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POINCARÉ AND LOGARITHMIC SOBOLEV CONSTANTS
FOR METASTABLE MARKOV CHAINS VIA

CAPACITARY INEQUALITIES

BY ANDRÉ SCHLICHTING1 AND MARTIN SLOWIK

Universität Bonn and Technische Universität Berlin

We investigate the metastable behavior of reversible Markov chains
on possibly countable infinite state spaces. Based on a new definition of
metastable Markov processes, we compute precisely the mean transition time
between metastable sets. Under additional size and regularity properties of
metastable sets, we establish asymptotic sharp estimates on the Poincaré and
logarithmic Sobolev constant. The main ingredient in the proof is a capaci-
tary inequality along the lines of V. Maz’ya that relates regularity properties
of harmonic functions and capacities. We exemplify the usefulness of this
new definition in the context of the random field Curie–Weiss model, where
metastability and the additional regularity assumptions are verifiable.
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1. Introduction. Metastability is a dynamical phenomenon that is character-
ized by the existence of multiple, well-separated time scales. Depending on the
time scales under consideration, the state space can be decomposed into several
disjoint subsets (metastable partition) with the property that typical transition
times between different subsets are long compared to characteristic mixing times
within each subset.

For a rigorous mathematical analysis of metastable Markov processes, various
methods have been invented. The pathwise approach [22, 43] based on large de-
viation methods in path space [28] has been proven to be robust and somewhat
universally applicable. While it yields detailed information, for example, on the
typical exit path, its precision to predict quantities of interest like the mean transi-
tion time is, however, limited to logarithmic equivalence. For reversible systems,
the potential theoretic approach [15, 16, 18] has been developed to establish sharp
estimates on the mean transition time and the low-lying eigenvalues and to prove
that the transition times are asymptotically exponential distributed. A crucial in-
gredient of this concept is to express probabilistic quantities of interest in terms
of capacities and to use variational principles to compute the latter. For metastable
Markov processes in which the expected transition times for a large number of
subsets is of the same order, the martingale approach [6] has recently been devel-
oped to identify the limiting process on the time scale of the expected transition
times as a Markov process via the solution of a martingale problem.

In the context of Markov processes, there is also a spectral signature of
metastability. Since the transition probabilities between different subsets of the
metastable partition are extremely small, an irreducible Markov process exhibiting
a metastable behavior can be seen as a perturbation of the reducible version of it in
which transitions between different subsets of the metastable partition are forbid-
den. For the reducible version, the theorem of Perron–Frobenius implies that the
eigenvalue zero of the associated generator is degenerate with multiplicity given by
the number of elements in the metastable partition. In particular, the correspond-
ing eigenfunctions are given as indicator functions on these subsets. Provided that
the perturbation is sufficiently small, the generator of the original process reveals
typically a cluster of small eigenvalues that is separated by a gap from the rest of
the spectrum.

The main objective of the present work is to extend the potential theoretic ap-
proach to derive sharp asymptotics for the spectral gap and the logarithmic Sobolev
constants of metastable Markov chains on countable infinite state spaces.

So far sharp estimates of low-lying eigenvalues have been derived in the follow-
ing settings:

(i) For a class of reversible Markov processes on discrete state spaces that are
strongly recurrent, in the sense that within each set of the metastable partition there
is at least one single point that the process visits with overwhelming probability
before leaving the corresponding set of the metastable partition. Based on the po-
tential theoretic approach, sharp estimates on the low-lying eigenvalues and the
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associated eigenfunctions have been obtained under some additional nondegener-
acy conditions in [17]. Typical examples of strongly recurrent Markov chains are
finite-state Markov processes with exponential small transition probabilities [7]
and models from statistical mechanics under either Glauber or Kawasaki dynam-
ics in finite volume at very low temperature [15, 20].

(ii) For reversible diffusion processes in a potential landscape in R
d , subject

to small noise sharp estimates on the low-lying eigenvalues have been obtained in
[19, 48]. The proof relies on potential theory and a priori regularity estimates of so-
lutions to certain boundary value problems. Based on hypo-elliptic techniques and
a microlocal analysis of the corresponding Witten-complex, a complete asymptotic
expansion of the lowest eigenvalues was shown in [29]. Recently, based on meth-
ods of optimal transport, an alternative approach to derive a sharp characterization
of the Poincaré (inverse of the spectral gap) and the logarithmic Sobolev constants
has been developed in [40, 46].

A common starting point for rigorous mathematical investigations in the settings
described above is the identification of a set of metastable points that serves as rep-
resentatives of the sets in the metastable partition. For strongly recurrent Markov
chains the set of metastable points, M , is chosen in such a way that, for each
m ∈ M , the probability to escape from m to the remaining metastable points
M \ {m} is small compared with the probability to reach M starting at some
arbitrary point in the state space before returning to it; cf. [15], Definition 8.2. In
the context of reversible diffusion processes, metastable points are easy to identify
and correspond to local minima of the potential landscape. Since in dimensions
d > 1 diffusion processes do not hit individual points x ∈ R

d in finite time; each
metastable point, m ∈ M , has to be enlarged (cf. [14], Definition 8.1), for example,
by replacing each m ∈ M by a small ball Bε(m). The radius ε > 0 of such balls
should be chosen large enough to ensure that it is sufficiently likely for the process
to hit Bε(m), but simultaneously small enough to control typical oscillations of
harmonic functions within these balls.

Once the set of metastable points is identified, the low-lying eigenvalues are
characterized in terms of mean exit times for generic situations. Namely, each
low-lying eigenvalue is equal to the inverse of the mean exit time from the corre-
sponding metastable point up to negligible error terms.

Starting ideas. One would expect that the strategy of enlargements of meta-
stable points that has been successfully used in the diffusion setting, should also
apply to stochastic spin systems at finite temperature or in growing volumes. How-
ever, proving general regularity estimates for solutions of elliptic equations is chal-
lenging on high dimensional discrete spaces, and so far, highly model dependent.

The present work provides a mathematical definition of metastability for
Markov chains on possibly countable infinite state spaces (see Definition 1.1)
where the metastable points that represent the sets in the metastable partition are
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replaced by metastable sets. An advantage of this definition is that one can im-
mediately deduce sharp estimates on the mean exit time to “deeper” metastable
sets without using additional regularity estimates of harmonic functions; cf. The-
orem 1.7. Moreover, sharp estimates on the smallest nonzero eigenvalues of the
generator follow under the natural assumption of good mixing properties within
metastable sets and some rough estimates on the regularity of the harmonic func-
tion at the boundary of metastable sets. The primary tool in the proof is the capac-
itary inequality; see Theorem 2.1.

A critical observation leading to the present definition of metastability is the
following: It is well known that classical Poincaré–Sobolev inequalities on Z

d

for functions with compact support, say on a ball Br(x) ⊂ Z
d with radius r > 0

and center x, follow from the isoperimetric properties of the underlying Euclidean
space by means of the so-called co-area formula. The isoperimetric inequality
states that

|A|(d−1)/d ≤ Ciso|∂A| ∀A ⊂ Br(x),

where |A| and ∂A denotes the cardinality and the boundary of the set A. The latter
is defined as the set of all points x ∈ A for which there exists a y /∈ A such that
{x, y} is an element of the edge set of Zd . For a positive recurrent Markov chain
with state space S and invariant distribution μ functional inequalities can also
be established provided that the isoperimetric inequality is replaced by a measure-
capacity inequality; cf. Proposition 2.5. For B ⊂ S and � : R+ → R+ being a
convex function, the measure-capacity inequality is given by

μ[A]�−1(1/μ[A])≤ C� cap
(
A,Bc) ∀A ⊂ B.

Inspired by the form of the measure-capacity inequality, we propose a definition of
metastability for Markov chains that also encodes local isoperimetric properties by
considering for any subset A outside of the union of the metastable sets its escape
probability to the union of the metastable sets.

To demonstrate the usefulness of our approach, we prove sharp estimates on
the spectral gap and the logarithmic Sobolev constants for the random field Curie–
Weiss model at finite temperature and with a continuous bounded distribution of
the random field. To prove rough regularity estimates of harmonic functions, we
use a coupling construction initially invented in [9].

In the present work, we decided to focus only on discrete-time Markov chains
to keep the presentation as brief as possible. However, our methods also apply to
Markov chains in continuous time with apparent modifications.

The remainder of this paper is organized as follows. In the next subsection,
we describe the setting to which our methods apply. In Sections 1.2 and 1.3, we
state our main results. In Section 2, we first prove the capacitary inequality for
reversible Markov processes. In particular, we show how this universal estimate
allows us to derive so-called Orlicz–Birnbaum estimates from which estimates on
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the Poincaré and logarithmic Sobolev constants can be easily deduced. Then we
prove our main results in Section 3. Finally, in Section 4 we apply the previously
developed methods to the random field Curie–Weiss model.

1.1. Setting. Consider an irreducible and positive recurrent Markov process
X = (X(t) : t ∈ N0) in discrete-time on a countable state space S with transition
probabilities denoted by (p(x, y) : x, y ∈ S ). For any measurable and bounded
function f : S →R, define the corresponding (discrete) generator by

(1.1) (Lf )(x) := ∑
y∈S

p(x, y)
(
f (y) − f (x)

)
.

Throughout, we assume that the Markov chain is reversible with respect to a
unique invariant distribution μ. That is, the transitions probabilities satisfy the
detailed balance condition

(1.2) μ(x)p(x, y) = μ(y)p(y, x) for all x, y ∈ S .

We denote by Pν the law of the Markov process given that it starts with initial
distribution ν. If the initial distribution is concentrated on a single point x ∈ S ,
we simply write Px . For any A ⊂ S , let τA be the first hitting time of the set A

after time zero, that is,

τA := inf
{
t > 0 : X(t) ∈ A

}
.

Hence, for X(0) ∈ A, τA is the first return time to A and, for X(0) /∈ A, τA is the
first hitting time of A. In case the set A is a singleton {x}, we write τx instead of
τ{x}.

We are interested in Markov chains that exhibit a metastable behavior. For this
purpose, we introduce the notion of metastable sets.

DEFINITION 1.1 (Metastable sets). For fixed � > 0 and K ∈ N, let M =
{M1, . . . ,MK} be a set of subsets of S such that Mi ∩ Mj = ∅ for all i �= j .
A Markov chain (X(t) : t ≥ 0) is called �-metastable with respect to a set of
metastable sets M , if

(1.3) |M |
maxM∈M PμM

[τ⋃K
i=1Mi\M < τM ]

minA⊂S \⋃K
i=1Mi

PμA
[τ⋃K

i=1Mi
< τA] ≤ � 
 1,

where μA(x) = μ[x | A], x ∈ A �= ∅ denotes the conditional probability on the set
A and |M | denotes the cardinality K of M .

