
The Annals of Applied Probability
2020, Vol. 30, No. 2, 747–787
https://doi.org/10.1214/19-AAP1514
© Institute of Mathematical Statistics, 2020

OPTIMAL INVESTMENT AND CONSUMPTION WITH LABOR INCOME
IN INCOMPLETE MARKETS

BY OLEKSII MOSTOVYI1 AND MIHAI SÎRBU2

1Department of Mathematics, University of Connecticut, oleksii.mostovyi@uconn.edu
2Department of Mathematics, University of Texas at Austin, sirbu@math.utexas.edu

We consider the problem of optimal consumption from labor income and
investment in a general incomplete semimartingale market. The economic
agent cannot borrow against future income, so the total wealth is required to
be positive at (all or some) previous times. Under very general conditions, we
show that an optimal consumption and investment plan exists and is unique,
and provide a dual characterization in terms of an optional strong super-
martingale deflator and a decreasing part, which charges only the times when
the no-borrowing constraint is binding. The analysis relies on the infinite-
dimensional parametrization of the income/liability streams and, therefore,
provides the first-order dependence of the optimal investment and consump-
tion plans on future income/liabilities (as well as a pricing rule).

1. Introduction. Optimal investment with intermediate consumption and a stream of
labor income (or liabilities) is one of the central problems in mathematical economics. If
borrowing against the future income is prohibited, the main technical difficulty lies in the
fact that there are infinitely many constraints. Even in the deterministic case of no stocks and
nonrandom income, a classical approach is based on the convexification of the constraints
that leads to a nontrivial dual problem formulated over decreasing nonnegative functions.

Borrowing constraints imposed at all times not only affect the notion of admissibility,
leading to more difficult mathematical analysis, but also change the meaning to fundamental
concepts of mathematical finance such as replicability and completeness. The latter is for-
mulated via the attainability of every (bounded) contingent claim by a portfolio of traded
assets. For a labor income/liability streams that pays off dynamically, there is no a priori
guarantee that such a replicating portfolio (if it exists at all) is admissible, that is, satisfies the
constraints. Thus, in the terminology of [18], even a complete market becomes dynamically
incomplete under the borrowing constraints. The analysis of such a problem (in otherwise
complete Brownian settings with a corresponding unique risk-neutral measure), is performed
in [18] and later in [16]. The nonnegative decreasing processes (that parametrize the dynamic
incompleteness mentioned above) play an important role in the characterizations of optimal
investment and consumption plans. The analysis in [18] and [16] is connected with optimal
stopping techniques from [22].

Incomplete markets with no-borrowing constraints have been analyzed only in specific
Markovian models in [14] and [13] based on partial differential equations techniques. The
goal of the present paper is to study the problem of consumption and investment with no-
borrowing constraints in general (so, non-Markovian) incomplete models. This leads to hav-
ing, simultaneously, two layers of incompleteness. One comes from the many martingale
measures, the other from a similar class of nondecreasing processes (as above) that describe
the dynamic incompleteness. We refer to [28] for the examples of market incompleteness in
finance and macroeconomics.
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In contrast to [18] and [16], our model not only allows for incompleteness, but also for
jumps. Mathematically, this means we choose to work in a general semimartingale frame-
work. As in [18] and [16], our approach is based on duality. One of the principal difficulties
is in the construction of the dual feasible set and the dual value function. It is well known that
the martingale measures drive the dual domain in many problems of mathematical finance.
On the other hand, the convexification of constraints leads to the decreasing processes as the
central dual object as well. We show that the dual elements in the incomplete case can be
approximated by products of the densities of martingale measures and such nonnegative de-
creasing processes. This is one of the primary results of this work (see Section 5) that leads
to the complementary slackness characterization of optimal wealth in Section 6, where it is
shown that the approximating sequence for the dual minimizer leads to a nonincreasing pro-
cess, which decreases at most when the constraints are attained. In turn, the dual minimizer
can be written as a product of such a nondecreasing process and an optional strong super-
martingale deflator. In the case of complete Brownian markets, a similar result is proved in
[18] and [16].

In order to implement the approach, we increase the dimensionality of the problem and
treat as arguments of the indirect utility not only the initial wealth, but also the function
that specifies the number of units of labor income (or the stream of liabilities) at any later
time. This parametrization has the spirit of [19], however, unlike [19], we go into (infinite-
dimensional) nonreflexive spaces, which gives both novelty and technical difficulties to our
analysis. Also, our formulation permits to price by marginal rate of substitution the whole
labor income process. This is done through the subdifferentiability results in Section 4. Note
that the subdifferential elements (prices) are time-dependent, so infinite-dimensional, unlike
in [19].

Another contribution of the paper lies in the unified framework of admissibility outlined
in Section 2. More precisely, we assume that no-borrowing constraints are imposed starting
from some prespecified stopping time and hold up to the terminal time horizon. This frame-
work allows us to treat in one formulation both the problem of no-borrowing constraints at
all times (described above) and the one where borrowing against the future income is permit-
ted with a constraint only at the end. The latter is well studied in the literature; see [7, 19,
24, 37] and [32]. In such a formulation, the constraints reduce to a single inequality and the
decreasing processes in the dual feasible set become constants.

Among the many possibilities of constraints, [6] considers the problem of investment and
consumption with labor income and no-borrowing constraints in Brownian market, even al-
lowing for incompleteness. The dual problem cannot be solved directly (in part because for
these constraints the dual space considered is too small) but the primal can be solved with
direct methods. An approximate dual sequence can then be recovered from the primal. We
generalize [18] and [16] (complete Brownian markets) and [6] (possibly incomplete Brown-
ian markets) to the case of general semi-martingale incomplete markets. Our dual approach
allows us, at the same time to obtain a dual characterization (complementary slackness) of the
optimal consumption plan (not present in [6]), similar to the complete case in [18] and [16]
and the possibility to study the dependence on labor income streams, through the parametriza-
tion of such streams.

Embedding path dependent problems into the convex duality framework have been ana-
lyzed in [29, 36], [30], Section 3.3, whereas without duality but with random endowment it is
considered in [34], in the abstract singular control setting the duality approach is investigated
in [1]. Our embedding does not require any condition on labor income replicability, which
becomes highly technical in the presence of extra admissibility constraints. Even in the case
where the only constraint is imposed at maturity, in this part our approach differs from the
one in [19], where nonreplicability of the endowment (in the appropriate sense) is used in the
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proofs as it ensures that the effective domain of the dual problem has the same dimensional-
ity as the primal domain. Note that even if the labor income is spanned by the same sources
of randomness as the stocks, the idea of replicating the labor income and then reducing the
problem to the one without it, does not necessarily work under the borrowing constraints; see
the discussion in [18], pages 671–673.

Some of the more specific technical contributions of this paper can be summarized as
follows:

• We analyze the boundary behavior of the value functions. Note that the value functions
are defined over infinite-dimensional spaces.

• The finiteness of the indirect utilities without labor income is imposed only, as a necessary
and sufficient condition that allows for the standard conclusions of the utility maximization
theory; see [31].

• We show existence-uniqueness results for the unbounded labor income both from above
and below.

• We observe that the “Snell envelope proposition” ([27], Proposition 4.3) can be extended
to the envelope over all stopping times that exceed a given initial stopping time θ0.

• We represent the dual value function in terms of uniformly integrable densities of mar-
tingale measures, that is, the densities of martingale measures under which the maximal
wealth process of a self-financing portfolio that superreplicates the labor income, is a uni-
formly integrable martingale; see Lemma 3.11 below.

Organization of the paper. In Section 2, we specify the model. We state and prove exis-
tence, uniqueness, semicontinuity and biconjugacy results in Section 3, subdifferentiability is
proven in Section 4. Structure of the dual domain is analyzed in Section 5 and complimentary
slackness is established in Section 6.

2. Model. We consider a financial market model with finite time horizon [0, T ] and a
zero interest rate. The price process S = (Si)di=1 of the stocks is assumed to be a semimartin-
gale on a complete stochastic basis (�,F, (Ft )t∈[0,T ],P), where F0 is trivial.

Let (e)t∈[0,T ] be an optional process that specifies the labor income rate, which is assumed
to follow a certain stochastic clock, that we specify below. Both processes S and e are given
exogenously.

We define a stochastic clock as a nondecreasing, càdlàg, adapted process such that

(2.1) κ0 = 0, P[κT > 0] > 0 and κT ≤ A

for some finite constant A. We note that the stochastic clock allows to include multiple stan-
dard formulations of the utility maximization problem in one formulation; see, for example,
[31], Examples 2.5–2.9. Let us define

(2.2) Kt := E[κt ], t ∈ [0, T ].

REMARK 2.1. The function K defined in (2.2) is right continuous with left limits and
takes values in [0,A].

We assume the income and consumption are given in terms of the clock κ . Define a port-
folio � as a quadruple (x, q,H, c), where the constant x is the initial value of the portfolio,
the function q : [0, T ] → R is a bounded and Borel measurable function, which specifies the
amount of labor income rate, H = (Hi)

d
i=1 is a predictable S-integrable process that corre-

sponds to the amount of each stock in the portfolio, and c = (ct )t∈[0,T ] is the consumption
rate, which we assume to be optional and nonnegative.
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The wealth process V = (Vt )t∈[0,T ] generated by the portfolio is

Vt = x +
∫ t

0
Hs dSs +

∫ t

0
(qses − cs) dκs, t ∈ [0, T ].

A portfolio � with c ≡ 0 and q ≡ 0 is called self-financing. The collection of nonnegative
wealth processes generated by self-financing portfolios with initial value x ≥ 0 is denoted by
X (x), that is,

X (x) :=
{
X ≥ 0 : Xt = x +

∫ t

0
Hs dSs, t ∈ [0, T ]

}
, x ≥ 0.

A probability measure Q is an equivalent local martingale measure if Q is equivalent to P

and every X ∈ X (1) is a local martingale under Q. We denote the family of equivalent local
martingale measures by M and assume that

(2.3) M �= ∅.

This condition is equivalent to the absence of arbitrage opportunities in the market; see [9,
11] as well as [23] for the exact statements and further references.

To rule out doubling strategies in the presence of random endowment, we need to impose
additional restrictions. Following [10], we say that a nonnegative process in X (x) is maximal
if its terminal value cannot be dominated by that of any other process in X (x). As in [10],
we define an acceptable process to be a process of the form X = X′ − X′′, where X′ is a
nonnegative wealth process generated by a self-financing portfolio and X′′ is maximal.

Our unified framework of admissibility is given by a fixed stopping time θ0. The no-
borrowing constraints will hold starting at this stopping time until the end. Let � be the
set of stopping times that are greater or equal than θ0.

LEMMA 2.2. Let q1 and q2 be bounded, Borel measurable functions on [0, T ], such
that q1 = q2, dK-a.e. Then the cumulative labor income processes

∫ ·
0 qi

ses dκs , i = 1,2, are
indistinguishable.

The proof of this lemma is given in Section 3.1. Following [19], we denote by X (x, q) the
set of acceptable processes with initial values x, that dominate the labor income on �:

X (x, q) :=
{

acceptable X : X0 = x and

Xτ +
∫ τ

0
qses dκs ≥ 0,P-a.s. for every τ ∈ �

}
.

Let us set

K := {
(x, q) : X (x, q) �=∅

}
.

Let K̊ denote the interior or K in the R × L∞(dK)-norm topology. We characterize K in
Lemma 3.2 below that in particular asserts that under Assumption 2.5, K̊ �=∅.

The set of admissible consumptions is defined as

A(x, q) :=
{

optional c ≥ 0 : there exists X ∈ X (x, q), such that∫ τ

0
cs dκs ≤ Xτ +

∫ τ

0
qses dκs, for every τ ∈ �

}
, (x, q) ∈ K.

Note that c ≡ 0 belongs to A(x, q) for every (x, q) ∈ K.
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REMARK 2.3. The no-borrowing constraints can also be written as

P

(∫ t

0
cs dκs ≤ Xt +

∫ t

0
qses dκs, for every θ0 ≤ t ≤ T

)
= 1.

We write the constraints in terms of stopping times τ ∈ � as we use the stopping times τ ∈ �

(and the corresponding decreasing processes that jump from one to zero at these times) as the
building blocks of our analysis.

REMARK 2.4. It follows from Lemma 2.2, for every x ∈ R, we have

X
(
x, q1) = X

(
x, q2) and A

(
x, q1) = A

(
x, q2),

where some of these sets might be empty

Hereafter, we shall impose the following conditions on the endowment process.

ASSUMPTION 2.5. There exists a maximal wealth process X′ such that

X′
t ≥ |et |, for every t ∈ [0, T ],P-a.s.

Moreover, Assumption 2.5 and (2.3) imply that all the assertions of Lemma 3.2 hold.

REMARK 2.6. If θ0 = {T }, then Assumption 2.5 is equivalent to the assumptions on
endowment in [19] (for the case of one-dimensional random endowment).

The preferences of an economic agent are modeled with a utility stochastic field U =
U(t,ω, x) : [0, T ] × � × [0,∞) → R ∪ {−∞}. We assume that U satisfies the conditions
below.

ASSUMPTION 2.7. For every (t,ω) ∈ [0, T ]×�, the function x → U(t,ω, x) is strictly
concave, increasing, continuously differentiable on (0,∞) and satisfies the Inada conditions:

lim
x↓0

U ′(t,ω, x) = ∞ and lim
x→∞U ′(t,ω, x) = 0,

where U ′ denotes the partial derivative with respect to the third argument. At x = 0 we
suppose, by continuity, U(t,ω,0) = limx↓0 U(t,ω, x), which may be −∞. For every x ≥ 0,
the stochastic process U(·, ·, x) is optional. Below, following the standard convention, we
will not write ω in U .

The agent can control investment and consumption. The goal is to maximize expected
utility. The value function u is defined as

(2.4) u(x, q) := sup
c∈A(x,q)

E

[∫ T

0
U(t, ct ) dκt

]
, (x, q) ∈ K.

