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Abstract. In this article, we develop a methodology to prove weak uniqueness for stochastic differential equations with coefficients
depending on some path-functionals of the process. As an extension of the technique developed by Bass and Perkins (In From Proba-
bility to Geometry (I): Volume in Honor of the 60th Birthday of Jean-Michel Bismut (2009) 47–53) in the standard diffusion case, the
proposed methodology allows one to deal with process whose probability laws is singular with respect to the Lebesgue measure. To il-
lustrate our methodology, we prove weak existence and uniqueness in the two following examples: a diffusion process with coefficients
depending on its running local time and a diffusion process with coefficients depending on its running maximum. In each example, we
also prove the existence of the associated transition density and establish some Gaussian upper-estimates.

Résumé. Dans cet article, nous développons une méthodologie permettant de prouver l’unicité faible pour des équations différentielles
stochastiques dont les coefficients dépendent de certaines fonctionnelles de la trajectoire du processus. Dans le prolongement de la
technique développée par Bass & Perkins (In From Probability to Geometry (I): Volume in Honor of the 60th Birthday of Jean-Michel
Bismut (2009) 47–53) dans le cas des processus de diffusions standards, la méthologie proposée permet de traiter le cas de processus
dont la loi est singulière par rapport à la mesure de Lebesgue. Afin d’illustrer notre méthodologie, nous prouvons l’existence et l’unicité
faible dans les deux exemples suivants: un processus de diffusion dont les coefficients dépendent du temps local en zéro courant et
un processus de diffusion dont les coefficients dépendent du maximum courant. Dans chaque exemple, nous prouvons également
l’existence d’une densité de transition associée et établissons des estimées Gaussiennes.
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1. Introduction

In the present paper, we investigate the weak existence and uniqueness of an one-dimensional stochastic differential
equation (SDE) with coefficients depending on some path-functional A and dynamics given by

Xt = x0 +
∫ t

0
b
(
Xs,As(X)

)
ds +

∫ t

0
σ
(
Xs,As(X)

)
dWs, (1.1)

where (Wt )t≥0 stands for a one-dimensional Brownian motion and (At (X))t≥0 is an Rd−1-valued functional (d ≥ 2)
depending on the path of X in a non-anticipative way, namely, it depends on the path of X·∧t . Some examples include its
local and occupation times, its running maximum or minimum, its first hitting time of a level, its running average, etc.
From the point of view of applications, systems of the type (1.1) appear in many fields. Let us mention stochastic Hamil-
tonian systems where At(X) = ∫ t

0 F(s,Xs) ds, see e.g. [16] for a general overview, [18] for convergence to equilibrium
or [2] for an application to the pricing of Asian options. We also mention [7], where the author constructs a weak solution
to the SDE (1.1) with b ≡ 0 and At(X) = max0≤s≤t Xs is the running maximum of X and investigates an application in
mathematical finance.
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In the standard multi-dimensional diffusion framework, the martingale approach initiated by Stroock and Varadhan
turns out to be particularly powerful when trying to get uniqueness results. It is now well-known that the martingale
problem associated to a multi-dimensional diffusion operator is well posed as soon as the drift is bounded measurable
and that the diffusion matrix is continuous (with respect to the space variable) and strictly positive, see e.g. Stroock and
Varadhan [17]. In the indicated framework, uniqueness is derived from Calderón–Zygmund estimates. Also, when a is
Hölder continuous, an analytical approach using Schauder estimates can be applied, see e.g. Friedman [8].

Recently, Bass and Perkins [4] introduced a new technique for proving uniqueness for the martingale prob-
lem and illustrated it in the framework of non-degenerate, non-divergence and time-homogeneous diffusion opera-
tors under the assumption that the diffusion matrix is strictly positive and Hölder continuous. It has also been re-
cently extended by Menozzi [14] for a class of multi-dimensional degenerate Kolmogorov equations, that is, the
case of a multi-dimensional path functional A = (A1

t , . . . ,A
N
t )t≥0 given by: A1

t (X) = ∫ t

0 F1(Xs,As(X))ds, A2
t (X) =∫ t

0 F2(A
1
s , . . . ,A

N
s ) ds, . . . ,AN

t (X) = ∫ t

0 FN(AN−1
s ,AN

s ) ds, under an assumption of weak Hörmander type on the func-
tions (F1, . . . ,FN). The approach in the two mentioned papers consists in using a perturbation method for Markov
semigroups, known as the parametrix technique, such as exposed in Friedman [8] in the case of uniformly elliptic diffu-
sion. More precisely, the first step of the strategy is to approximate the original system by a simple process obtained by
freezing the drift and the diffusion coefficients in the original dynamics, and use the fact that the transition density of such
approximation as well as its derivatives can be explicitly estimated. Then, the key ingredient is the smoothing property of
the underlying parametrix kernel, see assumption (H1) (iv) in Section 2.1 for a precise statement. This property reflects
the quality of the approximation of the original dynamics. An important remark is that this smoothing property is only
achieved when the freezing point, that is the point where the coefficients are evaluated in the approximation process, is
chosen to be the terminal point in the transition density.

The main purpose of this paper is to develop a technique in order to prove weak uniqueness as well as existence of a
transition density for some SDEs with path-functional coefficients where the probability law of the couple (Xt ,At (X))

may be singular with respect to the Lebesgue measure on Rd . The main new feature added here compared to previous
works on this topic is that our technique enables us to deal with a process whose probability law is absolutely continuous
with respect to a σ -finite measure.

Our methodology can be summed up as follows: suppose that the transition density of the Markov process
(Wt ,At (W))t≥0 with initial point x exists with respect to a σ -finite measure ν(x, dy), not necessarily being the Lebesgue
measure on Rd , and a chain rule (Itô’s) formula for h(t,Xt ,At (X)) is available, where h belongs to a suitable class of
functions D related to the domain of the infinitesimal generator of the Markov process (Wt ,At (W))t≥0. Then as soon as
the derivatives of the transition density of (Wt ,At (W))t≥0 satisfies some good estimates or equivalently if the parametrix
kernel enjoys a smoothing property with respect to ν(x, dy), one has the main tools to prove weak uniqueness for the
SDE (1.1).

Since the probability law of the process (Xt ,At (X))t≥0 may be singular, it is not clear how to select the approximation
process and even if this crucial smoothing property will be achieved in such context. To be more precise, let us look at
the following example. If one considers the couple (Xt ,At (X))t≥0, At(X) = L0

t (X) being the local time at point 0
accumulated by X up to time t , then it is easy to see that on {T0 > t}, T0 being the first hitting time of 0 by X, one
has L0

t (X) = 0 whereas on {T0 ≤ t}, the process may accumulate local time so that the probability law of the couple
(Xt ,L

0
t (X)) consists in two parts, one being singular with an atom in the local time part, the other one (hopefully) being

absolutely continuous with respect to the Lebesgue measure on R × R+. Hence, we see that for such dynamics the
situation is more challenging than in the standard diffusion setting. This new difficulty will be overcome by choosing
two independent parametrix kernels, one for each part, and then by proceeding with a non-trivial selection of the freezing
point according to the singular measure induced by the approximation process. Even in this singular framework, one
is able to prove that the smoothing property of the parametrix kernel still holds which is, as previously mentioned, the
keystone to prove weak uniqueness for the SDE (1.1). As far as we know these feature appear to be new.

It will be apparent in what follows that our approach is not limited to the one-dimensional SDE case. We believe that
the methodology developed here could be used to tackle multi-dimensional examples such as the one studied in [14] (up
to to some technicalities). However, we decide to confine our presentation to the one-dimensional framework to foster
understanding of the main arguments. As an illustration of our methodology we consider two examples. In the first one,
we choose At(X) = L0

t (X), t ≥ 0, where L0
t (X) is the local time at 0 accumulated by X up to time t . The bivariate

density of Brownian motion and its running local time at 0 can be found e.g. in Karatzas and Shreve [11]. In the second
example, we consider the running maximum of the process, that is, At(X) = max0≤s≤t Xs , t ≥ 0.

The first part of our main results is an application of the general methodology developed in Section 2. More precisely,
in Theorem 3.3 and Theorem 3.7 we prove that weak uniqueness holds for the SDE (1.1) when the path-functional is
the local time or the running maximum, under the assumption that the drift b is bounded measurable and the diffusion
coefficient a = σ 2 is uniformly elliptic, bounded and η-Hölder-continuous, for some η ∈ (0,1].
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Finally, the strategy developed in this paper can be used not only to prove the existence, but also to retrieve an explicit
representation of the transition density (with respect to a σ -finite measure) of (Xt ,At (X))t≥0 as an infinite series. How-
ever, one has to overcome new technical issues compared to the standard diffusion setting investigated by Friedman [8]
or even to the degenerate case considered by Delarue and Menozzi [5]. Leaving this technical discussion to Section 3.3,
we only point out that the main difficulty lies in the non-integrable time singularity induced by the mixing of the singular
and non-singular parts of the parametrix kernel. In order to overcome this issue, which to our best knowledge appears
to be new, the key idea is to use the symmetry of the density of the killed proxy with respect to the initial and terminal
points, in order to retrieve the integrability in time of the underlying parametrix kernel. As the second part of our main
results, we prove the existence of the transition density for (Xt ,At (X))t≥0 as well as its representation in infinite series
for the two examples mentioned before, see Theorem 3.4 and Theorem 3.8 below. Some Gaussian upper-estimates are
also established.

Notations and useful estimates:

We introduce here some basic notations and definitions used throughout this paper. For a sequence of linear operators
(Si)1≤i≤n, we define

∏n
i=1 Si = S1 · · ·Sn. We will often use the convention

∏
∅ = 1 which appears when we have for

example
∏−1

i=0. Let J be a closed subset of Rd with non-empty interior, we denote by Ck
b (J ), the collection of bounded

continuous functions which are k-times continuously differentiable with bounded derivatives in the interior of J . The
derivatives at the boundary ∂J are defined as limits from the interior and it is assumed that they exist (and thus finite).
The set Bb(J ) is the collection of real-valued bounded measurable maps defined on J . Furthermore we will use the
following notation for time and space variables sp = (s1, . . . , sp), zp = (z1, . . . , zp), the differentials dsp = ds1 · · · dsp ,
dzp = dz1 · · · dzp and for a fixed time t ≥ 0, we denote by �p(t) = {sp ∈ [0, t]p : sp+1 := 0 ≤ sp ≤ sp−1 ≤ · · · ≤ s1 ≤
t =: s0}. For a multi-index α = (α1, . . . , α�) of length �, we sometimes write ∂αf (x) = ∂xα1

· · · ∂xα�
f (x), for a vector

x. We denote by y �→ g(ct, y) the transition density function of the standard Brownian motion with constant diffusion
coefficient σ = √

c, i.e. g(ct, y) = (2πct)−1/2 exp(−y2/(2tc)), y ∈ R. Its derivatives of order i, i ∈ N, are denoted by
Hi(ct, y) = ∂i

yg(ct, y). For a given z ∈ Rd , the Dirac measure at point z is denoted by δz(dx). For a, b ∈ R, we use the

notation a 
 b if there exists a constant C > 1 such that C−1b ≤ a ≤ Cb. We denote by |f |∞ the supremum norm of a
function f .

One of the key inequality that will be used intensively in this work is the following: for any p,q > 0 and x ∈ R,
|x|pe−qx2 ≤ (p/(2qe))p/2. As a direct consequence of this inequality, we have the space-time inequality,

∀p, c > 0, |x|pH0(ct, x) ≤ Ctp/2H0
(
c′t, x

)
(1.2)

which in turn gives the standard Gaussian estimates for the derivatives of Gaussian density, namely

∀c,∀i ∈N,
∣∣Hi(ct, x)

∣∣ ≤ C

ti/2
H0

(
c′t, x

)
(1.3)

for some positive constants C, c′. As these two inequalities are applied on numerous occasions throughout the paper, we
will often omit to refer to them explicitly.

2. Abstract framework for weak uniqueness

2.1. A perturbation formula

Throughout this section, we assume that there exists a weak solution (X,W), {Ft } to (1.1) for every initial condition
x0 and that the process Yt := (Xt ,At (X))t≥0, starting from the initial point x at time 0, has (almost surely) continuous
sample paths living on a closed space J ⊂ Rd . The process (Xt ,At (X))t≥0 induces a probability measure Px (or simply
denoted P) on � = C([0,∞),J ) which is endowed with the canonical filtration (Ft )t≥0. We consider the collection
of linear maps (Pt )t≥0 defined by Pth(x) := E[h(Xt ,At (X))] for h ∈ Bb(J ). It is important to point out that, at this
moment, we do not know whether Y is a (strong) Markov process or not. However, one of our main assumption (see
assumption (H1) (ii) below) links the process Y to the solution of a martingale problem in the sense of Stroock and
Varadhan [17]. As in the standard diffusion case, the strong Markov property will be a consequence of weak uniqueness.

Note that, for the moment, the coefficients b, σ are real-valued Borel measurable functions defined on J and σ is
assumed to be continuous on J . However to obtain the approximation process we will often work with the continuous
extension of σ to Rd by using Tietze’s extension theorem and freeze σ at some point z ∈ Rd . Therefore for some fixed
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point z ∈ Rd , we denote the approximation or the proxy process by X̄z ≡ X̄, that is the solution of (1.1) with b = 0
and the diffusion coefficient σ evaluated at z. Without going into details, the key idea is to consider the process Y as a
perturbation of the proxy Ȳ ≡ Ȳ z = (X̄t ,At (X̄))t≥0 whose law is denoted by p̄t (x, dy) ≡ p̄z

t (x, dy). Accordingly, we
define the collection of linear maps (P̄t )t≥0 by P̄th(x) ≡ P̄ z

t h(x) := E[h(X̄t ,At (X̄))] = ∫
h(y)p̄t (x, dy) for h ∈ Bb(J ).

Note that the linear map P̄t depends on z and, in general, to indicate that one is working with the approximation process
with coefficients frozen at z or functions associated with the approximation process frozen at z, we put a bar on top of the
function and, in order to simplify the notation, we will often omit to write the dependence with respect to z. To indicate
that the frozen point is the terminal point y of the proxy density, we will put a hat instead of a bar.

We define the shift operators (θty)(s) = y(t + s), 0 ≤ s < ∞ for t ≥ 0 and y ∈ C([0,∞),J ). For any deterministic
time t ≥ 0, we denote by Qt,w the regular conditional probability for Px given Ft and let Pt,w be the probability measure
defined by Pt,w := Qt,w ◦ θ−1

t . In particular, for every F ∈ B(C([0,∞),J )), one has Px(θ−1
t F |Ft )(w) =Qt,w(θ−1

t F ) =
Pt,w(F ), for Px -a.e. w ∈ �. Our proof of weak uniqueness consists in first proving that two solutions of the martingale
problem associated to (1.1) have the same one-dimensional marginal distribution and then passing to the full law of the
process. Here we do not know that our solutions are part of a (strong) Markov family and in general, as in the standard
diffusion case, this will be a consequence of weak uniqueness, or equivalently of the well-posedness of the martingale
problem, see [12,17] or [3]. As a consequence we require the following substitute.

Assumption (H0). For every x ∈ J , for every t ∈ [0,∞), there exists a Px -null event N of Ft such that, for every w /∈ N ,
the probability measure Pt,w can be induced by a weak solution starting from w(t) at time 0.

The above assumption allows one to prove that the finite-dimensional distributions are unique once we know that two
weak solutions have the same one-dimensional marginal distributions, see e.g. Chapter 5 [12] or Chapter VI [3].

At this stage, we prefer not to state assumptions on the coefficients b and σ , but rather, we provide the required
assumptions on the law of the approximation process Ȳ . Then we develop the methodology in order to establish a first
order expansion of (Pt )t≥0 and to prove that two solutions of the martingale problem share the same one-dimensional
marginal distribution. These assumptions are then checked on the two examples investigated here: the local time at zero
and the running maximum.

Assumption (H1). Given the initial condition x ∈ J and a fixed point z ∈ Rd .

(i) (a) The proxy process Ȳ z is a Markov process with continuous sample paths and with infinitesimal generator L̄ ≡ L̄z

and ∂t P̄
z
t h = L̄zP̄ z

t h = P̄t L̄zh for h ∈ Dom(L̄z) where

Dom
(
L̄z

) :=
{
h ∈ Cb(J ) : ∀x ∈ J , L̄zh(x) := lim

t↓0

1

t

[
P̄ z

t h − h
]
(x) exists and L̄zh ∈ Cb(J )

}
.

(b) There exists a σ -finite measure ν(x, ·) such that ν(·,A) is Borel measurable for any A ∈ B(Rd) and satisfying
for all t > 0, the law of Ȳ z

t is absolutely continuous with respect to ν(x, ·). Moreover, there exists a ν(x, dy)-
integrable function (t, x, y) �→ p̄z

t (x, y) satisfying

p̄z
t (x, dy) = p̄z

t (x, y)ν(x, dy).

In particular, the Markov semi-group can be written P̄ z
t h(x) = ∫

h(y)p̄z
t (x, y)ν(x, dy) for all h ∈ Bb(J ). Also

to make the notation simpler, when z = y, we write

p̂t (x, y) := p̄
y
t (x, y)

and define accordingly

P̂th(x) :=
∫

h(y)p̂t (x, y)ν(x, dy) =
∫

h(y)p̄
y
t (x, y)ν(x, dy). (2.1)

(ii) There exists a subset of functions D ⊂ C1,0
b (R+ ×J ) and an operator L acting on D such that:

(a) For all h ∈ C∞
b (J ), (0,∞) ×J � (t, x) �→ P̄ z

t h(x) ∈ D and for every fixed t > 0, P̄ z
t h ∈ Dom(L̄z).

(b) For all h ∈ D, the process

h(t, yt ) − h(0, x) −
∫ t

0
{∂1 +L}h(s, ys) ds, t ≥ 0

is a continuous square integrable martingale under Px .
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(c) There exists a parametrix kernel θ̄t with respect to the measure ν, that is, a measurable map (t, z, x, y) �→
θ̄ z
t (x, y) such that for all h ∈ C∞

b (J ) and all t > 0

(
L− L̄z

)
P̄ z

t h(x) =
∫

h(y)θ̄ z
t (x, y)ν(x, dy). (2.2)

We again simplify the notation by writing θ̂t (x, y) = θ̄
y
t (x, y) and define

St h(x) :=
∫

h(y)θ̂t (x, y)ν(x, dy) =
∫

h(y)θ̄
y
t (x, y)ν(x, dy). (2.3)

(iii) For all x, y ∈ J and t > 0, the maps (t, z) �→ p̄z
t (x, y) and (t, z) �→ θ̄ z

t (x, y) are continuous on (0,∞) ×Rd .
(iv) For all t > 0, there exists some ν(x, dy)-integrable functions p∗

t (x, y), θ∗
t (x, y), a constant ζ̄ ∈ R and a positive

constant C, eventually depending on t but in a non-decreasing way, such that

∀z ∈ Rd,
∣∣p̄z

t (x, y)
∣∣ ≤ p∗

t (x, y),
∣∣θ̄ z

t (x, y)
∣∣ ≤ θ∗

t (x, y)

and∫
p∗

t (x, y)ν(x, dy) ≤ C,

∫
θ∗
t (x, y)ν(x, dy) ≤ Ctζ̄ .

