cov(Zn(X)). Suppose that for some m ≤ N ,
one has |c|m > 0. Let θ ∈ ( 1

16 ,1). Then there exist C > 0 and a ∈ (1
4 ,1], which

depend on the parameters ε, r , R, k∗, N , m, θ and the moment bounds Mp(X),
Mp(Y ) for a suitable p > 1 but independent of the coefficients c ∈ C(R), such that

dTV
(
QN,k∗(c,X), SN(c,GX)

)
≤ C max

(
1, |c|−

2(k∗m+1)
k∗m

m

)a(1 + |c|)19/2

× (δ θ
6k∗m+1∗ (c) + |c|

2θ
k∗m

m+1,N

)
.

(3.24)

PROOF. This is an immediate consequence of Theorem 3.3 with k = 3 and of
Theorem 2.2. We have also used (3.16) in order to replace em,N(c) by δ2∗(c)|c|−2

m .
�

In a number of concrete applications (see, e.g., Theorem 4.1), one takes
SN(c,Z(X)) =∑N

n=m �n(c,Z(X)) and, asymptotically, �m(c,Z(X)) represents
the principal term. In particular, we focus on c(α) with |α| = m. So we use the
notation c(m)(α) = c(α)1{|α|=m}. Having this in mind, we can state the following
result.

THEOREM 3.11. Let c ∈ C(R) be such that c(α) = 0 for |α| ≤ m − 1 and
|c|m > 0. Suppose |c|m+1,N ≤ 1.
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A. If G = (Gn)n∈N denote independent centered Gaussian random vectors then,
for every θ ∈ (1

4 ,1) there exists a ∈ (1
2 ,1] such that

dTV
(
SN(c,G),�m(c,G)

)
≤ C max

(
1, |c|−

2
m

m

)a(1 + |c|)5(|c| θ
2m+1
m+1,N + em,N(c(m))

a).(3.25)

B. Let X satisfy M(ε, r,R) and let G = (Gn)n∈N,Gn ∈ R
m∗ , be a sequence

of independent and centered Gaussian random vectors such that Cov(Gn) =
Cov(Zn(X)). Then for every θ ∈ (1

4 ,1) there exists a ∈ (1
2 ,1] such that

dTV
(
QN,k∗(c,X),�m(c,G)

)
≤ C max

(
1, |c|−

2(k∗m+1)
k∗m

m

)a(1 + |c|) 19
2
(
δ

θ
6k∗m+1∗ (c(m)) + |c|

2θ
k∗m

∧ θ
2m+1

m+1,N

)
.

(3.26)

C. If Z(X) satisfies (2.13), then for every θ ∈ (1
4 ,1) there exists a ∈ (1

2 ,1] such
that

dKol
(
QN,k∗(c,X),�m(c,G)

)
≤ C max

(
1, |c|−

2(m+1)
m

m

)a(1 + |c|)5(δ 1
1+3N∗ (c(m)) + |c|

θ
2m+1
m+1,N

)
.

(3.27)

In the above estimates (3.25), (3.26) and (3.27), C > 0 denotes a constant inde-
pendent of the coefficients c ∈ C(R).

PROOF. One has d1(SN(c,G),�m(c,G)) ≤ ‖SN(c,G) − �m(c,G)‖2 ≤
|c|m+1,N , so (3.25) follows from Theorem 3.3 (see (3.19)). Using (3.25) and (3.24),
we obtain (3.26), and (3.27) follows from (3.25) and (2.14). �

3.3. Gaussian and Gamma approximation. Theorem 3.11 has the following
interesting application: if one considers a sequence of coefficients cn ∈ C(R), n ∈
N, the study of the asymptotic behavior of QN,k∗(cn,X),n ∈ N reduces to the
study of the asymptotic behavior of �m(cn,G),n ∈ N, where G = (Gn)n∈N,Gn ∈
R

m∗ , is a sequence of independent and centered Gaussian random vectors such that
Cov(Gn) = Cov(Zn(X)). Since �m(cn,G) is (nearly) a multiple Wiener stochas-
tic integral of order m, this problem is already treated at least in two significant
cases: the convergence to normality and the convergence to a Gamma distribu-
tion. In fact, the convergence to normality of the law of �m(cn,G) is controlled
by the fourth moment theorem due to Nualart and Peccati [35] and Nourdin and
Peccati [27], and the convergence to a Gamma distribution (and in particular to a
χ2 distribution) is treated in [27]. In order to give the consequences of these re-
sults in our framework, we have to identify the link between the notation in our
paper and in the above mentioned works. Note that the coefficients c ∈ C(R) have
been defined as c(α) with α = (α1, . . . , αm), αi = (α′

i , α
′′
i ), with α′ on the simplex
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α′
1 < · · · < α′

m. We extend them by symmetry on the whole (N × [m∗])m and we
denote by cs this extension. So we will have

�m(c,G) = ∑
|α|=m

c(α)Gα = 1

m!
∑

|α|=m

cs(α)Gα.

The second point is to write the sequence of multidimensional random vectors
Gn = (Gn,1, . . . ,Gn,m∗) ∈ R

m∗ , n ∈ N as a sequence of one-dimensional random
variables Gn ∈ R, n ∈ N and to reindicate the coefficients in a corresponding way.
But we have to note first that Gn,1, . . . ,Gn,m∗ are not a priori independent, because
Cov(Gn) = Cov(Zn(X)) is not the identity matrix. So we have to assume that
Cov(Zn(X)) is invertible and we first use (2.16) in order to write

�m(c,G) = 1

m!
∑

|α|=m

cs(α)G
α

with c defined in (2.15). Now Gn,1, . . . ,Gn,m∗ are independent and we are ready
to write them as a sequence. We define I : N×[m∗] → N by I (n, j) = n×m∗ +j .
Setting �x� and {x} the integer respectively the fractional part of x, the in-
verse function J = I−1 : N → N × [m∗] is then defined as follows: J (n) =
(�n/m∗�, {n/m∗}m∗) if {n/m∗} > 0 and J (n) = (�n/m∗�−1,m∗) if {n/m∗} = 0.
We extend this definition to multi-indexes: if β = (n1, . . . , nm) ∈ N

m then J (β) =
(J (n1), . . . , J (nm)) ∈ (N × [m∗])m; and to coefficients: if f : (N × [m∗])m → R

we define f̂ : Nm →R
m by f̂ (β) = f (J (β)). Moreover, we consider the sequence

Ĝn = GJ(n), n ∈ N. Then

�m(c,G) = 1

m!
∑

|α|=m

cs(α)G
α = 1

m!
∑

|α|=m

ĉs(α)Ĝα

with the convention that now we work with the multi-index α ∈ N
m. Note that

�m(ĉs, Ĝ) is a multiple stochastic integral of order m.
We introduce now the “contraction operators.” For 0 ≤ r ≤ m and α,β ∈


m−r , one denotes ĉs ⊗r ĉs(α,β) =∑
γ∈
r

ĉs(α, γ )ĉs(β, γ ) with the convention
that for r = 0 we put ĉs ⊗0 ĉs(α,β) = ĉs(α)ĉs(β) and for r = m, ĉs ⊗m ĉs =∑

γ∈
m
ĉs(γ )ĉs(γ ). Note that, even if ĉs is symmetric, ĉs ⊗r ĉs is not symmetric,

so we introduce ĉs ⊗̃r ĉs to be the symmetrization of ĉs ⊗r ĉs .
We introduce now

κ4,m(ĉs)

=
m−1∑
r=1

m!2
(
m

r

)2 {
|̂cs ⊗r ĉs |22(m−r) +

(
2m − 2r

m − r

)
|̂cs ⊗̃r ĉs |22(m−r)

}
.

It is known (see [27]) that κ4,m(ĉs) is equal to the fourth cumulant of �m(ĉs, Ĝ),
and moreover, it is proved in [27] that, if N is a standard normal random variable,
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then

(3.28) dTV
(
�m(ĉs, Ĝ),N

)≤ Cκ
1/2
4,m(ĉs).

Using this and Theorem 3.11, we immediately obtain the following.

THEOREM 3.12. Let N be a standard normal random variable and let c ∈
C(R) be such that c(α) = 0 for |α| ≤ m − 1 and |c|m > 0. Suppose |c|m+1,N ≤ 1.

A. If X satisfies M(ε, r,R) and, for every n ∈ N, Cov(Zn(X) is invertible, then
for every θ ∈ (1

4 ,1) there exists a ∈ (1
2 ,1] such that

dTV
(
QN,k∗(c,X)

)
,N )

≤ C max
(
1, |c|−

2(k∗m+1)
k∗m

m

)a(1 + |c|) 19
2

× (δ θ
6k∗m+1∗ (c(m)) + |c|

2θ
k∗m

∧ θ
2m+1

m+1,N + κ
1/2
4,m(ĉs)

)
.