In (2.4), we use the convention

E

[∫ T

0
U(t, ct ) dκt

]
:= −∞ if E

[∫ T

0
U−(t, ct ) dκt

]
= ∞.

Here and below, W− and W+ denote the negative and positive parts of a stochastic field W ,
respectively.

We employ duality techniques to obtain the standard conclusions of the utility maximiza-
tion theory. We first define the convex conjugate stochastic field

(2.5) V (t, y) := sup
x>0

(
U(t, x) − xy

)
, (t, y) ∈ [0, T ] × [0,∞),
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and then observe that −V satisfies Assumption 2.7. In order to construct the feasible set of
the dual problem, we define the set L as the polar cone of −K:

(2.6) L :=
{
(y, r) ∈ R×L1(dK) : xy +

∫ T

0
qsrs dKs ≥ 0 for every (x, q) ∈ K

}
.

REMARK 2.8. Under the conditions (2.1), (2.3) and Assumption 2.5, the set L is
nonempty. By definition, it is closed in R×L1(dK)-norm and σ(R×L1(dK),R×L∞(dK))

topologies. Also, as shown later, the set L = (−K̊)o, that is, the polar of −K̊.

By Z , we denote the set of càdlàg densities of equivalent local martingale measures:

(2.7) Z :=
{

càdlàg
(

dQt

dPt

)
t∈[0,T ]

:Q ∈ M
}
.

Let us denote by L0 = L0(dκ × P) the linear space of (equivalence classes of) real-valued
optional processes on the stochastic basis (�,F, (Ft )t∈[0,T ],P) which we equip with the
topology of convergence in measure (dκ × P). For each y ≥ 0, we define

(2.8)
Y(y) := cl

{
Y : Y is càdlàg adapted and

0 ≤ Y ≤ yZ(dκ × P) a.e. for some Z ∈ Z
}
,

where the closure is taken in L0. Now we are ready to set the domain of the dual problem:

(2.9)

Y(y, r) :=
{
Y : Y ∈ Y(y) and

E

[∫ T

0
csYs dκs

]
≤ xy +

∫ T

0
qsrs dKs,

for every (x, q) ∈ K and c ∈ A(x, q)

}
.

Note that the definition (2.9) requires that every element of Y(y, r) is in Y(y), y ≥ 0. Also,
for every (y, r) ∈ L, Y(y, r) �= ∅, since 0 ∈ Y(y, r).

We can now state the dual optimization problem:

(2.10) v(y, r) := inf
Y∈Y(y,r)

E

[∫ T

0
V (t, Yt ) dκt

]
, (y, r) ∈ L,

where we use the convention:

E

[∫ T

0
V (t, Yt ) dκt

]
:= ∞ if E

[∫ T

0
V +(t, Yt ) dκt

]
= ∞.

Also, we set

(2.11)
v(y, r) := ∞ for (y, r) ∈ R×L1(dK) \L and

u(x, q) := −∞ for (x, q) ∈ R×L∞(dK) \K.

With this definition, it will be shown below in Theorem 3.1 that u < ∞ and v > −∞ every-
where, so u and v are proper functions in the language of convex analysis. Let us recall that
in the absence of random endowment, the dual value function is defined as

w̃(y) := inf
Y∈Y(y)

E

[∫ T

0
V (t, Ys) dκs

]
, y > 0,

whereas the primal value function is given by

(2.12) w(x) := u(x,0), x > 0.
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3. Existence, uniqueness and biconjugacy.

THEOREM 3.1. Let (2.1) and (2.3), Assumptions 2.5 and 2.7 hold true and

(3.1) w(x) > −∞ for every x > 0 and w̃(y) < ∞ for every y > 0.

Then we have:

(i) u is finite-valued on K̊ and u < ∞ on R × L∞(dK). The dual value function v

satisfies v > −∞ on R × L1(dK), and the set {v < ∞} is a nonempty convex subset of L,
whose closure in R×L1(dK) equals to L.

(ii) u is concave, proper and upper semicontinuous with respect to the norm-topology of
R×L∞(dK) and the weak-star topology σ(R×L∞(dK),R×L1(dK)). For every (x, q) ∈
{u > −∞}, there exists a unique solution to (2.4). Likewise, v is convex, proper, and lower
semicontinuous with respect to the norm-topology of R×L1(dK) and the the weak topology
σ(R×L1(dK),R×L∞(dK)). For every (y, r) ∈ {v < ∞}, there exists a unique solution to
(2.10).

(iii) The functions u and v satisfy the biconjugacy relations

u(x, q) = inf
(y,r)∈L

(
v(y, r) + xy +

∫ T

0
rsqs dKs

)
, (x, q) ∈ K,

v(y, r) = sup
(x,q)∈K

(
u(x, q) − xy −

∫ T

0
rsqs dKs

)
, (y, r) ∈ L.

LEMMA 3.2. Let (2.3) and Assumption 2.5 hold. Then we have:

(i) for every x > 0, (x,0) belongs to K̊ (in particular, K̊ �=∅),
(ii) for every q ∈ L∞(dK), there exists x > 0 such that (x, q) ∈ K̊,

(iii) supQ∈MEQ[∫ T
0 |es |dκs] < ∞,

(iv) there exists a nonnegative maximal wealth process X′′, such that

X′′
T ≥

∫ T

0
|es |dκs, P-a.s.,

(v) there exists a nonnegative maximal wealth process X′′, such that

X′′
t ≥

∫ t

0
|es |dκs, t ∈ [0, T ],P-a.s.

PROOF. First, via [21] and (2.1), Proposition I.4.49, we get∫ T

0
|es |dκs ≤

∫ T

0
X′

s dκs = −
∫ T

0
κs− dX′

s + κT X′
T

≤ −
∫ T

0
κs− dX′

s + AX′
T = AX′

0 +
∫ T

0
(A − κs−) dX′

s .

Therefore, the exists a self-financing wealth process X̄, such that∫ T

0
|es |dκs ≤ X̄T .

Consequently, [10], Theorem 2.3, asserts the existence of a nonnegative maximal process X′′,
such that ∫ T

0
|es |dκs ≤ X′′

T ,



754 O. MOSTOVYI AND M. SÎRBU

that is, (iv) holds. Therefore, (iii) is valid as well, by [11], Theorem 5.12.
Relation (iv) and (2.3) imply (v). To prove (i) and (ii), without loss of generality, we will

suppose that in (v), X′′
0 > 0. Let q ∈ L∞(dK) and ε > 0 be fixed. Let us define

x(q) := (‖q‖L∞(dK) + 2ε
)
X′′

0 .

We claim that (x(q), q) ∈ K̊. Let us consider arbitrary

(3.2)
∣∣x′∣∣ ≤ ε and q ′ ∈ L∞(dK) : ∥∥q ′∥∥

L∞(dK) ≤ ε,

and set

(3.3) X̃t := (‖q‖L∞(dK) + 2ε + x′)X′′
t , t ∈ [0, T ].

Then, by item (v), we have

X̃t ≥ (‖q‖L∞(dK) + ε
)
X′′

t ≥ (‖q‖L∞(dK) + ε
) ∫ t

0
|es |dκs

≥ −
∫ t

0

(
qs + q ′

s

)|es |dκs.

We deduce that X̃ ∈ X ((‖q‖L∞(dK) + 2ε + x′)X′′
0 , q + q ′). In particular,

X
((‖q‖L∞(dK) + 2ε + x′)X′′

0 , q + q ′) �= ∅.

As x′ and q ′ are arbitrary elements satisfying (3.2), we deduce that (x(q), q) ∈ K̊. This proves
(ii).

In order to show (i), first we observe that K̊ is a convex cone. Therefore, it suffices to prove
that, for a given ε > 0, we have

(3.4)
(
2εX′′

0 ,0
) ∈ K̊.

Again, let us consider x′ and q ′ satisfying (3.2) and X̃ satisfying (3.3) for q ≡ 0. Then for
every t ∈ [0, T ], we have

X̃t ≥ εX′′
t ≥ ε

∫ t

0
|es |dκs ≥ −

∫ t

0
q ′
s |es |dκs.

Thus, X ((2ε + x′)X′′
0 , q ′) �= ∅. Consequently, as x′ and q ′ are arbitrary elements satisfying

(3.2), (3.4) holds and so is (i). This completes the proof of the lemma. �

REMARK 3.3. A close look at the proofs shows that the conclusions of Theorem 3.1
also hold if instead of Assumption 2.5, we impose any of the equivalent assertions (iii)–(v)
of Lemma 3.2.

3.1. Characterization of the primal and dual domains. The polar, Ao, of a nonempty
subset A of R×L∞(dK), is the subset of R×L1(dK), defined by

Ao :=
{
(y, r) ∈ R×L1(dK) : xy +

∫ T

0
qsrs dKs ≤ 1, for every (x, q) ∈ A

}
.

The polar of a subset of R×L1(dK) is defined similarly.

PROPOSITION 3.4. Under Assumption 2.5 and conditions (2.1) and (2.3), we have:

(i) Let (x, q) ∈ R × L∞(dK). Then c ∈ A(x, q) (thus, A(x, q) �= ∅ so (x, q) ∈ K) if and
only if

E

[∫ T

0
csYs dκs

]
≤ xy +

∫ T

0
qsrs dKs for every (y, r) ∈ L and Y ∈ Y(y, r).
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(ii) Likewise, for (y, r) ∈ R×L1(dK) we have (y, r) ∈ L and Y ∈ Y(y, r) if and only if

E

[∫ T

0
csYs dκs

]
≤ xy +

∫ T

0
qsrs dKs for every (x, q) ∈ K and c ∈ A(x, q).

We also have K = (−L)o = cl K̊, where the closure is taken both in norm R×L1(dK) and
σ(R×L∞(dK),R×L1(dK)) topologies.

REMARK 3.5. It follows from Proposition 3.4 that for every (x, q) ∈ K, A(x, q) �= ∅ as
0 ∈ A(x, q). Likewise, for every (y, r) ∈ L, Y(y, r) �= ∅ as 0 ∈ Y(y, r). Moreover, for every
(x, q) ∈ K̊, each of the sets A(x, q) and

⋃
(y,r)∈L:xy+∫ T

0 rsqs dKs≤1 Y(y, r) contain a strictly
positive element; see Lemma 3.14 below.

The proof of Proposition 3.4 will be given via several lemmas. Let

M′ be the set of equivalent local martingale measures, under which

X′′ (from Lemma 3.2, item (v)) is a uniformly integrable martingale.

Note that by [10], Theorem 5.2, M′ is a nonempty, convex subset of M, which is also dense
in M in the total variation norm.

REMARK 3.6. Even though the results in [10] are obtained under the condition that S

is a locally bounded process, they also hold without local boundedness assumption; see the
discussion in [20], Remark 3.4.

Let Z′ denote the set of the corresponding càdlàg densities, that is,

(3.5) Z ′ :=
{

càdlàgZ : Zt = E

[
dQ

dP

∣∣∣Ft

]
, t ∈ [0, T ],Q ∈ M′

}
.

We also set

(3.6) ϒ := {
1[0,τ ](t), t ∈ [0, T ] : τ ∈ �

}
.

LEMMA 3.7. Let the conditions of Proposition 3.4 hold, Q ∈M′, Z = ZQ be the corre-
sponding element of Z ′, and � ∈ ϒ . Then there exists r ∈ L1(dK), uniquely defined by

(3.7)
∫ t

0
rs dKs = E

[∫ t

0
�sZses dκs

]
, t ∈ [0, T ],

such that (1, r) ∈ L and Z� = (Zt�t)t∈[0,T ] ∈ Y(1, r).

PROOF. Let (x, q) ∈ K and c ∈ A(x, q). Then there exists X ∈ X (x, q), such that

(3.8)
∫ τ

0
cs dκs ≤ Xτ +

∫ τ

0
qses dκs for every τ ∈ �.

In particular, (3.8) holds for the particular τ , such that �t = 1[0,τ ](t), t ∈ [0, T ]. Let Gt :=∫ t
0 (qses)

+ dκs , t ∈ [0, T ], where (·)+ denotes the positive part. By [33], Theorem III.29,
page 128,

∫ t
0 Gs− dZs , t ∈ [0, T ], is a local martingale, so let (σn)n∈N be its localizing se-

quence. Then by the monotone convergence theorem, integration by parts formula, and the
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optional sampling theorem, we get

(3.9)

E

[∫ T

0
Zs(qses)

+�s dκs

]
= lim

n→∞E

[∫ σn∧τ

0
Zs dG

]
= lim

n→∞E[Zσn∧τGσn∧τ ] − lim
n→∞E

[∫ σn∧τ

0
Gs− dZs

]
= lim

n→∞E[Zσn∧τGσn∧τ ] = lim
n→∞EQ[Gσn∧τ ] = EQ[Gτ ],

where in the last equality we used the monotone convergence theorem again. Here, finiteness
of EQ[Gτ ] = EQ[∫ τ

0 (qses)
+ dκs] follows from Assumption 2.5 via Lemma 3.2, part (iii). In

a similar manner, we can show that

(3.10)

E

[∫ T

0
(qses)

−Zs�s dκs

]
= EQ

[∫ τ

0
(qses)

− dκs

]
< ∞,

E

[∫ T

0
csZs�s dκs

]
= EQ

[∫ τ

0
cs dκs

]
< ∞.

[19], Lemma 4, applies here and asserts that X in (3.8) is a supermartingale under Q. There-
fore, from (3.8), using (3.9) and (3.10), and taking expectation under Q, we get

(3.11) E

[∫ T

0
cs�sZs dκs

]
≤ x +E

[∫ T

0
qsesZs�s dκs

]
.

Let us define

Rt := E

[∫ t

0
�sZses dκs

]
, t ∈ [0, T ].

Using the monotone class theorem, we obtain

(3.12) E

[∫ T

0
q̃sesZs�s dκs

]
=

∫ T

0
q̃s dRs for every q̃ ∈ L∞(dK).