REMARK 1.2. (i) The definition above is a generalization of the one given
in [15], Definition 8.2 and Remark 8.3, in terms of metastable points. As it was
already pointed out in [13], the hitting probability of single configurations in high
dimensional discrete state spaces or continuous state spaces are either zero or are
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much smaller than the ones of a small neighborhood around them. Hence, it is
necessary to come up with a definition that involves metastable sets. However, the
choice of the sets {M1, . . . ,MK} are typically model dependent. For instance, in
the random field Curie–Weiss model with continuous distribution of the random
field each metastable set is defined as the preimage with respect to the mesoscopic
magnetization of a local minima of the mesoscopic free energy (see Section 1.3 for
details). Let us stress the fact that in this model it suffices to only take in account
the sufficiently deep minima in order to verifying (1.3).

Further, notice that Definition 1.1 does not depend explicitly on the cardinality
of the state space S . As a consequence, the constant � does not interfere with
|S |. This makes it possible to apply Definition 1.1 for both Markov chains with
countable infinite state spaces and for interacting particle systems with state spaces
S = {−1,+1}�, � ⊂ Z

d for which the left-hand side of [15], equation (8.1.5),
might be larger than 1. Typical examples are the random field Curie–Weiss model
(cf. Section 4) where � = {1, . . . ,N} with N → ∞ and Ising models with Glauber
dynamics at low temperature when |�| diverges as the temperature tends to zero;
cf. [15], Section 19.

(ii) The main novelty of Definition 1.1 is the modification of the denominator
compared to [15], equation (8.1.5). The main advantage of this particular form is
the fact that estimates on various 	p(μ)-norms of harmonic functions can be im-
mediately derived. This becomes apparent in Theorem 1.7 where sharp estimates
on the mean exit time to “deeper” metastable sets are proven without using addi-
tional regularity and renewal estimates.

(iii) Notice that if |S | < ∞ and |Mi | = 1 for all i = 1, . . . ,K , then the def-
inition of metastability from the potential theoretic literature (see [15], equation
(8.1.5)) implies (1.3). Since, in this setting, the numerator in both definitions coin-
cides, it suffices to consider the denominator. In view of (1.2),

μ[A]PμA
[τM < τA] = ∑

x∈A

∑
m∈M

μ[x]Px

[
τM < τA,X(τM ) = m

]

= ∑
x∈A

∑
m∈M

μ[m]Pm

[
τA < τM ,X(τA) = x

]

= μ[M ]PμM [τA < τM ]
for all nonempty sets A ⊂ S \ M . Hence,

PμA
[τM < τA] ≥ 1

|A|
∑
a∈A

μ[M ]
μ[A] PμM [τa < τM ]

= 1

|A|
∑
a∈A

μ[a]
μ[A]Pa[τM < τa] ≥ 1

|S | min
a∈S \M

Pa[τM < τa].

(iv) All hitting probabilities appearing in Definition 1.1 can be equivalently ex-
pressed in terms of capacities; cf. Remark 1.6. The verifiability of Definition 1.1



3444 A. SCHLICHTING AND M. SLOWIK

relies crucially on the fact that upper and lower bounds on capacities can easily
be deduced from their variational characterization. In order to exemplify the use-
fulness of this approach, our key example will be the random field Curie–Weiss
model with continuous distribution of the random field.

ASSUMPTION 1.3. Assume that for some 2 ≤ K < ∞ there exists nonempty,
disjoint subsets M1, . . . ,MK ⊂ S and � > 0 such that the Markov chain (X(t) :
t ≥ 0) is �-metastable with respect to M = {Mi : i ∈ 1, . . . ,K}.

The definition of metastable sets induces an almost canonical partition of the
state space S into local valleys.

DEFINITION 1.4 (Metastable partition). For any Mi ∈ M , the local valley Vi

around the metastable set Mi is defined by

Vi := Mi ∪
{
x ∈ S

∖ K⋃
j=1

Mj : Px[τMi
< τ⋃K

j=1Mj\Mi
]

≥ max
M ′∈M \Mi

Px[τM ′ < τ⋃K
j=1Mj \M ′ ]

}
.

A set of metastable sets M = {M1, . . . ,MK} gives rise to a metastable partition
{Si : i = 1, . . . ,K} of the state space S , that is,

(i) Mi ⊆ Si ⊂ Vi , (ii)
K⋃

i=1

Si = S , (iii) Si ∩ Sj = ∅ for i �= j.

REMARK 1.5. Notice that, by Lemma 3.2, any point x ∈ Vi ∩ Vj that lies in
the intersection of two different local valleys has a negligible mass compared to
the mass of the corresponding metastable sets μ[Mi] and μ[Mj ].

The potential theoretic approach to metastability relies on the translation of
probabilistic objects to analytic ones, which we now introduce along the lines of
[8, 15–18]. We simply write μi[·] := μ[· | Si] to denote the corresponding condi-
tional measure. Let 	2(μ) be the weighted Hilbert space of all square summable
functions f : S → R and denote by 〈· , ·〉μ the scalar product in 	2(μ). Due to
the detailed balance condition (1.2), the generator, L, is symmetric in 	2(μ), that
is, 〈−Lf,g〉μ = 〈f,−Lg〉μ for any g,f ∈ 	2(μ). The associated Dirichlet form is
given for any f ∈ 	2(μ) by

E (f ) := 〈f,−Lf 〉μ = 1

2

∑
x,y∈S

μ(x)p(x, y)
(
f (x) − f (y)

)2
,
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which by the basic estimate E (f ) ≤ ‖f ‖2
	2(μ)

is well defined. Throughout the se-
quel, let A,B ⊂ S be disjoint and nonempty. The equilibrium potential, hA,B , of
the pair (A,B) is defined as the unique solution of the boundary value problem

(1.4)

{
(Lf )(x) = 0, x ∈ S \ (A ∪ B),

f (x) = 1A(x), x ∈ A ∪ B.

Note that the equilibrium potential has a natural interpretation in terms of hitting
probabilities, namely hA,B(x) = Px[τA < τB] for all x ∈ S \ (A ∪ B). A related
quantity is the equilibrium measure, eA,B , on A which is defined through

(1.5) eA,B(x) := −(LhA,B)(x) = Px[τB < τA] ∀x ∈ A.

Clearly, the equilibrium measure is only nonvanishing on the (inner) boundary of
the set A. Further, the capacity of the pair (A,B) with potential one on A and zero
on B is defined by

(1.6) cap(A,B) := ∑
x∈A

μ(x)eA,B(x) = ∑
x∈A

μ(x)Px[τB < τA] = E (hA,B).

In particular, we have that

(1.7) PμA
[τB < τA] = cap(A,B)

μ[A] .

Moreover, cap(A,B) = cap(B,A) and, as an immediate consequence of the prob-
abilistic interpretation of capacities (cf. (1.6)) we have that

(1.8) cap
(
A,B ′)≤ cap(A,B) ∀B ′ ⊂ B.

Let us emphasize that capacities have several variational characterizations (see for
instance [15], Chapter 7.3), which can be used to obtain upper and lower bounds.
One of them is the Dirichlet principle

(1.9) cap(A,B) = inf
{
E (f ) : f |A = 1, f |B = 0,0 ≤ f ≤ 1

}
with f = hA,B as its unique minimizer. Further, we denote by νA,B the last-exit
biased distribution that is defined by

(1.10) νA,B(x) := μ(x)Px[τB < τA]∑
y∈A μ(y)Py[τB < τA] = μ(x)eA,B(x)

cap(A,B)
∀x ∈ A.

Let us recall that μA(x) = μ[x | A], which implies that νA,B 
 μA for any
nonempty, disjoint subsets A,B ⊂ S .

REMARK 1.6. In view of (1.7), condition (1.3) can also be written as

∀A ⊂ S
∖ K⋃

i=1

Mi ∀M ∈ M : |M |cap(M,
⋃K

i=1 Mi \ M)/μ[M]
cap(A,

⋃K
i=1 Mi)/μ[A] ≤ � 
 1.

Hence, the assumption of metastability is essentially a quantified comparison of
capacities and measures.
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Finally, we write Eν[f ] and Varν[f ] to denote the expectation and the variance
of a function f : S → R with respect to a probability measure ν. Moreover, we
define the relative entropy by

Entν
[
f 2] := Eν

[
f 2 lnf 2]− Eν

[
f 2] ln Eν

[
f 2],

where we indicate the probability distribution ν explicitly as a subscript.

1.2. Main result. The first result concerns the mean hitting times of metastable
sets. We obtain an asymptotically expression in terms of capacities solely under
Assumption 1.3, if we, in addition, assume a bound on the asymmetry of the in-
volved local minima.

THEOREM 1.7. Suppose that Assumption 1.3 holds with K ≥ 2. Fix Mi ∈ M
and define

J (i) := {
j ∈ {1, . . . ,K} \ {i} : μ[Mj ] ≥ μ[Mi]} and B := ⋃

j∈J (i)

Mj .

If B �= ∅ and if there exists δ ∈ [0,1) such that μ[Sj ] ≤ δμ[Si] for all j /∈ J (i)∪
{i}, then

EνMi ,B
[τB] = μ[Si]

cap(Mi,B)

(
1 + O

(
δ + � ln(Cratio/�)

))
,

with

Cratio := max
j∈J (i)

μ[Sj ]/μ[Si] < ∞.

The main objects of interest in the present paper are the Poincaré and logarith-
mic Sobolev constant that are defined as follows.

DEFINITION 1.8 (Poincaré and logarithmic Sobolev constant). The Poincaré
constant CPI ≡ CPI(P,μ) is defined by

(1.11) CPI := sup
{
Varμ[f ] : f ∈ 	2(μ) such that E (f ) = 1

}
,

whereas the logarithmic Sobolev constant CLSI ≡ CLSI(P,μ) is given by

(1.12) CLSI := sup
{
Entμ

[
f 2] : f ∈ 	2(μ) such that E (f ) = 1

}
.