For the case z = y, we assume that the parametrix kernel enjoys the following smoothing property: there exists
ζ > −1 and a positive constant C, eventually depending on t in a non-decreasing way, such that

∀t > 0,∀x ∈ J ,

∫ ∣∣θ̂t (x, y)
∣∣ν(x, dy) ≤ Ctζ . (2.4)

(v) For any h ∈ Cb(J ), one has

lim
t↓0

P̂th(x) = lim
t↓0

∫
h(y)p̄

y
t (x, y)ν(x, dy) = h(x).

(vi) For any h ∈ Cb(J ) and t > 0,

lim
r↓0

P̂t+rh(x) = P̂th(x) and lim
r↓0

St+rh(x) = St h(x)

where the operators P̂t and St are defined in (2.1) and (2.3) respectively.

Remark 2.1. The set of assumptions (H1) will allow us to prove a perturbation formula of the map Pt around P̂t , see
Theorem 2.2 below. The kernel of St defined above satisfies the smoothing property given by equation (2.4) which is, as
mentioned in the introduction, the key point to prove uniqueness in law for equation (1.1). This smoothing property was
exploited in [4] and in [14] for some degenerate Kolmogorov equations. The main new feature added here is that we are
able to deal with a process that admits a density with respect to a σ -finite measure (with eventually several atoms). In
particular, the process can be singular in the sense that it may not admit a transition density with respect to the Lebesgue
measure on J .

Assumption (H1) (ii) (b) provides a chain rule formula for the process Y = (Xt ,At (X))t≥0 for a suitable class of
functions D. The operator L is identified by means of this chain rule formula. As we will see in Section 3, this assumption
will help us to formulate the martingale problem associated to the process Y . This will be used later on in order to establish
the existence of a weak solution to the SDE (1.1).

Theorem 2.2. Assume that (H1) holds. Then, for any h ∈ Cb(J ),

PT h(x) = P̂T h(x) +
∫ T

0
PsST −sh(x) ds.
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Proof. Let f ∈ C∞
b (J ). Let r > 0, by assumption (H1) (ii) (a) and (b) applied to [0, T ] × J � (t, x) �→ h(t, x) =

P̄T −t+rf (x) ∈ D, there exists a continuous martingale (M̄t )0≤t≤T starting at 0 such that

P̄T −t+rf (Yt ) = P̄T +rf (x) +
∫ t

0
(∂s +L)P̄T −s+rf (Ys) ds + M̄t

=
∫

f (y)p̄z
T +r (x, y)ν(x, dy) +

∫∫ t

0
f (y)θ̄ z

T −s+r (Ys, y)ν(Ys, dy)ds + M̄t .

We now proceed to the diagonalisation argument, that is the argument that allows one to select the freezing point z

according to the measure ν(x, dy). For a fixed point y ∈ J , we consider a sequence of non-negative mollifiers δz
ε(y), ε > 0

such that δz
ε(y) ≤ Cε and (δz

ε(y))ε>0 converges weakly to the Dirac mass at y as ε ↓ 0, e.g. we set δz
ε(y) = g(ε, z − y).

For any h ∈ C∞
b (J ), we apply the above decomposition for x �→ f (x) = δz

ε(x)h(x) and take expectations. We obtain

Pt P̄T −t+r δ
z
εh(x) =

∫
δz
ε(y)h(y)p̄z

T +r (x, y)ν(x, dy) +E

[∫∫ t

0
δz
ε(y)h(y)θ̄ z

T −s+r (Ys, y)ν(Ys, dy)ds

]
.

We let t ↑ T and integrate with respect to z over Rd , from (H1) (iv) and Fubini’s theorem, we obtain∫
PT P̄rδ

z
εh(x) dz

=
∫∫

δz
ε(y)h(y)p̄z

T +r (x, y)ν(x, dy)dz +
∫∫ T

0
E

[∫
δz
ε(y)h(y)θ̄ z

T −s+r (Ys, y)ν(Ys, dy)

]
ds dz. (2.5)

We now pass to the limit as ε ↓ 0 and then r ↓ 0 in (2.5). We first give some useful estimates. By using (H1) (iv), we
have ∣∣∣∣∫ δz

ε(y)p̄z
t (x, y) dz

∣∣∣∣ ≤ p∗
t (x, y), (2.6)∣∣∣∣∫ δz

ε(y)θ̄ z
t (x, y) dz

∣∣∣∣ ≤ θ∗
t (x, y). (2.7)

Let us consider the left-hand side of (2.5). From (2.6), we can apply Fubini’s theorem to pass the integral w.r.t dz inside
to obtain∫

E
[
P̄r δ

z
εh(YT )

]
dz = E

[∫∫
δz
ε(y)h(y)p̄z

r (YT , y)ν(YT , dy)dz

]
= E

[∫ {∫
δz
ε(y)p̄z

r (YT , y) dz

}
h(y)ν(YT , dy)

]
. (2.8)

Then the dominated convergence theorem together with (H1) (iii) allow us to conclude

lim
ε↓0

∫
E
[
P̄r δ

z
εh(YT )

]
dz = E

[∫
p̄

y
r (YT , y)h(y)ν(YT , dy)

]
= E

[
P̂rh(YT )

]
.

Consequently, by letting r ↓ 0 and using (H1) (iv) and (v), we obtain again by the dominated convergence theorem
limr↓0 E[P̂rh(YT )] = PT h(x).

For the right-hand side of (2.5). Again by (2.6) we can apply Fubini’s theorem and then the dominated convergence
theorem while having in mind (H1) (iii). This yields

lim
ε↓0

∫
P̄T +r δ

z
εh(x) dz = lim

ε↓0

∫ {∫
δz
ε(y)h(y)p̄z

T +r (x, y) dz

}
ν(x, dy)

=
∫

h(y)p̄
y
T +r (x, y)ν(x, dy) = P̂T +rh(x). (2.9)

Letting r ↓ 0 in the previous equality, by (H1) (vi) we deduce that limr↓0 limε↓0
∫

P̄T +r δ
z
εh(x) dz = P̂T h(x).
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We now handle the second term appearing on the right-hand side of (2.5). To pass to the limit as ε ↓ 0, we first apply
Fubini’s theorem (using (2.7)) then the dominated convergence theorem using (H1) (iv) and (iii) so that

lim
ε↓0

∫∫ T

0
E

[∫
δz
ε(y)h(y)θ̄ z

T −s+r (Ys, y)ν(Ys, dy)

]
ds dz

= lim
ε↓0

E

[∫∫ T

0

{∫
h(y)δz

ε(y)θ̄ z
T −s+r (Ys, y) dz

}
ν(Ys, dy)ds

]
= E

[∫∫ T

0
lim
ε↓0

{∫
h(y)δz

ε(y)θ̄ z
T −s+r (Ys, y) dz

}
ν(Ys, dy)ds

]
= E

[∫∫ T

0
h(y)θ̄

y
T −s+r (Ys, y)ν(Ys, dy)ds

]
= E

[∫ T

0
ST −s+rh(Ys) ds

]
. (2.10)

To pass to the limit as r ↓ 0, we remark that in (H1) (iv) equation (2.4), ζ > −1, this allow dominated convergence to
be used again which yields

lim
r↓0

E

[∫ T

0
ST −s+rh(Ys) ds

]
= E

[∫ T

0
lim
r↓0

ST −s+rh(Ys) ds

]
= E

[∫ T

0
ST −sh(Ys) ds

]
where we applied (H1) (vi) for the last equality. The result is valid for h ∈ C∞

b (J ) and an approximation argument
completes the proof. �

We are not so far from obtaining a representation of PT h in infinite series. Once weak existence and uniqueness for
the SDE (1.1) is established, this representation will be useful in order to establish the existence of a transition density
for the process Y . We will also employ it to derive some Gaussian upper-bound estimates for the density of the couple
(XT ,AT (X)).

Corollary 2.1. Assume that (H1) holds and that for any h ∈ Cb(J ) and t > 0, the function St h defined in (2.3) belongs
to Cb(J ). Then one may iterate the first order formula in Theorem 2.2 to obtain

PT h(x) = P̂T h(x) +
∑
n≥1

In
T h(x) (2.11)

with

In
T h(x) :=

∫
�n(T )

dsnP̂snSsn−1−sn · · ·ST −s1h(x).

Moreover, the series (2.11) converges absolutely and uniformly for x ∈ J .

Proof. We remark that since for all t > 0, x �→ St h(x) ∈ Cb(J ), we can iterate the first order expansion in Theorem 2.2
to obtain

PT h(x) = P̂T h(x) +
N−1∑
n=1

∫
�n(T )

dsnP̂snSsn−1−sn · · ·ST −s1h(x) + RN
T h(x)

where the remainder term is given by

RN
T h(x) =

∫
�N(T )

dsNPsNSsN−1−sN · · ·ST −s1h(x).

From iterative application of estimate (2.4), the remainder term is bounded by

∣∣RN
T h(x)

∣∣ ≤ CT |h|∞
∫

�N(T )

dsN

N−1∏
n=0

C(sn − sn−1)
ζ ≤ CN

T T N(1+ζ ) �(1 + ζ )N

�(1 + N(1 + ζ ))

where ζ �→ �(ζ ) is the Gamma function. By Lemma A.1 and the asymptotics of the Gamma function at infinity, we
clearly see that the remainder goes to zero uniformly in x ∈ J as N ↑ ∞. �
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2.2. Weak uniqueness

Throughout this section, we will assume that (H1) is in force. Our aim is to prove weak uniqueness for the SDE (1.1).
The main argument is an extension of the technique introduced by Bass and Perkins [4] in order to investigate the well-
posedness of a martingale problem. It notably allows us to deal with singular probability law in the sense that the law of
Yt , t > 0, may not be absolutely continuous with respect to the Lebesgue measure on Rd . Moreover, the new contribution
of this section compared to the existing literature on this topic is that we identify the main assumptions, namely (H0),
(H1) and (H2), required to establish weak uniqueness, thus allowing for a general treatment.

We consider two weak solutions of the SDE (1.1) starting at time 0 from the same initial point x ∈ J . Denote by
P1 and P2 the two probability measures induced on the space (C([0,∞),J ),B(C([0,∞),J ))). We introduce the two
resolvents associated to P1 and P2, defined for h ∈ Bb(J ) and λ > 0, by

Si
λh(x) := EPi

[∫ ∞

0
e−λth(yt ) dt

]
=

∫ ∞

0
e−λtEPi

[
h(yt )

]
dt, i = 1,2, S�

λ h(x) := (
S1

λ − S2
λ

)
h(x)∥∥S�

λ

∥∥ := sup
‖h‖∞≤1

∣∣S�
λ h

∣∣.
For z ∈Rd , the resolvent of the approximation process is defined by

R̄z
λf (x) =

∫ ∞

0
e−λt P̄ z

t h(x) dt, for h ∈ Bb(J ).

We make the following assumptions.

Assumption (H2). For any z ∈ Rd and any h ∈ C∞
b (J ). The map (t, x) �→ R̄λP̄th(x) belongs to D with LR̄λP̄th being

bounded measurable and is such that for r > 0

(λ − L̄)R̄λP̄rh = R̄λ(λ − L̄)P̄rh, (2.12)

(L− L̄)R̄λP̄rh =
∫ ∞

0
e−λs(L− L̄)P̄r+shds. (2.13)

Lemma 2.1. Under assumption (H1) and (H2), for h ∈ C∞
b (J )

(i) R̄λ(λ − L̄)P̄rh = P̄rh.
(ii) Si

λ(λ −L)R̄λP̄rh = R̄λP̄rh, for i = 1,2.

Proof. To see (i), from the very definition of R̄λ and (H1) (i) (a) and (ii) (a), that is, the fact that (P̄t )t≥0 is a Markov
semi-group with infinitesimal generator L̄ satisfying P̄t L̄P̄rh = L̄P̄t P̄rh = L̄P̄t+rh = ∂t P̄t+rh, we get

R̄λ(λ − L̄)P̄rh =
∫ ∞

0
e−λt P̄t (λ − L̄)P̄rhdt

=
∫ ∞

0
e−λt (λ − ∂t )P̄t+rhdt = P̄rh,

where we used the continuity of t �→ P̄t+rh, which is a direct consequence of the continuity of the sample path of
(X̄,A(X̄)).

To see (ii), let h ∈ C∞
b (Rd) since R̄λP̄rh ∈D by (H1) (ii) (b) we get

e−λt R̄λP̄rh(Yt ) = R̄λP̄rh(x) +
∫ t

0
−λe−λsR̄λP̄rh(Ys) ds +

∫ t

0
e−λsLR̄λP̄rh(Ys) ds + M̄t

where M̄ is a square integrable martingale. By taking the expectation and using the fact that LR̄λP̄rh is bounded, we have
by the Fubini theorem

e−λtEPi

[
R̄λP̄rh

(
y(t)

)] = R̄λP̄rh(x) −
∫ t

0
e−λsEPi

[
(λ −L)R̄λP̄rh(ys)

]
ds.
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Finally, the dominated convergence theorem is used to pass to the limit as t ↑ ∞ in the previous equality and this
completes the proof of (ii). �

Let z ∈ Rd and r > 0. We consider the sequence of non-negative mollifiers {δz
ε(y) = g(ε, z − y), ε > 0}. Let us first

observe that if h ∈ C∞
b (J ) then from assumption (H2) one has

(λ −L)R̄λP̄rδ
z
εh(x) = (λ − L̄)R̄λP̄rδ

z
εh(x) − (L− L̄)R̄λP̄rδ

z
εh(x)

= P̄r δ
z
εh(x) − (L− L̄)R̄λP̄rδ

z
εh(x). (2.14)

Note that by using (2.13) the second term appearing in the right-hand side of the above equality is given by

(L− L̄)R̄λP̄rδ
z
εh(x) =

∫ ∞

0
e−λt (L− L̄)P̄t+r δ

z
εh(x) dt. (2.15)

We are now ready to prove weak uniqueness for (1.1).

Theorem 2.3. Assume that Assumptions (H0), (H1) and (H2) are satisfied, then weak uniqueness holds for the SDE given
in (1.1).

Proof. Let z ∈ Rd be the freezing point. The first part of the proof is similar to that of Theorem 2.2. We integrate both
sides of (2.14) over Rd with respect to dz, apply S�

λ and then pass to the limit as ε, r ↓ 0. For i = 1,2, we first consider
(λ − L)R̄z

λP̄
z
r δz

εh using (2.14) and (2.15), then by using estimates (2.6) and the inequality |(L − L̄z)P̄ z
t+r δ

z
εh(x)| ≤

Cε|h|∞rζ̄ , we can apply Fubini’s theorem so that

Si
λ

∫
(λ −L)R̄z

λP̄
z
r δz

εhdz =
∫ ∞

0
e−λtEPi

[∫
(λ −L)R̄z

λP̄
z
r δz

εh(yt ) dz

]
dt =

∫
Si

λ(λ −L)R̄z
λP̄

z
r δz

εhdz,

and from Lemma 2.1 (ii)

S�
λ

(∫
(λ −L)R̄z

λP̄
z
r δz

εhdz

)
=

∫
S�

λ (λ −L)R̄z
λP̄

z
r δz

εhdz = 0.

Then, from (2.14) we deduce

S�
λ

(∫
P̄ z

r δz
εhdz

)
− S�

λ

(∫ (
L− L̄z

)
R̄z

λP̄
z
r δz

εhdz

)
= 0.

Let us consider the first term in the above expression and take the limit first as ε ↓ 0 and then as r ↓ 0. For i = 1,2,
under (H1), the limit as ε ↓ 0 can be taken using the dominated convergence theorem while the limit as r ↓ 0 follows
from (H1) (v) (similarly to (2.9))

lim
r↓0

lim
ε↓0

∫ ∞

0
e−λtEPi

[∫
P̄ z

r δz
εh(yt ) dz

]
dt = lim

r↓0

∫ ∞

0
e−λtEPi

[
P̂rh(yt )

]
dt =

∫ ∞

0
e−λtEPi

[
h(yt )

]
dt.

This shows that limr,ε↓0 S�
λ (

∫
P̄ z

r δz
εhdz)(x) = S�

λ h(x). For the second term, we first rewrite it using (2.15)

Si
λ

(∫ (
L− L̄z

)
R̄z

λP̄
z
r δz

εhdz

)
= EPi

[∫ ∞

0
e−λu

{∫∫ ∞

0
e−λt

(
L− L̄z

)
P̄ z

t+r δ
z
εh(yu) dt dz

}
du

]
= EPi

[∫ ∞

0
e−λu

{∫∫ ∞

0
e−λt

∫
θ̄ z
t+r (yu, y)δz

ε(y)h(y)ν(yu, dy) dt dz

}
du

]
.

To pass to the limit as ε ↓ 0, we check that Fubini’s and the dominated convergence theorems can be applied to the
right hand side of the above equation. We consider the term in the curly brackets. We use (2.7) and then (H1) (iv) to obtain
for i = 1,2,∫∫ ∞

0
e−λt

∫ ∣∣θ̄ z
t+r (yu, y)

∣∣δz
ε(y)h(y)ν(yu, dy) dt dz
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=
∫ ∞

0
e−λt

{∫∫ ∣∣θ̄ z
t+r (yu, y)

∣∣δz
ε(y) dz

∣∣h(y)
∣∣ν(yu, dy)

}
dt

≤ |h|∞
∫ ∞

0
e−λt

{∫
θ̄∗
t+r (yu, y)ν(yu, dy)

}
dt ≤ 1

λ
C|h|∞rζ̄

which is dPi × e−λu du integrable. More importantly, we observe that, in the first equality above, the term in the curly
bracket can be bounded by a constant independent of ε. One can then apply Fubini’s theorem and the dominated conver-
gence theorem to obtain

lim
ε↓0

∫ ∞

0
e−λu

∫ ∞

0
e−λt

{
EPi

[∫
Rd

(
L− L̄z

)
P̄ z

t+r δ
z
εh(yu) dz

]}
dt du

=
∫ ∞

0
e−λu

∫ ∞

0
e−λt lim

ε↓0
EPi

[∫
Rd

(
L− L̄z

)
P̄ z

t+r δ
z
εh(yu) dz

]
dt du

=
∫ ∞

0
e−λuEPi

[∫ ∞

0
e−λtSt+rh(yu) dt

]
du,

where the last equality follows from similar arguments as those employed in (2.10). One can now let r goes to zero by
using the estimate (2.4) in (H1) (iv) and (vi) to obtain

lim
r↓0

∫ ∞

0
e−λuEPi

[∫ ∞

0
e−λtSt+rh(yu) dt

]
du =

∫ ∞

0
e−λuEPi

[∫ ∞

0
e−λtSt h(yu) dt

]
du.