We claim that dR is absolutely continuous with respect to dK . First, using the π −λ theorem,
one can show that for every Borel-measurable subset A of [0, T ], we have

K(A) = E

[∫ T

0
1A(t) dκt

]
and R(A) = E

[∫ T

0
1A(t)�tZtet dκt

]
.

Thus, if for some A, K(A) = 0, then
∫ T

0 1A(t) dκt = 0 a.s. and κA
t := ∫ t

0 1A(s) dκs , t ∈ [0, T ],
satisfies κA

T = 0 a.s. and
∫ T

0 �tZtet dκA
t = ∫ T

0 �tZtet1A(t) dκt = 0 a.s.
As dR is absolutely continuous with respect to dK , there exists a unique r ∈ L1(dK),

such that (3.7) holds. Since the left-hand side in (3.11) is nonnegative and since (x, q) is an
arbitrary element of K, we deduce from the definition of L, (2.6), that (1, r) ∈ L. Finally, it
follows from (3.11) and (3.12) that Z� ∈ Y(1, r). This completes the proof of the lemma.

�

REMARK 3.8. The natural convexification of the set ϒ consists of nonnegative left-
continuous decreasing and adapted processes D such that Dθ0 = 1. In the context of utility-
maximization constraints (and for θ0 = 0), this follows from [18] and [16]. We investi-
gate convexification of the constraints in the later Sections 5 and 6, where we will extend
Lemma 3.7 to a more general set of decreasing processes than � that drives the dual domain
and that allows for the multiplicative decomposition of the dual minimizer.
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COROLLARY 3.9. Let the conditions of Proposition 3.4 hold, Q ∈ M′, Z be the cádlág
modification of the density process E[dQ

dP
|Ft ], t ∈ [0, T ]. Then there exists r ∈ L1(dK), such

that Z ∈ Y(1, r), where ∫ t

0
rs dKs = E

[∫ t

0
Zses dκs

]
, t ∈ [0, T ],

and (1, r) ∈ L.

PROOF OF LEMMA 2.2. Let us fix Q ∈ M′ and let Z ∈ Z ′ be the corresponding density
process. As in Lemma 3.7, we can show that there exists r ∈ L1(dK), such that for every
bounded and Borel measurable function q on [0, T ] we have

(3.13)
∫ t

0
qsrs dKs = E

[∫ t

0
qsZs |es |dκs

]
, t ∈ [0, T ].

Let q̄ := |q1 − q2|, then as q̄ = 0, dK-a.e., we get

E

[∫ T

0
q̄s |es |Zs dκs

]
=

∫ T

0
q̄srs dK = 0.

Therefore, using integration by parts and via (3.13), we obtain

0 =
∫ T

0
q̄srs dK = E

[∫ T

0
qsZs |es |dκs

]
= EQ

[∫ T

0
qs |es |dκs

]
.

Consequently,
∫ T

0 qs |es |dκs = 0, Q-a.s., and by the equivalence of Q and P, also P-a.s. As,
by construction

∫ t
0 qs |es |dκs = 0, t ∈ [0, T ], is a nonnegative and nondecreasing process,

whose terminal value is 0, P-a.s.; we conclude that it is indistinguishable from the 0-valued
process. The assertions of the lemma follows. �

LEMMA 3.10. Let the conditions of Proposition 3.4 hold, (x, q) ∈ K, and c is a nonneg-
ative optional process. Then c ∈ A(x, q) if and only if

(3.14) E

[∫ T

0
cs�sZs dκs

]
≤ x +E

[∫ T

0
qses�sZs dκs

]
= x +

∫ T

0
qsrs dKs,

for every Z ∈ Z ′ and � ∈ ϒ , where r is given by (3.7).

PROOF. Let c ∈ A(x, q). Then for every Z ∈ Z ′ and � ∈ ϒ , the validity of (3.14) follows
from the definition of A(x, q), integration by parts formula and supermartingale property of
every X ∈ X (x, q) under every Q ∈M′, which in turn follows from [19], Lemma 4.

Conversely, let (3.14) holds for every Z ∈ Z ′ and � ∈ ϒ . Then we have

(3.15) E

[∫ T

0
(cs − qses)Zs�s dκs

]
≤ x,

which, in view of the definition of ϒ in (3.6), localization and integration by parts, implies
that

sup
Q∈M′,τ∈�

EQ

[∫ τ

0
(cs − qses) dκs

]
≤ x.

For X′′ given by Lemma 3.2, item (v), let us denote

(3.16) ft := ‖q‖L∞(dK)X
′′
t +

∫ t

0
(cs − qses) dκs, t ∈ [0, T ].



758 O. MOSTOVYI AND M. SÎRBU

It follows from Assumption 2.5 and item (v) of Lemma 3.2 that f is a nonnegative process.
We observe that the proof of [27], Proposition 4.3, goes through, if we only take stopping
times in � and measures in M′. This proposition allows to conclude that there exists a non-
negative càdlàg process V , such that

(3.17) Vt = ess sup
τ∈�:τ≥t,Q∈M′

EQ[fτ |Ft ], t ∈ [0, T ],

which is a supermartingale for every Q ∈ M′. Therefore, by the density of M′ in M in the
norm topology of L1(P) and Fatou’s lemma, V is a supermartingale under every Q ∈ M.
Moreover, V0 satisfies

V0 ≤ x + ‖q‖L∞(dK)X
′′
0 ,

by (3.17), (3.15), and by following the argument in the proof of Lemma 3.7.
We would like to apply the optional decomposition theorem of Fölmer and Kramkov, [17],

Theorem 3.1. For this, we need to show that V is a local supermartingale under every Q, such
that every X ∈ X (1) is a Q-local supermartingale. However, M is dense in the set of such
measures in the norm topology of L1(P), by the results of Delbaen and Schachermayer; see
[11], Proposition 4.7. Therefore, the supermartingale property of V under every such Q fol-
lows from Fatou’s lemma and supermartingale property of V under every Q ∈ M established
above. Therefore, by [17], Theorem 3.1, we get

Vt = V0 + H · St − At, t ∈ [0, T ],
where A is a nonnegative increasing process that starts at 0. Subtracting the constant
‖q‖L∞(dK)X

′′
0 from both sides of (3.16), we get∫ τ

0
(cs − qses) dκs = fτ − ‖q‖L∞(dK)X

′′
0 ≤ Vτ − ‖q‖L∞(dK)X

′′
0

= V0 − ‖q‖L∞(dK)X
′′
0 + H · Sτ − Aτ ≤ x + H · Sτ , τ ∈ �,

where x + H · S is acceptable, since V is nonnegative. Consequently, c ∈ A(x, q). This
completes the proof of the lemma. �

PROOF OF PROPOSITION 3.4. The assertions of item (i) follow from Lemma 3.10. It
remains to show that the affirmations of item (ii) hold. Fix a (y, r) ∈ L. If Y ∈ Y(y, r), (ii)
follows from the definition of Y(y, r). Conversely, if (ii) holds for a nonnegative process Y ,
then since (x,0) ∈ K for every x > 0, we have

E

[∫ T

0
csYs dκs

]
≤ 1 for every c ∈ A

(
1

y
,0

)
.

Via [31], Proposition 4.4, we deduce that Y ∈ Y(y) and is such that (ii) holds. Therefore,
Y ∈ Y(y, r).

We have K̊ �= ∅, where the interior is taken with respect to the norm-topology. According
to Proposition 3.4(i), we have also K = (−L)o. The set K, as the polar of L, is convex and
closed both in (strong) R×L∞(dK) and σ(R×L∞(dK),R×L1(dK)) topologies. Having
nonempty strong interior, we obtain K = cl K̊ where the closure is in the strong-topology.
Since K is also closed in the weaker σ(R×L∞(dK),R×L1(dK)) topology, we obtain that

K = (−L)o = cl K̊,

where the closure is taken in both topologies. �
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3.2. Preliminary properties of the value functions, in particular finiteness. Let L0+ be the
positive orthant of L0. The polar of a set A ⊆ L0+ is defined as

Ao :=
{
c ∈ L0+ : E

[∫ T

0
csYs dκs

]
≤ 1, for every Y ∈ A

}
.

We recall that the sets Z and Z ′ are defined in (2.7) and (3.5), respectively.

LEMMA 3.11. Under the conditions of Theorem 3.1, we have

(3.18)
(
Z ′)oo = Y(1)

and

(3.19) w̃(y) = inf
Y∈Z ′ E

[∫ T

0
V (t, yYs) dκs

]
< ∞, y > 0.

PROOF. It follows from [10], Theorem 5.2, that Z ′ is dense in Z in L0. It follows from
Fatou’s lemma that (

Z ′)o = Zo.

Therefore, [31], Lemma 4.2 and Proposition 4.4, imply (3.18).
One can show that Z ′ is closed under countable convex combinations, where the martin-

gale property follows from the monotone convergence theorem and the càdlàg structure of the
limit is guaranteed by [12], Theorem VI.18; see also [26], Proposition 5.1, for more details
in similar settings. Now, (3.19) follows (up to a notational change) from [31], Theorem 3.3.
This completes the proof of the lemma. �

LEMMA 3.12. Under the conditions of Theorem 3.1, for every (x, q) ∈ K and (y, r) ∈ L,
we have

u(x, q) ≤ v(y, r) + xy +
∫ T

0
rsqs dKs.

PROOF. Fix an arbitrary (x, q) ∈ clK, c ∈ A(x, q) as well as (y, r) ∈ L, Y ∈ Y(y, r).
Using Proposition 3.4 and (2.5), we get

E

[∫ T

0
U(t, cs) dκs

]
≤ E

[∫ T

0
U(t, cs) dκs

]
+ xy +

∫ T

0
rsqs dKs

−E

[∫ T

0
csYs dκs

]

≤ E

[∫ T

0
V (t, Ys) dκs

]
+ xy +

∫ T

0
rsqs dKs.

This implies the assertion of the lemma. �

For every (x, q) in K, we define

(3.20)

B(x, q) :=
{
(y, r) ∈ L : xy +

∫ T

0
rsqs dKs ≤ 1

}
,

D(x, q) := ⋃
(y,r)∈B(x,q)

Y(y, r).

The subsequent lemma established boundedness of B(x, q) for (x, q) in K̊ in R×L1(dK).
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LEMMA 3.13. Under the conditions of Theorem 3.1, for every (x, q) ∈ K̊, B(x, q) is
bounded in R×L1(dK).

PROOF. Fix an (x, q) ∈ K̊. Then there exists ε > 0, such that for every

(3.21)
∣∣x′∣∣ ≤ ε and

∥∥q ′∥∥
L∞ ≤ ε,

we have (x + x′, q + q ′) ∈ K̊. Let us fix an arbitrary (y, r) ∈ B(x, q). Then for every (x′, q ′)
satisfying (3.21), by the definitions of L and B(x, q), respectively, we get

xy +
∫ T

0
qsrs dKs + x′y +

∫ T

0
q ′
srs dKs ≥ 0,

xy +
∫ T

0
qsrs dKs ≤ 1,

which implies that

(3.22) −x ′y −
∫ T

0
q ′
srs dKs ≤ xy +

∫ T

0
qsrs dKs ≤ 1.

Taking

x′ = −ε and q ′ ≡ 0,

we deduce from (3.22) that y ≤ 1
ε
. Also, by the definition of L and Lemma 3.2, item (i),

y ≥ 0. In turn, setting

x′ = 0 and q ′ = −ε1{r≥0} + ε1{r<0},

we obtain from (3.22) that ‖r‖L1 ≤ 1
ε
. This completes the proof of the lemma. �

LEMMA 3.14. Let the conditions of Theorem 3.1 hold and (x, q) be an arbitrary element
of K̊. Then we have:

(i) A(x, q) contains a strictly positive process.
(ii) The constant ȳ(x, q) given by

(3.23) ȳ(x, q) := 1

|x| + ‖q‖L∞(dK) supQ∈MEQ[∫ T
0 |es |dκs]

,

takes values in (0,∞) and satisfies

(3.24) ȳ(x, q)Z ′ ⊆ D(x, q).

In particular, for every z > 0, zD(x, q) contains a strictly positive process Y such that

(3.25) E

[∫ T

0
V (s,Ys) dκs

]
< ∞.

PROOF. In order to show (i), we observe that the existence of a positive process in
A(x, q) follows from the fact that (x − δ, q) ∈ K for a sufficiently small δ. Now the constant-
valued consumption δ/A > 0, where A is the constant that dominates the terminal value of
the stochastic clock κ in (2.1), is in A(x, q).

In order to prove (ii), let us consider ȳ(x, q) given by (3.23). It follows from Lemma 3.2,
item (iii), that ȳ(x, q) ∈ (0,∞). For this ȳ(x, q), using Corollary 3.9, one can show (3.24).
This and Lemma 3.11 (note that finiteness of w̃ follows directly from (3.1)) imply that for
every z > 0, there exists a positive Y ∈ zD(x, q), such that (3.25) holds. �
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LEMMA 3.15. Under the conditions of Theorem 3.1, for every (x, q) ∈ K̊ we have

−∞ < u(x, q) < ∞.

and u < ∞ on R×L∞(dK).

PROOF. Let us fix an arbitrary (x, q) ∈ K̊. Since K̊ is an open convex cone, there exists
λ ∈ (0,1), (x1, q1) ∈ K̊, and x2 > 0, such that

(x, q) = λ(x1, q1) + (1 − λ)(x2,0).

Note that (x2,0) ∈ K̊ by Lemma 3.2. By (3.1), there c ∈ A(x2,0), such that

(3.26) E

[∫ T

0
U

(
t, (1 − λ)ct

)
dκt

]
> −∞.

As A(x1, q1) �= ∅ (see Remark 3.5), there exists c̃ ∈ A(x1, q1). As U(t, ·) is nondecreasing,
we get

u(x, q) ≥ E

[∫ T

0
U

(
t, λc̃t + (1 − λ)ct

)
dκt

]

≥ E

[∫ T

0
U

(
t, (1 − λ)ct

)
dκt

]
> −∞,

where the last inequality follows from (3.26). This implies finiteness of u on K̊ from below.
In order to show finiteness from above, let us fix a process c ∈A(x, q), such that

E

[∫ T

0
U(t, ct ) dκt

]
> −∞.