Let {Fi : i ∈ I } = M ∪ {{x} : x ∈ S \⋃K
i=1 Mi} be a partition of S and denote

by F := σ(Fi : i ∈ I ) the corresponding σ -algebra, that is, F is the σ -algebra
lumping the metastable sets to single points. Further, for any f ∈ 	2(μ) define the
conditional expectation Eμ[f | F ] : S →R by

(1.13) Eμ[f | F ](x) := Eμ[f | Fi] ⇐⇒ Fi � x.
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The starting point for proving sharp estimates of both the Poincaré and the logarith-
mic Sobolev constant in the context of metastable Markov chains is a splitting of
the variance and the entropy into the contribution within and outside the metastable
sets. The following two identities are the starting point of the identification of local
relaxation within metastable valleys and rare transitions between metastable sets
and hold for any f ∈ 	2(μ)

Varμ[f ] =
K∑

i=1

μ[Mi]VarμMi
[f ] + Varμ

[
Eμ[f | F ]],(1.14)

Entμ
[
f 2]=

K∑
i=1

μ[Mi]EntμMi

[
f 2]+ Entμ

[
Eμ

[
f 2 | F ]]

.(1.15)

Our main result relies on an assumption on the Poincaré and logarithmic
Sobolev constants within the metastable sets and on a regularity condition for the
last exit biased distribution.

ASSUMPTION 1.9. Assume that for any i ∈ {1, . . . ,K}:
(i) CPI,i = sup

{
VarμMi

[f ] : f ∈ 	2(μ) such that E (f ) = 1
}
< ∞,(1.16)

(ii) CLSI,i = sup
{
EntμMi

[
f 2] : f ∈ 	2(μ) such that E (f ) = 1

}
< ∞.(1.17)

In the error estimates, the following derived constants occur:

CPI,M := max

{
1,

K∑
i=1

μ[Mi]CPI,i

}
and CLSI,M := max

{
1,

K∑
i=1

μ[Mi]CLSI,i

}
.

REMARK 1.10. Assumption 1.9 ensures that the process within each meta-
stable set mixes quickly. It can be interpreted as an additional smallness condition
on the metastable sets M ∈ M and for simple enough systems a simple bound on
CPI,M and CLSI,M in terms of the maximal diameter of the sets M ∈ M may be
sufficient. For more complex systems, like the Curie–Weiss model, the constants
CPI,M and CLSI,M may be comparable to known systems, which in this case is the
Bernoulli–Laplace model.

ASSUMPTION 1.11 (Regularity condition). Assume that there exists η ∈
[0,1) such that

(1.18) VarμMi

[
νMi,Mj

μMi

]
≤ ημ[Mi]

cap(Mi,Mj)
∀Mi,Mj ∈ M with i �= j.

REMARK 1.12. (i) Note that the tentative definition of metastable sets as
given in [15], equation (8.1.3), would immediately imply that η = o(1). How-
ever, it is still an open problem how to relate the probabilities appearing in [15],
equation (8.1.3), to capacities.
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(ii) Since eMi,Mj
(x) ≤ cap(Mi,Mj)/μ(x) for all x ∈ Mi , the following trivial

upper bound on η holds:

η ≤ min
{
1, �|Mi | max

x,y∈Mi

{
μ(x)/μ(y)

}}
.

Hence, η 
 1 provided that for each metastable set Mi both its cardinality and the
fluctuations of the invariant distribution μ on it are sufficiently small compared
to �.

(iii) The above upper bound does not apply to particle systems like the Curie–
Weiss model since |Mi | is exponentially large in the system size. Therefore, the
verification of (1.18) is based on coupling techniques. For that purpose, the crucial
observation is that the Curie–Weiss model is nearly lumpable in the sense that there
exists a mesoscopic description, which up to small perturbations is Markovian.
Under this condition, Assumption 1.11 is verifiable with η of the same order as �.
We expect that such strategy may apply to different mean field models that exhibit
an effective mesoscopic description.

REMARK 1.13. If each M ∈ M consists of a single point, that is, ∀M ∈
M : |M| = 1, Assumptions 1.11 and 1.9 are satisfied for η = 0 and CPI,M =
CLSI,M = 1.

For the sake of presentation, let us state the main result in the case of two
metastable sets K = 2. For the statement in the case of K > 2, we refer to Theo-
rem 3.5 and Theorem 3.9.

THEOREM 1.14. Suppose that the Assumptions 1.3 with K = 2, 1.11, and
1.9(i) hold such that CPI,M (� + η) 
 1. Then it holds that

(1.19) CPI = μ[S1]μ[S2]
cap(M1,M2)

(
1 + O

(√
CPI,M (� + η)

))
.

Moreover, if in addition Assumption 1.9(ii) holds and

(1.20) Cmass := max
i∈{1,...,K} max

x∈Si

ln
(
1 + e2/μi(x)

)
< ∞

such that CmassCLSI,M (� + η) 
 1. Then it holds that

(1.21) CLSI = 1

�(μ[S1],μ[S2])
μ[S1]μ[S2]
cap(M1,M2)

(
1+O

(√
CmassCLSI,M (� + η)

))
,

where �(α,β) := ∫ 1
0 αsβ1−s ds = (α − β)/ ln α

β
for α,β > 0 is the logarithmic

mean.

REMARK 1.15. By using a standard linearization argument in (1.12), it fol-
lows that CLSI ≥ 2CPI; see [12], Proposition 5. Notice that in the symmetric case
when μ[S1](1 + o(1)) = 1

2 = μ[S2](1 + o(1)) we have that CLSI = 2CPI(1 +
o(1)). Let us note that Assumption (1.20) restricts the result on the logarithmic
Sobolev constant to finite state spaces.
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COROLLARY 1.16. Suppose that the assumptions of Theorem 1.14 hold. Fur-
ther, assume that C−1

ratio 
 1 and � ln(Cratio) 
 1. Then

CPI = EνM2,M1
[τM1]

(
1 + O

(
C−1

ratio + � ln(Cratio) +
√

CPI,M (� + η)
))

.

Let us comment on similar results in the literature.
The quantity on the right-hand side of (1.19) bears some similarity to the

Cheeger constant [23] on weighted graphs [32] defined by

CCheeger := sup
A⊂S :μ[A]∈(0,1)

μ[A]μ[Ac]
cap(A,Ac)

with Ac := S \A. Moreover, we note that cap(A,Ac) = −〈1A,L1Ac〉μ. Then the
main result of [32], Theorem 2.1, translated to the current setting reads

CCheeger ≤ CPI ≤ 8C2
Cheeger.

Hence, the main result (1.19) can be seen as an asymptotic sharp version of the
Cheeger estimate in the metastable setting.

In the paper [10], metastability has alternatively been characterized in terms of
ratios ε between Dirichlet and Neumann spectral gaps of restricted generators. For
this purpose, the state space is decomposed into two sets S = R ∪ Rc. Based
on the assumption that ε 
 1, the result [10], Theorem 2.9, is an estimate on the
mean-hitting time similar to Theorem 1.7. Moreover, precise estimates of the re-
laxation rates toward the quasi-stationary distribution inside each element of the
partition are obtained [10]. These estimates seem to be related to the local Poincaré
inequality in Lemma 3.7 below. Moreover, we expect, that there is a close connec-
tion between ε and � of Definition 1.1 in the setting K = 2.

In [10], Theorem 2.10, a result bearing some similarity to (1.19) is obtained.
There the capacity cap(M1,M2) needs to be replaced by so-called (κ, λ)-capacities
between R and Rc. These capacities are obtained by extending the state space by
copies of R and Rc and equipping the connecting edges with conductivities κ

and λ. One notices that the error bound in this formulation depends on a careful
choice of κ and λ in terms of ε. The approach of this paper does not require such
additional intermediate parameters and obtains similar results in Theorem 1.14 in
a more straightforward manner.

1.3. Random field Curie–Weiss model. One particular class of models we are
interested in, are disordered mean field spin systems. As an example, we consider
the Ising model on a complete graph, say on N ∈ N vertices, also known as Curie–
Weiss model, in a random magnetic field. The state space of this model is S =
{−1,1}N . The random Hamiltonian is given by

(1.22) H(σ) := − 1

2N

N∑
i,j=1

σiσj −
N∑

i=1

hiσi, σ ∈ S ,
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where h ≡ (hi : i ∈ N) is assumed to be a family of i.i.d. random variable on R

distributed according to P
h with bounded support, that is,

(1.23) ∃h∞ ∈ (0,∞) : |hi | ≤ h∞ P
h-almost surely.

The random Gibbs measure on S is defined by

μ(σ) := Z−1 exp
(−βH(σ)

)
2−N,

where β ≥ 0 is the inverse temperature and Z is the normalization constant also
called partition function. The additional factor 2−N is for convenience and to be
consistent with the definition in [15], (14.2.1). The Glauber dynamics that we con-
sider is a Markov chain (σ (t) : t ∈ N0) in discrete-time with random transition
probabilities

(1.24) p
(
σ,σ ′) := 1

N
exp

(−β
[
H
(
σ ′)− H(σ)

]
+
)
1|σ−σ ′|1=2,

where [x]+ := max{x,0} and p(σ,σ ) = 1−∑
σ ′∈S p(σ,σ ′). Notice that, for each

realization of the magnetic field h, the Markov chain is ergodic and reversible with
respect to the Gibbs measure μ.

Various stationary and dynamic aspects of the random field Curie–Weiss model
has been studied. In particular, the metastable behavior of this model has been an-
alyzed in great detail in [8, 9, 16], where the potential theoretic approach was used
to compute precise metastable exit times and to prove the asymptotic exponential
distribution of normalized metastable exit times. For an excellent review, we refer
to the recent monograph [15], Chapters 14 and 15. Estimates on the spectral gap
have been derived in [37] in the particular simple cases where the random field
takes only two values ±ε and the parameters are chosen in such a way that only
two minima are present.

A particular feature of this model is that it allows to introduce mesoscopic vari-
ables by using a suitable coarse-graining procedure such that the induced dynamics
are well approximated by a Markov process. Let Ih := [−h∞, h∞] denote the sup-
port of Ph. For any n ∈ N, we find a partition of Ih such that |Ih

	 | ≤ 2h∞/n and
Ih =⋃n

	=1 Ih
	 . Hence, each realization of h induces a partition of the set {1, . . . ,N}

into mutually disjoint subsets

�	 := {
i ∈ {1, . . . ,N} : hi ∈ Ih

	

}
, 	 ∈ {1, . . . , n}.

Based on this partition, consider the mesoscopic variable ρ : S → �n ⊂ [−1,1]n,

ρ(σ ) = (
ρ1(σ ), . . . ,ρn(σ )

)
with ρ	(σ ) := 1

N

∑
i∈�	

σi, 	 ∈ {1, . . . , n},

that serves as an n-dimensional order parameter. A crucial feature of the mean
field model is that the Hamiltonian (1.22) can be rewritten as a function of the
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mesoscopic variable. In order to do so, for any 	 ∈ {1, . . . , n} the block-averaged
field and its fluctuations are defined by

h	 := 1

|�	|
∑
i∈�	

hi and h̃i := hi − h	 ∀i ∈ �	.