By putting the two terms together, we obtain

S�
λ h = S�

λ

(∫ ∞

0
e−λtSt h dt

)
and one can pick λ such that∣∣∣∣∫ ∞

0
e−λtSt h dt

∣∣∣∣ ≤ |h|∞
∫ ∞

0
e−λt tζ dt = |h|∞ �(ζ )

λ1+ζ
<

1

2
|h|∞.

From the above computation and the definition of ‖S�
λ ‖, we find that

∣∣S�
λ h

∣∣ =
∣∣∣∣S�

λ

(∫ ∞

0
e−λtSt h dt

)∣∣∣∣ ≤ 1

2

∥∥S�
λ

∥∥|h|∞.

By an approximation argument, the last inequality remains valid for real-valued bounded continuous functions h

supported in J . Taking the supremum over |h|∞ ≤ 1 yields ‖S�
λ ‖ ≤ 1

2‖S�
λ ‖ and, since ‖S�

λ ‖ < ∞, we conclude that
S�

λ = 0. Consequently,
∫ ∞

0 e−λtEP1[h(yt )]dt = ∫ ∞
0 e−λtEP2[h(yt )]dt . By the continuity of sample paths together with

the uniqueness of the Laplace transform together we get EP1[h(yt )] = EP2[h(yt )] for all t ≥ 0 if h is bounded continuous.
By a monotone class argument, this also extends to bounded measurable functions so that P1 and P2 share the same
one-dimensional marginal distribution.

Now one can use the standard argument based on regular conditional probabilities to show that the finite dimensional
distributions of the process (Yt )t≥0 = (Xt ,At (X))t≥0 agree under P1 and P2. This is where we employ assumption (H0)
on regular conditional probability measure. Since this argument is standard, we omit it. The above is sufficent to prove
weak uniqueness, see [17], Section 5.4.C in [12] or Section VI.2 in [3]. �

3. Two examples

3.1. A diffusion process and its running local time

In this example, we consider the SDE with dynamics

Xt = x +
∫ t

0
b
(
Xs,L

0
s (X)

)
ds +

∫ t

0
σ
(
Xs,L

0
s (X)

)
dWs (3.1)
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where L0
s (X) := limε↓0

1
ε

∫ s

0 I{0≤Xu<ε} d〈X〉u is the local time at 0 accumulated by X at time s. Here J = R × R+,
At(X) = L0

t (X) and d = 2. We introduce the following assumptions:

(R-η) The coefficients b and a = σ 2 are bounded measurable functions defined on R× R+. The diffusion coefficient a

is η-Hölder continuous on R×R+.
(UE) There exists some constant a > 0 such that ∀(x, �) ∈ R×R+, a ≤ a(x, �).

Remark 3.1. In (R-η) and (UE), note that the diffusion coefficient a : J → R is defined and assumed to be bounded,
continuous and uniformly elliptic on the closed subset J ⊂ R2. To ensure that (H1) (iii) is satisfied and the previously
developed machinery can be applied, in the following, wherever needed, we make use of the Tietze extension theorem
and consider the bounded, continuous and uniformly elliptic extension of the diffusion coefficient a to R2, which we also
denote by a.

Let D be the class of function h ∈ C1,2,1
b (R+ ×R\{0}×R+)∩Cb(R+ ×R×R+) such that for all t ≥ 0, ∂2h(t,0+, �) =

limx↓0
h(t,x,�)−h(t,0,�)

x
and ∂2h(t,0−, �) = limx↑0

h(t,x,�)−h(t,0,�)
x

exist, are finite and satisfy the following transmission
condition:

∀(t, �) ∈ (R+)2,
∂2h(t,0+, �) − ∂2h(t,0−, �)

2
+ ∂3h(t,0, �) = 0. (3.2)

We define the linear operator L by:

Lh(t, x, �) = b(x, �)∂2h(t, x−, �) + 1

2
a(x, �)∂2

2 h(t, x−, �), (t, x, �) ∈ R+ ×R×R+. (3.3)

As mentioned in the Introduction, we need a chain rule formula for the process (Xt ,At (X))t≥0 which allows to identify
the set of functions D and the linear operator L. In fact, the set D described above is precisely the set of functions for
which we are able to provide a good characterisation of the martingale problem. Indeed, one has to rely on the following
chain rule formula or generalisation of the Itô formula whose proof closely follows the arguments of Theorem 2.2 in
Elworthy et al. [6] or Theorem 2.1 in Peskir [15]. Note that here that we are working with the local time at zero whereas
the Lévy’s definition of local time is considered in [6].

Proposition 3.1 (Generalised Itô’s formula). Assume that h ∈ C1,2,1(R+ ×R\{0} ×R+) ∩ C(R+ ×R×R+) satisfies:
∂2h(t,0+, �) = limx↓0(h(t, x, �) − h(t,0, �))/x and ∂2h(t,0−, �) = limx↑0(h(t, x, �) − h(t,0, �))/x exist and are finite.
Then, almost surely for all t ≥ 0, one has

h
(
t,Xt ,L

0
t (X)

) = h(0, x,0) +
∫ t

0
{∂1 +L}h(s,Xs,L

0
s (X)

)
ds +

∫ t

0
σ
(
Xs,L

0
s (X)

)
∂2h

(
s,Xs−,L0

s (X)
)
dWs

+
∫ t

0

{
∂2h(s,0+,L0

s (X)) − ∂2h(s,0−,L0
s (X))

2
+ ∂3h

(
s,0,L0

s (X)
)}

dL0
s (X).

3.2. Weak existence

To this end, we have identified the set D and the linear operator L, the weak existence of a solution to (3.1), which
is equivalent to the existence of a solution to the following martingale problem, follows from a standard compactness
argument.

We will say that a probability measure P on (C([0,∞),R×R+),B(C([0,∞),R×R+))) endowed with the canonical
filtration (Ft )t≥0 is a solution to the local martingale problem if P(y1(0) = x, y2(0) = 0) = 1, t �→ y2(t) is a non-
decreasing process P -a.s. and

h
(
y(t)

)− h
(
y(0)

)−
∫ t

0
Lh

(
y(s)

)
ds (3.4)

is a continuous local martingale for h ∈ C2,1(R\{0} × R+) ∩ C(R × R+) satisfying the transmission condition (3.2).
We will say that P is a solution to the martingale problem if (3.4) is a continuous square integrable martingale for
every h ∈ D. Similarly to the standard diffusion case (see e.g. Proposition 5.4.11 in [12]), since the coefficients b and
σ are bounded, existence of a solution to the local martingale problem is equivalent to the existence of solution to the
(non-local) martingale problem. Moreover, existence of a solution to the local martingale problem is equivalent to the
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existence of a weak solution to the functional SDE (3.1) and the measure Pt,w = Qt,w ◦ θ−1
t , where Qt,w is a regular

conditional probability for P given Ft , solves the martingale problem for every w /∈ N , N ∈ Ft being a P -null event.
Hence, assumption (H0) is satisfied.

We are now in position to state the existence of a weak solution to the SDE (3.1). The lines of reasoning here are
rather standard and are based on a compactness argument, see e.g. Theorem 5.4.22 in [12], or Girsanov transform, see
e.g. Proposition 5.3.6 in [12], so that we omit the proof of the following result.

Theorem 3.2. Assume that the coefficients b, σ : R × R+ → R are bounded and continuous functions. Then, for every
x ∈ R, there exists a weak solution to the SDE (3.1). Assume that b is bounded measurable and that a is a bounded
continuous function satisfying (UE), then the previous result still holds.

3.3. Weak uniqueness and representation of the transition density

We now introduce the proxy process X̄t := x0 + σ(z1)Wt , t ≥ 0, obtained from the original process X by removing the
drift part and by freezing the diffusion coefficient at z1 = (x1, �1) ∈R2 (recall that σ has been extended on R2 by Tietze’s
extension theorem). For h ∈ Cb(R×R+), we define

P̄th(x0, �0) = E
[
h
(
X̄t , �0 + L0

t (X̄)
)] = E

[
h
(
x0 + σ̄Wt , �0 + L0

t (X̄)
)]

where, for sake of simplicity, we set σ̄ = σ(z1), ā = σ̄ 2. We also introduce the operator L̄ acting on functions h ∈D

L̄h(t, x, �) = 1

2
ā∂2

2 h(t, x−, �), (t, x, �) ∈ R+ ×R×R+. (3.5)

We now compute the bivariate transition density of the approximation process (X̄t ,L
0
t (X̄))t≥0 from the joint density

of (Wt ,L
0
t (W)) which is readily available from Karatzas and Shreve [11]. To this end, we denote by T0 = inf{t ≥ 0 :

x0 + σ(z1)Wt = 0} the first hitting time of 0 by the process (X̄t )t≥0. Let h ∈ Cb(R×R+). We make use of the following
decomposition:

P̄th(x0, �0) := E
[
h(x0 + σ̄Wt , �0)I{T0≥t}

]+E
[
h
(
x0 + σ̄Wt , �0 + L0

t (X̄)
)
I{T0<t}

] =: I + II.

In the first term, the process X̄ does not accumulate local time at zero. The bivariate density of (Wt ,max0≤s≤t Ws),
see e.g. [12], gives

I =
∫
R×R+

h(x, �)
{
H0(āt, x − x0) − H0(āt, x + x0)

}
I{x0x≥0} dxδ�0(d�).

To compute II we make use of the bivariate density of (Wt ,L
0
t (W))t≥0 established in [11]. Conditioning with respect

to T0 and using the strong Markov property of W yield

II =
∫ t

0
P(T0 ∈ ds)E

[
h
(
x0 + σ̄Wt , �0 + L0

t (X̄)
)|T0 = s

]
=

∫ t

0
P(T0 ∈ ds)E

[
h
(
σ̄Wt−s , �0 + σ̄L0

t−s(W)
)]

=
∫ t

0
ds(−H1)

(
s,

|x0|
σ̄

)∫
R×R+

h(σ̄ x, �0 + σ̄ �)(−H1)
(
t − s, |x| + �

)
dx d�

where we used the exact expression for the density of the passage time T0, which is given by P(T0 ∈ ds) =
(−H1)(s, |x0|/σ̄ ) ds, s > 0 and x0 ∈ R. Since the sum of independent passage times is again a passage time, see e.g.
page 824 of Karatzas and Shreve [11], one has

(−H1)
(
t, |x| + |y|) =

∫ t

0
ds(−H1)

(
t − s, |x|)(−H1)

(
s, |y|), x, y �= 0, t > 0. (3.6)

Combining these observations with Fubini’s theorem and a change of variable yield

II =
∫
R×R+

h(x, �)
1

ā
(−H1)

(
t,

|x| + |x0| + � − �0

σ̄

)
I{�0≤�} dx d�.
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From the expression of I and II, we see that (X̄t , �0 + L0
t (X̄)) admits a density (x, �) �→ p̄t (x0, �0, x, �), for t > 0,

given by

p̄t (x0, �0, dx, d�) = p̄t (x0, �0, x, �)ν(x0, �0, dx, d�)

p̄t (x0, �0, x, �) := f̄t (x0, x)I{�=�0} + q̄t (x0, �0, x, �)I{�0<�}
(3.7)

with

f̄t (x0, x) := H0(āt, x − x0) − H0(āt, x + x0),

q̄t (x0, �0, x, �) := −1

ā
H1

(
t,
(|x| + |x0| + � − �0

)
/σ̄

)
,

ν(x0, �0, dx, d�) := I{�0<�} dx d� + I{x0x≥0} dxδ�0(d�).

Moreover, as already mentioned in assumption (H1) in Section 2.1, we let p̂t (x0, �0, x, �) = f̂t (x0, x)I{�=�0} +
q̂t (x0, �0, x, �)I{�0<�} with

f̂t (x0, x) := H0
(
a(x, �0)t, x − x0

)− H0
(
a(x, �0)t, x + x0

)
,

q̂t (x0, �0, x, �) := − 1

a(x, �)
H1

(
t,
(|x| + |x0| + � − �0

)
/σ(x, �)

)
.

Hence, we see that both measures p̄t and p̂t consist of two parts. The first part is absolutely continuous with respect to
the σ -finite measure I{x0x≥0} dxδ�0(d�). Here the approximation process is obtained by freezing the diffusion coefficient
at (x, �0). This is a natural idea since in this part the process X̄ does not accumulate local time at zero and �0 is both the
initial and terminal point of the density. The second part is absolutely continuous with respect to the Lebesgue measure on
R×R+. The approximation process is obtained by freezing the diffusion coefficient at the terminal point of the density
as in the standard diffusion case.

The first main result of this section establishes weak uniqueness for the SDE (3.1) by proving that assumptions (H1)
and (H2) of Section 2.1 are satisfied. Its proof is given in the Appendix.

Theorem 3.3. For η ∈ (0,1], under (R-η) and (UE), weak uniqueness holds for the SDE (3.1).

In the following, we show that, given (x0, �0) ∈ R×R+, the transition density of the process (Xt , �0 + L0
t (X))t≥0 is

absolutely continuous with respect to the sigma finite measure ν(x0, �0, dx, d�). Our strategy consists in establishing a
representation in infinite series of Pth from which stems an explicit representation of the density of the couple (Xt , �0 +
L0

t (X)), see Theorem 3.4. Though we will not proceed in that direction, we point out that this representation may be
useful in order to study the regularity properties of the density, to obtain integration by parts formulas or to derive an
unbiased Monte Carlo simulation method. We refer the interested reader to [9] for some results in that direction related
to the first hitting times of one-dimensional elliptic diffusions.

To this end, we need to iterate the first step expansion obtained in Theorem 2.2. We recall that

St h(x0, �0) =
∫

h(x, �)

{
−1

2

(a(x0, �0) − a(x, �))

a2(x, �)
H3

(
t,

|x| + |x0| + � − �0

σ(x, �)

)
+ b(x0, �0)sign(x0)

a
3
2 (x, �)

H2

(
t,

|x| + |x0| + � − �0

σ(x, �)

)}
I{�>�0} dx d�

+
∫

h(x, �0)

{
1

2

(
a(x0, �0) − a(x, �0)

){
H2

(
a(x, �0)t, x − x0

)− H2
(
a(x, �0)t, x + x0

)}
− b(x0, �0)

{
H1

(
a(x, �0)t, x − x0

)− H1
(
a(x, �0)t, x + x0

)}}
I{xx0≥0} dx (3.8)

with sign(x0) := −I{x0≤0} + I{x0>0}. The dissymetric version of the sign function appears here due to the fact that one
has to consider the left-derivative in both operators L and L̄. For a proof of the previous identity we refer the reader to
Section A.1. From this expression, due to the sign function appearing in the first integral in the right-hand side of (3.8),
we remark that (x0, �0) �→ St h(x0, �0) is not continuous at any point (0, �0), �0 ≥ 0, unless b(0, �0) = 0. Hence, a direct
application of Corollary 2.1 does not work. In order to circumvent this issue, we proceed as follows. We first consider the
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drift-less SDE. We then briefly indicate how to proceed in the presence of a bounded measurable drift by means of the
Girsanov theorem. From now on, we let b ≡ 0.

We will use the notation St h(x0, �0) = ∫
h(x, �)θ̂t (x0, �0, x, �)ν(x0, �0, dx, d�) with

θ̂t (x0, �0, x, �) :=
{

− 1
2

(a(x0,�0)−a(x,�))

a2(x,�)
H3(t,

|x|+|x0|+�−�0
σ(x,�)

), � > �0,

1
2 (a(x0, �0) − a(x, �0)){H2(a(x, �0)t, x − x0) − H2(a(x, �0)t, x + x0)}, � = �0.

(3.9)

Since the function (x0, �0) �→ St h(x0, �0) is continuous on R×R+, by applying Corollary 2.1 we obtain

PT h(x0, �0) = P̂T h(x0, �0) +
∑
n≥1

∫
�n(T )

P̂snSsn−sn−1 · · ·ST −s1h(x0, �0) dsn (3.10)

with the convention s0 = T .
In order to retrieve the transition density associated to (Pt )t≥0, we aim to prove an integral representation

for the above series. More precisely, our aim is to prove that the right-hand side of (3.10) can be written as∫
h(x, �)pT (x0, �0, x, �)ν(x0, �0, dx, d�), with an explicit representation for pT (x0, �0, x, �). We start by an examination

of the n-th term of the series expansion.
Before proceeding, we observe that the measure ν(x0, �0, dx, d�) satisfies a useful convolution type property in the

sense that

ν
(
x0, �0, dx′, d�′)ν(x′, �′, dx, d�

) = u
(
x0, �0, x, �, dx′, d�′)ν(x0, �0, dx, d�) (3.11)

where the measure u is given by

u
(
x0, �0, x, �, dx′, d�′)
:=

{
I{�0<�′<�} dx′ d�′ + I{x′x0>0} dx′δ�0(d�′) + I{xx′>0} dx′δ�(d�′), �0 < �,

I{x0x
′>0} dx′δ�0(d�′), �0 = �, x0x > 0.

(3.12)

Applying repeatedly (3.11) and using Fubini’s theorem, we obtain∫
�n(T )

dsnP̂snSsn−1−sn . . .ST −s1h(x0, �0)

=
∫
R×R+

h(x, �)

{∫
�n(T )

dsn

∫
(R×R+)n

p̂sn(x0, �0, x1, �1)

×
[

n∏
i=1

θ̂sn−i−sn−i+1(xi, �i, xi+1, �i+1)u(x0, �0, xi+1, �i+1, dxi, d�i)

]}
ν(x0, �0, dx, d�)

=
∫
R×R+

h(x, �)pn
T (x0, �0, x, �)ν(x0, �0, dx, d�)

where we set

pn
T (x0, �0, x, �)

:=

⎧⎪⎨⎪⎩
∫
�n(T )

dsn

∫
(R×R+)n

p̂sn(x0, �0, x1, �1)

× [∏n
i=1 θ̂sn−i−sn−i+1(xi, �i, xi+1, �i+1)u(x0, �0, xi+1, �i+1, dxi, d�i)] n ≥ 1,

p̂T (x0, �0, x, �) n = 0.