(3.29)

B. If Z(X) satisfies (2.1) and (2.13), then for every θ ∈ (1
4 ,1) there exists a ∈

(1
2 ,1] such that

dKol
(
QN,k∗(c,X)

)
,N ))

≤ C max
(
1, |c|−

2(m+1)
m

m

)a(1 + |c|)5
× (δ 1

1+3N∗ (c(m)) + |c|
θ

2m+1
m+1,N + κ

1/2
4,m(ĉs)

)
.

(3.30)

In the above estimates (3.29) and (3.30), C > 0 denotes a constant independent of
the coefficients c ∈ C(R).

This is a generalization of the “fourth moment theorem” to stochastic polyno-
mials. However, there is a difference because the influence factor δ∗(c) appears
in (3.29). One may ask if it is possible to control the distance between stochastic
polynomials and the normal distribution in terms of κ4,m(ĉs) only. The following
useful remark from [30] (see (1.9)) allows to do it:

κ4,m(ĉs) ≥ |c ⊗m−1 c|22
= ∑

|α|=|β|=1

( ∑
|γ |=m−1

c(α, γ )c(β, γ )

)2

≥ ∑
|α|=1

( ∑
|γ |=m−1

c2(α, γ )

)2

≥ max|α|=1

( ∑
|γ |=m−1

c2(α, γ )

)2
= δ2∗(c(m)).

This gives the following.



TV DISTANCE BETWEEN STOCHASTIC POLYNOMIALS 3785

THEOREM 3.13. Under the hypothesis of Theorem 3.12A, one has

dTV
(
QN,k∗(c,X),N

)≤ C max
(
1, |c|−

2
k∗m

m

)a(1 + |c|) 19
2

× (κ θ
6k∗m+1
4,m (ĉs) + |c|

2θ
k∗m

∧ θ
2m+1

m+1,N

)
and under the hypothesis of Theorem 3.12B, one has

dKol
(
QN,k∗(c,X),N

)≤ C max
(
1, |c|−

2
m

m

)a(1 + |c|)5
× (κ 1

1+3N

4,m (cs) + |c|
θ

2m+1
m+1,N

)
.

REMARK 3.14. Notice that the power of κ4,m(cs) is smaller than 1
2 , so there

is a loss with respect to the classical fourth moment theorem. The estimate with
the right power 1

2 has recently been obtained in the following particular frame-
work: assume that d∗ = k∗ = 1 so that �m(c,X) is a multi-linear polynomial.
Assume also that the random variables Xn,n ∈ N are identically distributed. Then,
if E(X4

1) ≥ 3, the convergence to normality is controlled by κ4,m(ĉs)) only (see
Theorem 2.3 in [29]).

We discuss now the convergence to a Gamma distribution. For ν ≥ 1, we con-
sider F(ν) a centered Gamma distribution of parameter ν: F(ν) = 2G(ν/2) − ν,
where G(ν/2) has a Gamma law with parameter ν/2 (i.e., with density gν/2(x) ∝
xν/2−1e−x1x>0). If ν is an integer, then F(ν) is a centered chi-square distribution
with ν degrees of freedom. We introduce

ην,m(ĉs) = (ν − m!|̂cs |2m
)2 + 4m!|θm × ĉs ⊗̃m/2 ĉs − ĉs |22m−r

+ m2
∑

r∈{1,...,m−1}
r �=m/2

(2m − 2r)!(r − 1)!2
(
m − 1
r − 1

)4

|̂cs ⊗r ĉs |22m−r

with θm = 1
4(m/2)!( m

m/2
)
. Combining Theorem 3.11 and Proposition 3.13 from

[27], one obtains

d1
(
�m(c,Z),F (ν)

)≤ Cη1/2
ν,m(ĉs).

If ν is an integer, then F(ν) has a centered χ2(ν) distribution, so may be repre-
sented as a polynomial of degree two of Gaussian random variables. Then, using
Theorem 5.9 in [9], one obtains

dTV
(
�m(c,Z),F (ν)

)≤ d
1

m+1
1

(
�m(c,Z),F (ν)

)≤ Cη1/2(m+1)
ν,m (ĉs).

Then, using Theorem 3.11, we obtain the following.
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THEOREM 3.15. Let Xν be a random variable with a centered χ2 distribution
with ν degrees of freedom.

A. If X satisfies M(ε, r,R) and, for every n ∈ N, Cov(Zn(X) is invertible, then
for every θ ∈ (1

4 ,1) there exists a ∈ (1
2 ,1] such that

dTV
(
QN,k∗(c,X),Xν

)
≤ C max

(
1, |c|−

2
k∗m

m

)a(1 + |c|) 19
2

× (δ θ
6k∗m+1∗ (c) + em,N(c)a + |c|

2θ
k∗m

∧ θ
2m+1

m+1,N + η1/2(m+1)
ν,m (ĉs)

)
.

(3.31)

B. If Z(X) satisfies (2.1) and (2.13), then for every θ ∈ (1
4 ,1) there exists a ∈

(1
2 ,1] such that

dKol
(
QN,k∗(c,X),Xν

)
≤ C max

(
1, |c|−

2
m

m

)a(1 + |c|)5
× (δ 1

1+3N∗ (c) + |c|
θ

2m+1
m+1,N + em,N(c)a + η1/2(m+1)

ν,m (ĉs)
)
.

(3.32)

In the above estimates (3.31) and (3.32), C > 0 denotes a constant independent of
the coefficients c ∈ C(R).

4. Examples.

4.1. U-statistics associated to polynomial kernels. Let us first shortly recall
how U-statistics appear. One considers a class of distributions M and aims to es-
timate a functional θ(μ) with μ ∈ M. In order to do it, one has at hand a sequence
of independent random variables X1, . . . ,Xn with law μ ∈ M, but does not know
which is this law. The goal is to construct an unbiased estimator, that is, a sequence
of functions fn : Rn →R, such that the estimator Un = fn(X1, . . . ,Xn) converges
to θ(μ), and moreover, E(Un) = θ(μ) for every μ ∈ M. This means that the esti-
mator is unbiased—and this is the origin of the name U-statistics. In 1948, Halmos
[21] asked the question if such an unbiased estimator exists and if it is unique. It
turns out that the necessary and sufficient condition in order to be able to construct
such an estimator is that θ(μ) has the following particular form: there exists N ∈N

and a measurable function ψ :RN →R such that

(4.1) θ(μ) =
∫
RN

ψ(x1, . . . , xN)dμ(x1) · · ·dμ(xN).

In this case, one may construct the symmetric unbiased estimator fn (and if M is
sufficiently large, this estimator is unique in the class of the symmetric estimators)
in the following way:

(4.2) Uψ
n = (n − N)!

n!
∑

(n,N)

ψ(Xi1, . . . ,XiN ),
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where the sum
∑

(n,N) is taken over all the subsets {i1, . . . , iN } ⊂ {1, . . . , n} such
that ik �= ip for k �= p. It is clear that ψ may be taken to be symmetric (if not, one
takes its symmetrization).

When ψ(x1, . . . , xN) is a polynomial, this fits in our framework and our results
apply but, for example, ψ(x1, . . . , xN) = max{|x1|, . . . , |xN |}, is out of reach.

We fix k∗,N ∈N, we denote KN = {0,1, . . . , k∗}N , and we define

(4.3) ψ(x1, . . . , xN) = ∑
κ∈KN

a(κ)xκ with xκ =
N∏

j=1

x
kj

j

with symmetric coefficients a(κ) which are null on the diagonals. So ψ is a general
symmetric polynomial of order k∗ in the variables x1, . . . , xN . We associate to ψ

the U-statistic U
ψ
n defined in (4.2):

Uψ
n = (n − N)!

n!
∑

i1,...,iN

ψ(Xi1, . . . ,XiN )

=
(

n

N

)−1 ∑
i1<···<iN

∑
κ∈KN

a(κ)

N∏
j=1

X
kj

ij
.

(4.4)

The above quantity is linked with the stochastic polynomials defined in the pre-
vious sections in the following way. One takes d∗ = 1 and m∗ = k∗ and constructs
coefficients cn such that U

ψ
n = QN,k∗(cn,X) = SN(cn,Z(X)) with Z(X) asso-

ciated to X in (3.1): Zi,k(X) = Xk
i − E(Xk

i ), k = 1, . . . , k∗. The problem is that
Zi,k(X) is centered whereas Xk

i , which appears in (4.4), is not. It turns out that the
operation which consists in centering Xk

i in (4.4) is exactly the Hoeffding decom-
position [22], which plays a crucial role in U-statistics theory. Let us recall it. For
1 ≤ j ≤ N , one defines the kernels

hj (x1, . . . , xj ) =
∫

· · ·
∫

ψ(u1, . . . , uN)

j∏
i=1

(δxi
− μ)(dui)

N∏
i=j+1

μ(dui).