By Lemma 3.11, there exists Y ∈Z ′, such that

(3.27) E

[∫ T

0
V (t, Yt ) dκt

]
< ∞.

It follows from Lemma 3.7 that Y ∈ Y(1, ρ) for some (1, ρ) ∈ L. Therefore, by Proposi-
tion 3.4, we get

(3.28)

E

[∫ T

0
U(s, cs) dκs

]
≤ E

[∫ T

0
U(s, cs) dκs

]
+ x +

∫ T

0
ρsqs dKs

−E

[∫ T

0
csYs dκs

]

≤ E

[∫ T

0
V (s,Ys) dκs

]
+ x +

∫ T

0
ρsqs dKs.

As Y satisfies (3.27), we conclude that u(x, q) < ∞. Moreover, for (x, q) ∈K, as A(x, q) �=
∅ by Remark 3.5, every c ∈ A(x, q) satisfies (3.28) (with the same Y ). This implies that
u < ∞ on K and, therefore, by (2.11), on R × L∞(dK). This completes the proof of the
lemma. �

We recall that, for every (x, q) ∈ K, D(x, q) is defined in (3.20). Let clD(x, q) denote
the closure of D(x, q) in L0(dκ × P). The following lemma proves a delicate point that, for
(x, q) ∈ K̊, by passing from D(x, q) to clD(x, q), we do not change the auxiliary dual value
function.
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LEMMA 3.16. Let the conditions of Theorem 3.1 hold and (x, q) ∈ K̊. Then, for every
z > 0, we have

(3.29)

−∞ < inf
Y∈clD(x,q)

E

[∫ T

0
V (s, zYs) dκs

]

= inf
Y∈D(x,q)

E

[∫ T

0
V (s, zYs) dκs

]
< ∞.

PROOF. Finiteness from above follows from Lemma 3.14. To show finiteness of both
infima in (3.29) from below, by Lemma 3.15 we deduce the existence of c ∈ A(x, q), such
that

(3.30) E

[∫ T

0
U(s, cs) dκs

]
> −∞.

Let Y ∈ clD(x, q) and let Yn ∈ Y(yn, rn), n ≥ 1, be a sequence in D(x, q) that converges to
Y in L0(dκ × P). By Fatou’s lemma, Proposition 3.4 and the definition of the set B(x, q) in
(3.20), we get

E

[∫ T

0
Yscs dκs

]
≤ lim inf

n→∞ E

[∫ T

0
Yn

s cs dκs

]

≤ sup
n≥1

(
xyn +

∫ T

0
rn
s qs dKs

)
≤ 1.

Therefore, we obtain

E

[∫ T

0
U(s, cs) dκs

]
≤ E

[∫ T

0
U(s, cs) dκs

]
+ 1 −E

[∫ T

0
Yscs dκs

]

≤ E

[∫ T

0
V (s,Ys) dκs

]
+ 1,

which together with (3.30) implies finiteness of both infima in (3.29) from below.
Let us show equality of two infima in (3.29). It follows from Lemma 3.14 that for every

z > 0 there exists a process Y ∈ zD(x, q), such that

E

[∫ T

0
V (s,Ys) dκs

]
< ∞.

Let us fix z > 0 and let Ȳ ∈ clD(x, q). Also, let (Y n)n∈N be a sequence in D(x, q) that
converges to Ȳ (dκ × P)-a.e. Let us fix δ > 0, then by Lemma 3.11, there exists Z′ ∈ Z ′,
such that

E

[∫ T

0
V
(
t, δȳ(x, q)Z′

t

)
dκt

]
< ∞,

where ȳ(x, q) is defined in (3.23). Note that ȳ(x, q)Z′ ∈D(x, q) by Lemma 3.14 (see (3.24)).
Therefore, using Fatou’s lemma and monotonicity of V in the spatial variable, we obtain

inf
Y∈D(x,q)

E

[∫ T

0
V
(
t, (z + δ)Ys

)
dκs

]

≤ lim sup
n→∞

E

[∫ T

0
V
(
t, zY n

s + δȳ(x, q)Z′
s

)
dκs

]

≤ E

[∫ T

0
V
(
t, zȲs + δȳ(x, q)Z′

s

)
dκs

]

≤ E

[∫ T

0
V (t, zȲs) dκs

]
.
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Taking the infimum over Y ∈ clD(x, y), we deduce that

(3.31) inf
Y∈D(x,q)

E

[∫ T

0
V
(
t, (z + δ)Ys

)
dκs

]
≤ inf

Y∈clD(x,y)
E

[∫ T

0
V (t, zYs) dκs

]
.

Let us consider

φ(z) := inf
Y∈D(x,q)

E

[∫ T

0
V (t, zYs) dκs

]
, z > 0.

By the first part of the proof (finiteness of both infima), φ is finite-valued on (0,∞). Con-
vexity of V in the spatial variable implies that φ is also convex. Therefore, φ is continuous.
As (3.31) holds for every δ > 0, by taking the limit as δ ↓ 0 in (3.31), we conclude that both
infima in (3.29) are equal. This completes the proof of the lemma. �

Let us define

(3.32) E := {
(y, r) ∈ L : v(y, r) < ∞}

.

LEMMA 3.17. Under the conditions of Theorem 3.1, for every (y, r) ∈ L, we have

v(y, r) > −∞.

Therefore, v > −∞ on R × L1(dK). The set E is a nonempty convex subset of L, whose
closure in R×L1(dK) equals to L, and such that

(3.33) E = ⋃
λ≥1

λE .

PROOF. Let us fix (y, r) ∈ L, then finiteness of v(y, r) from below follows from (3.1)
and Lemma 3.12. To establish the properties of E , we observe that the convexity of E and
(3.33) follow from convexity and monotonicity of V , respectively.

In remains to show that the closure of E in R× L1(dK) contains the origin. In (3.20), let
us consider (x, q) = (1,0) ∈ K. In this case, we have

D(1,0) = ⋃
(y,r)∈L:y≤1

Y(y, r) ⊆ Y(1),

where the last inclusion follows from the very definition of Y(y, r)’s in (2.9). As, by (2.8),
Y(1) is closed in L0(dκ × P) and D(1,0) ⊆ Y(1), we deduce that

(3.34) clD(1,0) ⊆ Y(1).

By Lemma 3.14, Z ′ ⊂D(1,0), as ȳ(1,0) = 1. Therefore, by the bipolar theorem of Brannath
and Schachermayer, [3], Theorem 1.3, we get

(3.35)
(
Z ′)oo ⊆ clD(1,0).

On the other hand, Lemma 3.11 asserts that

(3.36)
(
Z ′)oo = Y(1).

Combining (3.34), (3.35) and (3.36), we conclude

clD(1,0) = Y(1).

Therefore, the sets clD(1,0) = Y(1) and A(1,0) satisfy the precise technical assumptions of
[31], Theorem 3.2, which, for every x > 0, grants the existence of ĉ(x) ∈ A(x,0), the unique
maximizer to w(x), where w is defined in (2.12). For every x > 0, we set

Y·(x) := U ′(·, ĉ·(x)
)
, (dκ × P)-a.e.
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By [31], Theorem 3.2, for every x > 0, Y(x) satisfies

Y(x) ∈ w′(x) clD(1,0) and E

[∫ T

0
V
(
t, Yt (x)

)
dκt

]
< ∞, x > 0,

where by [31], Theorem 3.2, w is a strictly concave, differentiable function on (0,∞) that
satisfies the Inada conditions. Therefore, as w′(x) can be arbitrary close to 0 (by taking x

large enough and by using the Inada conditions) and by Lemmas 3.14 and 3.16, we conclude
that the closure of E in R×L1(dK) contains origin.

In order to prove that the closure of E in R × L1(dK) equals to L, let (y, r) ∈ L \ (0,0)

be fixed. Let us take ε > 0. We want to find (ỹ, r̃), such that

(3.37) |ỹ − y| + ‖r̃ − r‖L1(dK) < ε,

and

(3.38) (ỹ, r̃) ∈ E .

As the closure of E in R×L1(dK) contains origin, we can pick (y0, r0) ∈ E , such that

(3.39)
∣∣y0∣∣ + ∥∥r0∥∥

L1(dK) ≤ ε/3

and Y ∈ Y(y0, r0), such that

(3.40) E

[∫ T

0
V (t, Yt ) dκt

]
< ∞.

Let us fix α > 1, such that

(3.41)
|y| + ‖r‖L1(dK)

α
≤ ε/3

and set ε′ := 1
α

∈ (0,1). By (3.33), (αy0, αr0) ∈ E . Let

ỹ := (
1 − ε′)y + ε′αy0, r̃ := (

1 − ε′)r + ε′αr0.

Then

|y − ỹ| + ‖r − r̃‖L1(dK) = ε′α
∣∣∣∣yα − y0

∣∣∣∣ + ε′α
∥∥∥∥ r

α
− r0

∥∥∥∥
L1(dK)

≤ |y| + ‖r‖L1(dK)

α
+ ∣∣y0∣∣ + ∥∥r0∥∥

L1(dK)

≤ 2ε

3
,

where in the last inequality we have used (3.39) and (3.41). Thus (ỹ, r̃) satisfies (3.37). Fur-
ther, as 0 ∈ Y(y, r), by convexity of L and using Proposition 3.4, we get

Y = (
1 − ε′)0 + ε′αY ∈ Y(ỹ, r̃),

which by (3.40) implies (3.38). This completes the proof of the lemma. �

3.3. Existence and uniqueness of solutions to (2.4) and (2.10); semicontinuity and bicon-
jugacy of u and v.

LEMMA 3.18. Under the conditions of Theorem 3.1, the value function v is convex,
proper and lower semicontinuous with respect to the topology of R × L1(dK). For every
(y, r) ∈ E , there exists a unique solution to (2.10). Likewise, u is concave, proper and upper
semicontinuous with respect to the strong topology of R×L∞(dK). For every (x, q) ∈ {u >

−∞}, there exists a unique solution to (2.4).
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PROOF. Let (yn, rn)n∈N be a sequence in L that converges to (y, r) in R × L1(dK).
Passing if necessary to a subsequence, we will assume that

(3.42) lim
n→∞v

(
yn, rn) = lim inf

n→∞ v
(
yn, rn).

Let Yn ∈ Y(yn, rn), n ∈N, be such that

(3.43) E

[∫ T

0
V
(
t, Y n

t

)
dκt

]
≤ v

(
yn, rn) + 1

n
, n ∈N.

By passing to convex combinations and applying Komlos’-type lemma (see, e.g., [9],
Lemma A1.1), we may suppose that Ỹ n ∈ conv(Y n,Y n+1, . . .), n ∈ N, converges (dκ × P)-
a.e. to some Ŷ .

For every (x, q) ∈ K and c ∈ A(x, q), by Fatou’s lemma, we have

E

[∫ T

0
ct Ŷt dκt

]
≤ lim inf

n→∞ E

[∫ T

0
ct Ỹ

n
t dκt

]
≤ xy +

∫ T

0
qsrs dKs.

Therefore, by Proposition 3.4, Ŷ ∈ Y(y, r). With ȳ := supn≥1 yn, we have (Ỹ n)n∈N ⊆ Y(ȳ).
Therefore, by [31], Lemma 3.5, we deduce that V −(t, Ỹ n

t ), n ∈ N, is a uniformly integrable
sequence. Combining uniform integrability with the convexity of V in the spatial variable,
we get

(3.44)

v(y, r) ≤ E

[∫ T

0
V (t, Ŷt ) dκt

]
≤ lim inf

n→∞ E

[∫ T

0
V
(
t, Ỹ n

t

)
dκt

]

≤ lim inf
n→∞ E

[∫ T

0
V
(
t, Y n

t

)
dκt

]
= lim inf

n→∞ v
(
yn, rn),

where in the last equality we have used (3.42) and (3.43). Since (yn, qn) was an arbitrary se-
quence that converges to (y, r), lower semicontinuity of v in strong topology of R×L1(dK)

follows. Since L is closed and v = ∞ outside of L, we deduce that v is lower semicontinuous
on R×L1(dK). The function v is proper by Lemma 3.17. Note that (3.44) also implies that
E defined in (3.32) is R × L1(dK)-norm closed. For (y, r) ∈ E , by taking (yn, rn) = (y, r),
n ∈ N, we deduce the existence of a minimizer to (2.10). Strict convexity of V results in
the uniqueness of the minimizer to (2.10). Convexity of v follows. Upper semicontinuity of
u with respect to the norm-topology of R × L∞(dK) can be proven similarly, first prov-
ing semicontinuity on K by a Fatou-type argument, then using the closedness of K and the
definition of u outside it. �

COROLLARY 3.19. Under the conditions of Theorem 3.1, −u and v are also lower
semicontinuous with respect to the weak topologies σ(R× L∞(dK), (R× L∞)∗(dK)) and
σ(R×L1(dK),R×L∞(dK)), respectively.

PROOF. The assertions of the corollary is a consequence of [2], Proposition 2.2.10; see
also [15], Corollary I.2.2. �

We recall that clD(x, q) denotes the closure of D(x, q) in L0(dκ × P).

LEMMA 3.20. Under the conditions of Theorem 3.1, for every (x, q) in K̊, and a non-
negative optional process c, we have

c ∈ A(x, q) if and only if

E

[∫ T

0
csYs dκs

]
≤ 1 for every Y ∈ clD(x, q).
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PROOF. Let (x, q) in K̊, c is a nonnegative optional process such that

(3.45) E

[∫ T

0
csYs dκs

]
≤ 1 for every Y ∈ clD(x, q).

Consider arbitrary Z ∈ Z ′ and � ∈ ϒ . Let the corresponding r be given by (3.7) and we set

y′ := x +
∫ T

0
qsrs dKs.