(3.13)

We are now ready to give a representation for the density of the couple (Xt , �0 + L0
t (X)). As already mentioned in

the introduction, we point out that the proof of the convergence of the asymptotic expansion for the transition density
is not standard in the current setting. To see this, we note that using (3.9), the standard Gaussian estimate (1.3) and the
space-time inequality in (1.2), we obtain the following estimate (for detailed computations, we refer the reader to (A.3)
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and the estimates just below it)

∣∣θ̂t (x0, �0, x, �)
∣∣ ≤

⎧⎨⎩
C

t
3−η

2
H0(ct, |x| + |x0| + � − �0), � > �0,

C

t
1− η

2
H0(ct, x − x0), � = �0,

(3.14)

for some constants C := C(a), c := c(a) > 1. Indeed, in the classical diffusion setting, the parametrix expansion of
the transition density converges since the order of the singularity in time induced by the parametrix kernel θ̂t is of order
t−1+ η

2 , which is still integrable near 0. The situation here appears to be more delicate. At first glance, the order of the time
singularity in θ̂t consists in two parts. The first part corresponds to the non-singular part of the law of (X̄t , �0 + L0

t (X̄)).

From (3.14), it induces a singularity in time of order t− 3
2 + η

2 which is integrable in time after integrating the corresponding
kernel H0(ct, |x| + |x0| + � − �0) over the domain R× (�0,∞). The second part corresponds to the singular part of the
law of (X̄t , �0 + L0

t (X̄)), that is, the one of the proxy process killed when it reaches zero, and is absolutely continuous
with respect to the singular measure dxδ�0(d�). Here the situation is standard and the singularity in time appearing in
(3.14), namely t−1+ η

2 , is integrable near 0.
The main difficulty appears when one wants to control the whole space-time convolution appearing in the right-hand

side of (3.13). More precisely, it lies in the cross-terms which are of a different nature, for instance when one considers
the convolution of the non-singular part in the kernel θ̂T −s1 and the singular part in the kernel θ̂s1−s2 . Standard arguments
such as those employed in [8] or [14] do not guarantee the convergence of the integral defining (3.13). To overcome this
difficulty and to show that the parametrix expansion for the transition density does indeed converge, one has to make use
of the key estimate obtained in Lemma A.4.

As our second main result, we prove that the transition density of (Xt , �0 + L0
t (X))t≥0 exists and satisfies a Gaussian

upper bound. We postpone its proof to the Appendix.

Theorem 3.4. Assume that (R-η) and (UE) hold for some η ∈ (0,1]. For T > 0 and (x0, �0) ∈R×R+ define the measure

pT (x0, �0, dx, d�) := pT (x0, �0, x, �)ν(x0, �0, dx, d�)

= fT (x0, �0, x)I{xx0≥0} dxδ�0(d�) + qT (x0, �0, x, �)I{�0<�} dx d�

with pT (x0, �0, x, �) := ∑
n≥0 pn

T (x0, �0, x, �) and

fT (x0, �0, x) :=
∑
n≥0

pn
T (x0, �0, x, �0), qT (x0, �0, x, �) :=

∑
n≥0

pn
T (x0, �0, x, �).

Then, both series defining fT (x0, �0, x) and qT (x0, �0, x, �) converge absolutely and uniformly for (x0, �0), (x, �) ∈ R×
R+. Moreover, for h ∈ Cb(R×R+) the following representation for the semigroup holds

PT h(x0, �0) =
∫
R×R+

h(x, �)pT (x0, �0, x, �)ν(x0, �0, dx, d�).

Therefore, for all (x0, �0) ∈ R × R+, the function (x, �) �→ pT (x0, �0, x, �) is the probability density function of the
couple (XT , �0 + L0

T (X)) with respect to the σ -finite measure ν(x0, �0, dx, d�), where XT is the solution taken at time
T of the SDE (3.1) starting from x0 at time 0, L0

T (X) being its running local time at time T .
Finally, there exist some constants C := C(T ,a), c := c(a) > 1 such that for all (x0, �0), (x, �) ∈ R×R+ and for all

β ∈ [0,1] the following Gaussian upper-bounds hold:

fT (x0, �0, x) ≤ C

{ |x|β
T

β
2

∧ |x0|β
T

β
2

∧ 1

}
H0(cT , x − x0) and

qT (x0, �0, x, �) ≤ C
1

T 1/2
H0

(
cT , |x| + |x0| + � − �0

)
.

Remark 3.5. The above result establishes the existence of a transition density for the Markov process (Xt , �0 +
L0

t (X))t≥0 where the dynamics is given by (3.1) without drift. In order to add a drift, one can use the Girsanov transform
as follows. Let R×R+ � (x, �) �→ b(x, �) be a real-valued bounded measurable function. We consider the unique weak
solution {(X,W), (�,F,P), (Ft )t≥0} of (3.1) and let W̃t := Wt + ∫ t

0 b̃(Xs,L
0
s (X)) ds, with b̃(x, �) := b(x, �)/σ (x, �).
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Then, defining the new probability measure on FT by

dQ

dP
:= exp

{
−
∫ T

0
b̃
(
Xs,L

0
s (X)

)
dWs − 1

2

∫ T

0
b̃2(Xs,L

0
s (X)

)
ds

}
,

from Girsanov’s theorem, we know that {(X̃, W̃ ), (�,F,Q), (Ft )t≥0}, with X̃t = x0 + ∫ t

0 σ(X̃s,As(X̃)) dW̃s is a weak
solution to (3.1) with b ≡ 0. We also know from Theorem 3.3 that weak uniqueness holds for this equation and from
Theorem 3.4 that the couple (X̃T ,AT (X̃)) admits a density with respect to the measure ν(x0, �0, dx, d�). Therefore, for
any bounded measurable function h : R×R+ → R, one has

PT h(x0, �0) := EP

[
h
(
XT ,�0 + L0

T (X)
)]

=
∫
R×R+

h(x, �)EQ

[
dP

dQ

∣∣∣ (XT ,�0 + L0
T (X)

) = (x, �)

]
p̃T (x0, �0, x, �)ν(x0, �0, dx, d�)

=
∫
R×R+

h(x, �)EQ

[
dP

dQ

∣∣∣ (XT ,�0 + L0
T (X)

) = (x, �)

]
p̃T (x0, �0, x, �)I{�0<�} dx d�

+
∫
R

h(x, �0)EQ

[
dP

dQ

∣∣∣ (XT ,�0 + L0
T (X)

) = (x, �0)

]
p̃T (x0, �0, x, �)I{x0x≥0} dx. (3.15)

We thus deduce that (XT , �0 + L0
T (X)) admits a density with respect to the measure ν(x0, �0, dx, d�). Then, one may

extend Theorem 2.2 to the class of functions h that are bounded measurable with respect to the space variable x and
continuous with respect to the variable � as follows. Indeed, if h is such a function, then from Theorem 174 p.111 of
Kestelman [13], there exists a sequence (hN)N≥1 of continuous functions on R × R+ such that supN≥1 |hN |∞ ≤ |h|∞
and limN↑∞ hN(·, �) = h(·, �) a.e. and for all � ∈R+.

Next, by applying Theorem 2.2 to hN we obtain

PT hN(x0, �0) = P̂T hN(x0, �0) +
∫ T

0
PsST −shN ds.

We then pass to the limit in the previous equality. From equations (3.15), (3.8), the identity P̂T hN(x0, �0) =∫
R×R+ hN(x, �)p̂T (x0, �0, dx, d�) and the dominated convergence theorem, we obtain that limN PT hN(x0, �0) =

PT h(x0, �0), limN P̂T hN(x0, �0) = P̂T h(x0, �0) and limN ST −shN(x0, �0) = ST −sh(x0, �0) for every (x0, �0) ∈ R×R+.
Hence, using again the dominated convergence theorem with (2.4), we deduce that Theorem 2.2 is valid for h. Since
ST −sh given by (3.8) is bounded measurable with respect to x and continuous with respect to �, one may iterate the first
step formula of Theorem 2.2 and obtain the semigroup expansion (2.11) where the function St h is given by (3.8) and θ̂t is
defined accordingly. Finally, in order to conclude, one has to repeat the arguments employed in the proof of Theorem 3.4.
We omit the remaining technical details.

Remark 3.6. We again point out that the representation in infinite series obtained previously are of great interest.
For instance, one may be interested in studying the regularity properties of the density functions (t, x0, �0, x, �) �→
ft (x0, �0, x, �), qt (x0, �0, x, �), to derive a probabilistic interpretation for Pth and pt (x0, �0, x, �) and to obtain some
integration by parts formulas, from which stem an unbiased Monte Carlo simulation scheme. We refer e.g. to [9,10] and
the references therein for some results in that direction concerning to the first hitting times of one-dimensional elliptic
diffusions.

3.4. A diffusion process with coefficients depending on its running maximum

We now turn our attention to the following SDE with dynamics

Xt = x0 +
∫ t

0
b(Xs,Ms)ds +

∫ t

0
σ(Xs,Ms)dWs (3.16)

where Mt = At(X) := m0 ∨ max0≤s≤t Xs , m0 ≥ x0, is the running maximum of the process X at time t . The state space
of the process (Xt ,Mt)t≥0 is denoted by the closed set J = {(x,m) ∈ R2 : x ≤ m}. We define accordingly the collection
of linear maps Pth(x0,m0) = E[h(Xt ,Mt)] for h ∈ Bb(J ) and introduce the following assumptions:
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(R-η) The coefficients b and a = σ 2 are bounded measurable functions defined on J . The diffusion coefficient a is
η-Hölder continuous on J .

(UE) There exists some constant a > 0 such that ∀(x,m) ∈ J , a ≤ a(x,m).

In the following, just as mentioned in Remark 3.1, in order to ensure that (H1) (iii) is satisfied, we will consider, whenever
needed, the bounded, continuous and uniformly elliptic extension of the diffusion coefficient a from the closed subset J
to R2.

Although the lines of reasoning used in the proof of Theorem 3.7 and Theorem 3.8 are rather similar to those employed
in the case of the SDE with its running local time, we decided to include this example in order to illustrate the generality
of our framework. Indeed, unlike the local time and also the examples considered so far in the literature by means of the
parametrix technique, the running maximum is not a continuous additive functional. This difference is reflected in the
definition of the collection of linear maps (Pt )t≥0, and also in the definition of the approximation process Ȳ and the maps
(P̄t )t≥0, see below in Section 3.5. This allows to define a Markov semigroup for Ȳ and later on for Y .

The weak existence of a solution to the SDE (3.16) follows from standard results, see e.g. Chapter 6 in [17] or The-
orem 5.4.22 and Remark 5.4.23 in [12], see also Forde [7] for another approach under the assumption that a and b are
bounded continuous functions.

In the same spirit as the previous section, we can characterise solutions of the SDE (3.16) in terms of the associated
(local) martingale problem. We let D be the class of functions h : R+ × J → R such that h ∈ C1,2,1

b (R+ × J ) which
satisfies the condition ∂3h(t,m,m) = 0, (t,m) ∈R+ ×R. For h ∈D, we define the operator

Lh(t, x,m) = 1

2
a(x,m)∂2

2 h(t, x,m) + b(x,m)∂2h(t, x,m).

By observing that the process t �→ Mt increases only on the set {t : Xt = Mt } and by applying Itô’s lemma we obtain

h(t,Xt ,Mt ) = h(0, x0,m0) +
∫ t

0
(∂1 +L)h(s,Xs,Ms) ds +

∫ t

0
σ(Xs,Ms)∂2h(s,Xs,Ms) dWs (3.17)

for h ∈D. If P be a solution to the martingale problem associated to the operator L with the class of functions D then the
measure Pt,w =Qt,w ◦ θ−1

t , where Qt,w is a regular conditional probability for P given Ft , solves the martingale problem
for every w /∈ N , N ∈ Ft being a P-null event so that (H0) is satisfied.

3.5. Weak uniqueness and representation of the transition density

We now introduce the proxy process X̄t := x0 + σ(z1)Wt , t ≥ 0, obtained from the original process X by removing the
drift part and by freezing the diffusion coefficient at z1 = (x1,m1) ∈R2 in (3.16). As already done for the original process
Y , for h ∈ Cb(J ), we define accordingly

P̄th(x0,m0) = P̄
z1
t h(x0,m0) = E

[
h(X̄t , M̄t )

] = E

[
h
(
x0 + σ(z1)Wt ,m0 ∨ max

0≤s≤t

(
x0 + σ(z1)Ws

))]
,

and, with σ̄ = σ(z1), ā = σ̄ 2, for h ∈D, the operator

L̄h(t, x,m) = 1

2
ā∂2

2 h(t, x,m), (t, x,m) ∈R+ ×J .

We now compute the law of the couple (X̄t , M̄t ). We denote by Tm0 = inf{t ≥ 0 : x0 + σ̄Wt = m0} the first hitting time
of 0 by the process (X̄t )t≥0. We decompose P̄th(x0,m0) as follows

P̄th(x0,m0) := E
[
h(x0 + σ̄Wt ,m0)I{Tm0 ≥t}

]+E

[
h
(
x0 + σ̄Wt ,m0 ∨ max

0≤s≤t
(x0 + σ̄Ws)

)
I{Tm0<t}

]
=: I + II.

From the reflection principle of Brownian motion, see e.g. [12], one derives the law of the proxy process killed when
it exits (−∞,m0), namely

I := E
[
h(x0 + σ̄Wt ,m0)I{Tm0 ≥t}

]
=

∫
R2

h(x,m)
{
H0(āt, x − x0) − H0(āt,2m0 − x − x0)

}
I{x∨x0≤m0} dxδm0(dm). (3.18)
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The bivariate density of the couple (Wt ,max0≤s≤t Ws), see e.g. Proposition 2.8.1 in [12], gives

II := E

[
h
(
x0 + σ̄Wt ,m0 ∨ max

0≤s≤t
(x0 + σ̄Ws)

)
I{Tm0<t}

]
= E

[
h
(
x0 + σ̄Wt , max

0≤s≤t
(x0 + σ̄Ws)

)
I{max0≤s≤t (x0+σ̄Ws)≥m0}

]
=

∫
R2

h(x,m)(−2H1)(āt,2m − x − x0)I{x∨x0∨m0≤m} dx dm. (3.19)

Combining I and II, we see that the couple (X̄t , M̄t ) admits a density (x,m) �→ p̄t (x0,m0, x,m), for t > 0, given by

p̄t (x0,m0, dx, dm) = p̄t (x0,m0, x,m)ν(x0,m0, dx, dm)

p̄t (x0,m0, x,m) := f̄t (x0, x)I{m=m0} + q̄t (x0,m0, x,m)I{m0<m}

with

f̄t (x0, x) := H0(āt, x − x0) − H0(āt,2m0 − x − x0),

q̄t (x0,m0, x,m) := −2H1(āt,2m − x − x0),

ν(x0,m0, dx, dm) := I{x≤m}I{m0<m} dx dm + I{x≤m0} dxδm0(dm).

Moreover, as already mentioned in assumption (H1) in Section 2.1, we let

p̂t (x0,m0, dx, dm) = p̂t (x0,m0, x,m)ν(x0,m0, dx, dm)

p̂t (x0,m0, x,m) = f̂t (x0, x)I{m=m0} + q̂t (x0, �0, x, �)I{m0<m}

with

f̂t (x0, x) := H0
(
a(x,m0)t, x − x0

)− H0
(
a(x,m0)t,2m0 − x − x0

)
,

q̂t (x0,m0, x,m) := −2H1
(
a(x,m)t,2m − x − x0

)
.

We also observe that (P̄t )t≥0 satisfies the Markov semigroup property. The first main result of this section establishes
weak uniqueness for the SDE (3.16) by proving that assumptions (H1) and (H2) of Section 2.1 are satisfied. We postpone
the proof to the Appendix.

Theorem 3.7. For η ∈ (0,1], under (R-η) and (UE), weak uniqueness holds for the SDE (3.16).

We now show that, given (x0,m0) ∈ J , the law of (XT ,MT ) is absolutely continuous with respect to the measure
ν(x0,m0, dx, dm). Our strategy is similar to the one employed in the case of the SDE with its running local time, namely,
we establish a representation in infinite series of Pth from which stems an explicit representation of the density of the
couple (XT ,MT ), see Theorem 3.8 below. We first recall

St h(x0,m0) =
∫

h(x,m)

{
1

2

(
a(x0,m0) − a(x,m)

)
(−2H3)

(
a(x,m)t,2m − x − x0

)
+ b(x0,m0)(−2H2)

(
a(x,m)t,2m − x − x0

)}
I{x≤m}I{m0<m} dx dm

+
∫

h(x,m0)

{
1

2

(
a(x0,m0) − a(x,m0)

)(
H2

(
a(x,m0)t, x − x0

)
− H2

(
a(x,m0)t,2m0 − x − x0

))
+ b(x0,m0)

(
H1

(
a(x,m0)t,2m0 − x − x0

)− H1
(
a(x,m0)t, x − x0

))}
I{x<m0} dx

=
∫

h(x,m)θ̂t (x0,m0, x,m)ν(x0,m0, dx, dm) (3.20)
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with θ̂t given by (we refer the reader to Section A.3 for a proof of the above identity)

θ̂t (x0,m0, x,m)

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 (a(x0,m0) − a(x,m))(−2H3)(a(x,m)t,2m − x − x0)

+ b(x0,m0)(−2H2)(a(x,m)t,2m − x − x0), x ≤ m,m0 < m,
1
2 (a(x0,m0) − a(x,m0))(H2(a(x,m0)t, x − x0) − H2(a(x,m0)t,2m0 − x − x0))

+ b(x0,m0)(H1(a(x,m0)t,2m0 − x − x0) − H1(a(x,m0)t, x − x0)), x < m0,m = m0.