Then Hoeffding’s decomposition (Theorem 1 in Section 1.6 in [23]) is the follow-
ing:

(4.5) Uψ
n = θ(μ) +

N∑
j=1

(
N

j

)
U

hj
n ,

where U
hj
n is the U-statistic associated to hj in the first equality from (4.4) (with

N replaced by j).
We denote mk = E(Xk) and we compute∫

· · ·
∫ N∏

l=1

u
kl

l

j∏
i=1

(δxi
− μ)(dui)

N∏
i=j+1

μ(dui) =
j∏

i=1

(
x

ki

i − mki

)× N∏
i=j+1

mki
,
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so we obtain

hj (x1, . . . , xj ) = ∑
κ∈Kj

aj (κ)

j∏
i=1

(
x

ki

i − mki

)
with

aj (κ) =
k∗∑

kj+1,...,kN=1

a(κ, kj+1, . . . , kN)

N∏
i=j+1

mki
.

We conclude that

Uψ
n = θ(μ) +

N∑
j=1

(
N

j

)(
n

j

)−1 ∑
i1<···<ij

∑
κ∈Kj

aj (κ)

j∏
l=1

(
X

kl

il
−E

(
X

kl

il

))
.

The U-statistics U
ψ
n is called “degenerated” at order m ∈ [N ] if hj = 0 for j ≤

m − 1 and hm �= 0, that is,

(4.6)
∑

κ∈Kj

a2
j (κ) = 0, 1 ≤ j ≤ m − 1 and

∑
κ∈Km

a2
m(κ) > 0.

We assume that (4.6) holds and we write

Vm(n) := nm/2(Uψ
n − θ(μ)

)= N∑
j=m

nm/2
(
N

j

)
U

hj
n =

N∑
j=m

∑
|α|=j

cn(α)Zα(X)

with

cn

(
(i1, k1), . . . , (ij , kj )

)= nm/2
(
N

j

)
×
(
n

j

)−1

aj (k1, . . . , kj ).

By (4.6), the U-statistic U
ψ
n is degenerated at order m ∈ [N ] if and only if

|cn|j = 0 for j ≤ m − 1 and |cn|m > 0,

which is the same nondegeneracy condition we are interested in.
We recall that Xi ∼ μ and that in (2.13) we have introduced the covariance

matrix Cov(Z(X)) = Cov(μ), that is,

Covi,j (μ) = E
((

Xi −E
(
Xi))(Xj −E

(
Xj ))), i, j = 1, . . . , k∗.

We consider a correlated Brownian motion W = (W 1, . . . ,Wk∗) in R
k∗ with

〈Wi,Wj 〉t = Covi,j (μ)t , i, j = 1, . . . , k∗. For κ = (k1, . . . , km) ∈ Km, we define
the multiple stochastic integral

Iμ
κ (1) =

∫ 1

0
dWkm

sm

∫ sm

0
dW

km−1
sm−1 · · ·

∫ s2

0
1dWk1

s1

and we denote

Vm =
(

N

N − m

) ∑
κ∈Km

am(κ)Iμ
κ (1).
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THEOREM 4.1. A. If X verifies M(ε, r,R) and (4.6) holds, then for every
θ ∈ (1

4 ,1),

(4.7) dTV
(
Vm(n),Vm

)≤ C

nθβ(m,k∗) with β(m,k∗) = 1

2(6k∗m + 1)
.

B. Suppose that X has finite moments of any order and that Cov(Z(X)) =
Cov(μ) ≥ λ > 0. If (4.6) holds then, for every θ ∈ (1

4 ,1),

(4.8) dKol
(
Vm(n),Vm

)≤ C

nθα(N)
with α(N) = 1

2(3N + 1)
.

PROOF. In order to use Theorem 3.11, we estimate

|cn|2m+1,N = ∑
m+1≤|α|≤N

c2
n(α) ≤ Cnm ×

N∑
j=m+1

n−2j × nj × ‖a‖∞ ≤ C

n
,

|cn|2m = ∑
|α|=m

c2
n(α) ≥ 1

C
× ∑

κ∈Km

a2
m(κ) > 0.

Finally, we study the influence factor:

δ2∗(cn) = max
r

∑
m≤|α|≤N

c2
n(α)1{r∈α′} ≤ Cnm ×

N∑
j=m

n−2j × nj−1 = C

n
.

Then (3.26) gives

dTV
(
QN,k∗(c,X),�m(c,G)

)≤ C

((
1√
n

) θ
6k∗m+1 +

(
1√
n

) 2θ
k∗m

∧ θ
2m+1

)

≤ C
1

n
θ

2(6k∗m+1)

.

And by employing (3.27), one has

dKol
(
QN,k∗(c,X),�m(c,G)

)≤ C

((
1√
n

) 1
1+3N +

(
1√
n

) θ
2m+1

)

≤ C
1

n
θ

2(1+3N)

. �

4.2. A quadratic central limit theorem. For p ∈ (0, 1
2 ], we look to the

quadratic form

(4.9) Sn,p(Z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

n1−p

n∑
i,j=1

1{i �=j}
1

|i − j |p ZiZj if 0 < p <
1

2
,

1

(2n lnn)1/2

n∑
i,j=1

1{i �=j}
1

|i − j |1/2 ZiZj if p = 1

2
,
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where Zi, i ∈ N are centered independent random variables which have finite mo-
ments of any order. We prove here that that if p < 1

2 then Sn,p(Z) converges to
a double stochastic integral whereas for p = 1

2 the limit is a standard Gaussian
random variable. In our notation, we have d∗ = 1, k∗ = 1, N = 2 and

Sn,p(Z) = Q2,1(cn,p,Z) = S2(cn,p,Z),

where cn,p(α) = 0 for |α| �= 2 and if |α| = 2,

(4.10) cn,p(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

n1−p|α′
1 − α′

2|p
1{1≤α′

1<α′
2≤n} if 0 < p <

1

2
,

2

(2n lnn)1/2|α′
1 − α′

2|1/2 1{1≤α′
1<α′

2≤n} if p = 1

2
.

THEOREM 4.2. Let Zi, i ∈ N be a sequence of independent and centered ran-
dom variables, with E(Z2

i ) = 1 and which have finite moments of any order.
A. Let p < 1

2 . We denote I2(ψp) = ∫ 1
0
∫ 1

0 ψp(s, t) dWs dWt , W being a Brown-
ian motion and ψp(s, t) = |s − t |−p . Then for every θ ∈ (1

4 ,1) there exists n∗ and
C such that for n ≥ n∗

(4.11) dKol
(
Sn,p, I2(ψp)

)≤ C

n
θ(1−2p)

15

.

Suppose moreover that M(ε, r,R) holds. Then for every θ ∈ (1
4 ,1) there exists n∗

and C such that for n ≥ n∗

(4.12) dTV
(
Sn,p, I2(ψp)

)≤ C

n
θ
26 ∧ θ(1−2p)

15

.

B. Let p = 1
2 . We denote � a standard normal random variable. There exists n∗

and C such that for n ≥ n∗

(4.13) dKol(Sn,1/2,�) ≤ C

(lnn)1/2 .

Suppose moreover that M(ε, r,R) holds. Then (4.13) holds with dTV instead of
dKol.

REMARK 4.3. The nice feature of the above result is that there is a change of
regime if p < 1/2 or p = 1/2: if p = 1/2 the singularity in |i −j |−p is sufficiently
strong in order to pass from the second-order chaos to the first one (Gaussian),
whereas if p < 1/2 then one remains in the second chaos.

PROOF OF THEOREM 4.2. We extend by symmetry the coefficients cn,p(α)

to all indexes α = (α1, α2) with α1 �= α2. We denote ti = i
n

and we define

ψn,p(s, t) = cn,p(i, j)1[ti ,ti+1)(s)1[tj ,tj+1)(t).
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Let us prove that

(4.14)
∫ 1

0

∫ 1

0

∣∣ψp(s, t) − ψn,p(s, t)
∣∣2 ds dt ≤ C

n
2
3 (1−2p)

.

We take q = 2
3 and we write∫ 1

0

∫ 1

0

∣∣ψp(s, t) − ψn,p(s, t)
∣∣2 ds dt ≤ I + J + J ′

with

I =
∫
|s−t |≥1/nq

∣∣ψp(s, t) − ψn,p(s, t)
∣∣2 ds dt,

J =
∫
|s−t |<1/nq

∣∣ψp(s, t)
∣∣2 ds dt, J ′ =

∫
|s−t |<1/nq

∣∣ψn,p(s, t)
∣∣2 ds dt.

Note that if |s − t | ≥ 1/nq then∣∣ψp(s, t) − ψn,p(s, t)
∣∣≤ C

n
× 1

|s − t |p+1 ≤ C

n1−q(p+1)

so that

I ≤ C

n2(1−q(p+1))
.

Moreover,

J = 2
∫ 1

0
dt

∫ t+ 1
nq

0

ds

|s − t |2p
= C

nq(1−2p)
.