If y′ = 0, then y�Z ∈ D(x, q) for every y > 0. Thus, by (3.45), we obtain that
E[∫ T

0 csy�sZs dκs] ≤ 1. Taking the limit as y → ∞, we get

(3.46)

E

[∫ T

0
cs�sZs dκs

]
= 0 = x +

∫ T

0
qsrs dKs

= x +E

[∫ T

0
qses�sZs dκs

]
,

where in the last equality we have used (3.7).
If y′ > 0, then 1

y′ �Z ∈D(x, q) and thus by (3.45), we obtain

E

[∫ T

0
cs

1

y′ �sZs dκs

]
≤ 1 = x + ∫ T

0 qsrs dKs

y′

= 1

y′
(
x +E

[∫ T

0
qses�sZs dκs

])
,

where in the last equality, we have used (3.7) again. Consequently, we deduce

E

[∫ T

0
cs�sZs dκs

]
≤ x +E

[∫ T

0
qses�sZs dκs

]
,

which together with (3.46), by Lemma 3.10, imply that c ∈ A(x, q).
Conversely, let (x, q) ∈ K̊, c ∈ A(x, q) and Y ∈ clD(x, q). Then there exists a sequence

Yn ∈ Y(yn, rn) convergent to Y , (dκ × P)-a.e., where (yn, rn) ∈ B(x, q). As

E

[∫ T

0
csY

n
s dκs

]
≤ 1, n ∈ N,

by Fatou’s lemma, we get

E

[∫ T

0
csYs dκs

]
≤ lim inf

n→∞ E

[∫ T

0
csY

n
s dκs

]
≤ 1.

This completes the proof of the lemma. �

LEMMA 3.21. Under the conditions of Theorem 3.1, for every (x, q) in K̊, we have

(3.47) u(x, q) = inf
(y,r)∈L

(
v(y, r) + xy +

∫ T

0
rsqs dKs

)
.

PROOF. Let us fix (x, q) ∈ K̊. By Lemma 3.14, A(x, q) and clD(x, q) contain strictly
positive elements. Therefore, using Lemma 3.20 we deduce that the sets A(x, q) and
clD(x, q) satisfy the assumptions of [31], Theorem 3.2. From this theorem, Lemma 3.16
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and the definition of the set B(x, q), we get

u(x, q) = inf
z>0

(
inf

Y∈clD(x,q)
E

[∫ T

0
V (t, zYs) dκs

]
+ z

)

= inf
z>0

(
inf

Y∈D(x,q)
E

[∫ T

0
V (t, zYs) dκs

]
+ z

)
= inf

z>0

(
inf

(y,r)∈zB(x,q)
v(y, r) + z

)
≥ inf

(y,r)∈L

(
v(y, r) + xy +

∫ T

0
qsrs dKs

)
.

Combining this with the conclusion of Lemma 3.12, we deduce that (3.47) holds for every
(x, q) ∈ K̊. �

Before proving the biconjugacy relations of item (iii), Theorem 3.1, we need a preliminary
lemma. Essentially, following the notation in [15], we define

v∗(x, q) := inf
(y,r)∈R×L1(dK)

(
v(y, r) + xy +

∫ T

0
qsrs dKs

)
,

(3.48)
(x, q) ∈ R×L∞(dK),

v∗∗(y, r) := sup
(x,q)∈R×L∞(dK)

(
v∗(x, q) − xy −

∫ T

0
qsrs dKs

)
,

(3.49)
(y, r) ∈R×L1(dK).

REMARK 3.22. In [15], conjugate convex functions are considered on general spaces
V and V ∗ supplied with σ(V,V ∗) and σ(V ∗,V ) topologies, which in our case are V =
R × L1(dK), V ∗ = R × L∞(dK). Thus, the starting point of our analysis is v, not u. We
remind the reader we have already proved that the dual value function v is convex, proper
and lower-semicontinuous on the space V = R×L1(dK).

LEMMA 3.23. Under the conditions of Theorem 3.1, we have

v∗∗ = v,(3.50)

v∗(x, q) = −∞ for every (x, q) ∈R×L∞(dK) \K.(3.51)

PROOF. To show (3.50), we observe that by Lemma 3.18, v is lower semicontinuous in
the R × L1(dK)-norm topology (and, therefore, by [15], Corollary I.2.2, also in the weak
topology σ(R × L1(dK),R × L∞(dK))). As a result, by [15], Proposition I.4.1, we get
(3.50).

The proof of (3.51) will be done in several steps.
Step 1. Let (x, q) ∈ R×L∞(dK)\K. According to Proposition 3.4, there exists (y, r) ∈ L,

such that

C := xy +
∫ T

0
qsrs dKs < 0.

Therefore, as L is a cone, for every a > 0, (ay, ar) ∈ L, and we have

(3.52) xay +
∫ T

0
qsars dKs = aC < 0.
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Note that 0 ∈ Y(ay, ar), a > 0.
Step 2. Let us consider Z ∈ Z ′, such that

(3.53) E

[∫ T

0
V

(
t,

1

2
Zt

)
dκt

]
< ∞.

The existence of such a Z is granted by Lemma 3.11. Further, by Corollary 3.9, there exists
ρ ∈ L1(dK), such that (1, ρ) ∈ L, Z ∈ Y(1, ρ), and∫ t

0
ρs dKs = E

[∫ t

0
Zses dκs

]
, t ∈ [0, T ].

Let us set

D := x +
∫ T

0
qsρs dKs ∈R.

Step 3. In (3.52), let us pick

a = |D| + 1

−C
> 0.

Then we have

(3.54) aC + D = −|D| + D − 1 < 0.

Step 4. Let us define

(3.55) Y := 1

2
Z, y′ := 1

2
ay + 1

2
and r ′ := 1

2
ar + 1

2
ρ.

Then by (3.53), we obtain

(3.56) E

[∫ T

0
V (t, Yt ) dκt

]
< ∞.

As Z ∈ Y(1, ρ) and 0 ∈ Y(ay, ar), by convexity of L and Proposition 3.4, we have

(3.57) Y ∈ Y
(
y′, r ′),

where y′ and r ′ are defined in (3.55). Now, it follows from (3.56) and (3.57) that (y′, r ′) ∈ E
(where E is defined in (3.32)). Therefore, we obtain

2
(
xy′ +

∫ T

0
qsr

′
s dKs

)
= (ay + 1)x +

∫ T

0
(ars + ρs)qs dKs

= a

(
xy +

∫ T

0
qsrs dKs

)
+ x +

∫ T

0
qsρs dKs

= aC + D < 0,

where the last inequality follows from (3.54). To recapitulate, we have shown the existence
of (y′, r ′), such that

(3.58)
(
y′, r ′) ∈ E and xy′ +

∫ T

0
qsr

′
s dKs < 0.

Step 5. For y′ and r ′ defined in (3.55), as v(y′, r ′) < ∞ and xy′ + ∫ T
0 qsr

′
s dKs < 0 by

(3.58), from the monotonicity of V , we get

∞ > v
(
y′, r ′) ≥ v

(
λy′, λr ′), λ ≥ 1.

As
⋃

λ≥1(λy′, λr ′) ⊂ L, we conclude via (3.58) that

v∗(x, q) ≤ lim
λ→∞

(
v
(
λy′, λr ′) + λ

(
xy′ +

∫ T

0
qsr

′
s dKs

))
= −∞.

Therefore, (3.51) holds. This completes the proof of the lemma. �
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LEMMA 3.24. Under the conditions of Theorem 3.1, we have

v(y, r) = sup
(x,q)∈K

(
u(x, q) − xy −

∫ T

0
rsqs dKs

)
, (y, r) ∈ L,(3.59)

u(x, q) = inf
(y,r)∈L

(
v(y, r) + xy +

∫ T

0
qsrs dKs

)
, (x, q) ∈ K.(3.60)

PROOF. Lemma 3.21 and (2.11) imply that on K̊, for v∗ defined in (3.48), we have

(3.61) v∗ = u.

By Lemma 3.23, v∗ = −∞ on R × L∞(dK) \ K. From [15], Definition I.4.1, and
Lemma 3.18, respectively, we deduce that both v∗ and u are upper semicontinuous in the
topology of R×L∞(dK). Consequently, from (3.61), using [15], Corollary I.2.1, we get

(3.62) v∗ = u on R×L∞(dK).

As a result, with v∗∗ being defined in (3.49), for every (y, r) ∈ R×L1(dK), we obtain

(3.63) u∗(y, r) := sup
(x,q)∈R×L∞(dK)

(
u(x, q) − xy −

∫ T

0
qsrs dKs

)
= v∗∗(y, r).

Therefore, from (3.50) in Lemma 3.23 and (3.63), we get

v = u∗ on R×L1(dK).

As a result, applying Lemma 3.23 again and since u = −∞ outside of K by (2.11), we deduce

v(y, r) = sup
(x,q)∈R×L∞(dK)

(
u(x, q) − xy −

∫ T

0
rsqs dKs

)

= sup
(x,q)∈K

(
u(x, q) − xy −

∫ T

0
rsqs dKs

)
, (y, r) ∈ L.

Thus, (3.59) holds.
In turn, from (3.62) using (2.11), we conclude that

u(x, q) = inf
(y,r)∈R×L1(dK)

(
v(y, r) + xy +

∫ T

0
qsrs dKs

)
,

= inf
(y,r)∈L

(
v(y, r) + xy +

∫ T

0
qsrs dKs

)
, (x, q) ∈ K,

which proves (3.60) and extends the assertion of Lemma 3.21 to the boundary of K̊. �

PROOF OF THEOREM 3.1. The assertions of item (i) follow from Lemmas 3.15 and 3.17,
item (ii) results from Lemma 3.18, whereas the validity of item (iii) come from Lemma 3.24.
This completes the proof of the theorem. �

4. Subdifferentiability of u. In order to establish subdifferentiability of u, we need to
strengthen Assumption 2.5 and to impose the following condition.

ASSUMPTION 4.1. There exists an a.s. bounded away from 0 and ∞ process ϕ, such
that

dκ(ω) = ϕ dK for P-a.e. ω ∈ �.
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Let

(4.1) P := {
ρ : (1, ρ) ∈ L

}
,

REMARK 4.2. P defined in (4.1) needs to be uniformly integrable with respect to the
measure dK in order for the proof of subdifferentiability of u to go through. Assumption 2.5
through Lemma 3.2 only implies that P is L1 bounded. A stronger condition on the stochastic
clock and income stream is therefore needed to obtain uniform integrability.

The following theorem characterizes subdifferentiability of u over K̊, where we are look-
ing for an R×L1(dK)-valued subgradient. Under our assumptions, we can find elements of
the subgradient which both belong to the effective domain of v, E , and are bounded, that is,
in R×L∞(dK).

THEOREM 4.3. Let the conditions of Theorem 3.1 and Assumption 4.1 hold. Then for
every (x, q) ∈ K̊, the subdifferential of u at (x, q) is a nonempty and contains an element of
E , that is,

(4.2) ∂u(x, q) ∩ E �= ∅.

Moreover, for (x, q) ∈ K̊ and (y, r) ∈ L, (y, r) ∈ ∂u(x, q) if and only if the following condi-
tions hold:

(4.3)
∣∣v(y, r)

∣∣ < ∞,

thus, (y, r) ∈ E ,

E

[∫ T

0
Ŷt (y, r)ĉt (x, q) dκt

]
= xy +

∫ T

0
qsrs dKs,(4.4)

Ŷt (y, r) = U ′(t, ĉt (x, q)
)
, (dκ × P)-a.e.,(4.5)

where ĉ(x, q) and Ŷ (y, r) are the unique optimizers to (2.4) and (2.10), respectively.

4.1. Uniform integrability of P .

LEMMA 4.4. Let the conditions of Theorem 4.3 hold. Then P is L∞(dK)-bounded and,
therefore, a uniformly integrable family.

PROOF. Step 1. For an arbitrary q : [0, T ] → [0,1], let us define

β(q) := sup
Q∈M

EQ

[∫ T

0
qs |es |dκs

]
= sup

Q∈M,τ∈�

EQ

[∫ τ

0
qs |es |dκs

]
.

Note that by Assumption 2.5, we have

β(q) = sup
Q∈M

EQ

[∫ T

0
qs |es |dκs

]

≤ sup
Q∈M

EQ

[∫ T

0
qsX

′
sϕ dKs

]

≤
∫ T

0
qs sup

Q∈M
EQ

[
CX′

s

]
dKs

≤ CX′
0

∫ T

0
qs dKs,
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where C ∈ R is such that |ϕ| ≤ C. It follows from [27], Proposition 4.3, and [17], Theo-
rem 3.1, that there exists a nonnegative càdlàg process V = β(q) + H · S, such that

Vt ≥ ess sup
Q∈M,τ∈�,τ≥t

EQ

[∫ τ

0
qs |es |dκs

∣∣∣Ft

]
, t ∈ [0, T ].

Consequently, V satisfies

Vτ ≥
∫ τ

0
qs |es |dκs ≥

∫ τ

0
qses dκs, P-a.s., τ ∈ �,

and thus, (β(q),−q) ∈ K. As a result, from the definitions of L and P , we get

β(q) ≥ sup
ρ∈P

∫ T

0
qsρs dKs.

One can see that for every ρ ∈ P , we have ρ ≤ f := CX′
0, dK-a.e.

Step 2. For an arbitrary q : [0, T ] → [−1,0], let us set

β̃(q) := sup
Q∈M

EQ

[∫ T

0
qs

(−|es |)dκs

]
.

As in Step 1, we can construct a càdlàg process Ṽ = β̃(q) + H · S, s.t.

Ṽt ≥ ess sup
Q∈M,τ∈�,τ≥t

EQ

[∫ T

0
qs

(−|es |)dκs

∣∣∣Ft

]

≥ ess sup
Q∈M,τ∈�,τ≥t

EQ

[∫ T

0
qses dκs

∣∣∣Ft

]
.

This implies that (β̃(q),−q) ∈ clK. Therefore,

β(q) ≥
∫ T

0
qsρs dKs for every ρ ∈ P .