We remark here that the map J � (x0,m0) �→ St h(x0,m0) is continuous. This is different from the case of the local
time, where due to the presence of the sign function, we required that b = 0 in order to ensure the continuity of the map
St h. One may thus iterate the first step of the expansion obtained in Theorem 2.2. More precisely, applying Corollary 2.1
we obtain

PT h(x0,m0) = P̂T h(x0,m0) +
∑
n≥1

∫
�n(T )

P̂snSsn−sn−1 · · ·ST −s1h(x0,m0) dsn (3.21)

with the convention s0 = T . We again observe the following convolution type property of the singular measure, namely

ν
(
x0,m0, dx′, dm′)ν(x′,m′, dx, dm

) = u
(
x0,m0, x,m,dx′, dm′)ν(x0,m0, dx, dm) (3.22)

where we set

u
(
x0,m0, x,m,dx′, dm′)
:=

⎧⎪⎨⎪⎩
I{x′∨x0∨m0<m′}I{m′<m} dx′ dm′ + I{x′<m0} dx′δm0(dm′)

+ I{x′<m} dx′δm(dm′) m0 < m,x ≤ m,

I{x′<m0} dx′δm0(dm′) m = m0, x ≤ m0.

(3.23)

We then examine the n-th term of the series expansion. Using Fubini’s theorem and recursively applying (3.22), it can
be expressed as∫

�n(T )

dsnP̂snSsn−1−sn · · ·ST −s1h(x0,m0)

=
∫
R2

h(x,m)

{∫
�n(T )

dsn

∫
(R2)n

p̂sn(x0,m0, x1,m1)

×
[

n∏
i=1

θ̂sn−i−sn−i+1(xi,mi, xi+1,mi+1)u(x0,m0, xi+1,mi+1, dxi, dmi)

]}
ν(x0,m0, dx, dm)

=
∫
R2

h(x,m)pn
T (x0,m0, x,m)ν(x0,m0, dx, dm)

where we set

pn
T (x0,m0, x,m)

:=

⎧⎪⎨⎪⎩
∫
�n(T )

dsn

∫
(R2)n

p̂sn(x0,m0, x1,m1)

× [∏n
i=1 θ̂sn−i−sn−i+1(xi,mi, xi+1,mi+1)u(x0,m0, xi,mi, dxi+1, dmi+1)] n ≥ 1,

p̂T (x0,m0, x,m) n = 0.

(3.24)

We are now ready to give a representation for the density of the couple (XT ,MT (X)). As already mentioned in the
case of the SDE with its running local time, the proof of the convergence of the asymptotic expansion for the transition
density is not standard in the current setting. To overcome the main difficulty which again comes from the different nature
of the two kernels appearing in θ̂t one has to make use of the key estimate obtained in Lemma A.4. This allows to obtain
the convergence of the parametrix expansion for the transition density. Similar Gaussian upper-bounds for this density
are also established. The proof is postponed to the Appendix.
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Theorem 3.8. Assume that (R-η) and (UE) hold for some η ∈ (0,1]. For T > 0 and (x0,m0) ∈ J , define the measure

pT (x0,m0, dx, dm) := pT (x0,m0, x,m)ν(x0,m0, dx, dm)

= fT (x0,m0, x)I{x≤m0} dxδm0(dm) + qT (x0,m0, x,m)I{x≤m}I{m0<m} dx dm

with pT (x0,m0, x,m) := ∑
n≥0 pn

T (x0,m0, x,m) and

fT (x0,m0, x) :=
∑
n≥0

pn
T (x0,m0, x,m0), qT (x0,m0, x,m) :=

∑
n≥0

pn
T (x0,m0, x,m).

Then, both series defining fT (x0,m0, x,m) and qT (x0,m0, x) converge absolutely and uniformly for (x0,m0),

(x,m) ∈ J . Moreover for h ∈ Cb(J ), the following representation for the semigroup holds,

PT h(x0,m0) =
∫
R×R+

h(x,m)pT (x0,m0, dx, dm).

Therefore, for all (x0,m0) ∈ J , the function J � (x,m) �→ pT (x0,m0, x,m) is the probability density function with
respect to the measure ν(x0,m0, dx, dm) of the random vector (XT ,MT (X)), where XT is the solution taken at time T

of the SDE (3.16) and MT (X) = m0 ∨ max0≤s≤T Xs .
Finally, for some positive C := C(a, b,T ), c := c(a) > 1, for all (x0,m0), (x,m) ∈ J and for all β ∈ [0,1] the

following Gaussian upper-bounds hold:

fT (x0,m0, x) ≤ C

{ |m0 − x|β
T

β
2

∧ |m0 − x0|β
T

β
2

∧ 1

}
H0(cT , x − x0),

qT (x0,m0, x,m) ≤ C

T
1
2

H0(cT ,2m − x − x0).

4. Conclusion

In this paper, we established weak existence and uniqueness for some SDEs with coefficients depending on some path-
dependent functionals (At (X))t≥0 under mild assumptions on the coefficients, namely bounded measurable drift and
uniformly elliptic Hölder-continuous diffusion coefficient. We illustrated our approach on two examples: an SDE with
coefficients depending on its running local time and an SDE with coefficients depending on its running maximum. We
established the existence as well as a representation in infinite series of the density for the couple (Xt ,At (X)) in both
examples. Some Gaussian upper-bounds are also obtained.

Obviously, a wide variety of Brownian functionals can be investigated. Simple extensions include for instance the case
At(X) = (τL ∧ t,XτL∧t ), where τL = inf{t ≥ 0 : Xt ≥ L} is the first hitting time of the barrier L by X or the bivariate
functional At(W) = (min0≤s≤t Xs,max0≤s≤t Xs). More challenging extensions could include other type of processes.
One notably may consider the case of a skew diffusion with path-dependent coefficients involving its local and occupation
times, see Appuhamillage et al. [1] for an expression of the trivariate density (B

(α)
t ,L0

t (B
(α)),�0

t (B
(α))), t ≥ 0, where

(B
(α)
t )t≥0 is an α-skew Brownian motion or reflected SDEs. This will be developed in future works.

Appendix

A.1. Proof of Theorem 3.3

From the Markov property of the Brownian motion W , one can deduce that (X̄t , �0 + L0
t (X̄))t≥0 is a Markov process so

that

E
[
f
(
X̄s + σ̄ (Wt+s − Ws), �0 + L0

s (X̄) + L0
t+s(X̄) − L0

s (X̄)
)|Fs

] = P̄th
(
X̄s, �0 + L0

s (X̄)
)
.

From the above expression of P̄th, the dominated convergence theorem and the heat equation ∂tf (t, x) =
1
2 ā∂2

xf (t, x−) for f (t, x) = H0(āt, x) and f (t, x) = (−H1)(t, |x|/σ̄ ), we obtain for any t > 0 and h ∈ Cb(R
d),

∂t P̄th(x0, �0) = ā

2

[∫
R

h(x, �0)
{
H2(āt, x − x0) − H2(āt, x + x0)

}
I{xx0≥0} dx
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+
∫
R×R+

h(x, �)
1

ā
(−H3)

(
t,

|x| + |x0| + � − �0

σ̄

)
I{�0≤�} dx d�

]
= L̄P̄th(x0, �0).

Moreover, if h ∈ D, from Proposition 3.1 one deduce that ∂t P̄th = P̄t L̄h, so that assumption (H1) (i) is satisfied. We now
prove that (H1) (ii) holds. Since (t, x0, �0) �→ P̄t+rh(x0, �0) ∈ C1,2,1

b (R+ ×R\{0} ×R+) ∩ Cb(R+ ×R×R+), it suffices

to prove that it satisfies the transmission condition (3.2). From (3.7), for h ∈ C0,1
b (R×R+), we obtain

∂1P̄t+rh(0+, �0) =
∫
R+

h(x, �0)(−2H1)
(
ā(t + r), x

)
dx

+
∫
R×R+

h(x, �)
1

āσ̄
(−H2)

(
(t + r),

|x| + � − �0

σ̄

)
I{�0≤�} dx d�,

∂1P̄t+rh(0−, �0) =
∫
R−

h(x, �0)(−2H1)
(
ā(t + r), x

)
dx

+
∫
R×R+

h(x, �)
1

āσ̄
H2

(
(t + r),

|x| + � − �0

σ̄

)
I{�0≤�} dx d�,

∂2P̄t+rh(0, �0) =
∫
R×R+

h(x, �)
1

āσ̄
H2

(
(t + r),

|x| + � − �0

σ̄

)
I{�≥�0} dx d�

+
∫
R

h(x, �0)
1

ā
H1

(
(t + r),

|x|
σ̄

)
dx.

Combining the above computations, we obtain the transmission condition

1

2

(
∂1P̄t+rh(0+, �0) − ∂1P̄t+rh(0−, �0)

)
=

∫
h(x, �0)(−H1)

(
ā(t + r), |x|)dx −

∫
h(x, �)

1

āσ̄
H2

(
(t + r),

|x| + � − �0

σ̄

)
I{�≥�0} dx d�

= −∂2P̄t+rh(0, �0).

Now, in order to obtain θ̄
z1
t (x0, �0, x, �), we first integrate the kernel p̄t (x0, �0, dx, d�) given by (3.7) against the test

function h and apply the difference of the generators given by (3.3) and (3.5). We obtain

∀t > 0, (L− L̄)P̄th(x0, �0) = 1

2

(
a(x0, �0) − ā

)
∂2
x0

P̄tf (x0−, �0) + b(x0, �0)∂x0 P̄th(x0−, �0)

with

∂1P̄th(x0−, �0) = −
∫
R

h(x, �0)
{
H1(āt, x − x0) − H1(āt, x + x0)

}
I{xx0≥0} dx

−
∫
R×R+

h(x, �)
sign(x0)

āσ̄
H2

(
t,

|x| + |x0| + � − �0

σ̄

)
I{�≥�0} dx d� (A.1)

and

∂2
1 P̄th(x0−, �0) =

∫
R

h(x, �0)
{
H2(āt, x − x0) − H2(āt, x + x0)

}
I{xx0≥0} dx

−
∫
R×R+

h(x, �)
1

ā2
H3

(
t,

|x| + |x0| + � − �0

σ̄

)
I{�≥�0} dx d� (A.2)
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where sign(x0) := −I{x0≤0} + I{x0≥0} (since we are taking the left-derivative). Hence, we obtain the fact that (L −
L̄)P̄th(x0, �0) := ∫

h(x, �)θ̄
z1
t (x0, �0, x, �)ν(x0, �0, dx, d�) with

θ̄
z1
t (x0, �0, x, �)

:=

⎧⎪⎪⎨⎪⎪⎩
− 1

2
(a(z0)−a(z1))

ā2 H3(t,
|x|+|x0|+�−�0

σ̄
) − b(z0)

sign(x0)

ā
3
2

H2(t,
|x|+|x0|+�−�0

σ̄
), � > �0,

1
2 (a(z0) − a(z1)){H2(āt, x − x0) − H2(āt, x + x0)} − b(z0){H1(āt, x − x0)

+ H1(āt, x + x0)}, � = �0.

Since R2 � z �→ a(z) is continuous, assumption (H1) (iii) holds. We now prove that (H1) (iv) and (v) are satisfied.
Before that, we point out that the inequality

(x + x0)
2 = (x − x0)

2 + 4xx0 ≥ (x − x0)
2

is valid on the set {xx0 ≥ 0} which implies H0(ct, x +x0) ≤ H0(ct, x −x0). We first prove (H1) (iv). Using the fact that a

is uniformly elliptic and bounded together with the space-time inequality (1.2) and the standard Gaussian estimates (1.3)
we can bound p̄

z1
t (x0, �0, x, �) and θ̄

z1
t (x0, �0, x, �) as follows

∣∣p̄z1
t (x0, �0, x, �)

∣∣ ≤ {
Ct− 1

2 H0(ct, |x0| + |x| + � − �0), � > �0,

CH0(ct, x0 − x), x0x ≥ 0, � = �0

and

∣∣θ̄ z1
t (x0, �0, x, �)

∣∣ ≤
⎧⎨⎩C( 1

t
3
2

+ |b|∞
t

)H0(ct, |x0| + |x| + � − �0), � > �0,

C( 1
t
+ |b|∞

t
1
2

)H0(ct, x0 − x), x0x > 0, � = �0.

Integrating the two previous estimates against ν(x0, �0, dx, d�), we conclude that ζ̄ = −1 in assumption (H1) (iv).
Selecting the freezing point z1 = (x, �) according to the end point of the measure ν(x0, �0, dx, d�), we obtain

θ̂t (x0, �0, x, �) := θ̄
(x,�)
t (x0, �0, x, �)

:=

⎧⎪⎪⎨⎪⎪⎩
− 1

2
(a(z0)−a(x,�))

a2(x,�)
H3(t,

|x|+|x0|+�−�0
σ(x,�)

) − b(z0)
sign(x0)

a
3
2 (x,�)

H2(t,
|x|+|x0|+�−�0

σ(x,�)
), � > �0,

1
2 (a(z0) − a(x, �)){H2(a(x, �0)t, x − x0) − H2(a(x, �0)t, x + x0)}

− b(z0){H1(a(x, �0)t, x − x0) + H1(a(x, �0)t, x + x0)}, � = �0.

and one has the following bound

∣∣θ̂t (x0, �0, x, �)
∣∣ ≤

⎧⎨⎩C( 1

t
3−η

2
+ |b|∞

t
)H0(ct, |x0| + |x| + � − �0), � > �0

C( 1

t
1− η

2
+ |b|∞

t
1
2

)H0(ct, x0 − x), x0x ≥ 0, � = �0.
(A.3)

To obtain the previous estimate, we note that on the set {� > �0}, by using uniform ellipticity, boundedness and η-Hölder
continuity of the diffusion coefficient a as well as standard estimates for derivatives of the Gaussian density given in (1.3),
we obtain∣∣∣∣1

2

(a(x0, �0) − a(x, �))

a2(x, �)
H3

(
t,

|x| + |x0| + � − �0

σ(x, �)

)∣∣∣∣
≤ C

(|x0 − x| + |�0 − �|)η
t

3
2

H0
(
ct, |x| + |x0| + � − �0

)
≤ C

1

t
3−η

2

( |x0| + |x| + � − �0

t
1
2

)η

H0
(
ct, |x| + |x0| + � − �0

)
≤ C

1

t
3−η

2

H0
(
ct, |x| + |x0| + � − �0

)
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where the last inequality follows from the space-time inequality (1.2). Similarly, to estimate the second term, that is, when
� = �0 and x0x ≥ 0, we have∣∣∣∣1

2

(
a(x0, �0) − a(x, �0)

){
H2

(
a(x, �0)t, x − x0

)− H2
(
a(x, �0)t, x + x0

)}∣∣∣∣
≤ C

|x0 − x|η
t

(
H0(āt, x − x0) + H0(āt, x + x0)

)
≤ C

t1− η
2
H0(ct, x − x0)

where in the last inequality, we have used the fact that on the set {x0x ≥ 0}, (x − x0)
2 ≤ (x + x0)

2 and the space time
inequality (1.2). The estimates for the term involving |b|∞ follows directly from the standard Gaussian estimate given in
(1.3).

To obtain the estimate (2.4), we integrate the bound (A.3) against ν(x0, �0, dx, d�). We note that on the set {� ≥ �0},
this integral can be estimated through integration by parts with respect to � and using the fact that t ∈ (0, T ], that is(

1

t
3−η

2

+ |b|∞
t

)∫
R

∫ ∞

�0

H0
(
ct, |x0| + |x| + � − �0

)
dx d�

≤ C
1

t
3−η

2

∫
R

∫ ∞

0
H0

(
ct, |x0| + |x| + �

)
d�dx

= 1

t
3−η

2

∫
R

∫ ∞

0
�(−H1)

(
ct, |x0| + |x| + �

)
d�dx

≤ C
1

t
3−η

2

∫ ∞

0

∫ ∞

0

(
� + |x0|

)
(−H1)

(
ct, |x0| + x + �

)
dx d�

= C
1

t
3−η

2

∫ ∞

0

(
� + |x0|

)
H0

(
ct, |x0| + �

)
d� ≤ C

t1− η
2
. (A.4)

On the set {x0x ≥ 0} ∩ {� = �0}, straightforward integration gives∫
R

(
1

t1− η
2

+ |b|∞
t

1
2

)
H0(ct, x0 − x)dx ≤ C(1 + |b|∞t

1−η
2 )

t1− η
2

. (A.5)

From the above computations, we conclude that (H1) (iv) is satisfied.
We now prove (H1) (v), namely,

lim
ε↓0

∫
R2

h(x, �)p̂ε(x0, �0, dx, d�) → h(x0, �0), h ∈ Cb(R×R+).

We consider the change of variable �′ = �−�0 and x = x′, and decompose
∫
R2 h(x, �)p̂ε(x0, �0, dx, d�) into the following∫

R×[0,∞)

h
(
x′, �0 + �′)[p̂ε

(
x0,0, dx′, d�′)− p̄ε

(
x0,0, dx′, d�′)]+

∫
R×[0,∞)

h
(
x′, �0 + �′)p̄ε

(
x0,0, dx′, d�′)

where the frozen point in p̄ε is given by (x1, �1) = (x0,0). It is clear from the continuity of h that the second term
converges to h(x0, �0) as ε ↓ 0. The first term can be decomposed as follows∫

R×[0,∞)

h
(
x′, �0 + �′)[p̂ε

(
x0,0, dx′, d�′)− p̄ε

(
x0,0, dx′, d�′)]

=
∫
R

h
(
x′, �0

)[
H0

(
a
(
x′, �0

)
ε, x′ − x0

)− H0
(
a(x0, �0)ε, x

′ − x0
)

− (
H0

(
a
(
x′, �0

)
ε, x′ + x0

)− H0
(
a(x0, �0)ε, x

′ + x0
))]

I{x′x0≥0} dx′

−
∫
R×[0,∞)

h
(
x′, �′ + �0

)[ 1

a(x′, �′ + �0)
H1

(
ε,

|x′| + |x0| + �′

σ(x′, �′ + �0)

)
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− 1

a(x0, �0)
H1

(
ε,

|x′| + |x0| + �′

σ(x0, �0)

)]
dx′ d�′

=: I + II.

To show that the first term vanishes as ε ↓ 0, we combine the mean value theorem with the Hölder regularity of a and
the space-time inequality

|I| ≤ C|h|∞
∫
R

ε|x′ − x0|η
ε

{
H0

(
cε, x′ − x0

)+ H0
(
cεx′ + x0

)}
I{x′x0≥0} dx′ ≤ C|h|∞ε

η
2 .

For the second term, we again combine the mean value theorem with the Hölder regularity of a and the space-time
inequality (1.2)

|II| ≤ C|h|∞
∫
R×[0,∞)

(∣∣x′∣∣+ |x0| + �′)η[H1

(
ε,

|x′| + |x0| + �′

σ(x′, �′ + �0)

)

+ (|x′| + |x0| + �′)2

ε
3
2

H0

(
ε,

|x′| + |x0| + �′

σ(x′, �′ + �0)

)]
dx′ d�′

≤ C|h|∞ε
η
2 .