Finally, by comparing Riemann sums with the corresponding integral,

J ′ = 1

n2

n∑
i=1

∑
0<|ti−tj |≤1/nq

1

|ti − tj |2p

≤ 1

n2

(
2n +

n∑
i=1

∑
0<|ti−tj |≤1/nq

|i−j |≥2

1

|ti − tj |2p

)
≤ 1

n2 (2n + J ) ≤ C

nq(1−2p)
.

Since q = 2
3 , we obtain (4.14). It follows that, for sufficiently large n,

1

2

∫ 1

0

∫ 1

0

∣∣ψp(s, t)
∣∣2 ds dt ≤ |cn|2 =

∫ 1

0

∫ 1

0

∣∣ψn,p(s, t)
∣∣2 ds dt

≤ 2
∫ 1

0

∫ 1

0

∣∣ψp(s, t)
∣∣2 ds dt.
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We also have

δ2∗(cn,p) = max
i≤n

∑
j �=i

4

n2(1−p)

1

|i − j |2p
1{i �=j} ≤ C

n
.

Note that Sn,p(Z) = S2(cn,Z) and S2(cn,G) = I2(ψn,p). Using Theorem 2.3
(with N = 2), Theorem 3.4 (see (3.20) with k = 1,m = 2, 1

4 < θ < 1) and (4.14),
we obtain

dKol
(
Sn,p(Z), I2(ψp)

)
≤ dKol

(
S2(cn,p,Z), S2(cn,p,G)

)+ dKol
(
I2(ψn,p), I2(ψp)

)
≤ C

(
δ1/7∗ (cn,p) + ‖ψp − ψn,p‖θ/5

2

)≤ C

(
1

n1/14 + 1

n
θ(1−2p)

15

)
so (4.11) is proved for dKol.

We suppose now that Z verifies M(ε, r,R) and we use Theorem 3.10 (see (3.24)
with N = 2) in order to obtain

dTV
(
Sn,p(Z), I2(ψp)

)≤ C(δθ/13∗ (cn) + ‖ψp − ψn,p‖θ/5
2

≤ C

(
1

nθ/26 + 1

n
θ
15 (1−2p)

)
so (4.12) is proved for dTV also.

B. We have Sn,1/2(Z) = S2(cn,Z) with (recall that ti = i/n)

cn(i, j) = 1√
2n lnn

1i �=j

1

|i − j |1/2 = 1√
2 lnn

1i �=j

1

|ti − tj |1/2 .

We note first that

ln i + ln(n − i) ≤
n∑

j=1

1i �=j |i − j |−1 ≤ 2 + ln i + ln(n − i).

These inequalities are easily obtained by comparing
∑n

j=1 1i �=j |i − j |−1 with∫
{|ti−y|>1/n} |ti − t |−1 dt . It immediately follows that

1 − 1

lnn
≤ |cn|2 ≤ 1 + 1

lnn

and δ∗(cn) ≤
√

2√
n

. Now, using Theorem 2.3

dKol
(
S2(cn,Z), S2(cn,G)

)≤ C

n1/14

and, if Zi satisfies D(ε, r,R), we use Theorem 3.10 and we obtain

dTV
(
S2(cn,Z), S2(cn,G)

)≤ C

nθ/26 .
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Now we have to estimate the total variation distance between S2(cn,G) =
�2(cn,G) and the normal random variable �. In order to do it, we use (3.28),
so we have to estimate the kurtosis κ(cn). We denote a(i, j) = 1i �=j |i − j |−1/2 and
we write

a ⊗1 a(i, j) = ∑
k

1k �=i1k �=j

1√|ti − tk||tj − tk| × 1

n

≤ 2 + ∑
k<� i+j

2 �

1√|ti − tk||tj − tk|1k �=i,j

+ ∑
k>� i+j

2 �+1

1√|ti − tk||tj − tk|1k �=i,j

≤ 2 +
∫ 1

0

dt√|ti − t ||tj − t | .

In order to obtain the last inequality, one just looks to the graphs of the functions
t �→ (|ti − t ||tj − t |)−1/2 and to the graph of the step approximation of this function.
The step approximation is below the function in these regions. Moreover (see [5]
Lemma B1 for a complete computation),

∫ 1

0

dt√|ti − t ||tj − t | = π + 2 ln

√
1 − ti +

√
1 − tj

|√ti − √
tj | .

It follows that

κ2(cn) = |cn ⊗1 cn|2 = 1

4n2 ln2 n

∑
i �=j

(a ⊗1 a)2(i, j)

≤ 2(π + 2)

ln2 n
+ 2

n2 ln2 n

∑
i �=j

ln2

√
1 − ti +

√
1 − tj

|√ti − √
tj | ≤ C

ln2 n
.

(4.15)

The statement now follows from Theorem 3.12. �

REMARK 4.4. Let us point out that the polynomial Sn,p(Z) in (4.9) represents
a particular example of general (nonsymmetric) U-statistics which are discussed
in [17, 18] but there one discusses convergence in Wasserstein distance.

5. Stochastic calculus of variation under the Doeblin’s condition. We as-
sume that the sequence X = (Xn)n∈N, Xn = (Xn,1, . . . ,Xn,d∗) ∈ R

d∗ , of indepen-
dent random vectors satisfies Hypothesis M(ε, r,R), that is, the Doeblin’s con-
dition D(ε, r,R) and the moment finiteness one. We strongly use here the repre-
sentation (3.9) discussed in Section 3.1, that is, Xn = χnVn + (1 − χn)Un, n ∈ N,
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where χn, Vn, Un are independent with laws given in (3.8). The goal of this section
is to present a differential calculus based on Vn,n ∈ N which has been introduced
in [4, 6] (and which is inspired by the standard Malliavin calculus).

5.1. A regularization lemma. To begin, we introduce the space of the simple
functionals. We denote by �m the set of multi-indexes α = (α1, . . . , αm) with αi =
(ni, ji) ∈ N × [d∗] (in contrast with the definition of 
m, we do not impose that
n1 < · · · < nm). We also consider the finite dimensional Hilbert space U = R

d (for
some d ∈N). We work with polynomials with random coefficients

PN(x) =
N∑

m=0

∑
α∈�m

d(α)xα,

where x = (xn)n∈N with xn = (xn,1, . . . , xn,d∗) ∈ R
d∗ and xα =∏m

i=1 xαi
. The co-

efficients d(α) ∈ U are random variables which are measurable with respect to
σ(χn,Un,n ∈ N) and so, in particular, are independent of (Vn)n∈N. We define
PN(U) to be the space of the polynomials of order less or equal to N , computed
in xn = Vn that is F ∈PN(U) if

F = PN(V ) =
N∑

m=0

∑
α∈�m

d(α)V α.

In particular, our polynomials QN,k∗(c,X) belong to PN(U). We set P(U) =⋃
N PN(U) and we note that P(U) is dense in Lp(�,F,P ) with F = σ(Xn,n ∈

N). So we will define first our differential operators on P(U), then we extend them
in the canonical way to their domains in Lp(�,F,P ).

Let F ∈ P(U), so F = PN(V ). For n ∈ N and i ∈ [d∗] we define the first-order
derivatives

Dn,iF = χn × ∂n,iPN(V ).

Notice that

Dn,iQN,k∗(c,X) = ∂QN,k∗(c,X)

∂Vn,i

.

We look to DF = (Dn,iF )n∈N,i∈[d∗] as to a random element of the following
Hilbert space H(U):

(5.1) H(U) =
{
x ∈

∞⊗
n=1

Ud∗ : |x|2H(U) :=
∞∑

n=1

d∗∑
i=1

|xn,i |2U < ∞
}
.

So D : PN(U) → PN−1(H(U)). The Malliavin covariance matrix of F ∈ P(U)d

is defined by

(5.2) σ
i,j
F = 〈DFi,DFj 〉

H(U) =
∞∑

n=1

d∗∑
l=1

Dn,lF
i × Dn,lF

j , i, j = 1, . . . , d.
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Moreover, we define the higher order derivatives in the following way. Let
m ∈ N be fixed and let α = (α1, . . . , αm) with αi = (ni, ji) ∈ N × [d∗]. For
F = PN(X) ∈ P(U), we define

D(m)
α F = Dαm · · ·Dα1F =

(
m∏

j=1

χnj

)
(∂nm,jm · · · ∂n1,j1PN)(V )

=
(

m∏
j=1

χnj

)
∂αPN(V ).

(5.3)

We look to D(m)F = (D
(m)
α F )α∈�m as to a random element of Hm(U) :=

H⊗m(U), so D(m) : PN(U) → PN−m(H⊗m(U)). For m = 1, we have D(1)F =
DF .