Similar to Step 1, one can see that ρ ≥ −f , dK-a.e. for every ρ ∈ P .
Step 3. In view of Steps 1 and 2, uniform integrability of P under dK follows from the

integrability of f under dK . �

LEMMA 4.5. Let the assumption of Theorem 4.3 hold and (x, q) ∈ K̊. Then{
r : (y, r) ∈ B(x, q)

}
is L∞-bounded, so a uniformly integrable subset of L1(dK).

PROOF. By Lemma 3.13, we deduce the existence of a constant M > 0, such that

y ≤ M for every (y, r) ∈ B(x, q).

We conclude that {
r : (y, r) ∈ B(x, q)

} ⊆ ⋃
0≤λ≤M

λP,

and thus by Lemma 4.4, {r : (y, r) ∈ B(x, q)} is a uniformly integrable family. �
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4.2. Closedness of D(x, q) for every (x, q) ∈ K̊.

LEMMA 4.6. Under the conditions of Theorem 4.3, for every (x, q) ∈ K̊, the set D(x, q)

is closed in L0(dκ × P).

PROOF. Let (x, q) ∈ K̊ and Y be an arbitrary element of clD(x, q). We claim that there
exists (y, r) ∈ B(x, q), such that Y ∈ Y(y, r). Let Yn ∈ Y(yn, rn), n ≥ 1, be a sequence
in D(x, q), such that limn→∞ Yn = Y , (dκ × P)-a.e. Since (yn, rn)n≥1 ⊂ B(x, q), which is
bounded in the sense of Lemma 3.13, Komlos’ lemma implies the existence of a subsequence
of convex combinations (ỹn, r̃n) ∈ conv((yn, rn), (yn+1, rn+1), . . .), n ≥ 1, such that (ỹn)n≥1
converges to y and (r̃n)n≥1 converges to r , dK-a.e. Lemma 4.5 implies that (r̃n)n≥1 is uni-
formly integrable. Therefore, (r̃n)n≥1 converges to r in L1(dK). Note that the corresponding
sequence of convex combinations of (Y n)n≥1, (Ỹ n)n≥1 converges to Y , (dκ × P)-a.e. Then
we have

1 ≥ lim
n→∞

(
xỹn +

∫ T

0
qs r̃

n
s dKs

)
= xy +

∫ T

0
qsrs dKs.

Therefore, (y, r) ∈ B(x, q).
Let us fix an arbitrary (x′, q ′) ∈K and c ∈ A(x′, q ′). Using Proposition 3.4, Fatou’s lemma

and Lemma 4.5, we obtain

0 ≤ E

[∫ T

0
Yscsds

]
≤ lim inf

n→∞ E

[∫ T

0
Ỹ n

s csds

]

≤ lim
n→∞

(
x′ỹn +

∫ T

0
q ′
s r̃

n
s dKs

)
= x′y +

∫ T

0
q ′
srs dKs,

where the uniform integrability of B(x, q) in needed once again in the last equality. From
Proposition 3.4, we conclude that that Y ∈ Y(y, r). �

PROOF OF THEOREM 4.3. Let (x, q) ∈ K, ĉ(x, q) be the minimizer to (2.4), whose ex-
istence and uniqueness are established in Lemma 3.18. Let us also set

(4.6)

Ŷt := U ′(t, ĉt (x, q)
)
, (t,ω) ∈ [0, T ] × � and

z := E

[∫ T

0
ĉs(x, q)Ŷs dκs

]
.

Note that the sets A(x, q) and clD(x, q) satisfy the conditions of [31], Theorem 3.2, which
implies that Ŷ ∈ zclD(x, q) is the unique solution to the optimization problem

inf
Y∈zclD(x,q)

E

[∫ T

0
V (t, Ys) dκs

]
= E

[∫ T

0
V (t, Ŷs) dκs

]
∈ R,

where finiteness follows from Lemma 3.16. Note that by Lemma 4.6, Ŷ ∈ Y(zy, zr) for some
(y, r) ∈ B(x, q). It follows from the definition of Ŷ in (4.6) that for ĉ(x, q) and Ŷ we have
the following relation:

U
(
t, ĉt (x, q)

) = V (t, Ŷt ) + ĉt (x, q)Ŷt , (t,ω) ∈ [0, T ] × �,

which together with Lemma 3.21 implies that

(4.7)
u(x, q) = v(zy, zr) + z

(
xy +

∫ T

0
qsrs dKs

)
,

Ŷ (zy, zr) = Ŷ , (dκ × P)-a.e.,
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where Ŷ (zy, zr) is the unique minimizer to the dual problem (2.10). By (4.7), (zy, zr) ∈ E .
Equation (4.7) and [15], Proposition I.5.1, assert that (zy, zr) ∈ ∂u(x, q). In particular, we
get

∂u(x, q) ∩ E �= ∅,

that is, (4.2). Note that even though, for example, [2], Corollary 2.2.38 and Corollary 2.2.44,
imply that ∂u(x, q) �= ∅, over the interior of the effective domain, its elements are in R ×
(L∞)∗(dK). Relation (4.2) shows that ∂u(x, q) contains at least a bounded element of E ⊆
L ⊂ R×L1(dK).

Let (x, q) ∈ K and (y, r) ∈ L. Suppose that (4.3), (4.4) and (4.5) hold. Then by conjugacy
of U and V , we get

(4.8) 0 = v(y, r) − u(x, q) + xy +
∫ T

0
qsrs dKs.

Lemma 3.24 and [15], Proposition I.5.1, imply that (y, r) ∈ ∂u(x, q) ∩ E . Conversely, let
(x, q) ∈ K and (y, r) ∈ L ∩ ∂u(x, q). Then by [15], Proposition I.5.1, and Lemma 3.24, we
deduce that (4.8) holds. Lemma 3.15 implies the finiteness of u(x, q), which together with
(4.8) results in the finiteness of v(y, r), thus (4.3) holds and (y, r) ∈ E . By Lemma 3.18, there
exists a unique optimizer ĉ(x, q), for (2.4), and Ŷ (y, r), for (2.10), respectively. Therefore,
from conjugacy of U and V , Proposition 3.4, and (4.8), we obtain

0 ≤ E

[∫ T

0

(
V
(
t, Ŷt (y, r)

) − U
(
t, ĉt (x, q)

) + Ŷt (y, r)ĉt (x, q)
)
dκt

]

≤ v(y, r) − u(x, q) + xy +
∫ T

0
qsrs dKs = 0.

This implies (4.4) and (4.5). This completes the proof of the theorem. �

5. Structure of the dual feasible set. By Assumption 4.1, there exists at most countable
subset (sk)k∈N of [0, T ], where κ has jumps. We define D′ the set of nonincreasing, left-
continuous and adapted processes D that start at 1 and with the property that Dθ0 = 1, DT ≥ 0
and that there exists some n ∈ N such that D is constant off the discrete grid Tn := ⋃2n

j=1{sj }∪
{ k

2n T , k = 0, . . . ,2n}.
LEMMA 5.1. Let G′ := {ZD = (ZtDt)t∈[0,T ] : Z ∈ Z ′,D ∈ D′}. Assume the conditions

of Proposition 3.4 hold. Then G′ is convex.

PROOF. Let Z1D1 and Z2D2 be the elements of G′ and let λ ∈ (0,1) We need to show
that λZ1D1 +(1−λ)Z2D2 = ZD for some Z ∈ Z ′ and D ∈ D′. There exists n ∈ N, such that
D1 and D2 decrease at most on Tn. Let tk’s be the elements of Tn arranged in an increasing
order. Let us define Z0 = D0 = 1 and for every k ∈ {0, . . . ,2n − 1}, with

At := λZ1
tk
D1

t + (1 − λ)Z2
tk
D2

t ,

αt := λZ1
tk
D1

t

At

1{At �=0} + λZ1
tk

λZ1
tk

+ (1 − λ)Z2
tk

1{At=0}

(note that At = 0 if and only if both D1
t = 0 and D2

t = 0) we set

(5.1)

Zt := Ztk

(
αtk+

Z1
t

Z1
tk

+ (1 − αtk+)
Z2

t

Z2
tk

)
for t ∈ (tk, tk+1],

Dt := Atk+
Ztk

for t ∈ (tk, tk+1].
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One can see that ZD = λZ1D1 + (1 − λ)Z2D2 and that Z ∈ Z ′; see, for example, [17, 25,
35] and [5] for discussions of the sets of processes with similar convexity-type properties to
the one given in (5.1). To show that D ∈ D′, for k ≥ 1, we observe that

Dtk+ = Atk+
Ztk

= λZ1
tk
D1

tk+ + (1 − λ)Z2
tk
D2

tk+

Ztk−1(αtk−1+
Z1

tk

Z1
tk−1

+ (1 − αtk−1+)
Z2

tk

Z2
tk−1

)

≤ λZ1
tk
D1

tk
+ (1 − λ)Z2

tk
D2

tk

Ztk−1(αtk−1+
Z1

tk

Z1
tk−1

+ (1 − αtk−1+)
Z2

tk

Z2
tk−1

)

= λZ1
tk
D1

tk
+ (1 − λ)Z2

tk
D2

tk

Ztk−1(
λZ1

tk−1
D1

tk

Atk−1+
Z1

tk

Z1
tk−1

+ (1−λ)Z2
tk−1

D2
tk

Atk−1+
Z2

tk

Z2
tk−1

)

1{Atk−1+>0}

+ 0 · 1{Atk−1+=0}

= Atk−1+
Ztk−1

λZ1
tk
D1

tk
+ (1 − λ)Z2

tk
D2

tk

λD1
tk
Z1

tk
+ (1 − λ)D2

tk
Z2

tk

1{Atk−1+>0}

= Atk−1+
Ztk−1

1{Atk−1+>0}

= Dtk .

Above, the inequality follows from the monotonicity of D1 and D2. Therefore, D is nonin-
creasing. Also, clearly D is nonnegative. Thus ZD ∈ G′. �

The following lemma is an extension of Lemma 3.10 and amounts to a first layer of con-
vexification of the set ϒ , that is, of the budget constraints.

LEMMA 5.2. Let the conditions of Proposition 3.4 hold, (x, q) ∈ K, and c is a nonneg-
ative optional process. Then c ∈ A(x, q) if and only if

(5.2)
E

[∫ T

0
csDsZs dκs

]
≤ x +E

[∫ T

0
qsesDsZs dκs

]
for every Z ∈ Z ′ and D ∈ D′.

PROOF. The idea is to use the assertion of Lemma 3.10 and to approximate a given
D ∈ D′ by (finite) linear combinations of the elements of ϒ , where ϒ is defined in (3.6).

For a stopping time τ , let us denote

�τ := 1[0,τ ] ∈ ϒ,

and fix D ∈ D′. Then there exists l ∈ N, such that D has has jumps at most on {t0, t1, . . . , tl}
for some increasing ti’s. For every j ∈ {0, . . . , l}, k ∈ {0, . . .2n}, and n ∈ N, let us set

Ak,n,j :=
{
ω : Dtj (ω) > 0 and

Dtj+(ω)

Dtj (ω)
∈

(
k − 1

2n
,

k

2n

]}
,

τ k,n,j := T 1Ak,n,j
+ tj 1Ac

k,n,j
.
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Note that D0 = 1 by definition of D′, Ak,n,j ∈ Ftj , and

k − 1

2n
�τk,n,j

tj+ =
⎧⎨⎩

k − 1

2n
on Ak,n,j ,

0 on Ac
k,n,j .

By construction, we have

Dtj+ = Dtj lim
n→∞

2n∑
k=1

k − 1

2n
�τk,n,j

tj+ ,

where the sequence

Kn
tj+ :=

2n∑
k=1

k − 1

2n
�

k,n,j
tj+ , n ∈ N,

is increasing on {Dtj > 0}, that is,

Kn
tj+1{Dtj

>0} ↑ Dtj+
Dtj

1{Dtj
>0}.

Thus, for an arbitrary j ∈ {0, . . . , l}, we have constructed a sequence of elements of ϒ , whose

finite linear combinations monotonically increase to
Dtj +
Dtj

on {Dtj > 0} (i.e., if j < l, we have

approximated D on the interval (tj , tj+1]).
In order to construct a sequence that approximates D at every point of its potential jumps,

we first observe that for two stopping times τ and σ , we have

�τ�σ = 1[0,τ ]1[0,σ ] = 1[0,τ∧σ ] = �τ∧σ .

Therefore, for every n ∈ N,

(5.3) Kn
tj+Kn

tj+1+ =
( 2n∑

k=1

k − 1

2n
�

k,n,j
tj+

)( 2n∑
k=1

k − 1

2n
�

k,n,j+1
tj+1+

)
=

4n∑
i=1

λn,i�
σn,i

tj+1+,

for some finite sequences of stopping times (σn,i)
4n

i=1 and [0,1)-valued constants (λn,i)4n

i=1.
Here, �σn,i are such that for both t = tj and t = tj+1 on {Dtj+1 > 0}, we have

lim
n→∞

4n∑
i=1

λn,i�
σn,i

t+ = Dt+
Dt

.

Similarly, with r(t) := max{i : ti < t}, let us define

Dn
t :=

r(t)∏
j=0

Kn
tj+1{Dtj

>0}, t ∈ [0, T ], n ∈ N.

As in (5.3), for every n ∈ N, Dn can be written as a finite linear combination of �’s, such
that Dn

t+ ↑ Dt+ for every t ∈ {t0, . . . , tl}.
Finally, (5.2) can be obtained from Lemma 3.10 by the approximation of D by Dn’s as

above and via the monotone convergence theorem (applied separately to (et )
+ and (et )

−).
�

COROLLARY 5.3. Let the conditions of Proposition 3.4 hold. Then, for every pair Z ∈ Z ′
and D ∈ D′, there exists rZD ∈ L1(dK), such that ZD ∈ Y(1, rZD), where (1, rZD) ∈ L.
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PROOF. The existence of rZD , such that ZD ∈ Y(1, rZD) follows from Lemma 5.2
(equation (5.2)) and the approximation procedure in Lemma 5.2 (again, applied separately
to (et )

+ and (et )
−) combined with the monotone convergence theorem. As, the left-hand

side in (5.2) is nonnegative, (1, rZD) ∈ L. �

For a given Z ∈ Z ′ and D ∈ D′, let us recall that rZD is given in Corollary 5.3. We set

B′(x, q) := {(
y, yrZD) ∈ B(x, q) : y > 0,Z ∈Z ′,D ∈ D′},

G(x, q) := {
yZD ∈D(x, q) : (y, yrZD) ∈ B′(x, q)

}
, (x, q) ∈ K̊,

LEMMA 5.4. Let the conditions of Proposition 3.4 hold, then for every (x, q) ∈ K̊, the
closure of the convex, solid hull of G(x, q) in L0 coincides with clD(x, q).