We now prove (H1) (vi). To show that P̂t+rh(x) → P̂th(x) as r ↓ 0, it is sufficient to apply the dominated convergence
together with the fact that h is bounded and that, for fixed t > 0 and for all r such that 0 ≤ r ≤ T , |Hi(c(t + r), x)| ≤
C(

√
t + T /t

i+1
2 )H0(c(T + t), x). Similar arguments yield limr→0 St+rh(x) = St h(x).

We now prove that (H2) holds. Let h ∈ C∞
b (J ) and r > 0. In order to prove that (0,∞) × J � (r, x0, �0) �→

R̄λP̄rh(x0, �0) = ∫ ∞
0 e−λuP̄u+rh(x0, �0) du belongs to D, we remark that by the Lebesgue differentiation theorem it

is enough to check that P̄u+rh ∈ D which is exactly assumption (H1) (ii) (a). From (A.1), (A.2) and the fact that the
coefficients b and a are bounded, we directly get that the map (x0, �0) �→ LP̄u+rh(x0, �0) is bounded (independently of
u) so that by Lebesgue’s differentiation theorem one gets LR̄λP̄rh = ∫ ∞

0 e−λuLP̄u+rhdu.
The identity (2.12) then follows from the Lebesgue differentiation theorem and the fact that P̄rh ∈D so that L̄P̄u+rh =

L̄P̄uP̄rh = P̄uL̄P̄rh. The identity (2.13) follows again from the Lebesgue differentiation theorem. We thus conclude that
(H1) and (H2) are satisfied. The proof of the theorem is now complete.

A.2. Proof of Theorem 3.4

As previously mentioned, we only prove the result for b ≡ 0. In order to include a drift, we refer to Remark 3.5. We
examine the n-th term of the series (3.10) and prove an important smoothing property of the kernel. More precisely, let
x = xn+1, � = �n+1 and s0 = T , we claim the following key inequality∣∣∣∣∣

∫
(R×R+)n

p̂sn(x0, �0, x1, �1)

{
n∏

i=1

θ̂sn−i−sn−i+1(xi, �i, xi+1, �i+1)u(x0, �0, xi+1, �i+1, dxi, d�i)

}∣∣∣∣∣
≤

n∏
i=1

C(si−1 − si)
−1+ η

2 ×
{

1

T
1
2

H0
(
cT , |x| + |x0| + � − �0

)
I{�0<�}

+
{ |x|β

T
β
2

∧ |x0|β
T

β
2

∧ 1

}
H0(cT , x − x0)I{xx0≥0}I{�=�0}

}
(A.6)

for any β ∈ [0,1]. From the previous bound and Lemma A.1 we deduce that∣∣pn
T (x0, �0, x, �)

∣∣
≤

∣∣∣∣∣
∫

�n(T )

dsn

∫
(R×R+)n

p̂sn(x0, �0, x1, �1)

×
{

n∏
i=1

θ̂sn−i−sn−i+1(xi, �i, xi+1, �i+1)u(x0, �0, xi+1, �i+1, dxi, d�i)

}∣∣∣∣∣
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≤
∫

�n(T )

dsn

n∏
i=1

C(si−1 − si)
−1+ η

2 ×
{

1

T
1
2

H0
(
cT , |x| + |x0| + � − �0

)
I{�0<�}

+
{ |x|β

T
β
2

∧ |x0|β
T

β
2

∧ 1

}
H0(cT , x − x0)I{xx0≥0}I{�=�0}

}

= (CT η/2�(η/2))n

�(1 + nη/2)

{
1

T
1
2

H0
(
cT , |x| + |x0| + � − �0

)
I{�0<�}

+
{ |x|β

T
β
2

∧ |x0|β
T

β
2

∧ 1

}
H0(cT , x − x0)I{xx0≥0}I{�=�0}

}
with the convention s0 = T . Hence, from Fubini’s theorem, the semigroup series obtained from Corollary 2.1 admits the
following integral representation

PT h(x0, �0) =
∫
R×R+

h(x, �)

(∑
n≥0

pn
T (x0, �0, x, �)

)
ν(x0, �0, dx, d�)

where pn
T (x0, �0, x, �) is given by (3.13). Moreover, from the above inequality, for any (x0, �0), (x, �) ∈ R × R+, one

gets the following Gaussian upper bound∣∣∣∣∑
n≥0

pn
T (x0, �0, x, �)

∣∣∣∣
≤ CT

{
1

T
1
2

H0
(
cT , |x| + |x0| + � − �0

)
I{�0<�} +

{ |x|β
T

β
2

∧ |x0|β
T

β
2

∧ 1

}
H0(cT , x − x0)I{xx0≥0}I{�=�0}

}
where CT := ∑

N≥1(CT η/2�(η/2))N/�(1 + Nη/2) < ∞, for some constants C,c > 1.
The proof will thus be complete once we prove (A.6). We proceed by induction and show that for j = 1, . . . , n, the

following estimate holds∣∣∣∣∣
∫

(R×R+)j
p̂sn(x0, �0, x1, �1)

{
j∏

i=1

θ̂sn−i−sn−i+1(xi, �i, xi+1, �i+1)u(x0, �0, xi+1, �i+1, dxi, d�i)

}∣∣∣∣∣
≤

j∏
i=1

C(sn−i − sn−i+1)
−1+ η

2

{
1

s
1
2
n−j

H0
(
csn−j , |xj+1| + |x0| + �j+1 − �0

)
I{�0<�j+1}

+
{ |xj+1|β

s
β
2
n−j

∧ |x0|β

s
β
2
n−j

∧ 1

}
H0(csn−j , xj+1 − x0)I{xj+1x0≥0}I{�j+1=�0}

}
. (A.7)

We start by proving a one step estimate, namely we compute an upper bound for∫
R×R+

p̂sn(x0, �0, x1, �1)θ̂sn−1−sn(x1, �1, x2, �2)u(x0, �0, x2, �2, dx1, d�1)

=
∫
R

p̂sn(x0, �0, x1, �0)θ̂sn−1−sn(x1, �1, x2, �1)I{x0x1≥0} dx1I{�2=�0}I{x2x0≥0}

+
∫
R×R+

p̂sn(x0, �0, x1, �1)θ̂sn−1−sn(x1, �1, x2, �2)I{x1x0≥0} dx1δ�0(d�1)I{�0<�2}

+
∫
R×R+

p̂sn(x0, �0, x1, �1)θ̂sn−1−sn(x1, �1, x2, �2)I{x2x1≥0} dx1δ�2(d�1)I{�0<�2}

+
∫
R×R+

p̂sn(x0, �0, x1, �1)θ̂sn−1−sn(x1, �1, x2, �2)I{�0≤�1≤�2} dx1 d�1I{�0<�2}

=: A1I{�2=�0}I{x2x0≥0} + (A2 + A3 + A4)I{�0<�2} (A.8)
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where we used (3.12). In the following, we present in detail the computation of the estimates for Ai , i = 1,2,3,4 and
shall be brief in the induction step as the computations are quite similar.

From (3.9), Lemma A.4 of Section A.5 with r = 2 and the space-time inequality (1.2), for all β ∈ [0,1],

|A1| ≤ C

∫
R

{ |x1|β

s
β
2
n

∧ |x0|β

s
β
2
n

∧ 1

}
I{x1x0≥0}H0(csn, x1 − x0)

×
{ |x2|β

(sn−1 − sn)
2−η+β

2

∧ |x1|β
(sn−1 − sn)

2−η+β
2

∧ 1

(sn−1 − sn)
1− η

2

}
H0

(
c(sn−1 − sn), x2 − x1

)
dx1

≤ C

(sn−1 − sn)
1− η

2

{ |x2|β

s
β
2
n−1

∧ |x0|β

s
β
2
n−1

∧ 1

}
H0(csn−1, x2 − x0) (A.9)

where to obtain inequality (A.9), we considered the two cases sn ∈ (0, sn−1/2) and sn ∈ (sn−1/2, sn−1).
Indeed, if sn ∈ (0, sn−1/2), one has (sn−1 − sn) 
 sn−1 and by using the inequalities{ |x2|β

(sn−1 − sn)
2−η+β

2

∧ |x1|β
(sn−1 − sn)

2−η+β
2

∧ 1

(sn−1 − sn)
1− η

2

}
≤ C

(sn−1 − sn)
1− η

2

{ |x2|β

s
β
2
n−1

∧ 1

}
(A.10)

{ |x1|β

s
β
2
n

∧ |x0|β

s
β
2
n

∧ 1

}
≤ 1 (A.11)

and the semigroup property, one obtains

|A1| ≤ C

(sn−1 − sn)
1− η

2

{ |x2|β

s
β
2
n−1

∧ 1

}
H0(csn−1, x2 − x0).

To obtain the upper bound in (A.9) with |x0|βs
−β/2
n−1 , we bound the left-hand side of (A.10) by |x1|β(sn−1 − sn)

−1+ η−β
2

and use |x1|β ≤ (|x1 − x0|β + |x0|β) to bound |A1| using two terms. For the first term associated with |x1 − x0|β , we
bound the left-hand side of (A.11) by |x0|βs

−β/2
n and for the second term associated with |x0|β , we bound the left hand

of (A.11) by 1. This gives

|A1| ≤ C

∫
R

|x0|β

s
β
2
n

I{x1x0≥0}H0(csn, x1 − x0)
1

s
β
2
n−1

|x1 − x0|β
(sn−1 − sn)

1− η
2
H0

(
c(sn−1 − sn), x2 − x1

)
dx1

+ C

∫
R

I{x1x0≥0}H0(csn, x1 − x0)
1

s
β
2
n−1

|x0|β
(sn−1 − sn)

1− η
2
H0

(
c(sn−1 − sn), x2 − x1

)
dx1

≤ C

(sn−1 − sn)
1− η

2

|x0|β

s
β
2
n−1

H0(csn−1, x2 − x0)

where, in the last inequality above, we applied space-time inequality (1.2) to remove s
β/2
n in the first term using |x0 −

x1|βH(csn, x1 − x0). This proves the desired bound for sn ∈ (0, sn−1/2).
For the case sn ∈ (sn−1/2, sn−1), one has sn 
 sn−1, and by bounding the left-hand side of (A.11) and (A.10) by

|x0|βs
−β/2
n and (sn−1 − sn)

−1+η/2 respectively, we obtain

|A1| ≤ C

∫
R

|x0|β

s
β
2
n

I{x1x0≥0}H0(csn, x1 − x0)
1

(sn−1 − sn)
1− η

2
H0

(
c(sn−1 − sn), x2 − x1

)
dx1

≤ C

(sn−1 − sn)
1− η

2

|x0|β

s
β
2
n−1

H0(csn−1, x2 − x0).
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To obtain the upper bound in (A.9) with |x2|βs
−β/2
n−1 , we bound the left hand side of (A.11) by |x1|βs

− β
2

n and use sn−1 
 sn

and |x1|β ≤ (|x2|β +|x1 −x2|β) to bound |A1| by the sum of two terms. For the first term associated with |x2|β , we bound
the left-hand side of (A.10) by (sn−1 − sn)

−1+η/2 and for the second term associated with |x1 − x2|β we bound the left
hand side of (A.10) by |x2|β(sn−1 − sn)

−β/2. This gives

|A1| ≤ C

∫
R

|x2|β

s
β
2
n−1

I{x1x0≥0}H0(csn, x1 − x0)
1

(sn−1 − sn)
1− η

2
H0

(
c(sn−1 − sn), x2 − x1

)
dx1

+ C
|x1 − x2|β

s
β
2
n−1

∫
R

I{x1x0≥0}H0(csn, x1 − x0)
|x2|β

(sn−1 − sn)
1− η+β

2

H0
(
c(sn−1 − sn), x2 − x1

)
dx1

≤ C

(sn−1 − sn)
1− η

2

|x2|β

s
β
2
n−1

H0(csn−1, x2 − x0)

where the last inequality follows from the space-time inequality applied to |x1 − x2|βH0(c(sn − sn−1), x2 − x1).
To estimate A2, we apply Lemma A.4 with β = 1, then

|A2| ≤ C

∫
R

{ |x1|β
|sn| β

2

∧ |x0|β
|sn| β

2

∧ 1

}
H0(csn, x1 − x0)I{x1x0≥0}

× 1

(sn−1 − sn)
3−η

2

H0
(
c(sn−1 − sn), |x2| + |x1| + �2 − �0

)
dx1

≤ C

{
1

s
β
2
n (sn−1 − sn)

3−η−β
2

∧ 1

(sn−1 − sn)
3−η

2

}
H0

(
csn−1, |x2| + |x0| + �2 − �0

)
(A.12)

≤ C

(sn−1 − sn)
1− η

2

1

s
1
2
n−1

H0
(
csn−1, |x2| + |x0| + �2 − �0

)
. (A.13)

To obtain (A.12), we use the fact that{ |x1|β
|sn| β

2

∧ |x0|β
|sn| β

2

∧ 1

}
≤ 1

and convolve the Gaussian kernels using the second inequality in Lemma A.2 to obtain

|A2| ≤ C
1

(sn−1 − sn)
3−η

2

H0
(
c(sn−1 − sn), |x2| + |x0| + �2 − �0

)
.

To obtain the upper bound in (A.12) with s
−β/2
n (sn−1 − sn)

−(3−η−β)/2, we note that{ |x1|β
|sn| β

2

∧ |x0|β
|sn| β

2

∧ 1

}
≤ 1

s
β
2
n

|x1|β ≤ 1

s
β
2
n

[|x1| + |x0| + (�2 − �0)
]β

and together with the space-time inequality (1.2) gives the (sn−1 − sn)
−(3−η−β)/2 term. The result then holds by convolv-

ing the Gaussian densities using Lemma A.2. Finally, to obtain (A.13) from (A.12), we again consider two cases. For the
case sn ∈ (0, sn−1/2), one has (sn−1 − sn) 
 sn−1 and

1

s
β
2
n (sn−1 − sn)

3−η−β
2

∧ 1

(sn−1 − sn)
3−η

2

≤ 1

(sn−1 − sn)
3−η

2

≤ C
1

(sn−1 − sn)
1−η

2

1

s
1
2
n−1

.

For the case sn ∈ (sn−1/2, sn−1), one has sn 
 sn−1. We take β = 1 in (A.12) so that

1

s
β
2
n (sn−1 − sn)

3−η−β
2

∧ 1

(sn−1 − sn)
3−η

2

≤ 1

s
β
2
n (sn−1 − sn)

3−η−β
2

≤ C

(sn−1 − sn)
1− η

2

1

s
1
2
n−1

.
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To estimate A3, again by applying Lemma A.4 with β = 1, one has

|A3| ≤
∫
R

C

s
1
2
n

H0
(
csn, |x1| + |x0| + �2 − �0

)
× 1

(sn−1 − sn)
1− η

2

{ |x1|β
(sn−1 − sn)

β
2

∧ 1

}
H0

(
c(sn−1 − sn), x2 − x1

)
I{x2x1≥0} dx1

≤ C

(sn−1 − sn)
1− η

2

1

s
1
2
n−1

H0
(
csn−1, |x2| + |x0| + �2 − �0

)
(A.14)

where we again separated the computations into the two cases sn ∈ (0, sn−1/2) and sn ∈ (sn−1/2, sn−1). In the case
sn ∈ (0, sn−1/2), we have (sn−1 − sn) 
 sn−1 and s

−1/2
n is removed using the inequality |x1| ≤ |x1| + |x0| + �2 − �0 and

the space-time inequality to obtain

|A3| ≤
∫
R

C

s
1
2
n

H0
(
csn, |x1| + |x0| + �2 − �0

) 1

(sn−1 − sn)
1− η

2

|x1|
(sn−1 − sn)

1
2

× H0
(
c(sn−1 − sn), x2 − x1

)
I{x2x1≥0} dx1

≤ C

∫
R

H0
(
csn, |x1| + |x0| + �2 − �0

) 1

(sn−1 − sn)
1− η

2

1

(sn−1 − sn)
1
2

× H0
(
c(sn−1 − sn), x2 − x1

)
I{x2x1≥0} dx1

≤ C

(sn−1 − sn)
1− η

2

1

s
1
2
n−1

H0
(
csn−1, |x2| + |x0| + �2 − �0

)
.

In the case sn ∈ (sn−1/2, sn−1), one has sn 
 sn−1 and it suffices to note that,

|A3| ≤
∫
R

C

s
1
2
n

H0
(
csn, |x1| + |x0| + �2 − �0

) 1

(sn−1 − sn)
1− η

2
H0

(
c(sn−1 − sn), x2 − x1

)
I{x2x1≥0} dx1

≤ C

(sn−1 − sn)
1− η

2

1

s
1
2
n−1

H0
(
csn−1, |x2| + |x0| + �2 − �0

)
where the Gaussian densities are convolved using the first inequality in Lemma A.2. Finally, to estimate A4, by
Lemma A.3, one has

|A4| ≤ C

∫
R×(�0,�2)

1

s
1
2
n

H0
(
csn, |x1| + |x0| + �1 − �0

) 1

(sn−1 − sn)
3−η

2

× H0
(
c(sn−1 − sn), |x2| + |x1| + �2 − �1

)
dx1 d�1

≤ C

(sn−1 − sn)
1− η

2

1

s
1
2
n−1

H0
(
csn−1, |x2| + |x0| + �2 − �0

)
.