Then

H(σ) = −NE
(
ρ(σ )

)−
n∑

	=1

∑
i∈�	

σih̃i,

where the function E : [−1,1]n → R is given by E(x) = 1
2(
∑n

	=1 x	)
2 +∑n

	=1 h	x	. We define the distribution of ρ under the Gibbs measure as the in-
duced measure

μ(x) := μ ◦ ρ−1(x), x ∈ �n.

Further, the mesoscopic free energy F : [−1,1]n →R is defined by

(1.25) F(x) := E(x) + 1

β

n∑
	=1

|�	|
N

I	

(
Nx	/|�	|),

where for any 	 ∈ {1, . . . , n} the entropy I	 is given as the Legendre–Fenchel dual
of

R � t �→ 1

N

∑
i∈�	

ln cosh(t + βh̃i).

Notice that the distribution μ satisfies a sharp large deviation principle with scale
N and rate function F . The structure of the mesoscopic free energy landscape has
been analyzed in great detail in [8]. In particular, z ∈ [−1,1]n is a critical point of
F , if and only if, for all 	 ∈ {1, . . . , n},

(1.26) z	 = 1

N

∑
i∈�	

tanh
(
β
(
z(z) + hi

))
,

where z(z) = ∑n
	=1 z	 ∈ R solves the equation z = 1

N

∑N
i=1 tanh(β(z + hi)). It

turns out that z is a critical point of index 1, if β
N

∑N
i=1 1− tanh2(β(z(z)+hi)) > 1.

Moreover, at any critical point z the value of the mesoscopic free energy can be
computed explicitly and is given by

(1.27) F(z) = 1

2
z(z)2 − 1

βN

N∑
i=1

ln cosh
(
β
(
z(z) + hi

))
.

Let us stress the fact that the topology of the mesoscopic energy landscape is in-
dependent of the artificial dimension parameter n.
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REMARK 1.17. (i) For a constant external field, that is, hi ≡ h for all
i, the mesoscopic free energy, F , has two local minima if β > 1 and h ∈
(−hc(β), hc(β)), where hc(β) := √

1 − 1/β − 1
β

ln(
√

β + √
β − 1).

(ii) By the strong law of large numbers, the set of solutions of the equation
z = 1

N

∑N
i=1 tanh(β(z + hi)), determining the critical points of F , converges P

h-
a.s. as N → ∞ to the set of solutions of the deterministic equation

(1.28) z = E
h[tanh

(
β(z + h)

)]
.

Moreover, in view of (1.26), the value of the mesoscopic free energy at critical
points converges to a deterministic value for Ph-almost every realization of h as N

tends to infinity.
(iii) If the distribution P

h is symmetric, z = 0 is always a solution of (1.28), and
if z > 0 solves (1.28) than, by symmetry, −z is as well a solution. In general, the
number of critical points depends on both the value of β and the properties of the
distribution P

h. For discrete distributions Ph, the phase diagram has been studied
in detail in [1] and [45], Section 5.

In the sequel, we impose the following assumption on the law P
h.

ASSUMPTION 1.18. Let K ≥ 2 and assume that for Ph-almost every realiza-
tion h, there exist β > 0 and N0(h) < ∞ such that for all N ≥ N0(h) and n ≥ 1
the mesoscopic free energy F : [−1,1]n →R admits K local minima.

Denote by mi ∈ �n, i ∈ {1, . . . ,K}, the best lattice approximation of the corre-
sponding local minima. We choose the label of mi by the following procedure:
First, define for any nonempty, disjoint A,B ⊂ �n the communication height,
�(A,B), between A and B by

(1.29) �(A,B) = min
γ

max
x∈γ

F(x),

where the minimum is over all nearest-neighbor paths in �n that connect A and B .
Then the label is chosen in such a way that, with Mk := {m1, . . . ,mk},
(1.30) �k−1 := �(mk,Mk−1) − F(mk) ≤ min

i<k

{
�(mi ,Mk \ mi ) − F(mi )

}
for all k = K, . . . ,2. Notice that, by construction, �1 ≥ · · · ≥ �K−1 > 0 =: �K .
Since �(mk,Mk−1) is given by the value of the mesoscopic free energy at the
minimal saddle point between mk and Mk−1, (1.27) implies that the value of �k−1
is independent of n for any k = 2, . . . ,K , and converges Ph-a.s. as N → ∞.

In the sequel, we first impose conditions on the finiteness of the coarse-graining
controlled by the parameter n. Depending on the choice of n the state space di-
mension N has to be larger then a certain threshold. In this sense, the results hold
by first letting N → ∞ and then n → ∞. With these definitions, we are able to
formulate the statement that the random field Curie–Weiss model is �-metastable
in the sense of Definition 1.1.
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PROPOSITION 1.19 (�-metastability). Suppose that Assumption 1.18 holds.
Then, for Ph-almost every h and any c1 ∈ (0,�K−1) there exists n0 ≡ n0(c1) such
that for all n ≥ n0 there exists N < ∞ such that for all N ≥ N0(h)∨N the random
field Curie–Weiss model is � := e−c1βN -metastable in the sense of Definition 1.1
with respect to M := {M1, . . . ,Mk} with Mk := ρ−1(mk) for k ∈ {1, . . . ,K}.

As an immediate consequence of Proposition 1.19 and Theorem 1.7, we obtain
the following result on the mean hitting between metastable sets with respect to
the microscopic dynamics induced by the transition probabilities (1.24).

THEOREM 1.20. Suppose that Assumption 1.18 holds. For fixed i ∈ {2, . . . ,

K} and δ > 0 sufficiently small, suppose that, Ph-a.s., the sets

J (i) = {
j ∈ {1, . . . , i − 1} : F(mj ) + δ ≤ F(mi )

}
and B := ⋃

j∈J (i)

Mi

are nonempty. Then P
h-a.s. the following holds: For any c ∈ (0,min{δ,�1, . . . ,

�i−1}) there exists n0 = n0(c) such that for all n ≥ n0 there exists N such that,
for all N ≥ N0(h) ∨ N ,

EνMi ,B
[τB] = μ[Si]

cap(Mi,B)

(
1 + O

(
e−cβN )),

To obtain matching upper and lower bounds in the application of Theorem 1.14
to the random field Curie–Weiss model in case K ≥ 3, we impose the following
nondegeneracy condition on the largest communication height.

ASSUMPTION 1.21 (Nondegeneracy condition). For K ≥ 3, assume that Ph-
a.s., there exist θ > 0 and N1(h) < ∞ such that

�1 − �2 ≥ θ ∀N ≥ N1(h).

Under the nondegeneracy Assumption 1.21, it is possible to prove that the
preimages of the first two local minima m1 and m2 are already metastable sets,
which are relevant to capture the slowest time scale of the system.

PROPOSITION 1.22. Suppose that Assumption 1.18 holds. If K = 2 set θ =
�1 and N1(h) = 1. If K ≥ 3 assume additionally that Assumption 1.21 is satisfied.
Then, for P

h-almost all h and any c1 ∈ (0, θ) there exists n0 ≡ n0(c1) such that
for all n ≥ n0 there exists N < ∞ such that for all N ≥ N0(h) ∨ N1(h) ∨ N the
random field Curie–Weiss model is � := e−c1βN -metastable with respect to M :=
{M1,M2}, where M1 := ρ−1(m1) and M2 := ρ−1(m2).
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REMARK 1.23. Note that under the nondegeneracy condition from Assump-
tion 1.21 the mesoscopic free energy landscape may still have more than one
global minima. Moreover, we believe that the presented technique and especially
Lemma 3.8 can be generalized to the case of several equal high energy barriers
�1 = �2 = · · · = �l for some l ≥ 2. This would allow us to drop the above As-
sumption 1.21. In that case, the leading order capacity will be obtained by the
effective capacity of the electrical network constructed from all the possibly de-
generate leading order energy barriers in the system. For diffusion processes, the
construction is outlined in [46], Section 4.5, and the according series and parallel
laws for the total capacity are derived.

The second main result in this subsection is the application of Theorem 1.14 to
the random field Curie–Weiss model defined by the random transition probabilities
defined (1.24).

THEOREM 1.24. Suppose the assumptions of Proposition 1.22 hold with � =
e−c1βN . Then P

h-a.s., for any c2 ∈ (0, c1/2) there exists n1 ≡ n1(c1, c2, β,h∞) <

∞ such that for any n ≥ n0 ∨n1 there exists N < ∞ such that for all N ≥ N0(h)∨
N1(h)∨N the random field Curie–Weiss model satisfies a Poincaré inequality with
constant

(1.31) CPI = μ[S1]μ[S2]
cap(M1,M2)

(
1 + O

(
e−c2βN ))

as well as a logarithmic Sobolev inequality with constant

(1.32) CLSI = CPI

�(μ[S1],μ[S2])
(
1 + O

(
e−c2βN )).

Let us emphasis that this result is valid in the symmetric (F(m1) = F(m2))
as well as asymmetric case (F(m1) �= F(m2)). Moreover, the capacities between
pairs of metastable sets are calculated asymptotically with explicit error bounds
in [8, 9, 15, 16]. Hence, the right-hand side of (1.31) and (1.32) can be made
asymptotically explicit in terms of the free energy (1.25).

In the asymmetric case F(m1) �= F(m2), we connect the mean hitting time with
the Poincaré constant via Corollary 1.16.

COROLLARY 1.25. Suppose that the assumptions of Theorem 1.24 hold with
� = e−c1βN . Then P

h-a.s., for any c2 ∈ (0,min{c1/2,F (m2) − F(m1)})
(1.33) CPI = Eσ [τM1]

(
1 + O

(
e−c2βN )) ∀σ ∈ M2.

PROOF. In view of [8], equation (3.16), C−1
ratio := μ[S2]/μ[S1] = O(e−βδN)

for any δ ∈ (0,F (m2) − F(m1)). Thus, (1.33) is an immediate consequence of
Corollary 1.16 and [9], Theorem 1.1. �
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Finally, notice that sharp asymptotics of the mean hitting time including the
precise prefactor has been establish in [8], which by the above identification gives
an asymptotic sharp formula for the Poincaré constant of the random field Curie–
Weiss model.

2. Functional inequalities. The results in this section consider functional in-
equalities which do not make any explicit reference to time. Therefore, the results
hold in the more general setting of L as defined in (1.1) being the generator of
a continuous time Markov chain on a countable state space S . This accounts to
dropping the normalization condition

∑
y p(x, y) = 1 and assuming p(x, y) to be

the elements of the infinitesimal generator satisfying

∀x �= y : p(x, y) ≥ 0, ∀x : 0 ≤ −p(x, x) < ∞ and
∑
y∈S

p(x, y) = 0.