PROOF. Let (x, q) ∈ K̊ be fixed. Along the lines of the proof of Lemma 3.20, one can
show that (

G(x, q)
)o =A(x, q).

Therefore, (
G(x, q)

)oo = (
A(x, q)

)o = clD(x, q),

where in the last equality we have used the conclusion of Lemma 3.20. As G(x, q) ⊂
clD(x, q), the assertion of the lemma follows from the bipolar theorem of Brannath and
Schchermayer, [3], Theorem 1.3. �

COROLLARY 5.5. Let the conditions of Proposition 3.4 hold and (x, q) ∈ K̊. Then for
every maximal element Y of clD(x, q) there exists yn ≥ 0, Zn ∈ Z ′, Dn ∈ D′, n ∈ N, such
that (ynZnDn)n∈N ⊂ G(x, q) and

Y = lim
n→∞ynZnDn, (dκ × P)-a.e. and on

⋃
n∈N

Tn.

PROOF. The (dκ × P)-a.e. convergence follows from Lemma 5.4. By passing to subse-
quences of convex combinations, we also deduce the convergence on

⋃
n∈N Tn. �

REMARK 5.6. It follows from Corollary 5.5 and Fatou’s lemma that the maximal el-
ements of clD(x, q) are strong supermartingales. Moreover, every maximal element of
clD(x, q) is an optional strong supermartingale deflator, which is optional strong super-
martingale Y , such that XY is an optional strong supermartingale for every X ∈ X (1). We
refer to [12], Appendix 1, for a general characterization and to [8] for results on strong, op-
tional supermartingales as limits of martingales. The following section gives a more refined
characterization of the dual minimizer.

6. Complementary slackness. For better readability of this section, we recall some no-
tation and results that will be used below. Throughout this section, (x, q) ∈ K̊ will be fixed,
ĉ = ĉ(x, q) is the optimizer to (2.4), V̂ is the corresponding wealth process, that is,

(6.1) V̂ = x +
∫ ·

0
Ĥs dSs −

∫ ·
0

ĉs dκs +
∫ ·

0
qses dκs,

where Ĥ is some S-integrable process, Ŷ be such that Ŷt = U ′(t, ĉt ), (dκ × P)-a.e., that
is. We recall that Ŷ is the optimizer to (2.10) for some (y, r) ∈ E ∩ ∂u(x, q), that is, Ŷ =
Ŷ (y, r) ∈ Y(y, r). We also denote, similar to the proof of equation (4.3) by

z = E

[∫ T

0
ĉt Ŷt dkt

]
.
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From Corollary 5.5, we know that Ŷ can be approximated by a sequence ynDnZn, n ∈ N,
where yn is a nonnegative constant, Dn ∈ D′, and Zn ∈ Z ′, n ∈ N, such that

(6.2) ynDnZn ∈ Y
(
yn, rn), xyn +

∫ T

0
qsr

n
s dKs ≤ z.

Above, rn is given by Corollary 5.3 (which has a similar interpretation to Lemma 3.7) by∫ t

0
rn
s dKs = ynE

[∫ t

0
Zn

s Dn
s es dκs

]
, t ∈ [0, T ].

We would like to point out that, unlike in Lemma 3.7 or Corollary 5.3, here, the value of yn

has to be taken into account. In what follows, for any right-continuous increasing process A

satisfying

At = 0, 0− ≤ t ≤ θ0−, AT = 1,

that is, for any probability measure dA on the closed interval [θ0, T ] (extended to [0, T ]) we
will associate a process D which is left continuous and decreasing

Dt := 1 − At− = dA
([t, T ]), 0 ≤ t ≤ T .

One can also think that DT + = 0, although this is not necessary. It is clear that such A ↔ D

are in bijective correspondence. Below, all processes A’s and D’s (with indexes) will be in
such bijective correspondence, except for the case of the limiting process Â (which is right
continuous) and the limiting process D̂ (that may be not left continuous). This will be in a
similar but more subtle correspondence. More precisely, we have the following.

THEOREM 6.1. Let the conditions of Theorem 4.3 hold and fix (x, q) ∈ K̊. Let V̂ be the
optimal wealth process, ĉ the optimal consumption and Ŷt = U ′(t, ĉt ), (dκ × P)-a.e. Then
there exists an (y, r) ∈ ∂u(x, q) such that Ŷ = Ŷ (y, r), that is, Ŷ ∈ Y(y, r),

E

[∫ T

0
V (t, Ŷt ) dκt

]
= inf

Y∈Y(y,r)
E

[∫ T

0
V (t, Yt ) dκt

]
,

such that Ŷ can be decomposed as

Ŷ = yẐD̂,

where Ẑ is a strong supermartingale Ẑ = limn→∞ Zn (for Zn ∈ D′, where the limit is in the
sense of [8]) and a right-continuous increasing process Â with

Ât = 0 ∀0− ≤ t ≤ θ0−, ÂT = 1,

and a decreasing process D̂ with D̂t = 1, 0 ≤ t ≤ θ0 and satisfying the complementary slack-
ness condition

(6.3)

P
(
D̂t ∈ [1 − Ât ,1 − Ât−],∀θ0 ≤ t ≤ T

)
) = 1,

P

(∫
[θ0,T )

1{V̂t−�=0,V̂t �=0} dÂt

)
= 0.

The proof of the Theorem 6.1 is aligned in several results.

LEMMA 6.2. Let the conditions of Theorem 4.3 hold. With

z := E

[∫ T

0
ĉs Ŷs dks

]
,
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there exist yn > 0, Zn ∈ Z ′ and Dn ∈ D′, such that ynZnDn ∈ zG(x, q), n ∈ N and

(6.4)
Ŷ = lim

n→∞ynZnDn, (dκ × P)-a.e.,(
yn, rn) → (y, r) ∈ L, y > 0,

where the last convergence is weak in L1 and

z = xy +
∫ T

0
qsrs dKs, (y, r) ∈ ∂u(x, q), Ŷ = Ŷ (y, r).

For An, n ∈ N, being in relation to Dn exactly as described before Theorem 6.1 we have

(6.5) E

[∫ T

θ0

V̂tZ
n
t dAn

t

]
= E

[
Zn

T

∫ T

θ0

V̂t dAn
t

]
→ 0.

PROOF. Optimality of Ŷ and Corollary 5.5 imply the first convergence in (6.4). Accord-
ing to Lemma 4.5, the sequence (rn)n∈N is uniformly integrable, so it is relatively compact
in the weak topology of L1(dK), by the Dunford–Pettis theorem. According to the Eberlein-
-̌Smulian theorem, it has a further convergent subsequence. As an immediate consequence
of the same Lemma 4.5 and the very definition of B(x, q), we also obtain that the sequence
(yn)n∈N is bounded. Altogether, we have a further subsequence such that (yn, rn) → (y, r)

where the convergence in the second component is in the weak L1-sense. Now, using almost
identical arguments as the proof of Theorem 4.3 and Lemma 4.6 from (6.2) we obtain the
whole conclusion of the lemma, expect for the relation (6.5) that we prove below. By (4.4)
and Fatou’s lemma, we get

(6.6) z = E

[∫ T

0
Ŷs ĉs dκs

]
≤ lim inf

n→∞ ynE

[∫ T

0
Zn

s Dn
s ĉs dκs

]
.

Let us fix n ∈ N and consider E[∫ T
0 Zn

s Dn
s ĉs dκs]. Using localization and integration by parts

(along the lines of the proof of Lemma 3.7), we have

E

[∫ T

0
Zn

s Dn
s ĉs dκs

]
= E

[
Zn

T

∫ T

0
Dn

s ĉs dκs

]

= E

[
Zn

T

∫ T

0

(
1 − An

s−
)
ĉs dκs

]

= E

[
Zn

T

(∫ T

0
ĉs dκs −

∫ T

0
An

s−ĉs dκs

)]

= E

[
Zn

T

(∫ T

0
ĉs dκs − An

T

∫ T

0
ĉs dκs

+
∫ T

0

(∫ t

0
ĉs dκs

)
dAn

t

)]

= E

[
Zn

T

∫ T

0

(∫ t

0
ĉs dκs

)
dAn

t

]
.

The latter expression, using (6.1) and with X̄ := ‖q‖L∞(dK)X
′′ (where in turn X′′ is given by

the assertion (v) of Lemma 3.2), we can rewrite as

(6.7) E

[
Zn

T

∫ T

0

((
x +

∫ t

0
Ĥs dSs + X̄t

)
+

(∫ t

0
qses dκs − X̄t

)
− V̂t

)
dAn

t

]
.



OPTIMAL INVESTMENT AND CONSUMPTION WITH LABOR INCOME 779

Let us denote

T1 := E

[
Zn

T

∫ T

0

(
x +

∫ t

0
Ĥs dSs + X̄t

)
dAn

t

]
,

T2 := E

[
Zn

T

∫ T

0

(∫ t

0
qses dκs − X̄t

)
dAn

t

]
.

It follows from nonnegativity of V̂ in (6.1), Lemma 3.2 and nonnegativity of ĉ that

(6.8)
x +

∫ t

0
Ĥs dSs + X̄t ≥

∫ t

0
ĉs dκs + X̄t −

∫ t

0
qses dκs

≥ X̄t −
∫ t

0
qses dκs ≥ 0, t ∈ [0, T ],

that is, the integrand in T1 is nonnegative. Let Qn be the probability measure, whose density
process with respect to P is Zn. As (x+∫ ·

0 Ĥs dSs +X̄) and X̄ are local martingales under Qn,
by [33], Theorem III.27, page 128, An− · (x +∫ ·

0 Ĥs dSs + X̄) and An− · X̄ are local martingales.
Let (τk)k∈N be a localizing sequence for both An− · (x + ∫ ·

0 Ĥs dSs + X̄) and An− · X̄. By the
monotone convergence theorem and integration by parts, we get

(6.9)

T1 = lim
k→∞EQn

[∫ τk

0

(
x +

∫ t

0
Ĥs dSs + X̄t

)
dAn

t

]
= lim

k→∞

(
EQn

[∫ τk

0

(−An
t−

)
d

(
x +

∫ t

0
Ĥs dSs + X̄t

)
+ An

τk

(
x +

∫ τk

0
Ĥs dSs + X̄τk

)])
= lim

k→∞EQn
[
An

τk

(
x +

∫ τk

0
Ĥs dSs + X̄τk

)]
.

Let us consider T2. With Eq := ∫ ·
0 qses dκs , Lemma 3.2 implies positivity of Eq

t − X̄t , t ∈
[0, T ], which in turn allows to invoke the monotone convergence theorem, and we obtain

T2 = EQn
[∫ T

0

(
Eq

t − X̄t

)
dAn

t

]
= lim

k→∞EQn
[∫ τk

0
Eq

t dAn
t −

∫ τk

0
X̄t dAn

t

]
.

By positivity of X̄ and the monotone convergence theorem, we have

lim
k→∞EQn

[∫ τk

0
X̄t dAn

t

]
= EQn

[∫ T

0
X̄t dAn

t

]
.

Therefore, limk→∞EQn[∫ τk

0 Eq
t dAn

t ] = EQn[∫ T
0 Eq

t dAn
t ]. We deduce that

EQn
[∫ τk

0
X̄t dAn

t

]
= EQn[−(

An− · X̄)
τk

+ X̄τk
An

τk

] = EQn[
X̄τk

An
τk

]
.

Whereas, in the other term in T2, we get

EQn
[∫ T

0
Eq

t dAn
t

]
= EQn[Eq

T An
T − (

An− · Eq)
T

]
= EQn[Eq

T − (
An− · Eq)

T

]
= EQn[((

1 − An−
) · Eq)

T

]
= EQn[(

Dn · Eq)
T

]
.
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Using integration by parts and localization, as in the proof of Lemma 3.7, we can rewrite the
latter expression as

E

[∫ T

0
Dn

s Zn
s qses dκs

]
.

We conclude that

T2 = − lim
k→∞EQn[

X̄τk
An

τk

] +E

[∫ T

0
Dn

s Zn
s qses dκs

]
.

Combining this with (6.9), we obtain

T1 + T2 = E

[∫ T

0
Dn

s Zn
s qses dκs

]
+ lim

k→∞EQn
[
An

τk

(
x +

∫ τk

0
Ĥs dSs + X̄τk

)]
− lim

k→∞EQn[
An

τk
X̄τk

]
.

As both limits in the right-hand side exist and by positivity of (x + ∫ τk

0 Ĥs dSs + X̄τk
), estab-

lished in (6.8), we can bound the difference of the limits as

lim
k→∞EQn

[
An

τk

(
x +

∫ τk

0
Ĥs dSs + X̄τk

)]
− lim

k→∞EQn[
An

τk
X̄τk

]
≤ lim

k→∞EQn
[
x +

∫ τk

0
Ĥs dSs + X̄τk

]
− lim

k→∞EQn[
An

τk
X̄τk

]
≤ lim

k→∞EQn
[
x +

∫ τk

0
Ĥs dSs

]
+ lim

k→∞EQn[(
1 − An

τk

)
X̄τk

]
.