Combining all the previous upper-bounds we finally obtain the first step estimate∣∣∣∣∫
R×R+

p̂sn(x0, �0, x1, �1)θ̂sn−1−sn(x1, �1, x2, �2)u(x0, �0, x2, �2, dx1, d�1)

∣∣∣∣
≤ C

(sn−1 − sn)
1− η

2

1

s
1
2
n−1

H0
(
csn−1, |x2| + |x0| + �2 − �0

)
I{�0<�2}

+ C

(sn−1 − sn)
1− η

2

{ |x2|β

s
β
2
n−1

∧ |x0|β

s
β
2
n−1

∧ 1

}
H0(csn−1, x2 − x0)I{x2x0≥0}I{�2=�0} (A.15)
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for any β ∈ [0,1] and for some positive constants C := C(a), c. Now, we assume that the estimate (A.7) is valid at step j

and we prove that a similar bound holds at step j + 1, namely∣∣∣∣∣
∫

(R×R+)j+1
p̂sn(x0, �0, x1, �1)

{
j+1∏
i=1

θ̂sn−i−sn−i+1(xi, �i, xi+1, �i+1)u(x0, �0, xi+1, �i+1, dxi, d�i)

}∣∣∣∣∣
≤

j+1∏
i=1

C(sn−i − sn−i+1)
−1+ η

2

{
1

s
1
2
n−(j+1)

H0
(
csn−(j+1), |xj+2| + |x0| + �j+2 − �0

)
I{�0<�j+2}

+
{ |xj+2|β

s
β
2
n−(j+1)

∧ |x0|β

s
β
2
n−(j+1)

∧ 1

}
H0(csn−(j+1), xj+2 − x0)I{xj+2x0≥0}I{�j+2=�0}

}
. (A.16)

From (A.7) at step j , the left-hand side of (A.16) is bounded by

j∏
i=1

C(sn−i − sn−i+1)
−1+ η

2

∫
R×R+

{
1

s
1
2
n−j

H0
(
csn−j , |xj+1| + |x0| + �j+1 − �0

)
I{�0<�j+1}

+
{ |xj+1|β

s
β
2
n−j

∧ |x0|β

s
β
2
n−j

∧ 1

}
× H0(csn−j , xj+1 − x0)I{xj+1x0≥0}I{�j+1=�0}

}

× ∣∣θ̂sn−(j+1)−sn−j
(xj+1, �j+1, xj+2, �j+2)

∣∣u(x0, �0, xj+2, �j+2, dxj+1, d�j+1)

which is in turn equal to
∏j

i=1 C(sn−i − sn−i+1)
−1+ η

2 {A1I{xj+2x0≥0}I{�j+2=�0} + (A2 + A3 + A4)I{�0<�j+2}} with

A1 :=
∫
R

{ |xj+1|β

s
β
2
n−j

∧ |x0|β

s
β
2
n−j

∧ 1

}
H0(csn−j , xj+1 − x0)I{xj+1x0≥0}

1

(sn−(j+1) − sn−j )
1− η

2

×
{ |xj+2|β

(sn−(j+1) − sn−j )
β
2

∧ |xj+1|β
(sn−(j+1) − sn−j )

β
2

∧ 1

}
× H0

(
c(sn−(j+1) − sn−j ), xj+2 − xj+1

)
I{xj+2xj+1≥0} dxj+1

≤ C

(sn−(j+1) − sn−j )
1− η

2

{ |xj+2|β

s
β
2
n−(j+1)

∧ |x0|β

s
β
2
n−(j+1)

∧ 1

}
H0(csn−(j+1), xj+2 − x0)

where the last inequality follows from considering separately the two cases sn−j ∈ (0, sn−(j+1)/2) and sn−j ∈
(sn−(j+1)/2, sn−(j+1)) by using similar arguments as those employed to establish the estimate (A.9).

To estimate A2, by Lemma A.4, for any β ∈ [0,1], one has

A2 :=
∫
R

{ |xj+1|β

s
β
2
n−j

∧ |x0|β

s
β
2
n−j

∧ 1

}
H0(csn−j , xj+1 − x0)I{xj+1x0≥0}

1

(sn−(j+1) − sn−j )
3−η

2

× H0
(
c(sn−(j+1) − sn−j ), |xj+2| + |xj+1| + �j+2 − �0

)
dxj+1

≤
{

1

s
β
2
n−j (sn−(j+1) − sn−j )

3−η−β
2

∧ 1

(sn−(j+1) − sn−j )
3−η

2

}
H0

(
csn−(j+1), |xj+2| + |x0| + �j+2 − �0

)

≤ C

(sn−(j+1) − sn−j )
1− η

2

1

s
1
2
n−(j+1)

H0
(
csn−(j+1), |xj+2| + |x0| + �j+2 − �0

)
(A.17)

where to obtain the last inequality we again separated the computations into the two cases sn−j ∈ (0, sn−(j+1)/2) and
sn−j ∈ (sn−(j+1)/2, sn−(j+1)) which is estimated using similar argument to (A.13).
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To estimate A3, similarly, from Lemma A.4 with β = 1, one has

A3 := C

∫
R

1

s
1
2
n−j

H0
(
csn−j , |xj+1| + |x0| + �j+1 − �0

) 1

(sn−(j+1) − sn−j )
1− η

2

{ |xj |β
(sn−(j+1) − sn−j )

β
2

∧ 1

}

× H0
(
c(sn−(j+1) − sn−j ), xj+2 − xj+1

)
I{xj+1xj+2≥0} dxj+1

≤ C

(sn−(j+1) − sn−j )
1− η

2

1

s
1
2
n−(j+1)

H0
(
csn−(j+1), |xj+2| + |x0| + �j+2 − �0

)

where we followed similar arguments as done in order to obtain the inequality (A.14). Finally, from Lemma A.3, one has

A4 := C

∫
R×(�0,�j )

1

s
1
2
j+1

H0
(
csn−j , |xj+1| + |x0| + �j+1 − �0

) 1

(sn−(j+1) − sn−j )
3−η

2

× H0
(
c(sn−(j+1) − sn−j ), |xj+2| + |xj+1| + �j+2 − �j+1

)
dxj+1 d�j+1

≤ C

(sn−(j+1) − sn−j )
1− η

2

1

s
1
2
n−(j+1)

H0
(
csn−(j+1), |xj+2| + |x0| + �j+2 − �0

)
.

Hence (A.16) is valid and therefore by induction, the estimate (A.7) holds for j = 1, . . . , n. Now, the Gaussian bound
(A.6) follows from (A.7) by taking j = n and applying the change of variable k = n − i.

A.3. Proof of Theorem 3.7

From the very expression of P̄th, we remark that (x0,m0) �→ P̄th(x0,m0) ∈ C2,1
b (J ) if h ∈ C∞

b (J ) and satisfies the
condition ∂2P̄th(m0,m0) = limx0↑m0 ∂2P̄th(x0,m0) = 0, m0 ∈ R. Indeed, from (3.18) and (3.19), for x0 < m0 and t > 0,
we obtain

∂m0 P̄th(x0,m0)

= ∂m0

∫ m0

−∞
h(x,m0)

{
H0(āt, x − x0) − H0(āt,2m0 − x − x0)

}
dx

+ ∂m0

∫ ∞

m0

∫ m

−∞
h(x,m)(−2H1)(āt,2m − x − x0) dx dm

=
∫ m0

−∞
∂2h(x,m0)

{
H0(āt,m0 − x0) − H0(āt,2m0 − x − x0)

}
dx

+
∫ m0

−∞
h(x,m0)(−2H1)(āt,2m0 − x − x0) dx

+
∫ m0

−∞
h(x,m0)(2H1)(āt,2m0 − x − x0) dx,

and by letting x0 ↑ m0, we have ∂2P̄th(m0,m0) = 0. Moreover, simple computations that are similar to the case of the
local time, namely by using dominated convergence theorem and the heat equation satisfied by the underlying kernels,
one can show that ∂t P̄th(x0,m0) = L̄ P̄th(x0,m0), for any t > 0 and any (x0,m0) ∈ J . If h ∈ D, from the chain rule
formula (3.17), we get ∂t P̄th(x0,m0) = P̄t L̄h(x0,m0). Then, we write

(L− L̄)P̄th(x0,m0) = 1

2

(
a(x0,m0) − a(x1,m1)

)
∂2

1 P̄th(x0,m0) + b(x0,m0)∂1P̄th(x0,m0)

=
∫
R2

h(x,m)θ̄
(x1,m1)
t (x0,m0, x,m)ν(x0,m0, dx, dm)
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where ν(x0,m0, dx, dm) = I{x≤m}I{m0<m} dx dm + I{x≤m0} dxδm0(dm) and

θ̄
(x1,m1)
t (x0,m0, x,m)

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 (a(x0,m0) − a(x1,m1))(−2H3)(āt,2m − x − x0)

+ b(x0,m0)(−2H2)(āt,2m − x − x0), x ≤ m,m0 < m,
1
2 (a(x0,m0) − a(x1,m1))(H2(āt, x − x0) − H2(āt,2m0 − x − x0)) x < m0,m = m0

+ b(x0,m0)(H1(āt,2m0 − x − x0) − H1(āt, x − x0)).

Hence, we see that (H1) (i), (ii), (iii) hold.
We now verify (H1) (iv) for ζ̄ = −1. We proceed as in Section A.1. From (UE), there exists positive constants C,c > 0

such that for any t > 0 and (x0,m0) ∈ J , one has∣∣p̄t (x0,m0, x,m)
∣∣ ≤ C

{
(−H1)(ct,2m − x − x0)I{x≤m}I{m<m0} + H0(ct, x − x0)I{m=m0}

}
and the right-hand side of the above inequality is ν(x0,m0, dx, dm) integrable.

In the same spirit, from (UE), (HR) and the space-time inequality (1.3), we bound θ̄
(x1,m1)
t (x0,m0, x,m) as follows

∣∣θ̄ (x1,m1)
t (x0,m0, x,m)

∣∣ ≤
⎧⎨⎩C( 1

t
3
2

+ |b|∞
t

)H0(ct,2m − x − x0), x ≤ m,m0 < m,

C( 1
t
+ |b|∞

t
1
2

)H0(ct, x − x0), x < m0,m = m0.

By integrating the above with respect to ν(x0,m0, dx, dm) yields∫
R2

∣∣θ̄ (x1,m1)
t (x0,m0, x,m)

∣∣ν(x0,m0, dx, dm)

≤ C

(
1

t
3
2

+ |b|∞
t

)∫ ∞

m0

∫ m

−∞
H0(ct,2m − x − x0) dx dm + C

(
1

t
+ |b|∞

t
1
2

)∫ m0

−∞
H0(ct, x − x0) dx

≤ C

(
1

t
3
2

+ |b|∞
t

)∫ ∞

m0

(m − m0)H0(ct,m − m0) dm + C(1 + |b|∞t
1
2 )

t

≤ C(1 + |b|∞t
1
2 )

t

where to obtain the second inequality, we apply integration by parts formula w.r.t. x in the first integral and bound the
second integral by one. In the third inequality we applied the space-time inequality (1.2).

Similarly, by selecting the freezing point z1 = (x1,m1) according to the end point of the measure ν(x0,m0, dx, dm),
and by noticing that m−m0 ≤ 2m−x −x0, for m0 ≤ m, x0 ≤ x, we obtain from (HR), (UE) and the space-time inequality
(using similar arguments to those given just below (A.3) in the local time case)

∣∣θ̂t (x0,m0, x,m)
∣∣ ≤

⎧⎨⎩C( 1

t
3−η

2
+ |b|∞

t
)H0(ct,2m − x − x0), x ≤ m,m0 < m,

C( 1

t
1− η

2
+ |b|∞

t
1
2

)H0(ct, x − x0), x < m0,m = m0.

The above estimate shows that the order of the time singularity of θ̂t is better than that of θ̄t . This is because by
freezing the diffusion coefficient at the terminal point (x,m), we gained space regularity from the Hölder continuity of
the diffusion coefficient which is then used to improve the order of time singularity through the space-time inequality
(1.2). This is the smoothing property discussed in the introduction since∫

R2

∣∣θ̂t (x0,m0, x,m)
∣∣ν(x0,m0, dx, dm) ≤ C

(
1

t
3−η

2

+ |b|∞
t

)∫ ∞

m0

∫ m

−∞
H0(ct,2m − x − x0) dx dm

+ C

(
1

t1− η
2

+ |b|∞
t

1
2

)∫ m0

−∞
H0(ct, x − x0) dx
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≤ C

(
1

t
3−η

2

+ |b|∞
t

)∫ ∞

m0

(m − m0)H0(ct,m − m0) dm + Ct

t1− η
2

≤ Ct

t1− η
2

where to obtain the second last inequality, we have applied integration by parts with respect to x and taken Ct = C(1 +
|b|∞t (1−η)/2). Hence, we conclude that (H1) (iv) is satisfied with ζ̄ = −1 and ζ = −1 + η/2.

We now prove (H1) (v). We decompose
∫
R2 h(x,m)p̂ε(x0,m0, dx, dm) as follows∫

R2
h(x,m)

[
p̂ε(x0,m0, dx, dm) − p̄ε(x0,m0, dx, dm)

]+
∫
R2

h(x,m)p̄ε(x0,m0, dx, dm)

with p̄ε(x0,m0, x,m)ν(x0,m0, dx, dm), p̄ε(x0,m0, x,m) := f̄ε(x0, x)I{m=m0} + q̄ε(x0,m0, x,m)I{m0<m} and where the
point at which we freeze the coefficient is z1 = (x0,m0). From the continuity of h and path continuity of approximation
process it is clear that the second term converges to h(x0,m0) as ε ↓ 0. It thus suffices to prove that the first term goes to
zero as ε ↓ 0. By the mean value theorem and the space-time inequality, we obtain∣∣f̂ε(x0, x) − f̄ε(x0, x)

∣∣ ≤ Cε
|x − x0|η

ε

{
H0(cε, x − x0) + H0(cε,2m0 − x − x0)

}
≤ Cε

η
2 H0(cε, x − x0)

and, similarly,∣∣̂qε(x0,m0, x,m) − q̄ε(x0,m0, x,m)
∣∣ ≤ C|x − x0| (|x − x0|η + |m − m0|η)

ε
H0(cε,2m − x − x0)

≤ C
|2m − x − x0|1+η

ε
H0(cε,2m − x − x0)

≤ Cε
η
2

1

ε
1
2

H0(cε,2m − x − x0).

Integrating the two previous bounds against ν(x0,m0, dx, dm) we obtain∣∣∣∣∫
R2

h(x,m)
[
p̂ε(x0,m0, dx, dm) − p̄ε(x0,m0, dx, dm)

]∣∣∣∣ ≤ C|h|∞ε
η
2

and we conclude by letting ε ↓ 0.
In order to prove that assumption (H1) (vi) holds we proceed as in the case of the local time, namely P̂t+rh → P̂th as

r ↓ 0, follows from the dominated convergence theorem together with the fact that h is bounded and the inequality for

fixed t > 0 and all r such that 0 ≤ r ≤ T , |Hi(c(t + r), x)| ≤ C(
√

t + T /t
i+1

2 )H0(c(T + t), x). Similar arguments also
yield limr→0 St+rh(x) = Sth(x).

One can verify that assumption (H2) holds by following the same arguments as in the case of the diffusion process and
its running local time. The remaining technical details are thus omitted.

A.4. Proof of Theorem 3.8

As the technique of proof is very similar to the local time case, we will not present all details in the following computation.
In the model of the SDE with its running maximum, we examine the n-th term of the series (3.21) and follow the
convention x = xn+1, m = mn+1 and s0 = T . For any β ∈ [0,1], we prove the following key inequality∣∣∣∣∣

∫
(R2)n

p̂sn(x0,m0, x1,m1)

{
n∏

i=1

θ̂sn−i−sn−i+1(xi,mi, xi+1,mi+1)u(x0,m0, xi+1,mi+1, dxi, dmi)

}∣∣∣∣∣
≤

n∏
k=1

C(sk−1 − sk)
−1+ η

2

{
1

T
1
2

H0(cT ,2m − x − x0)I{x<m}I{�0<m}

+
{ |m0 − x|β

T
β
2

∧ |m0 − x0|β
T

β
2

∧ 1

}
H0(cT , x − x0)I{x<m0}I{m=m0}.

}
(A.18)
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From the previous bound, we deduce that∣∣∣∣∣
∫

�n(T )

dsn

∫
(R2)n

p̂sn(x0,m0, x1,m1)

{
n∏

i=1

θ̂sn−i−sn−i+1(xi,mi, xi+1,mi+1)u(x0,m0, xi+1,mi+1, dxi, dmi)

}∣∣∣∣∣
≤

∫
�n(T )

dsn

n∏
k=1

C(sk−1 − sk)
−1+ η

2

{
1

T
1
2

H0(cT ,2m − x − x0)I{x<m}I{m0<m}

+
{ |m − x|β

T
β
2

∧ |m − x0|β
T

β
2

∧ 1

}
H0(cT , x − x0)I{x<m0}I{m=m0}

}
= C(N,T )

{
1

T
1
2

H0(cT ,2m − x − x0)I{x<m}I{m0<m}

+
{ |m − x|β

T
β
2

∧ |m − x0|β
T

β
2

∧ 1

}
H0(cT , x − x0)I{x<m0}I{m=m0}

}

where, from Lemma A.1, we have C(N,T ) := (CT η/2�(η/2))N

�(1+Nη/2)
. Hence, from Fubini’s theorem, the semigroup series ob-

tained from Corollary 2.1 admits the following integral representation

PT h(x0,m0) =
∫
R2

h(x,m)

(∑
n≥0

pn
T (x0,m0, x,m)

)
ν(x0,m0, dx, dm)

where pn
T (x0,m0, x,m) is given by (3.24). Moreover, from the above inequality, for any (x0,m0), (x,m) ∈ J 2, one gets

the following Gaussian upper bounds

∣∣pT (x0,m0, x,m)
∣∣ :=

∣∣∣∣∑
n≥0

pn
T (x0,m0, x,m)

∣∣∣∣
≤ CT

{
1√
T

H0(cT ,2m − x − x0)I{x≤m}I{m0<m}

+
{ |m0 − x|β

T
β
2

∧ |m0 − x0|β
T

β
2

∧ 1

}
H0(cT , x − x0)I{x<m0}I{m=m0}

}
(A.19)

where CT := ∑
N≥1(CT η/2�(η/2))N/�(1+Nη/2) < ∞, for some constants C,c > 1. Hence it remains to prove (A.18).