We refer to [15], Chapter 7.2.2, for the general relation of hitting times between
discrete time and continuous time Markov chains.

2.1. Capacitary inequality. The capacitary inequality is a generalization of the
co-area formula. For Sobolev functions on R

d , it has been first proven by Maz’ya
in [38]. For a comprehensive treatment of the continuous case with further appli-
cations, we refer to [3–5, 24, 25, 39].

THEOREM 2.1 (Capacitary inequality). For any f ∈ 	2(μ) and any t ∈
[0,∞), let At be the super level set of f , that is,

(2.1) At := {
x ∈ S : ∣∣f (x)

∣∣> t
}
.

Let B ⊂ S be nonempty, then for any function f : S → R with f |B ≡ 0 it holds
that

(2.2)
∫ ∞

0
2t cap(At ,B)dt ≤ 4E (f ).

PROOF. Due to the fact that E (|f |) ≤ E (f ), let us assume without lost of
generality that f (x) ≥ 0 for all x ∈ S . To lighten notation, for any t ∈ [0,∞),
we denote by ht := hAt ,B the equilibrium potential as defined in (1.4). Since
suppLht ⊂ At ∪ B , f |B ≡ 0 and f |At > t , it follows that

t cap(At ,B) ≤ 〈−Lht , f 〉μ
= 1

2

∑
x,y∈S

μ(x)p(x, y)
(
f (x) − f (y)

)(
ht (x) − ht (y)

)
.
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An application of the Cauchy–Schwarz inequality yields

(2.3)

∫ ∞
0

2t cap(At ,B)dt

≤ 2E (f )1/2
(

1

2

∑
x,y∈S

μ(x)p(x, y)

(∫ ∞
0

(
ht (x) − ht (y)

)
dt

)2)1/2
.

Now we use the following identity: for any function g ∈ L1([0,∞)) holds(∫ ∞
0

g(t)dt

)2
=
∫ ∞

0

∫ ∞
0

g(t)g(s)ds dt = 2
∫ ∞

0

∫ t

0
g(t)g(s)ds dt.

Thus, by rewriting the right-hand side of (2.3), we find that∫ ∞
0

2t cap(At ,B)dt ≤ 2E (f )1/2
(

2
∫ ∞

0

∫ t

0
〈−Lht , hs〉μ ds dt

)1/2
.

Finally, since At ⊂ As for all t ≥ s, we obtain that 〈−Lht , hs〉μ = cap(At ,B).
Hence, the assertion of the theorem follows. �

2.2. Orlicz–Birnbaum estimates. Let us assume for a moment that for some
constant CCI > 0 a measure-capacity comparison of the form CCI cap(A,B) ≥
μ[A] is valid for all A ⊂ S \ B . Then a combination of the capacitary inequality
(2.2) with

Eμ

[
f 2]=

∫ ∞
0

2tμ[At ]dt,

leads to Eμ[f 2] ≤ 4CCIE (f ) for all f with f |B ≡ 0. This observation, originally
given in [38], provides estimates on the Dirichlet eigenvalue of the generator L.

This strategy can be generalized to the 	p case and more generally to logarith-
mic Sobolev constants by introducing suitable Orlicz spaces. In the sequel, we
prove that Poincaré inequalities in Orlicz spaces are equivalent to certain measure-
capacity inequalities. Similar results for diffusion processes on R

d can be found in
[3], Chapter 8.

DEFINITION 2.2 (Orlicz space [44], Section 1.3). A function � : [0,∞) →
[0,∞] is a Young function if it is convex, �(0) = limr→0 �(r) = 0 and
limr→∞ �(r) = ∞. The Legendre–Fenchel dual � : [0,∞) → [0,∞] of a Young
function � defined by

�(r) = sup
s∈[0,∞]

{
sr − �(s)

}
is again a Young function (cf. Lemma A.1), and the pair (�,�) is called Legendre–
Fenchel pair. For some K > 0, the Orlicz-norm of a function f ∈ 	1(μ) is defined
by

(2.4) ‖f ‖�,μ,K := sup
{
Eμ

[|f |g] : g ≥ 0,Eμ

[
�(g)

]≤ K
}
.
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We set ‖f ‖�,μ := ‖f ‖�,μ,1. The space of Orlicz functions, 	�(μ,K) ⊂ 	1(μ), is
the set of summable functions f on S with finite Orlicz norm.

LEMMA 2.3. For any A ⊂ S holds

(2.5) ‖1A‖�,μ,K = μ[A]�−1
(

K

μ[A]
)
,

where �−1(t) := inf{s ∈ [0,∞] : �(s) > t}.
PROOF. Due to the variational definition of the Orlicz norm, by choosing

g(x) = 1A(x)�−1(K/μ[A]) we have that ‖1A‖�,μ,K ≥ μ[A]�−1(K/μ[A]). On
the other hand, since �−1 is concave (cf. Lemma A.1), an application of Jensen’s
inequality yields

Eμ[1Ag] = μ[A]Eμ

[
1A

μ[A]
(
�−1 ◦ �

)
(g)

]
≤ μ[A]�−1

(
1

μ[A]Eμ

[
1A�(g)

])
.

Taking finally the supremum over all g with Eμ[�(g)] ≤ K concludes the proof.
�

EXAMPLE 2.4. The following Legendre–Fenchel pairs are stated for later ref-
erence:

(a) For p ∈ (1,∞): (�p(r),�p(r)) := ( 1
p
rp, 1

p∗ rp∗
) with 1/p + 1/p∗ = 1 the

resulting Orlicz norm is equivalent to the usual 	p(μ) spaces. The limiting pair
p → 1 is given by �1(r) = r and �1 : [0,∞) → [0,∞] with

�1(r) =
{

0, r ≤ 1,

∞, r > 1
and hence �−1

1 (r) =
{

0, r = 0,

1, r > 0.

(b) (�Ent(r),�Ent(r)) := (1[1,∞)(r)(r ln r − r + 1), er − 1) leads to a norm,
which can be compared with the relative entropy

∀f : S →R+, Entμ[f ] ≤ ‖f ‖�Ent,μ
.

Indeed, by using the variational characterization of the entropy, we have

Entμ[f ] = sup
g

{
Eμ[fg] : Eμ

[
eg]≤ 1

}
= sup

h

{
Eμ

[
f ln

(
eh − 1

)] : h ≥ 0,Eμ

[
eh − 1

]≤ 1
}≤ ‖f ‖�Ent,μ

,

where the last step follows from (2.4) by noting that ln(eh − 1) ≤ h.

PROPOSITION 2.5 (Orlicz–Birnbaum estimates). Let B ⊂ S and ν ∈ P(S ).
Then, for any Legendre–Fenchel pair (�,�) there exist constants C�,C� > 0
satisfying

C� ≤ C� ≤ 4C�,

such that the following statements are equivalent:
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(i) For all sets A ⊂ S \ B , the measure-capacity inequality holds

(2.6) ν[A]�−1
(

K

ν[A]
)

≤ C� cap(A,B).

(ii) For all f : S →R such that f ∈ 	2(μ) and f |B ≡ 0, it holds that

(2.7)
∥∥f 2∥∥

�,ν,K ≤ C�E (f ).

PROOF. (i) ⇒ (ii): Let G�,K := {g : g ≥ 0,Eν[�(g)] ≤ K}. For f ∈ 	2(μ)

with finite support let At be the super-level set of f as defined in (2.1). Then

∥∥f 2∥∥
�,ν,K

(2.4)= sup
g∈G�,K

Eν

[
f 2g

]≤
∫ ∞

0
2t sup

g∈G�,K

Eν[g1At ]dt

=
∫ ∞

0
2‖1At ‖�,ν,K dt.

Thus, an application of Lemma 2.3 and Theorem 2.1 yields

∥∥f 2∥∥
�,ν,K

(2.5)=
∫ ∞

0
2ν[At ]�−1

(
K

ν[At ]
)

dt

(2.6)≤ C�

∫ ∞
0

2 cap(At ,B)dt
(2.2)≤ 4C�E (f ).

The case f ∈ 	2(μ) follows from dominated convergence, since E (f ) ≤ ‖f ‖2
	2(μ)

.

(ii) ⇒ (i): Since E (f ) ≤ ‖f ‖2
	2(μ)

, we get from (2.7) that f 2 ∈ 	�(ν,K).

Hence, for any f ∈ 	2(μ) with f |A ≡ 1 and f |B ≡ 0 it holds that

ν[A]�−1
(

K

ν[A]
)

(2.5)= ‖1A‖�,ν,K ≤ ∥∥f 2∥∥
�,ν,K

(2.7)≤ C�E (f ),

which, by the Dirichlet principle (1.9), leads to (2.6). �

REMARK 2.6. Let us note, that either estimate (2.6) or (2.7) of Proposition 2.5
implies ν 
 μ on S \ B with bounded density. Indeed, for x ∈ S \ B choose the
function S � y �→ 1x(y) as a test function in the Dirichlet principle (1.9) and
apply (2.6). The same estimate can be obtained from (2.7) by considering again
S � y �→ 1x(y) and using the representation (2.5). In both cases, we get that, for
any x ∈ S \ B ,

ν(x) ≤ C

�−1(K/ν(x))
≤ C

�−1(K)
μ(x),

where we used the monotonicity of [0,∞) � r �→ �−1(r). Hereby, C is either C�

or C�. Hence, ν 
 μ and, therefore, 	1(μ) ⊆ 	1(ν).
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REMARK 2.7. The result of Proposition 2.5 is a generalization of the Muck-
enhoupt criterion [42] for weighted Hardy inequalities, which was translated to
the discrete setting in [41] for the particular case S = N0. The statement is, that
for any ν,μ ∈ P(N0) and any f : {−1} ∪ N0 → R with f (0) = f (−1) = 0 the
inequality

(2.8)
∑
x≥0

ν(x)f (x)2 ≤ C1
∑
x≥0

μ(x)
(
f (x + 1) − f (x)

)2
holds if and only if

C2 = sup
x≥1

(
x−1∑
y=0

1

μ[y]
)∑

y≥x

ν[y] < ∞.

In this case, the constants satisfy C2 ≤ C1 ≤ 4C2. This results can be deduced from
Proposition 2.5 by using the Orlicz-pair (�1,�1) from Example 2.4(a) and setting
B = {0}. Then (2.7) becomes (2.8) for the (continuous time) generator

(Lf )(x) = (
f (x + 1) − f (x)

)+ μ(x − 1)

μ(x)

(
f (x − 1) − f (x)

)
and, therefore, C�1 = C1. Notice that the equilibrium potential, and hence the
capacity along a one-dimensional, cycle-free path can be calculated explicitly
(see, e.g., [15], Section 7.1.4). In particular, for any x ∈ N the solution hx,0 ≡
h{x,...,∞},{0} of the boundary value problem (1.4) on N0 is given by

hx,0(y) =
x−1∑
z=y

1

μ(z)

/ x−1∑
z=0

1

μ(z)
and cap

({x, . . . ,∞}, {0})=
(

x−1∑
z=0

1

μ(z)

)−1

.