We define now the divergence operator (recall that θr is defined in (3.6))

LF = −
∞∑

n=1

d∗∑
i=1

(Dn,iDn,iF + Dn,iF × �n,i) with(5.4)

�n,i = 2χnθ
′
r

(|Xn,i − xn,i |2)(Xn,i − xn,i).(5.5)

Standard integration by parts on R gives the following duality relation: for every
F,G ∈ P(U),

(5.6) E
(〈DF,DG〉H(U)

)= E
(〈F,LG〉U )= E

(〈G,LF 〉U ).
We define now the Sobolev norms. For q ≥ 1, we set

(5.7) |F |1,q,U =
q∑

n=1

∣∣D(n)F
∣∣
H⊗n(U) and |F |q,U = |F | + |F |1,q,U .

Moreover, we define

(5.8) ‖F‖1,q,p,U = (E(|F |p1,q,U
))1/p

, ‖F‖q,p,U = (E(|F |pq,U
))1/p

.

Finally, we define the Sobolev spaces

(5.9) D
q,p(U) = P‖|·|‖q,p,U (U), D

∞(U) =
∞⋂

q=1

∞⋂
p=1

D
q,p(U).

As usual, we will drop the notation U when U =R.
The duality relation (5.6) implies that the operators D(n) and L are closable so

we may extend them to D
q,p in a standard way. We recall now the basic computa-

tional rules. For φ ∈ C1
pol(R

M) and F ∈PM , we have

(5.10) Dφ(F) =
M∑

j=1

∂jφ(F )DFj ,
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and for φ ∈ C2
pol(R

M)

(5.11) Lφ(F) =
M∑

j=1

∂jφ(F )LF j − 1

2

M∑
i,j=1

∂i∂jφ(F )
〈
DFi,DFj 〉

H(U).

REMARK 5.1. For any n, j and k ≤ k∗, we take F = Xk
n,j and we get

(5.12) E
(
LXk

n,j

)= 0 and
∥∥LXk

n,j

∥∥
q,p ≤ C

rq+1 M
k∗
2k∗p(X),

the above constant C > 0 depending just on k∗, p, q . In fact, the first equality
follows from the duality formula (5.6) (take G = 1). Moreover, by (5.10),

LXk
n,j = kXk−1

n,j LXn,j + 2k(k − 1)Xk−2
n,j χn,

so that ∥∥LXk
n,j

∥∥
q,p ≤ k

∥∥Xk−1
n,j

∥∥
q,2p‖LXn,j‖q,2p + 2k(k − 1)

∥∥Xk−2
n,j

∥∥
q,p.

It is easy to check that ‖Xl
n,j‖q,2p ≤ l!Mk∗

2k∗p(X) for l ≤ k∗. Moreover, by (5.4) and

(3.10) there exists a universal constant C such that ‖LXn,j‖q,2p ≤ C
rq+1 . Equation

(5.12) is now proved.

We give now the “regularization lemma,” firstly studied in [3]. To this pur-
pose, we recall that a super kernel φ : Rd → R is a function which belongs to
the Schwartz space S(Rd) (infinitely differentiable functions which decrease to in-
finity faster than any polynomial),

∫
φ(x) dx = 1, and such that for every m ≥ 1

and for every multi-index α with |α| = m one has∫
yαφ(y) dy = 0 and

∫
|y|m∣∣φ(y)

∣∣dy < ∞.

Super kernels are used in several approximation problems in the literature. In or-
der to construct a super kernel, one just takes the inverse Fourier transform of a
function in S(Rd).

For δ ∈ (0,1), we define φδ(y) = δ−dφ(δ−1y) and for a function f : Rd → R

we denote fδ = f ∗ φδ , the symbol ∗ denoting convolution. Then we have the
following result.

LEMMA 5.2. Let F ∈ P(R)d and q ∈ N. There exists some constant C ≥ 1,
depending on d and q only, such that for every f ∈ Cb(R

d), every η, δ > 0 and
a < 1,

(5.13)
∣∣E(f (F )

)−E
(
fδ(F )

)∣∣≤ C‖f ‖∞
(
P

a(detσF ≤ η) + δq

η2q

∥∥Kq,0(F )
∥∥

2

)
,

with

(5.14) Kq,0(F ) = (|F |1,q+1 + |LF |q)q(1 + |F |1,q+1
)4dq

.
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PROOF. If f ∈ C
q
b (Rd), then the statement is proved in Lemma 5.3 of [6]

(see (5.19) therein with m = 0). For f just continuous, the assertion follows by a
standard density argument. �

5.2. Estimates of the Sobolev norms. Throughout this section, we assume that
X verifies M(ε, r,R) and we estimate the Sobolev norms of QN,k∗(c,X) and of
LQN,k∗(c,X). To begin, we give an abstract lemma.

LEMMA 5.3. Let k ∈ N and let Bn,i,�n ∈ D
∞(U), �n,i ∈ D

∞(R), n ∈ N,
i = 1, . . . , k be such that Bn,i is σ(X1, . . . ,Xn) measurable and �n,i is σ(Xn)

measurable with E(�n,i) = 0. We consider the process

(5.15) YJ =
J∑

n=1

k∑
i=1

Bn−1,i�n,i + �J .

Then for every q ∈ N and p ≥ 2,

max
n≤J

‖Yn‖U,q,p

≤ qbp max
n≤J

‖�n‖q,p

(
J−1∑
n=0

‖Bn‖2
U,q,p

)1/2

+ max
n≤J

‖�n‖U,q,p,

(5.16)

with

‖�n‖2
q,p =

k∑
i=1

‖�n,i‖2
q,p, ‖Bn‖2

U,q,p =
k∑

i=1

‖Bn,i‖2
U,q,p.

PROOF. We take first q = 0. Since �n and Bn−1 are independent, one has∥∥∥∥∥
k∑

i=1

�n,iBn−1,i

∥∥∥∥∥
2

U,p

≤
(

k∑
i=1

‖Bn−1,i‖U,p × ‖�n,i‖p

)2

≤ ‖�n‖2
p‖Bn−1‖2

U,p.

Moreover, since E(�n,i) = 0, Mm :=∑m
n=1

∑k∗
i=1 Bn−1,i�n,i is a martingale. So,

by (2.6)

‖Mm‖2
U,p ≤ b2

p

m∑
n=1

‖�n‖2
p‖Bn−1‖2

U,p

≤ b2
p max

n≤m
‖�n‖2

p

(
m∑

n=1

‖Bn−1‖2
U,p

)
and (5.16) is proved for q = 0. Take now q = 1. We have

Ym := DYm =
m∑

n=1

k∗∑
i=1

Bn−1,i�n,i + �m,
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where �m =∑m
n=1

∑k∗
i=1(D�n,i)Bn−1,i + D�m and Bn,i = DBn,i is measurable

w.r.t. σ(X1, . . . ,Xn−1). Notice that Ym, Bk,i and �m take values in H(U) (defined
in (5.1)). So, by applying the step above, we get

max
n≤J

‖DYn‖H(U),p

≤ bp max
n≤J

‖D�n‖p

(
J∑

k=1

‖Bk‖2
H(U),p

)1/2

+ max
m≤J

‖�m‖H(U),p.

Notice first that ‖Bk‖H(U),p ≤ ‖Bk‖U,1,p , ‖D�k‖H(U),p ≤ ‖�k‖U,1,p and
‖D�n‖p ≤ ‖�n‖1,p . So it remains to estimate

Im

(
n′, i ′

)= m∑
n=1

k∗∑
i=1

(D(n′,i′)�n,i)Bn−1,i .

For n �= n′, one has D(n′,i′)�n,i = 0 so that

Im

(
n′, i ′

)= 1{n′≤m}
k∑

i=1

(D(n′,i′)�n′,i)Bn′−1,i .

It follows that

|Im|2H(U) =
m∑

n′=1

d∗∑
i′=1

∣∣∣∣∣
k∑

i=1

D(n′,i′)�n′,iBn′−1,i

∣∣∣∣∣
2

U

≤
m∑

n′=1

d∗∑
i′=1

|D(n′,i′)�n′ |2|Bn′−1|2U ≤
m∑

n′=1

|�n′ |21|Bn′−1|2U .

Then, using the triangle inequality,

‖Im‖2
H(U),p = ∥∥|Im|2H(U)

∥∥
p/2 ≤

m∑
n′=1

∥∥|�n′ |21|Bn′−1|2U .
∥∥
p/2

=
m∑

n′=1

∥∥|�n′ |21
∥∥
p/2

∥∥|Bn′−1|2U
∥∥
p/2 ≤ max

n≤m
‖�n‖2

1,p

m∑
n=1

‖Bn−1‖2
U,p.

So the proof is completed for q = 1. For general q , this follows by recurrence. �

PROPOSITION 5.4. For every q,N ∈ N and p ≥ 2, one has∥∥QN(c,X)
∥∥
q,p ≤ MN

q,p × |c|,(5.17) ∥∥LQN(c,X)
∥∥
q,p ≤ Cq,p(N) × |c|,(5.18)

with Mq,p = bpqk∗!Mk∗p(X) and Cq,p(N) is a constant which depends on N , q ,
p, k∗, d∗, r−(q+1) and on M2k∗p(X).
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As a consequence, there exists C > 0 depending only on N , q , p, r−(q+1), k∗,
d∗ and on M2k∗p(X) such that

(5.19)
∥∥Kq,0

(
QN,k∗(c,X)

)∥∥
2 ≤ C|c|q(1 + |c|)4q

,

Kq,0(QN,k∗(c,X)) being defined in (5.14).