Since its proof is similar to the proof of (A.6) in the case of local time, we briefly present the guidelines and omit technical
details. We note that from Lemma A.4 and the standard Gaussian estimate (1.3), the following estimates hold

∣∣p̂t (x0,m0, x,m)
∣∣ ≤

⎧⎨⎩
C

t
1
2
H0(ct,2m − x − x0), x ≤ m,m0 < m,

C{ |m−x0|β
t
β
2

∧ |m−x|β
t
β
2

∧ 1}H0(ct, x − x0), x < m0,m = m0,
(A.20)

and similarly

∣∣θ̂t (x0,m0, x,m)
∣∣ ≤

⎧⎪⎨⎪⎩
C

t
3−η

2
H0(ct,2m − x − x0), x ≤ m,m0 < m,

C

t
1− η

2
{ |m−x0|β

t
β
2

∧ |m−x|β
t
β
2

∧ 1}H0(ct, x − x0), x < m0,m = m0
(A.21)

where β ∈ [0,1] can be freely chosen. We proceed in a similar fashion to the case of the local time and first compute an
upper bound for∫

R2
p̂s

(
x0,m0, x

′,m′)θ̂t−s

(
x′,m′, x,m

)
u
(
x0,m0, x,m,dx′, dm′)

=
∫
R2

p̂s

(
x0,m0, x

′,m′)θ̂t−s

(
x′,m′, x,m

)
I{x′∨x0∨m0<m′}I{x∨x′∨m′<m}I{m′<m} dx′dm′
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+
∫
R2

p̂s

(
x0,m0, x

′,m′)I{m0=m′}θ̂t−s

(
x′,m′, x,m

)
I{x∨x′∨m′<m}I{x′<m0}δm0

(
dm′)dx′

+
∫
R2

p̂s

(
x0,m0, x

′,m′)I{x′∨x0∨m0<m′}θ̂t−s

(
x′,m′, x,m

)
I{m′=m}I{x′<m}δm

(
dm′)dx′

+
∫
R2

p̂s

(
x0,m0, x

′,m′)θ̂t−s

(
x′,m′, x,m

)
I{x′<m0}I{x<m′}I{m=m′}δm0

(
dm′)dx′

=: (A1 + A2 + A3)I{x∨x0∨m0<m} + A4I{x<m0}I{m0=m} (A.22)

where we used (3.23). From Lemma A.3, (A.20) and (A.21), one directly gets

|A1| ≤ 1

(t − s)1− η
2

C√
t
H0(ct,2m − x − x0).

For the term A2, we notice that m0 = m′ < m and for β = 1, we obtain the following bound

|A2| ≤ C

(t − s)
3−η

2

∫
R

{ |m0 − x′|β
s

β
2

∧ |m0 − x0|
s

β
2

∧ 1

}
H0

(
cs, x′ − x0

)
× H0

(
c(t − s),2m − x − x′)I{x∨x′∨m0<m}I{x′<m0} dx′

≤ C

(t − s)1− η
2 + 1

2

{ |m′ − x′ + m − x|β
s

β
2

I{s∈( t
2 ,t]} + I{s∈(0, t

2 )}
}

×
∫
R

H0
(
cs, x′ − x0

)
H0

(
c(t − s),2m − x − x′)I{x∨x′∨m0<m}I{x′<m0} dx′

≤ C

(t − s)1− η
2

1

t
1
2

H0(ct,2m − x − x0)

where the last inequality follows from the fact that m′ − x′ + m − x ≤ 2m − x − x′ and the space-time inequality (1.2) in
the case s ∈ ( t

2 , t) and Gaussian convolution together with (t − s) 
 t if s ∈ [0, t/2].
For the term A3, we note that m0 < m and |m − x| ≤ |m − x + m0 − x0| ≤ |2m − x − x0|. Hence, one has

|A3| ≤ C

(t − s)1− η
2

∫
R

1

s
1
2

H0
(
cs,2m − x′ − x0

){ |m − x|β
(t − s)

β
2

∧ |m − x′|β
(t − s)

β
2

∧ 1

}
× H0

(
c(t − s), x − x′)I{x′∨x0∨m0<m}I{x′<m} dx′.

On the set s ∈ ( t
2 , t), by the Gaussian convolution, we obtain

|A3| ≤ C

s
1
2

1

(t − s)1− η
2
H0(ct,2m − x − x0) ≤ C

(t − s)1− η
2

1

t
1
2

H0(ct,2m − x − x0).

On the set s ∈ (0, t
2 ), take β = 1 and from the space-time inequality, we obtain

|A3| ≤ C
1

s
1
2

1

(t − s)1− η
2

∫
R

|m − x′|
(t − s)

1
2

H0
(
cs,2m − x′ − x0

)
H0

(
c(t − s), x − x′)I{x′∨x0∨m0<m}I{x′<m} dx′

≤ C
1

s
1
2

1

(t − s)1− η
2 t

1
2

∫
R

∣∣2m − x′ − x0
∣∣H0

(
cs,2m − x′ − x0

)
× H0

(
c(t − s), x − x′)I{x′∨x0∨m0<m}I{x′<m} dx′

≤ C
1

(t − s)1− η
2

1

t
1
2

H0(ct,2m − x − x0).

For the term A4, we are on the set {x < m0} ∩ {m0 = m} so that from Lemma A.4 one has

|A4| ≤ C

(t − s)1− η
2

∫
R2

{ |m0 − x0|β
s

β
2

∧ |m0 − x′|β
s

β
2

∧ 1

}
H0

(
cs, x′ − x0

)
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×
{ |m − x|β

(t − s)
β
2

∧ |m − x′|β
(t − s)

β
2

∧ 1

}
H0

(
c(t − s), x − x′)I{x′<m0}I{x<m′}I{m0=m}δm0

(
dm′)dx′

≤ C

(t − s)1− η
2

{ |m − x0|β
t

β
2

∧ |m − x|β
t

β
2

∧ 1

}
H0(ct, x − x0).

In order to obtain the last inequality we again separated the computations into the two cases: s ∈ (0, t/2) and s ∈
(t/2, t). For s ∈ (0, t/2), that is, t − s 
 t , we use the inequality |m − x|β(t − s)−β/2 ∧ |m − x′|β(t − s)−β/2 ∧ 1 ≤
(t − s)−β/2(|m − x0|β + |x0 − x′|β) and decompose the computations into a sum of two terms accordingly. For the
term (t − s)−β/2|m − x0|β , we use the bound |m0 − x0|βs−β/2 ∧ |m0 − x′|βs−β/2 ∧ 1 ≤ 1 which, after convolution of
Gaussian kernels, yield |A4| ≤ C(t − s)−1+η/2t−β/2|m − x0|βH0(ct, x − x0). For the term (t − s)−β/2|x0 − x′|β , we use
the bound |m0 − x0|βs−β/2 ∧ |m0 − x′|βs−β/2 ∧ 1 ≤ |m0 − x0|βs−β/2 = |m − x0|βs−β/2 which, after using the space-
time inequality and convolution of Gaussian kernels, yield |A4| ≤ C(t − s)−1+η/2t−β/2|m − x0|βH0(ct, x − x0). The
bound |A4| ≤ C(t − s)−1+η/2{|m − x|βt−β/2 ∧ 1}H0(ct, x − x0) is easily obtained. We thus obtained the desired bound
for s ∈ (0, t/2). For s ∈ [t/2, t), that is, s 
 t , we proceed similarly by using the inequality |m − x0|βs−β/2 ∧ |m −
x′|βs−β/2 ∧ 1 ≤ s−β/2(|m − x|β + |x − x′|β) and decompose the computations into a sum of two terms accordingly. For
the term s−β/2|m−x|β , we use the bound |m−x|β(t − s)−β/2 ∧|m−x′|β(t − s)β/2 ∧1 ≤ 1 together with the convolution
of Gaussian kernels and for the term s−β/2|x − x′|β we use the bound |m − x|β(t − s)−β/2 ∧ |m − x′|β(t − s)β/2 ∧ 1 ≤
|m − x|β(t − s)−β/2 together with the space-time inequality and the convolution of Gaussian kernels. We thus obtain
|A4| ≤ C(t − s)−1+η/2t−β/2|m−x|βH0(ct, x −x′). The bound |A4| ≤ C(t − s)−1+η/2t−β/2{|m−x0|β ∧1}H0(ct, x −x′)
is obtained by using the two inequalities |m− x|β(t − s)−β/2 ∧ |m− x′|β(t − s)β/2 ∧ 1 ≤ 1 and |m0 − x0|βs−β/2 ∧ |m0 −
x′|βsβ/2 ∧ 1 ≤ |m0 − x0|βs−β/2 ∧ 1. This last inequality completes the bound for A4.

Therefore gathering the above estimates, the following Gaussian upper-bound holds∣∣∣∣∫
R2

p̂s

(
x0,m0, x

′,m′)θ̂t−s

(
x′,m′, x,m

)
u
(
x0,m0, x,m,dx′, dm′)∣∣∣∣

≤
⎧⎨⎩

C

(t−s)
1− η

2

1

t
1
2
H0(ct,2m − x − x0), x ≤ m,m0 < m,

C

(t−s)
1− η

2
{ |m−x|β

t
β
2

∧ |m−x0|β
t
β
2

∧ 1}H0(ct, x − x0), x < m0,m = m0,

for any β ∈ [0,1]. By an induction argument which is similar to the case of the local time, one gets∣∣pn
T (x0,m0, x,m)

∣∣
≤

{
Cn(

∫
�n(T )

dsn

∏n
k=1(sk−1 − sk)

−1+ η
2 ) × 1√

T
H0(cT ,2m − x − x0), x ≤ m,m0 < m,

Cn(
∫
�n(T )

dsn

∏n
k=1(sk−1 − sk)

−1+ η
2 ) × H0(cT , x − x0), x < m0,m = m0.

We omit the remaining technical details. Hence from Lemma A.1 and the asymptotic property of the Gamma function,
the Gaussian upper bound (A.19) for the transition density is valid.

A.5. Some useful technical results

Lemma A.1. Let b > −1 and a ∈ [0,1). Then for any t0 > 0,

∫
�n(t0)

dtn tbn

n−1∏
j=0

(tj − tj+1)
−a = t

b+n(1−a)
0 �n(1 − a)�(1 + b)

�(1 + b + n(1 − a))
.

Proof. Using the change of variables s = ut , one has∫ t

0
sb(t − s)−a ds = tb+1−a

∫ 1

0
ub(1 − u)−a du = tb+1−aB(1 + b,1 − a)

where (x, y) �→ B(x, y) = ∫ 1
0 tx−1(1 − t)y−1 dt stands for the standard Beta function. Using this equality repeatedly, we

obtain the statement. �
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Lemma A.2. Let c > 0. For any (x, x0) ∈R2, 0 ≤ �0 ≤ � and 0 < s < t , one has∫
R

H0
(
cs,

∣∣x′∣∣+ |x0| + � − �0
)
H0

(
c(t − s), x − x′)I{xx′≥0} dx′ ≤ H0

(
ct, |x| + |x0| + � − �0

)
,∫

R

H0
(
c(t − s),

∣∣x′∣∣+ |x| + � − �0
)
H0

(
cs, x0 − x′)I{x0x

′≥0} dx′ ≤ H0
(
ct, |x| + |x0| + � − �0

)
.

Proof. Using the fact that {x′x ≥ 0} = {x′ ≥ 0} ∩ {x ≥ 0} ∪ {x′ ≤ 0} ∩ {x ≤ 0} and positivity of the integrand∫
R

H0
(
cs,

∣∣x′∣∣+ |x0| + � − �0
)
H0

(
c(t − s), x − x′)I{xx′≥0} dx′

≤ I{x≥0}
∫
R

H0
(
cs, x′ + |x0| + � − �0

)
H0

(
c(t − s), x − x′)I{x′≥0} dx′

+ I{x≤0}
∫
R

H0
(
cs,−x′ + |x0| + � − �0

)
H0

(
c(t − s), x − x′)I{x′≤0} dx′

≤ I{x≥0}H0
(
ct, x + |x0| + � − �0

)+ I{x≤0}H0
(
ct, |x0| + � − �0 − x

)
= H0

(
ct, |x| + |x0| + � − �0

)
where the last inequality follows from convolution properties of the Gaussian density. The proof of the second inequality
follows from similar arguments and is therefore omitted. �

Lemma A.3. Let c1 > 0. For any (x, x0) ∈R2, 0 ≤ �0 ≤ �2 and 0 < s < t , one has∫
R×(�0,�)

1

(t − s)
1
2

H0
(
c1(t − s), |x| + ∣∣x′∣∣+ � − �′) 1

s
1
2

H0
(
c1s,

∣∣x′∣∣+ |x0| + �′ − �0
)
dx′ d�′

≤ C

t
1
2

H0
(
ct, |x| + |x0| + � − �0

)
for some positive constants C, c independent of t , x0, �0 and �. Similarly, for any (x0,m0) ∈ R2, x0 ≤ m0, m ≥ m0 and
0 < s < t , one has∫

(m0,m)×(−∞,m′)

1

(t − s)
1
2

H0
(
c1(t − s),2m − x − x′) 1

s
1
2

H0
(
c1s,2m′ − x′ − x0

)
dx′ dm′

≤ C

t
1
2

H0(ct,2m − x − x0)

for some positive constants C, c independent of t , x0, m0 and m.

Proof. We will only prove the first bound. The second one follows from similar arguments. For simplicity, we write

C2 :=
∫
R×(�0,�)

1

(t − s)
1
2

H0
(
c(t − s), |x| + ∣∣x′∣∣+ � − �′) 1

s
1
2

H0
(
cs,

∣∣x′∣∣+ |x0| + �′ − �0
)
dx′d�′.

Let us assume that |x| + |x0| + � − �0 ≤ t
1
2 . We use the fact that the diagonal estimate is global. For s ∈ [ t

2 , t], one has
s 
 t so that

1

s
1
2

H0
(
cs,

∣∣x′∣∣+ |x0| + �′ − �0
) ≤ C

t
≤ C

1√
t
H0

(
ct, |x| + |x0| + � − �0

)
which in turn implies:

|C2| ≤ C√
t
H0

(
ct, |x| + |x0| + � − �0

)∫
R×(�0,�)

1

(t − s)
1
2

H0
(
c(t − s), |x| + ∣∣x′∣∣+ � − �′)dx′ d�′

≤ C√
t
H0

(
ct, |x| + |x0| + � − �0

)
.
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Similarly, for s ∈ [0, t
2 ], one has

|C2| ≤ C√
t
H0

(
ct, |x| + |x0| + � − �0

)
.

Hence, the claim follows in the diagonal regime |x| + |x0| + � − �0 ≤ t
1
2 . We now consider the off-diagonal regime

|x| + |x0| + � − �0 > t
1
2 . We write R× (�0, �) = D1 ∪ D2 where

D1 := {(
x′, �′) ∈R× (�0, �) : ∣∣x′∣∣+ |x0| + �′ − �0 ≤ |x| − ∣∣x′∣∣+ � − �′},

D2 := {(
x′, �′) ∈R× (�0, �) : ∣∣x′∣∣+ |x0| + �′ − �0 > |x| − ∣∣x′∣∣+ � − �′}.

On the set D1, we remark |x| − |x′| + � − �′ 
 |x| + |x0| + � − �0, so that

1

(t − s)
1
2

H0
(
c(t − s), |x| + ∣∣x′∣∣+ � − �′) ≤ C

t

(|x| + |x0| + � − �0)
2

(t − s)
1
2

H0
(
c(t − s), |x| + |x0| + � − �0

)
≤ C

t
1
2

H0
(
ct, |x| + |x0| + � − �0

)
where we used the space-time inequality for the last inequality. Hence, one gets∫

D1

1

(t − s)
1
2

H0
(
c(t − s), |x| + ∣∣x′∣∣+ � − �′) 1

s
1
2

H0
(
cs,

∣∣x′∣∣+ |x0| + �′ − �0
)
dx′ d�′

≤ C

t
1
2

H0
(
ct, |x| + |x0| + � − �0

)
.

On the set D2, one has |x| − |x′| + � − �′ 
 |x| + |x0| + � − �0, so that

1

s
1
2

H0
(
cs,

∣∣x′∣∣+ |x0| + �′ − �0
) ≤ C

t

(|x| + |x0| + � − �0)
2

s
1
2

H0
(
cs, |x| + |x0| + � − �0

)
≤ C

t
1
2

H0
(
ct, |x| + |x0| + � − �0

)
which in turn yields∫

D2

1

(t − s)
1
2

H0
(
c(t − s), |x| + ∣∣x′∣∣+ � − �′) 1

s
1
2

H0
(
cs,

∣∣x′∣∣+ |x0| + �′ − �0
)
dx′ d�′

≤ C

t
1
2

H0
(
ct, |x| + |x0| + � − �0

)
and proves the claim. �

Lemma A.4. Local time: Define f̄t (x0, x) := H0(at, x − x0) − H0(at, x + x0) for some given constant a > 0. For any
β ∈ [0,1], there exists C, c > 1, such that for any (x0, x) ∈ R2 satisfying xx0 ≥ 0 and r = 0,2, the following estimates
hold:

∣∣∂r
x0

f̄t (x0, x)
∣∣ ≤ C

t
r
2

{ |x|β
t

β
2

∧ |x0|β
t

β
2

∧ 1

}
H0(ct, x − x0).

Running maximum: Define f̄t (x0, x) := H0(at, x − x0) − H0(at,2m0 − x − x0) for some given constant a > 0. For any
β ∈ [0,1], there exists C, c > 1, such that for any (x, x0,m0) ∈R3 satisfying x, x0 ≤ m0 and for any r = 0,1,2, one has

∣∣∂r
x0

f̄t (x0, x)
∣∣ ≤ C

t
r
2

{ |m0 − x0|β
t

β
2

∧ |m0 − x|β
t

β
2

∧ 1

}
H0(ct, x − x0), x0, x ≤ m0.
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Proof. From the expression of f̄t (x0, x), the following estimates for f̄t (x0, x) and its derivatives hold∣∣∂r
x0

f̄t (x0, x)
∣∣ ≤ C

t
r
2

(
H0(ct, x − x0) + H0(ct, x + x0)

)
, r = 0,2.

Furthermore, for (x0, x) ∈R2 such that xx0 ≥ 0, one has H0(ct, x + x0) ≤ H0(ct, x − x0), since in the exponent

(x − x0)
2 + 4x0(x − x0) + 4x2

0 ≥ (x − x0)
2.

Hence, we deduce that |∂r
x0

f̄t (x0, x)| ≤ Ct− r
2 H0(ct, x − x0). To derive the bounds with the |x|β or |x0|β terms, we

first consider the case where |x|2 ≤ t , to estimate f̄t (x0, x) = H0(a(y, �)t, x − x0) − H0(a(y, �)t, x + x0) one applies the
mean value theorem to H0(a(y, �)t, x − x0) with respect to the points x and −x to obtain for some θ ∈ [0,1],

∣∣f̄t (x0, x)
∣∣ = ∣∣2x∂xH0

(
a(y, �)t, x0 − θx + (1 − θ)x

)∣∣ ≤ C
|x|β
t

β
2

H0(ct, x − x0)

where in the second line we have used the space-time inequality and the fact that |x|1−β ≤ t
1−β

2 . For the case that |x|2 ≥ t ,
one directly gets

∣∣f̄t (x0, x)
∣∣ ≤ C

|x|β
t

β
2

H0(ct, x − x0).

The proof for the second derivatives of f̄t (x0, x) as well as the estimates with the |x0|β term and the estimates for the
running maximum case follow similar arguments and details are omitted. �
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