In view of (2.6), this verifies that C�1 = C2. The weighted Hardy inequality was
then used to derive Poincaré and logarithmic Sobolev inequalities (cf. [2, 11, 41]),
which we will do in a similar way in the following two corollaries.

2.3. Poincaré and Sobolev inequalities. Note that Poincaré or logarithmic
Sobolev inequalities do not follow directly from Proposition 2.5. The reason is that
the Orlicz–Birnbaum estimate (2.7) is for Dirichlet test functions vanishing on a
specific set, whereas the Poincaré and logarithmic Sobolev inequalities concern
Neumann test functions, which have average zero. Therefore, a splitting technique
can be used to translate the Orlicz–Birnbaum estimate to the Neumann case. See
also [25], Chapter 4.4, for some background on this technique. The additional step
is taken care in the following two corollaries.

COROLLARY 2.8 (Poincaré inequalities). Let ν ∈ P(S ) and b ∈ S . Then
there exist CVar,CPI > 0 satisfying

(2.9) ν(b)CVar ≤ CPI ≤ 4CVar

such that the following statements are equivalent:
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(i) For all A ⊂ S \ {b} the inequality holds

(2.10) ν[A] ≤ CVar cap(A,b).

(ii) The mixed Poincaré inequality holds, that is,

Varν[f ] ≤ CPIE (f ) ∀f ∈ 	2(μ).

PROOF. (i) ⇒ (ii): Let (�1,�1) as in Example 2.4(a) and recall that
�−1

1 |(0,∞) ≡ 1. Then the measure-capacity inequality (2.6) coincides exactly with
(2.10). Hence,

Varν[f ] = min
a∈R Eν

[
(f − a)2]≤ ∥∥(f − f (b)

)2∥∥
�1,ν

(2.7)≤ 4CVarE (f ).

(ii) ⇒ (i): We start with deducing a lower bound for the variance. Let 0 ≤ f ≤ 1
be given such that f |A ≡ 1 and f (b) = 0, then

Varν[f ] = 1

2

∑
x,y∈S

ν(x)ν(y)
(
f (x) − f (y)

)2 ≥ ∑
x∈A

ν(x)ν(b) = ν[A]ν(b).

The conclusion follows from the Dirichlet principle (1.9). �

COROLLARY 2.9 (Logarithmic Sobolev inequalities). Let ν ∈ P(S ) and
b ∈ S . Then there exist CEnt,CLSI > 0 satisfying

(2.11)
ν(b)

ln(1 + e2)
CEnt ≤ CLSI ≤ 4CEnt

such that the following statements are equivalent:

(i) For all A ⊂ S \ {b}, the inequality holds

(2.12) ν[A] ln
(

1 + e2

ν[A]
)

≤ CEnt cap(A,b).

(ii) The mixed logarithmic Sobolev inequality holds, that is,

(2.13) Entν
[
f 2]≤ CLSIE (f ) ∀f ∈ 	2(μ).

PROOF. (i) ⇒ (ii): Set fb(x) := f (x) − f (b) for x ∈ S . Then, by applying a
useful observation due to Rothaus ([3], Lemma 5.1.4),

(2.14)

Entν
[
f 2]≤ Entν

[
f 2

b

]+ 2Eν

[
f 2

b

]
= sup

g

{
Eν

[
f 2

b (g + 2)
] : Eν

[
eg]≤ 1

}
≤ sup

h

{
Eν

[
f 2

b h
] : h ≥ 0,Eν

[
eh − 1

]≤ e2}= ∥∥f 2
b

∥∥
�,ν,e2,
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where we used the Orlicz-Pair 2.4(b) and the definition of the K-Orlicz norm with
K = e2 in (2.4). The first implication follows now by an application of (2.7).

(ii) ⇒ (i): In order to prove the opposite direction, let A ⊂ S \ {b} with
ν[A] �= 0, and consider a function f : S → [0,1] with the property that f |A ≡ 1
and f (b) = 0. By using g = ln(1/ν[A]) as test function in the variational repre-
sentation of the entropy, we deduce that

Entν
[
f 2]≥ sup

g

{
Eν[g1A] : Eν

[
eg1A

]≤ 1
}≥ ν[A] ln

(
1

ν[A]
)
.

Since ln(1/x)/ ln(1 + e2/x) ≥ (1 − x)/ ln(1 + e2) for all x ∈ (0,1] and ν[A] ∈
(0,1 − ν(b)], we obtain that

ν[A] ln
(

1

ν[A]
)

≥ ν[A] ln
(

1 + e2

ν[A]
)

ν(b)

ln(1 + e2)
.

Thus, (2.12) follows from (2.13) by the Dirichlet principle (1.9). �

The results of Corollary 2.8 and Corollary 2.9 can be strengthened to identify
the optimal Poincaré and logarithmic Sobolev constant up to a universal numerical
factor, that is, by replacing ν[b] in the lower bounds (2.9) and (2.11) by a universal
numerical constant. The price to pay is to enforce the assumptions in the inequal-
ities (2.10) and (2.12). Although, in the application to metastable Markov chains,
these results cannot provide an asymptotic sharp constant, we include them here
for completeness.

COROLLARY 2.10. Let ν ∈ P(S ). Then there exist CVar,CPI > 0 satisfying

1

2
CVar ≤ CPI ≤ 4CVar

such that the following statements are equivalent:

(i) For all disjoint subsets A,B ⊂ S with

(2.15) ν[A] ≤ 1

2
and ν[B] ≥ 1

2
holds ν[A] ≤ CVar cap(A,B).

(ii) The mixed Poincaré inequality holds, that is,

Varν[f ] ≤ CPIE (f ) ∀f ∈ 	2(μ).

PROOF. (i) ⇒ (ii): Let us denote by m ∈ R the median of f with respect to
ν, that is, ν[f < m] ≤ 1

2 and ν[f > m] ≤ 1
2 . Note that the sets A− = {f < m}

and B− = {f ≥ m} and A+ = {f > m} and B+ = {f ≤ m} satisfy the assumption
(2.15). Moreover, by means of Proposition 2.5, we get that

Varν[f ] ≤ Eν

[
(f − m)2−

]+ Eν

[
(f − m)2+

]
≤ 4CVar

(
E
(
(f − m)−

)+ E
(
(f − m)+

))
.
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Hence, the conclusion of the first implication follows once we have shown that
E ((f − m)+) + E ((f − m)−) ≤ E (f ). However, such estimate is a consequence
of the pointwise bound((

f (x) − m
)
+ − (

f (y) − m
)
+
)2 + ((

f (x) − m
)
− − (

f (y) − m
)
−
)2

≤ (
f (x) − f (y)

)2
for any x, y ∈ S . Indeed, the bound is obvious for the cases x, y ∈ {f > m} and
x, y ∈ {f < m}. Now suppose that x ∈ {f > m} and y ∈ {f < m}, then the in-
equality reduces to show(

f (x) − m
)2 + (

f (y) − m
)2 ≤ (

f (x) − f (y)
)2

,

which follows from the elementary inequality mf (x) + mf (y) − m2 ≥ f (x)f (y)

provided that f (y) ≤ m ≤ f (x).
(ii) ⇒ (i): For the converse statement, let f be a test function such that 0 ≤ f ≤

1, f |A ≡ 1 and f |B ≡ 0. Then

E (f )CPI ≥ Varν[f ] = 1

2

∑
x,y∈S

ν(x)ν(y)
(
f (x) − f (y)

)2 ≥ ν[A]ν[B] ≥ 1

2
ν[A].

The conclusion follows from the Dirichlet principle (1.9). �

COROLLARY 2.11. Let ν ∈ P(S ). Then there exist CEnt, CLSI satisfying

1

2 ln(1 + e2)
CEnt ≤ CLSI ≤ 4CEnt

such that the following statements are equivalent:

(i) For all A,B ⊂ S disjoint with

ν[A] ≤ 1

2
and ν[B] ≥ 1

2
holds ν[A] ln

(
1 + e2

ν[A]
)

≤ CEnt cap(A,B).

(ii) The mixed logarithmic Sobolev inequality holds, that is,

Entν[f 2] ≤ CLSIE (f ) ∀f ∈ 	2(μ).

PROOF. (i) ⇒ (ii): We shift f according to its median m with respect to ν (cf.
proof of Corollary 2.10) by applying (2.14) to f − m and get

Entν
[
f 2]≤ ∥∥(f − m)2∥∥

�,ν,e2 ≤ ∥∥(f − m)2+
∥∥
�,ν,e2 + ∥∥(f − m)2−

∥∥
�,ν,e2 .

The first implication follows by applying Proposition 2.5 and combining E ((f −
m)+) and E ((f − m)−) as in the proof of Corollary 2.10.

(ii) ⇒ (i): The converse statement follows exactly along the lines of the proof
of Corollary 2.9 with the additional assumption that ν[B] ≥ 1

2 . �
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3. Application to metastable Markov chains. In Section 3.1, we derive es-
timates and other technical tools based on the capacitary inequality as well as
the metastable assumption. Sections 3.2 and 3.3 contain the main results on the
asymptotically sharp estimates for the Poincaré and logarithmic Sobolev constants
for metastable Markov chains, respectively.

Throughout this section, we suppose that Assumption 1.3 holds.

3.1. A priori estimates. To apply the definition of metastable sets, we first
show that for any subset of the local valley Vi the hitting probability of the union
of all metastable sets can be replaced by the hitting probability of any single set
M ∈ M .

LEMMA 3.1. For any Mi ∈ M and A ⊂ Vi \ Mi ,

(3.1) PμA
[τMi

< τA] ≥ 1

|M |PμA
[τ⋃K

j=1Mj
< τA].

In particular,

(3.2) PμA
[τMi

< τA] ≥ 1

�
max
M∈M

PμM
[τ⋃K

j=1Mj\M < τM ].

PROOF. Since (3.2) is an immediate consequence of (3.1) and Definition 1.1,
it suffices to prove (3.1). Since Px[τM < τ⋃K

j=1Mj \M ] = Px[X(τ⋃K
j=1Mj

) = M] for

any M ∈ M and x ∈ S , we obtain

1 = ∑
M∈M

Px[τM < τ⋃K
j=1Mj \M ] ≤ |M |Px[τMi

< τ⋃K
j=1Mj\Mi

] ∀x ∈ Vi .