PROOF. We prove this by recurrence on N . The case N = 1 is straightforward,
so we suppose N > 1. For a multi-index β with |β| = m, we define cn,j (β) =
1β ′

m<nc(β, (n, j)) and we write, with Z = Z(X),

QN,k∗(c,X) = c(∅) +
∞∑

n=1

m∗∑
j=1

Zn,jQN−1,k∗
(
cn,j ,X

)
.

We first prove (5.17). We will use (5.16) with Bn,j = QN−1,k∗(c
n,j ,X), �n,j =

Zn,j and �n = 0. Notice that ‖Zn,j‖q,p ≤ k∗!Mk∗p(X). Using the recurrence hy-
pothesis, we obtain

∥∥QN,k∗(c,X)
∥∥
q,p ≤ bpqk∗!Mk∗p(X)

( ∞∑
n=1

m∗∑
j=1

∥∥QN−1,k∗
(
cn,j ,X

)∥∥2
q,p

)1/2

≤ MN
q,p

( ∞∑
n=1

m∗∑
j=1

∑
|α|≤N−1

∣∣cn,j (α)
∣∣2)= MN

q,p|c|

so (5.17) is proved.
We prove now (5.18). Since 〈DZn,j ,DQN−1,k∗(c

n,j ,X)〉H(U) = 0, we get (see
(5.11))

LQN,k∗(c,X) =
∞∑

n=1

m∗∑
j=1

QN−1,k∗
(
cn,j ,X

)
LZn,j

+
∞∑

n=1

m∗∑
j=1

Zn,jLQN−1
(
cn,j ,X

)
.

So we are in the framework of Lemma 5.3 with Bn−1,j = QN−1,k∗(c
n,j ,X),

�n,j = LZn,j and

�m =
m∑

n=1

d∗∑
j=1

Zn,jLQN−1,k∗
(
cn,j ,X

)
.

We compute first ‖�m‖p,q . In order to do it, we use once again Lemma 5.3 with
�n,j = Zn,j and Bn,j = LQN−1,k∗(c

n,j ,X). We get

‖�m‖p,q ≤ Mq,p

(
m∑

n=1

d∗∑
j=1

∥∥LQN−1,k∗
(
cn,j ,X

)∥∥
q,p

)1/2
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≤ Mq,pCq,p(N − 1)

(
m∑

n=1

d∗∑
j=1

∣∣cn,j
∣∣2)1/2

= Mq,pCq,p(N − 1)|c|,

the last inequality being a consequence of the recurrence hypothesis. We come
now back to LQN,k∗(c,X) and we use the previous lemma:

∥∥LQN,k∗(c,X)
∥∥
q,p ≤ qbp max

n<∞‖LZn,j‖q,p

(
m∑

n=1

d∗∑
j=1

∥∥QN−1,k∗
(
cn,j ,X

)∥∥
q,p

)1/2

+ Mq,pCq,p(N − 1)|c|.
By (5.12), we have ‖LZn,j‖q,p ≤ Cr−(q+1)M

k∗
2k∗p(X) so we obtain∥∥LQN,k∗(c,X)

∥∥
q,p

≤ (qbpMN−1
q,p Cr−(q+1)M

k∗
2k∗p(X) + Mq,pCq,p(N − 1)

)|c|. �

5.3. Estimate of the covariance matrix. In this section, we give estimates for
the Malliavin covariance matrix of QN,k∗(c,X) which we shortly denote by σN .
We restrict ourselves to the scalar case, so that QN,k∗(c,X) ∈ R = U and σN

is just a scalar. We start from a precise formula of the Malliavin derivative of
QN,k∗(c,X): straightforward computations give

Dn0,j0QN,k∗(c,X)

= Dn0,j0SN

(
c,Z(X)

)
=

N−1∑
m=0

k∗−1∑
k=0

∑
β∈�n0,j0 (m,k)

(k + 1)(Dc)n0,j0,k(β)χn0V
k
n0,j0

Zβ(X),

(5.20)

where �n0,j0(m, k) denotes the multi-indexes of length m which do not contain
the pair (n0, kd∗ + j0) and where (Dc)n0,j0,k(β) = c((n0, kd∗ + j0)) if |β| = 0 and
for |β| = m ≥ 1,

(Dc)n0,j0,k(β)

=
m−1∑
i=1

c
(
β1, . . . , βi, (n0, kd∗ + j0), βi+1, . . . , βm

)
1{β ′

i<n0<β ′
i+1}

+ c
(
(n0, kd∗ + j0), β1, . . . , βm

)
1{n0<β ′

1}
+ c
(
β1, . . . , βm, (n0, kd∗ + j0)

)
1{n0>β ′

m}.

(5.21)

The aim of this section is to prove the nondegeneracy estimate (5.25) in the next
Lemma 5.6, but we first need to study the conditional expectation of σN given the
randomness from χn and Un.
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LEMMA 5.5. Assume D(ε, r,R). We denote by EU,χ the conditional expecta-
tion with respect to σ(Un,χn, n ∈N). Then

(5.22) EU,χ (σN) ≥ λN
R

∑
|α|=N

c2(α)χα′
,

where λR > 0 is given in Lemma 3.1 and for α = ((α′
1, α

′′
1 ), . . . , (α′

m,α′′
m)), we set

α′ = (α′
1, . . . , α

′
m) and χα′ =∏m

i=1 χα′
i
.

PROOF. We set here Z = Z(X). We recall that Xn,j = χnVn,j + (1 −χn)Un,j

and we define (with k(l) and j (l) defined in (3.2))

Ṽn,l = V
k(l)
n,j (l) −E

(
V

k(l)
n,j (l)

)
,

Un,l = (1 − χn)U
k(l)
n,j (l) + χnE

(
V

k(l)
n,j (l)

)−E
(
X

k(l)
n,j (l)

)
.

Then

Zn,l = χnV
k(l)
n,j (l) + (1 − χn)U

k(l)
n,j (l) −E

(
X

k(l)
n,j (l)

)= χnṼn,l + Un,l.

So, we have

Zα = Z
α + χα′

Ṽ α where Z
α = ∑

(β,γ )=α,

γ �=∅

χβ ′
Ṽ β × U

γ
.

For every α, θ s.t. |α| ≤ |θ |, one has

(5.23) EU,χ

(
Z

α
Ṽ θ )= ∑

(β,γ )=α,

γ �=∅

χβ
EU,χ

(
Ṽ βṼ θ )× U

γ = 0.

This is because |β| < |α| ≤ |θ |, so there is at least one θi /∈ β and EU,χ (Ṽ θi ) = 0.
For the same reason, one has

(5.24) EU,χ

(
Ṽ αṼ θ )= 0 for every α, θ s.t. |α| < |θ |.

We recall that V k
n0,j0

= Ṽn0,kd∗+j0 + E(V k
n0,j0

) and we use (5.20) in order to we
write

Dn0,j0SN(c,Z) =
N−1∑
m=0

(
A

n0,j0
m,1 + A

n0,j0
m,2 + A

n0,j0
m,3

)
where

A
n0,j0
m,1 =

k∗−1∑
k=0

∑
β∈�n0,j0 (m,k)

(k + 1)(Dc)n0,j0,k(β)χn0 Ṽn0,kd∗+j0χ
β ′

Ṽ β,

A
n0,j0
m,2 =

k∗−1∑
k=0

∑
β∈�n0,j0 (m,k)

(k + 1)(Dc)n0,j0,k(β)χn0 Ṽn0,kd∗+j0Z
β
,
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A
n0,j0
m,3 =

k∗−1∑
k=0

∑
β∈�n0,j0 (m,k)

(k + 1)(Dc)n0,j0,k(β)χn0E
(
V k

n0,j0

)
Zβ,

�n0,j0(m, k) denoting the multi-indexes of length m which do not contain the pair

(n0, kd∗ + j0). By (5.23) and (5.24), one has EU,χ (A
n0,j0
N−1,1A

n0,j0
m,i ) = 0 for every

m ≤ N − 1 and i = 2,3 and EU,χ (A
n0,j0
N−1,1A

n0,j0
m,1 ) = 0 for every m < N − 1. Thus,

A
n0,j0
N−1,1 is orthogonal (in L2(PU,χ )) to Dn0,j0SN(c,Z) − A

n0,j0
N−1,1, so that

EU,χ

(∣∣Dn0,j0SN(c,Z)
∣∣2)≥ EU,χ

(∣∣An0,j0
N−1,1

∣∣2).
Therefore,

EU,χ (σN) =
∞∑

n0=1

d∗∑
j0=1

E
(∣∣Dn0,j0SN(c,Z)

∣∣2)≥ ∞∑
n0=1

d∗∑
j0=1

EU,χ

(∣∣An0,j0
N−1,1

∣∣2).
Now, we write

A
n0,j0
N−1,1 =

N∏
i=1

χni

∑
|α|=N

dn0,j0(α)Ṽ α, with

dn0,j0(α) =
N∑

i=1

k∗−1∑
k=0

(k + 1)c(α)1αi=(n0,kd∗+j0).