By definition of M′, X̄ is a uniformly integrable martingale under Qn. Therefore, as (1 −
An

τk
) is bounded, we can pass the limit inside of the expectation to obtain limk→∞EQn[(1 −

An
τk

)X̄τk
] = 0. In turn x + ∫ ·

0 Ĥs dSs is a supermartingale under Qn (see the argument in the
proof of Lemma 3.7). We conclude that

T1 + T2 ≤ x +E

[∫ T

0
Dn

s Zn
s qses dκs

]
= x +

∫ T

0
qsρ

n
s dKs,

for some ρn, which is well defined by Corollary 5.3, and such that yn(1, ρn) ∈ zB(x, q),
since ynZnDn ∈ zG(x, q). Thus, from (6.6) and (6.7), we get

z ≤
(
x +

∫ T

0
qsρ

n
s dKs

)
yn − lim

n→∞ynE

[
Zn

T

∫ T

0
V̂t dAn

t

]
.

By optimality of Ŷ , z ≥ (x + ∫ T
0 qsρ

n
s dKs)y

n ≥ 0. Therefore, by nonnegativity of E[Zn
T ×∫ T

0 V̂t dAn
t ], and since yn converges to a strictly positive limit, we conclude that

lim
n→∞E

[
Zn

T

∫ T

0
V̂t dAn

t

]
= 0.

Applying integration by parts and localization, we deduce the assertion of the lemma. �

REMARK 6.3. We emphasize again that dAn are probability measures on [θ0, T ], which
can have mass at the endpoints, and Dn

t = 1 − An
t−, θ0 ≤ t ≤ T , Dn

T + = 0.
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In the subsequent part, we will follow the notation of Lemma 6.2 and we will work with a
further subsequence, still denoted by n, such that yn → y > 0,

(6.10) ZnDn → Ŷ

y
, (dκ × P)-a.e.,

and

(6.11)
∞∑

k=n

E

[
Zn

T

∫ T

0
V̂t dAn

t

]
≤ 2−n

n
,

where the existence of a subsequence satisfying (6.11) follows from (6.5). The next result
is a Komlos-type lemma, largely based on the results in [8], applied to the double-sequence
of processes (Zn, (Dn)−1). We observe that the process (Dn)−1 takes values in [1,∞] is
increasing, left-continuous and satisfies(

Dn
t

)−1 = 1, 0 ≤ t ≤ θ0.

LEMMA 6.4. Let the conditions of Theorem 4.3 hold. In the notation of Lemma 6.2, for
each n, there exist a finite index N(n) and convex weights

αn,k ≥ 0, k = n, . . . ,N(n),

N(n)∑
k=n

αn,k = 1,

and there exists a strong optional supermartingale Ẑ and a nondecreasing (not necessarily
left-continuous) process D̂ with D̂t = 0, ∀0 ≤ t ≤ θ0, such that, simultaneously:

1. Z̃n := ∑N(n)
k=n αn,kZ

k → Ẑ in the sense of [8], that is, for any stopping time 0 ≤ τ ≤ T

we have

Z̃n
τ −→PẐτ ,

and
2.

P

(
N(n)∑
k=n

αn,k

(
Dk

t

)−1 → (D̂t )
−1,∀0 ≤ t ≤ T +

)
= 1

We have set DT + = Dk
T + = 0.

Furthermore, with the notation

(6.12) Ât=1 − D̂t+, 0 ≤ t ≤ T , Â0− = 0,

we have the probability measure dÂ on [θ0, T ] such that

P
(
D̂t ∈ [1 − Ât ,1 − Ât−],∀θ0 ≤ t ≤ T

)
) = 1.

Denoting by

(6.13)
Ãn

t := 1 −
(

N(n)∑
k=n

αn,k

(
1 − Ak

t

)−1

)−1

= 1 −
(

N(n)∑
k=n

αn,k

(
Dk

t+
)−1

)−1

,

0 ≤ t ≤ T , Ãn
0− = 0,

the pointwise convergence in time (at all times where there is continuity) additionally implies

dÃn ⇀ dÂ, P-a.e.

in the sense of weak convergence of probability measures on [θ0, T ].
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PROOF. The proof reduces to applying the Komlos-type results in [8] to the sequence Zn

and [4], Proposition 3.4, to the sequence (Dn)−1, simultaneously. We observe that:

1. First, no bounds are needed for D−1’s since we can apply the unbounded Komlos
lemma in [9], Lemma A1.1 (and Remark 1 following it) to the proof from [4], Propo-
sitions 3.4, and this works even for infinite values (according to Remark 1 after [9],
Lemma A1.1). Also, predictability can be replaced by optionality, without any change to
the proof.

2. The Komlos arguments can be applied to both sequences Zn and Dn simultaneously,
with the same convex weights. In order to do this, we first apply Komlos to one sequence, then
replace both original sequences by their convex combinations with the weights just obtained,
and then apply Komlos again for the other sequence, and update the convex weight to both
sequences. �

COROLLARY 6.5. Let the conditions of Theorem 4.3 hold. In the notation of Lemma 6.4,
we have the representation

Ŷ = yẐD̂, (dκ × P)-a.e.

PROOF. Consider an observation that, for nonnegative numbers ak , bk , k = n, . . . ,N(n),
we have

min
k=n,...,N(n)

(
ak

bk

)
≤

∑N(n)
k=n αn,ka

k∑N(n)
k=n αn,kbk

≤ max
k=n,...,N(n)

(
ak

bk

)
.

We apply this to ak = Zk , bk = (Dk)−1, to obtain

min
k=n,...,N(n)

(
ZkDk) ≤

∑N(n)
k=n αn,kZ

k∑N(n)
k=n αn,k(Dk)−1

= Z̃nD̃n ≤ max
k=n,...,N(n)

(
ZkDk),

pointwise a.e. in the product space, where D̃n := 1∑N(n)
k=n αn,k(D

k)−1
. Since

(
ZnDn)

n∈N → Ŷ /y, (dκ × P)-a.e.,

we conclude that both(
min

k=n,...,N(n)

(
ZkDk))

n∈N and
(

max
k=n,...,N(n)

(
ZkDk))

n∈N

converge to Ŷ
y

, (dκ × P)-a.e., therefore,

(6.14) Z̃nD̃n → Ŷ

y
, (dκ × P)-a.e.

Using (6.10) above, if we did not plan to identify the limit Ẑ as a strong-supermartingale, but
only as a (dκ × P)-a.e. limit in the product space, we could only apply Komlos arguments
to the single sequence D−1, to conclude convergence of the other convex combination Z̃n to
Ŷ

yD̂
, defined up to a.e. equality in the product space.
With our (stronger) double Komlos argument, we have that, in addition to (6.10) we have

(6.15) Ẑτ D̂τ = P- lim
n

Z̃n
τ D̃n

τ for every [0, T ]-valued stopping time τ

(where Ẑ is a strong supermartingale, and D̂ is well defined at all times).
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It remains to prove that Ŷ /y = ẐD̂, (dκ ×P)-a.e. We point out that the convergence (6.15)
is topological. Let us consider an arbitrary optional set O ⊂ �×[0, T ] and fix an upper bound
M . It follows from (6.14) that

1O min
{
Z̃nD̃n,M

} → 1O min
{
Ŷ

y
,M

}
, (dκ × P)-a.e.

Therefore, we get

(6.16)

E

[∫ T

0
1O(t, ·)min

{
Z̃n

t D̃n
t ,M

}
dκt

]

→ E

[∫ T

0
1O(t, ·)min

{
Ŷt

y
,M

}
dκt

]
.

Recall that the stochastic clock has a density dκt = ϕt dKt with respect to the deterministic
clock dKt . For each fixed t , from (6.15) we have

1O(t, ·)min
{
Z̃n

t D̃n
t ,M

}
ϕt → 1O(t, ·)min{Ẑt D̂t ,M}ϕt in −P.

Recalling that E[ϕt ] < ∞ we have, for fixed t , that

M ×E[ϕt ] ≥ E
[
1O(t, ·)min

{
Z̃n

t D̃n
t ,M

}
ϕt

] → E
[
1O(t, ·)min{Ẑt D̂t ,M}ϕt

]
.

We integrate the above with respect to the deterministic clock dKt to obtain

(6.17)

E

[∫ T

0
1O(t, ·)min

{
Z̃n

t D̃n
t ,M

}
dκt

]

=
∫ T

0
E
[
1O(t, ·)min

{
Z̃n

t D̃n
t ,M

}
ϕt

]
dKt

→
∫ T

0
E
[
1O(t, ·)min{Ẑt D̂t ,M}ϕt

]
dKt

= E

[∫ T

0
1O(t, ·)min{Ẑt D̂t ,M}dκt

]
Together with (6.16), we have

E

[∫ T

0
1O(t, ·)min

{
Ŷt

ŷ
,M

}
dκt

]
= E

[∫ T

0
1O(t, ·)min{Ẑt D̂t ,M}dκt

]
,

which holds for any optional set O and any bound M , therefore, Ŷ = yẐD̂, (dκ × P)-a.e.
�

PROOF OF THE THEOREM 6.1. Since
N(n)∑
k=n

αn,k

(
Dk

t

)−1 → (D̂t )
−1, t ∈ [0, T ],

recalling that Â was defined from D̂ and (6.13), as the processes An, therefore, Ãn only
increase by jumps. Therefore, we get

(6.18)

�Ãn
s = 1∑N(n)

k=n αn,k
1

Dk
s

− 1∑N(n)
k=n αn,k

1
Dk

s+

=
N(n)∑
k=n

αn,k
1

Dk
s+∑N(n)

k=n αn,k
1

Dk
s+︸ ︷︷ ︸

≤1

�Ak
s

Dk
s

1∑N(n)
k=n αn,k

1
Dk

s︸ ︷︷ ︸
≤1

.
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As
αn,k

1
Dk

s+
(
∑N(n)

k=n αn,k
1

Dk
s+

)
≤ 1 and

∑N(n)
k=n αn,k

1
Dk

s
≥ 1, we can bound the latter term in (6.18) by

∑N(n)
k=n

�Ak
s

Dk
s

for s ∈ [0, T ]. We deduce that

�Ãn
s ≤

N(n)∑
k=n

�Ak
s

Dk
s

, s ∈ [0, T ].

Therefore, we have ∫ t

0
V̂udÃn

u ≤
N(n)∑
k=n

(
Dk

t

)−1
∫ t

0
V̂u dAk

u, t ∈ [0, T ],

and thus, we obtain

(6.19)

(
min

k=n,...,N(n)

(
Zk

t D
k
t

)) ∫ t

0
V̂udÃn

u ≤
N(n)∑
k=n

(
Zk

t D
k
t

)(
Dk

t

)−1
∫ t

0
V̂u dAk

u

=
N(n)∑
k=n

Zk
t

∫ t

0
V̂u dAk

u, t ∈ [0, T ].

Since the process

Ln
t :=

N(n)∑
k=n

Zk
t

∫ t

0
V̂u dAk

u, 0 ≤ t ≤ T

is a nonnegative right-continuous submartingale, the maximal inequality and (6.11) together
imply

P

(
sup

0≤t≤T

Ln
t ≥ 1

n

)
≤ nE

[
Ln

T

] ≤ 2−n,

so

(6.20) sup
0≤t≤T

Ln
t → 0, P-a.s.

Since ZnDn → 1
y
Ŷ > 0, (dκ × P)-a.e., consequently

min
k=n,...,N(n)

(
ZkDk) → 1

y
Ŷ > 0, (dκ × P)-a.e.,

we obtain from (6.19) and (6.20) that the increasing RC process

L̃n
t :=

∫ t

0
V̂udÃn

u, 0 ≤ t ≤ T ,

converges to zero in the product space. Denoting by O ⊂ �×[0, T ] the exceptional set where
convergence to zero does not take place, and taking into account that L̃n are increasing, we
have that for

T O(ω) = inf
{
0 ≤ t ≤ T : (ω, t) ∈ O

}
,

we have (
T O, T

] ⊂O.
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Now

(dκ × P)(O) = 0,

implies that T O ≥ T , P-a.s. (here used an assumption that T is the minimal time horizon
in the sense that the deterministic clock K is such that Kt < KT , for every t ∈ [0, T ), this
assumption does not restrict generality). Thus, there exists a a set �∗ of full probability
P(�∗) = 1 such that, for each ω ∈ �∗ and t < T we have∫ t

0
V̂u(ω)dÃn

t (ω) → 0.

Let us fix a ω ∈ �∗ and such that, for this ω, the probability measure dÃn(ω) converges
weakly to dÂ(ω) over the interval [θ0(ω), T ]. The set of such ω’s still has probability 1. The
Skorokhod representation theorem asserts that there exists a new probability space �ω and a
sequence of random times (tn(ω))n∈N as well as t̂ (ω) such that the distribution of tn(ω) is
dÃn, the distribution of t̂ (ω) is dÂ(ω) and

tn(ω) → t̂ (ω), Pω-a.s.

on the new, artificial, probability space. Fix t < T . We have

Eω[V̂tn(ω)(ω)1{tn(ω)≤t}
] =

∫ t

θ0

V̂u(ω)dÃn
u(ω) → 0.

One can see that

ξ(ω) := lim inf
n

V̂tn(ω)(ω) ∈ {
V̂t̂(ω)−(ω), V̂t̂(ω)(ω)

}
, Pω-a.s.

and

1{tn(ω)≤t} → 1{̂t(ω)≤t}on
{̂
t(ω) < t

}
, Pω-a.s.

Therefore, applying Fatou’s lemma on �ω, we obtain

Eω[ξ(ω)1{̂t(ω)<t}
] = 0.

We recall that both V̂ (ω) and V̂−(ω) are nonnegative, and consequently we have

0 ≤ min
{
V̂t̂(ω)−(ω), V̂t̂(ω)(ω)

} ≤ ξ(ω),

and, therefore, we get

Eω[min
{
V̂t̂(ω)−(ω), V̂t̂(ω)(ω)

}
1{̂t(ω)<t}

] = 0.

This means that the distribution of t̂ (ω) over the interval [θ0(ω), t) only charges the comple-
ment of the set of times {

u < t : V̂u−(ω) = 0 or V̂u(ω) = 0
}
.

By taking t → T , one completes the proof. �
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