Thus,

(3.3) PνA,B
[τMi

< τ⋃K
j=1Mj\Mi

] ≥ 1

|M | ∀A ⊂ Vi \ Mi,

where νA,B is the last-exit biased distribution as defined in (1.10) with B =⋃K
j=1 Mj . On the other hand, by using averaged renewal estimates that has been

proven in [47], Lemma 1.24, we get that

(3.4) PνA,B
[τMi

< τ⋃K
j=1Mj \Mi

] ≤ PμA
[τMi

< τA]
PμA

[τ⋃K
j=1Mj

< τA] .

By combining the estimates (3.3) and (3.4), (3.1) follows. �

The following lemma shows that the intersection of different local valleys has a
negligible mass under the invariant distribution.
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LEMMA 3.2. Suppose that X := Vk ∩ Vl \ (Mk ∪ Ml) is nonempty. Then it
holds that

μ[X] ≤ �|M |min
{
μ[Mk],μ[Ml]}.

PROOF. Without loss of generality, assume that μ[Mk] ≤ μ[Ml]. Notice that
by (3.3), hMl,Mk

(x) ≥ Px[τMl
< τ⋃K

j=1Mj\Ml
] ≥ 1/|M | for any x ∈ X ⊂ Vl \ Ml .

Therefore,

cap(Mk,Ml) ≥ 〈−LhMl,Mk
, hX,Mk

〉μ
= 〈hMl,Mk

,−LhX,Mk
〉μ ≥ 1

|M | cap(X,Mk).

Thus,

μ[X] ≤ |M | cap(Mk,Ml)

PμX
[τMk

< τX]
(3.2)≤ �|M | cap(Mk,Ml)

PμMk
[τ⋃K

j=1Mj\Mk
< τMk

] ≤ �|M |μ[Mk],

which concludes the proof. �

The capacitary inequality combined with the definition of metastable sets yields
that the harmonic functions, hMi,Mj

, is almost constant on the valleys Si and Sj .

LEMMA 3.3 (	p-norm estimate). For any Mi ∈ M and f ∈ 	2(μ) with
f (x) = 0 for all x ∈ Mi ,

(3.5) Eμi

[
f 2]≤ 4�

μ[Si]
(

max
M∈M

PμM
[τ⋃K

j=1Mj \M < τM ]
)−1

E (f ).

In particular, for any Mi,Mj ∈ M with i �= j ,

(3.6) Eμi

[
h

p
Mj ,Mi

]≤ �
p

p − 1
min

{
1,

μ[Sj ]
μ[Si]

}
∀p > 1

and

(3.7) Eμi
[hMj ,Mi

] ≤ ε + � ln(1/ε)min
{

1,
μ[Sj ]
μ[Si]

}
∀ε ∈ (0,1],

where hMj ,Mi
denotes the equilibrium potential of the pair (Mj ,Mi).

PROOF. First notice that for any A ⊂ Vi \ Mi ,

μi[A] = cap(A,Mi)

μ[Si]PμA
[τMi

< τA]
(3.2)≤ �

μ[Si]
(

max
M∈M

PμM
[τ⋃K

j=1Mj \M < τM ]
)−1

cap(A,Mi).
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Thus, (3.5) follows from Proposition 2.5 by choosing (�,�) = (�1,�1) as in
Example 2.4(a). In the sequel, we aim at proving (3.6) and (3.7). For any t ∈ [0,1],
we write At := {x ∈ S : hMj ,Mi

> t} to denote the super level-sets of hMj ,Mi
, and

set ht := hAt ,Mi
. Then

(3.8) t cap(At ,Mi) ≤ 〈−Lht , hMj ,Mi
〉μ = 〈ht ,−LhMj ,Mi

〉μ = cap(Mj ,Mi).

Thus, for any p > 1, we obtain

Eμi

[
h

p
Mj ,Mi

]=
∫ 1

0
ptp−1μi[At ]dt

≤ �

μ[Si]
(

max
M∈M

PμM
[τ⋃K

j=1Mj \M < τM ]
)−1

×
∫ 1

0
ptp−1 cap(At ,Mi)dt.

Since,

max
M∈M

PμM
[τ⋃K

j=1Mj \M < τM ] ≥ max
{
PμMi

[τMj
< τMi

],PμMj
[τMi

< τMj
]}

we deduce that

Eμi

[
h

p
Mj ,Mi

] (3.8)≤ � min
{

1,
μ[Sj ]
μ[Si]

}∫ 1

0
ptp−2 dt = �

p

p − 1
min

{
1,

μ[Sj ]
μ[Si]

}
,

which concludes the proof of (3.6). Likewise, we obtain for any ε ∈ (0,1] that

Eμi
[hMj ,Mi

] = ε +
∫ 1

ε
μi[At ]dt

(3.8)≤ ε + � min
{

1,
μ[Sj ]
μ[Si]

}∫ 1

ε
t−1 dt,

and (3.7) follows. �

The bound (3.7) of Lemma 3.3 provides the main ingredient for the proof of
Theorem 1.7.

PROOF OF THEOREM 1.7. Let B and J ≡ J (i) be defined as in Theorem 1.7.
By [15], Corollary 7.11, we have that

EνMi ,B
[τB] = Eμ[hMi,B]

cap(Mi,B)
= μ[Si]

cap(Mi,B)

(
Eμi

[hMi,B] +∑
j �=i

μ[Sj ]
μ[Si] Eμj

[hMi,B]
)
.

In order to prove a lower bound, we neglect the last term in the bracket above.
Since Px[τ⋃j∈J Mj

< τMi
] ≤∑

j∈J Px[τMj
< τMi

], Lemma 3.3 implies with ε = �

Eμi
[hMi,B] = 1 − Eμi

[hB,Mi
] ≥ 1 − ∑

j∈J

Eμi
[hMj ,Mi

] (3.7)≥ 1 − |M |�(1 + ln 1/�).
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Hence, we conclude that

EνMi ,B
[τB] ≥ μ[Si]

cap(Mi,B)

(
1 − |M |(� + � ln 1/�)

)
.

Concerning the upper bound, recall that by assumption μ[Sj ]/μ[Si] ≤ δ for all
j /∈ J ∪ {i}. Thus, by Lemma 3.3 with ε = �/Cratio, we get

∑
j �=i

μ[Sj ]
μ[Si] Eμj

[hMi,B] ≤ |M |δ + ∑
j∈J

μ[Sj ]
μ[Si] Eμj

[hMi,Mj
]

(3.7)≤ |M |
(
δ + � + � ln

Cratio

�

)
.

Since Eμi
[hMi,B] ≤ 1, the proof concludes with the estimate

EνMi ,B
[τB] ≤ μ[Si]

cap(Mi,B)

(
1 + |M |(δ + � + � ln(Cratio/�)

))
. �

Let us define neighborhoods of the metastable sets in terms of level sets
of harmonic functions. Therefore, we consider two nonempty, disjoint subsets
A ,B ⊂ M of the set of metastable sets, and let IA , IB ⊂ {1, . . . ,K} be such
that A = {Mi : i ∈ IA } and B = {Mi : i ∈ IB}. Further, set A = ⋃

M∈A M and
B = ⋃

M∈B M . For δ ∈ (0,1), define the harmonic neighborhood of A relative to
B by

(3.9) UA(δ,B) :=
{
x ∈ ⋃

i∈IA

Si : hA,B(x) ≥ 1 − δ

}
.

The following lemma shows that the capacity of (UA(δ,B),UB(δ,A)) is compa-
rable to the capacity of (A,B).

LEMMA 3.4. Let Mi ∈ M and B ⊂ M \ {Mi}. Then, for any δ ∈ (0,1/2),

(3.10) 1 − 2δ ≤ cap(Mi,B)

cap(UMi
(δ,B),UB(δ,Mi))

≤ 1.

Moreover, for X := Si \ UMi
(δ,B),

(3.11) μ[X] ≤ �δ−1μ[Mi].

PROOF. Since Mi ⊂ UMi
(δ,B) and B ⊂ UB(δ,Mi) by definition, the upper

bound in (3.10) follows from the monotonicity of the capacity; see (1.8). In order
to prove the lower bound in (3.10), notice that

hMi,B(x) ≥ 1 − δ ∀x ∈ UMi
(δ,B) and hMi,B(x) ≤ δ ∀x ∈ UB(δ,Mi).
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Thus, by using the symmetry of −L in 	2(μ), we obtain

cap(Mi,B) = 〈−LhMi,B, hUMi
(δ),UB(δ)〉μ

= 〈hMi,B,−LhUMi
(δ),UB(δ)〉μ ≥ cap

(
UMi

(δ),UB(δ)
)
(1 − 2δ).

The proof of (3.11) is similar to the one of Lemma 3.2. Since hMi,B(x) ≤ 1 − δ for
any x ∈ X = Si \ UMi

(δ,B), we get

cap(Mi,B) ≥ 〈−LhB,Mi
, hX,Mi

〉μ = 〈hB,Mi
,−LhX,Mi

〉μ
≥ δ cap(X,Mi)

(3.2)≥ δμ[X]
�

PμMi
[τB < τMi

].

Thus, the assertion follows from (1.7). �

3.2. Poincaré inequality. In this section, we denote by c a numerical finite
constant, which may change from line to line.

THEOREM 3.5. Suppose that Assumption 1.11 and 1.9(i) hold. Then

CPI ≥ max
i,j∈{1,...,K}

i �=j

μ[Si]μ[Sj ]
cap(Mi,Mj)

(1 − c
√

�),(3.12)

CPI ≤ 1

2

K∑
i,j=1
i �=j

μ[Si]μ[Sj ]
cap(Mi,Mj)

(
1 + c

√
CPI,M (� + η)

)
.(3.13)

REMARK 3.6. It is possible to formulate a result with asymptotically match-
ing upper and lower bounds for CPI under suitable nondegeneracy assumption.
These essentially demand that one of the term in the right-hand side of (3.13)
dominates the others.

Let G := σ(Si : i = 1, . . . ,K) be the σ -algebra generated by the sets of the
metastable partition. Since Mi ∈ Si for all i = 1, . . . ,K , we have G ⊂ F by con-
struction of F ; cf. (1.13). We denote by Eμ[f | G ] the conditional expectation
given G . In order to prove Theorem 3.5, we use again the projection property of
the conditional expectation to further split the variance Varμ[Eμ[f | F ]] into the
local variances and the mean difference

(3.14)

Varμ
[
Eμ[f | F ]]=

K∑
i=1

μ[Si]Varμi

[
E[f | F ]]

+ 1

2

K∑
i,j=1

μ[Si]μ[Sj ](Eμi
[f ] − Eμj

[f ])2.
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Therewith, the proof of Theorem 3.5 consists in bounding both the local variances
and the mean difference in terms of the Dirichlet form. Bounding the local vari-
ances is established by local Poincaré inequalities, which are a consequence of
Lemma 3.3.