For every α, there exists at most one (k, i) such that αi = (n0, kd∗ + j0) so that

d2
n0,j0

(α) =
N∑

i=1

k∗−1∑
k=0

(k + 1)c2(α)1αi=(n0,kd∗+j0).

By using (3.13),
∞∑

n0=1

d∗∑
j0=1

EU,χ

(∣∣An0,j0
N−1,1

∣∣2)≥ ∞∑
n0=1

d∗∑
j0=1

λN
R

∑
|α|=N

d2
n0,j0

(α)χα′

≥ λN
R

∑
|α|=N

c2(α)χα′

and the statement holds. �

We can now prove the main result of this section.

LEMMA 5.6. Assume D(ε, r,R). Let c ∈ C(R) with |c|N > 0. For every η > 0,

(5.25) P(σN ≤ η) ≤ 2e3

9
N exp

(
−
(

εmr

2

)2N |c|2N
δ2∗(c)

)
+ 2Kk∗N

λRεmr |c|2/(k∗N)
N

η1/(k∗N),

where K a universal constant (the one in the Carbery–Wright inequality) and λR

is given in Lemma 3.1.
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REMARK 5.7. Sometimes |c|N is small and we would like to use |c|m instead,
with m < N . We denote |c|2m+1,N =∑N

k=m+1 c2(α). Then for every h ≥ 1 there
exists C > 0 such that

P(σN ≤ η) ≤ C
|c|2h

m+1,N

ηh
+ 2e3

9
m exp

(
−
(

εmr

2

)2m |c|2m
δ2∗(c)

)

+ 2Kk∗m
λRεmr |c|2/(k∗m)

m

(4η)1/(k∗m).

(5.26)

Indeed, we denote Qm+1,N,k∗(c,X) = QN,k∗(c,X) − Qm,k∗(c,X) and we use the
inequality

σN = ∣∣DQN,k∗(c,X)
∣∣2
H ≥ 1

2

∣∣DQm,k∗(c,X)
∣∣2
H − ∣∣DQm+1,N,k∗(c,X)

∣∣2
H

in order to obtain

P(σN ≤ η) ≤ P
(∣∣DQm+1,N,k∗(c,X)

∣∣2
H ≥ η

)+ P
(∣∣DQm,k∗(c,X)

∣∣2
H ≤ 4η

)
≤ P

(∣∣DQm+1,N,k∗(c,X)
∣∣2
H ≥ η

)+ 2e3

9
m exp

(
−
(

εmr

2

)2m |c|2m
δ2∗(c)

)

+ 2Kk∗m
λRεmr |c|2/(k∗m)

m

(4η)1/(k∗m).

Using Chebyshev’s inequality and Proposition 5.4, for every h,

P
(∣∣DQm+1,N,k∗(c,X)

∣∣2
H ≥ η

)≤ η−h
∥∥DQm+1,N,k∗(c,X)

∥∥2h
H(U),2h

≤ Cη−h|c|2h
m+1,N ,

so the proof of (5.26) is completed.

PROOF OF LEMMA 5.6. We will use the Carbery–Wright inequality that we
recall here (see Theorem 8 in [12]). Let μ be a probability law on R

J which is
absolutely continuous with respect to the Lebesgue measure and has a log-concave
density. There exists a universal constant K such that for every polynomial Q(x)

of order k∗N and for every η > 0 one has

μ
(
x : ∣∣Q(x)

∣∣≤ η
)≤ Kk∗N

(
η

Vμ(Q)

)1/(k∗N)

,

Vμ(Q) =
(∫

Q2(x) dμ(x)

)1/2
.

(5.27)

We will use this result in the following framework. We recall that the coefficients
c(α) are null except a finite number of them. So we may find M such that, if
|α| = m and α′

m > M then c(α) = 0. It follows that we may write (see (5.20))

σN = qχ,U (V ),
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where qq,U (V ) is a polynomial of order k∗N with unknowns Vn,j , n ≤ M,j ≤ d∗
and coefficients depending on χn and Un,j,k . Moreover, we recall that PU,χ is
the conditional probability with respect to σ(Ui,χi, i ∈ N). We denote by μ the
law of (Vn,j , n ≤ M,j ≤ d∗) under PU,χ : this is a product of laws of the form
cψr(|x − x|2) dx so it is log-concave. Then we can use (5.27). Using (5.22),

Vμ(qχ,U ) ≥
∫ ∣∣qχ,U (x)

∣∣dμ(x) = EU,χ (σN) ≥ λN
R

∑
|β|=N

c2(β)χβ ′
.

We take now θ > 0 (to be chosen in a moment) and we use (5.27) in order to obtain

P(σN ≤ η) = P
(
qχ,U (V ) ≤ η

)
≤ P

(
Vμ(qχ,U ) ≤ θ

)+E
(
PV,χ

(
qχ,U (V ) ≤ η

)
1{Vμ(qχ,U )≥θ}

)
(5.28)

≤ P

( ∑
β∈�N

c2(β)χβ ′ ≤ θ

λN
R

)
+ Kk∗N(η/θ)1/(k∗N).

The first term in the above inequality is estimated in the Appendix. In order to
fit in the notation used there, we denote �N(β ′) = {α : |α| = N and α′ = β ′} and
c2(β ′) =∑α∈�N(β ′) c

2(α). Then∑
β∈�N

c2(β)χβ ′ = ∑
|β ′|=N

c2(β ′)χβ ′ = �N

(
c2).

Now we apply Lemma A.1 with x = θ/λN
R . Recall that p = εmr and we have the

restriction

(5.29) θ = λN
R x < λN

R

(
p

2

)N ∑
|β ′|=N

c2(β ′)= λN
R

(
εmr

2

)N

|c|2N.

We have |c|2N = |c|2N and

δ2
N(c) = max

n

∑
n∈β ′,|β ′|=N

c2(α′)= max
n

∑
n∈α′,|α|=N

c2(α) = δ2∗(c).

Then (A.2) gives

P

(
�N

(
c2)≤ θ

λN
R

)
≤ 2e3

9
N exp

(
− (θ/λN

R )2

δ2∗(c)|c|2N

)
.

Inserting this in (5.28), we obtain

P(σN ≤ η) ≤ 2e3

9
N exp

(
− (θ/λR)2

δ2∗(c)|c|2N

)
+ Kk∗N(η/θ)1/(k∗N).

Now, θ is any constant satisfying the restriction (5.29). So, by letting θ ↑
λN

R ((εmr )/2)N |c|2N = λN
R ((εmr )/2)N |c|2N , we finally obtain (5.25). �
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5.4. Proof of Theorem 3.3. The goal of this section is to give the proof of
Theorem 3.3 so we use the notation from Section 3.

We take q ∈ N, q ≥ 1, and we consider the sequence λq = q
q+k

. Since λ2
q ↑ 1 as

q → ∞, we can find q such that such that λ2
q < θ ≤ λ2

q+1, and since λ2
q+1 ≤ λq ,

we get λ2
q < θ ≤ λq . We work with this value of q and we write simply λ in place

of λq . Moreover, in the following, C > 0 stands for a constant which may vary
from line to line and which depends on the parameters in the statements but not on
the coefficients c, d ∈ C(R).

We define a = θ/λ, so 1
1+k

≤ λ < a ≤ 1. We consider η, δ ∈ (0,1), to be chosen
in the sequel, and we use the regularization Lemma 5.2 (see (5.13)) with the above
choice of q and a. This gives∣∣E(f (QN,k∗(c,X)

))−E
(
fδ

(
QN,k∗(c,X)

))∣∣
≤ C‖f ‖∞

(
P

a(detσQN,k∗ (c,X) ≤ η) + δq

η2q

∥∥Kq,0
(
QN,k∗(c,X)

)∥∥
2

)

≤ C‖f ‖∞
(
P

a(detσQN,k∗ (c,X) ≤ η) + δq

η2q
|c|q(1 + |c|)4q

)
,

the latter inequality following from (5.19). Moreover, by (5.26) (therein, σN =
detσQN,k∗ ), for every h ≥ 1 (recall that m = m ∨ m′)

P(detσQN,k∗ (c,X) ≤ η) ≤ C

( |c|2h
m+1,N

ηh
+ em,N(c) + 1

|c|2/(k∗m)
m

η1/(k∗m)

)
.

So, ∣∣E(f (QN,k∗(c,X)
))−E

(
fδ

(
QN,k∗(c,X)

))∣∣
≤ C‖f ‖∞

( |c|2ha
m+1,N

ηha
+ ea

m,N(c) + ηa/(k∗m)

|c|2a/(k∗m)
m

+ |c|q(1 + |c|)4q δq

η2q

)
.

A similar estimate holds for QN,k∗(d,Y ). We use now ak defined in (3.18). Since
‖fδ‖k,∞ ≤ δ−k‖f ‖∞, one has∣∣E(fδ

(
QN,k∗(c,X)

))−E(fδ

(
QN,k∗(d,Y )

)∣∣≤ kδ−kdk‖f ‖∞.

Putting this together, we get∣∣E(f (QN,k∗(c,X)
))−E(f

(
QN,k∗(d,Y )

)∣∣
≤ C max

(
1,
(|c|− 2

k∗m
m + |d|−

2
k∗m′

m′
)a)‖f ‖∞

×
(
ϑm,η(c) + ϑm′,η(d) + ηa/(k∗m) + (1 + |c| + |d|)5q δq

η2q
+ δ−kdk

)
,
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where, for a set of coefficients c and for fixed m, η,

ϑm,η(c) = |c|2ha
m+1,N

ηha
+ ea

m,N(c).

We optimize first on δ: we take δ = a
1/(q+k)
k η2q/(q+k)(1 + |c| + |d|)−5q/(q+k) and

we obtain (recall that λ = q
q+k

∈ (0,1)),

(
1 + |c| + |d|)5q δq

η2q
= δ−kdk = η−2kλdλ

k

(
1 + |c| + |d|)5kλ

≤ η−2kλdλ
k

(
1 + |c| + |d|)5k

.

It follows that∣∣E(f (QN,k∗(c,X)
))−E(f

(
QN,k∗(d,Y )

)∣∣
≤ C max

(
1,
(|c|− 2

k∗m
m + |d|−

2
k∗m′

m′
)a)‖f ‖∞

(
1 + |c| + |d|)5k

×
( |c|2ha

m+1,N

ηha
+ |d|2ha

m′+1,N

ηha
+ ea

m,N(c) + ea
m′,N (d) + ηa/(k∗m) + η−2kλdλ

k

)
.

We optimize now on η: we take η = a
λk∗m/(a+2λkk∗m)
k , so that

η−2kλdλ
k = ηa/(k∗m) = a

λa/(a+2λkk∗m)
k ≤ a

λa/(1+2kk∗m)
k ,

the latter inequality follows from ak ≤ 1 and, since a,λ ∈ (0,1), a + 2λkk∗m ≤
1 + 2kk∗m. By inserting,∣∣E(f (QN,k∗(c,X)

))−E(f
(
QN,k∗(d,Y )

)∣∣
≤ C max

(
1,
(|c|− 2

k∗m
m + |d|−

2
k∗m′

m′
)a)‖f ‖∞

(
1 + |c| + |d|)5k

×
( |c|2ha

m+1,N

ηha
+ |d|2ha

m′+1,N

ηha
+ ea

m,N(c) + ea
m′,N (d) + a

λa/(1+2kk∗m)
k

)
.

Since |c|2m+1,N ≤ d
k∗m

2kk∗m+1
k ,

|c|2ha
m+1,N

ηha
≤ a

ah( k∗m
1+2kk∗m

− λk∗m
a+2λkk∗m

)

k .

We note that the above exponent is positive because a > λ. So, we choose h ≥ 1
and such that

ah

(
k∗m

1 + 2kk∗m
− λk∗m

a + 2λkk∗m

)
≥ λa

(1 + 2kk∗m)
,
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so that

|c|2ha
m+1,N

ηha
≤ a

λa
(1+2kk∗m)

k .

A similar estimate holds with |c|2ha
m+1,N replaced by |d|2ha

m′+1,N . We then obtain∣∣E(f (QN,k∗(c,X)
))−E(f

(
QN,k∗(d,Y )

)∣∣
≤ C max

(
1,
(|c|− 2

k∗m
m + |d|−

2
k∗m′

m′
)a)‖f ‖∞

(
1 + |c| + |d|)5k

× (ea
m,N(c) + ea

m′,N (d) + a
λa/(1+2kk∗m)
k

)
.

The statement now follows by recalling that λa = θ and, from (3.18), dk ≤
C(dk(QN,k∗(c,X),QN,k∗(d,Y )) +|c|

2(2kk∗m+1)
k∗m

m+1,N + |d|
2(2kk∗m+1)

k∗m

m′+1,N ).

APPENDIX: AN ITERATED HOEFFDING’S INEQUALITY

In this section, we work with multi-indexes α = (α1, . . . , αm) ∈ N
m with 1 ≤

α1 < · · · < αm and we look to

�m

(
c2)= ∑

|α|=m

c2(α)χα,

where χn, n ∈ N, denote independent Bernoulli random variables and χα =∏m
i=1 χαi

. We denote

|c|2m = ∑
|α|=m

c2(α) and δ2
m(c) = max

n

∑
|α|=m,n∈α

c2(α).

LEMMA A.1. Let p = P(χj = 1) ∈ (0,1). If

(A.1) x <

(
p

2

)N

|c|2N
then

(A.2) P
(
�N

(
c2)≤ x

)≤ 2e3

9
N exp

(
− x2

δ2
N(c)|c|2N

)
.

PROOF. We proceed by recurrence on N . If N = 1, we have

P
(
�N

(
c2)≤ x

)= P

(∑
n

c2(n)χn ≤ x

)

≤ P

(
p
∑
n

c2(n) ≤ 2x

)
+ P

(∑
n

c2(n)(p − χj ) ≥ x

)

= P

(∑
n

c2(n)(p − χj ) ≥ x

)
,
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the latter inequality following from (A.1). By Hoeffding’s inequality,

P

(∑
j

c2(j)(p − χj ) ≥ x

)
≤ exp

(
− 2x2∑

j c4(j)

)
.

Since ∑
j

c4(j) ≤ max
j

c2(j) ×∑
j

c2(j) = δ2
1(c)|c|21

(A.2) follows for N = 1. We suppose now that (A.2) holds for N − 1 and we prove
it for N . For β with |β| = N −1, we define cn(β) = c(β,n)1{βN−1<n} and we write

�N

(
c2)= ∑

|α|=N

c2(α)χα =
∞∑

n=N

χn

∑
|β|=N−1,βN−1<n

c2(β,n)χβ

=
∞∑

n=N

χn�N−1
(
c2
n

)
.

Then

P
(
�N

(
c2)≤ x

)
≤ P

( ∞∑
n=N

�N−1
(
c2
n

)≤ 2x

p

)
+ P

( ∞∑
n=N

(p − χn)�N−1
(
c2
n

)≥ x

)
=: a + b.

We estimate first b. We write
∞∑

n=N

�N−1
(
c2
n

)= ∑
|β|=N−1

d2
n(β)χβ with d2(β) =

∞∑
n>βN−1

c2(β,n).

Notice that

|d|2N−1 = ∑
|β|=N−1

∞∑
n>βN−1

c2(β,n) = ∑
|α|=N

c2(α) = |c|2N

and

δ2
N−1(d) = max

k

∑
|α|=N−1,k∈α

d2(α) = max
k

∑
|α|=N−1,k∈α

∞∑
n>αN−1

c2(α,n)

≤ max
k

∑
|β|=N,k∈β

c2(β) = δ2
N(c).

We also have

2x

p
<

2

p

(
p

2

)N

|c|2N =
(

p

2

)N−1
|d|2N
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so we can use the recurrence hypothesis and we get

b = P

(
�N−1

(
d2)≤ 2x

p

)
≤ 2e3

9
(N − 1) exp

(
− (2x/p)2

δ2
N−1(d)|d|2N−1

)

≤ 2e3

9
(N − 1) exp

(
− x2

δ2
N(c)|c|2N

)
.

(A.3)

We estimate now a. We use Corollary 1.4, page 1654 in Bentkus [8], which asserts
the following: if Mk,k ∈ N is a martingale such that |Mk − Mk−1| ≤ hk almost
surely, then for every n ∈ N,

(A.4) P(Mn ≥ x) ≤ 2e3

9
exp
(
− x2∑n

j=1 h2
j

)
.

Since 0 ≤ χn ≤ 1, we have

�N−1
(
c2
n

)≤ ∑
|β|=n,βN−1<n

c2(β,n) =: hn.

Notice that hn ≤ δ2
N(c) so that

n∑
j=1

h2
j ≤ δ2

N(c)

n∑
j=1

hj = δ2
N(c)|c|2N.

So, using (A.4),

a = P

( ∞∑
j=1

(p − χj )�N−1(cn) ≥ x

)
≤ 2e3

9
exp
(
− x2

δ2
N(c)|c|2N

)
.

This, together with (A.3), gives (A.2). �
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