LEMMA 3.7 (Local Poincaré inequality). Suppose that Assumption 1.9(i) is
satisfied. Then, for any f ∈ 	2(μ) and i ∈ {1, . . . ,K},

(3.15)

Varμi

[
Eμ[f | F ]]≤ Eμi

[(
Eμ[f | F ] − EμMi

[f ])2]
≤ c

CPI,M �

μ[Si]
(

max
M∈M

PμM
[τ⋃K

j=1Mj\M < τM ]
)−1

E (f ).

PROOF. By noting that Varμi
[Eμ[f | F ]] = mina∈R Eμi

[(Eμ[f | F ] − a)2],
the first estimate in (3.15) is immediate. Moreover, the function x �→ Eμ[f |
F ](x) − EμMi

[f ] vanishes on Mi . Hence, by (3.5) we obtain

Eμi

[(
Eμ[f | F ] − EμMi

[f ])2]
≤ 4�

μ[Si]
(

max
M∈M

PμM
[τ⋃K

j=1Mj \M < τM ]
)−1

E
(
Eμ[f | F ]).

Thus, we are left with bounding E (Eμ[f | F ]) from above by E (f ). For any δ > 0
by Young’s inequality, that reads |ab| ≤ δa2 + b2/(4δ), we get for any x, y ∈ S ,(

Eμ[f | F ](x) − Eμ[f | F ](y)
)2

≤ (1 + 2δ)
(
f (x) − f (y)

)2 +
(

2 + 1

δ

) ∑
z∈{x,y}

(
f (z) − Eμ[f | F ](z))2.

Recall that Eμ[f | F ](x) = EμMi
[f ] for any x ∈ Mi . Since f (x) − Eμ[f |

F ](x) = 0 for any x ∈ S \⋃K
i=1 Mi , we obtain

E
(
Eμ[f | F ])≤ (1 + 2δ)E (f ) +

(
2 + 1

δ

) K∑
i=1

μ[Mi]VarμMi
[f ].

Since VarμMi
[f ] ≤ CPI,iE (f ) for any i = 1, . . . ,K , the assertion (3.15) follows

by choosing δ =√
2CPI,M . �

LEMMA 3.8 (Mean difference estimate). Let Assumptions 1.11 and 1.9(i) be
satisfied. Then, for any f ∈ 	2(μ) and Mi,Mj ∈ M with i �= j it holds that

(
Eμi

[f ] − Eμj
[f ])2 ≤ E (f )

cap(Mi,Mj)

(
1 + c

√
CPI,M (� + η)

)
.
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PROOF. For Mi,Mj ∈ M with i �= j , let νMi,Mj
be the last-exit biased distri-

bution as defined in (1.10), and denote by gi,j := νMi,Mj
/μμMi

the relative density
of νMi,Mj

with respect to μMi
. Then it holds that

Eμi
[f ] = Eμi

[
Eμ[f | F ]]

= EνMi ,Mj
[f ] + Eμi

[
Eμ[f | F ] − EμMi

[f ]]− EμMi

[
(gi,j − 1)f

]
.

Thus, by applying Young’s inequality, we obtain for any δ > 0 and f ∈ 	2(μ),(
Eμi

[f ] − Eμj
[f ])2 ≤ (1 + δ)

(
EνMi ,Mj

[f ] − EνMj ,Mi
[f ])2

+ 2
(

1 + 1

δ

) ∑
k∈{i,j}

Eμk

[
Eμ[f | F ] − EμMk

[f ]]2

+ 2
(

1 + 1

δ

)(
EμMi

[
(gi,j − 1)f

]2 + EμMj

[
(gj,i − 1)f

]2)
.

Let hMi,Mj
be the equilibrium potential of the pair (Mi,Mj). Observe that a sum-

mation by parts together with an application of the Cauchy–Schwarz inequality
yields

(
EνMi ,Mj

[f ] − EνMj ,Mi
[f ])2 ≤ E (f )

cap(Mi,Mj)
.

Recall that the function x �→ Eμ[f | F ](x) − EμMi
[f ] vanishes on Mi . Thus,

(3.15) implies that

Eμi

[(
Eμ[f | F ] − EμMi

[f ])2]≤ cCPI,M �
E (f )

cap(Mi,Mj)
,

where we used that maxM∈M PμM
[τ⋃K

j=1Mj\M < τM ] ≥ cap(Mi,Mj)/μ[Mi]. Fur-

ther, the covariance between gi,j and f , thanks to Assumptions 1.11 and 1.9(i), is
bounded from above by

EμMi

[
(gi,j − 1)f

]2 ≤ VarμMi
[gi,j ]VarμMi

[f ] ≤ ημ[Mi]CPI,i
E (f )

cap(Mi,Mj)
.

By combining the estimates above and choosing δ = √
CPI,M (� + η), we obtain

the assertion. �

A combination of the splitting (3.14) with the Lemmas 3.7 and 3.8 gives the
upper bound (3.13) of Theorem 3.5. The proof is complemented by a suitable test
function yielding the lower bound (3.12).

PROOF OF THEOREM 3.5. The lower bound of CPI is an immediate conse-
quence of the variational definition of CPI; cf. (1.11). Indeed, by choosing the
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equilibrium potential hMi,Mj
for any Mi,Mj ∈ M with i �= j as a test function,

we deduce from (1.14) and (3.14) that

Varμ[hMi,Mj
] ≥ μ[Si]μ[Sj ](Eμi

[hMi,Mj
] − Eμj

[hMi,Mj
])2

= μ[Si]μ[Sj ](1 − Eμi
[hMj ,Mi

] − Eμj
[hMi,Mj

])2.
Thus, in view of (3.7), we obtain that Varμ[f ] ≥ μ[Si]μ[Sj ](1 − 8�)2. Since
E (hMi,Mj

) = cap(Mi,Mj), (3.12) follows by optimizing over all Mi �= Mj ∈ M .
For the upper bound, observe that by using (1.7) and (1.8),

(3.16)

(
max
M∈M

PμM
[τ⋃K

j=1Mj \M < τM ]
)−1

≤ 1

|M | − 1

K∑
i,j=1
i �=j

μ[Si]
PμMj

[τMi
< τMj

] ≤ 1

|M | − 1

K∑
i,j=1
i �=j

μ[Si]μ[Sj ]
cap(Mi,Mj)

.

Hence, by an application of Lemma 3.7, it follows that
K∑

i=1

μ[Si]Varμi

[
Eμ[f | F ]] (3.15)≤ cCPI,M �

1

2

K∑
i,j=1
i �=j

μ[Si]μ[Sj ]
cap(Mi,Mj)

E (f ).

Thus, a combination of (1.14) and (3.14) together with Lemma 3.8 yields (3.13)
up to an additive factor CPI,M . To bound this additive error term, notice that

CPI,M ≤ CPI,M �
(

max
M∈M

PμM
[τ⋃K

j=1Mj \M < τM ]
)−1

(3.16)≤ CPI,M �

|M | − 1

K∑
i,j=1
i �=j

μ[Si]μ[Sj ]
cap(Mi,Mj)

,

which shows that CPI,M can be absorbed into the right-hand side of (3.13). �

3.3. Logarithmic Sobolev inequality. In this subsection, we focus on sharp
estimates of the logarithmic Sobolev constant in the context of metastable Markov
chains. Again, we denote by c a numerical finite constant, which may change from
line to line.

THEOREM 3.9. Suppose that the Assumptions 1.11, 1.9 and (1.20) hold. Then

CLSI ≥ max
i,j∈{1,...,K}

i �=j

μ[Si]μ[Sj ]
�(μ[Si],μ[Sj ])

1

cap(Mi,Mj)
(1 − c

√
�)2,

(3.17)

CLSI ≤
K∑

i,j=1
i �=j

μ[Si]μ[Sj ]
�(μ[Si],μ[Sj ])

1

cap(Mi,Mj)

(
1 + c

√
CmassCLSI,M (� + η)

)
.
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In order to proof Theorem 3.9, we decompose the entropy Entμ[Eμ[f 2 | F ]]
in (1.15) into the local entropies within the sets S1, . . . ,SK and the macroscopic
entropy

Entμ
[
Eμ

[
f 2 | F ]]=

K∑
i=1

μ[Si]Entμi

[
Eμ

[
f 2 | F ]]+ Entμ

[
Eμ

[
f 2 | G ]]

.

In the next lemma, we derive an upper bound on the local entropies.

LEMMA 3.10 (Local logarithmic Sobolev inequality). Let Assumption 1.9(i)
be satisfied, and assume that Cmass < ∞. Then, for any f ∈ 	2(μ) and i ∈
{1, . . . ,K},

(3.18)

Entμi

[
Eμ

[
f 2 | F ]]

≤ c
CmassCPI,M �

μ[Si]
(

max
M∈M

PμM
[τ⋃K

j=1Mj \M < τM ]
)−1

E (f ).

PROOF. First, notice that for any A ⊂ S \ Mi ,

μi[A] ln
(

1 + e2

μi[A]
)

≤ maxx∈Si
ln(1 + e2/μi(x))

μ[Si] cap(A ∩ Si ,Mi)
cap(A,Mi)

(3.2)≤ Cmass
�

μ[Si]
(

max
M∈M

PμM
[τ⋃K

j=1Mj \M < τM ]
)−1

cap(A,Mi).

Since the function x �→ Eμ[f 2 | F ](x) is constant on Mi , Corollary 2.9 implies
that

Entμi

[
Eμ

[
f 2 | F ]]

≤ Cmass
4�

μ[Si]
(

max
M∈M

PμM
[τ⋃K

j=1Mj \M < τM ]
)−1

E
(√

Eμ

[
f 2 | F ])

.

Thus, we are left with bounding E (
√

Eμ[f 2 | F ]) from above with E (f ). Apply-
ing Young’s inequality, we get, for any δ > 0 and x, y ∈ S ,

(√
Eμ

[
f 2 | F ]

(x) −
√

Eμ

[
f 2 | F ]

(y)
)2

≤ (1 + 2δ)
(∣∣f (x)

∣∣− ∣∣f (y)
∣∣)2 +

(
2 + 1

δ

) ∑
z∈{x,y}

(∣∣f (z)
∣∣−√

Eμ

[
f 2 | F ]

(z)
)2

.



3472 A. SCHLICHTING AND M. SLOWIK

Since |f (z)|−
√

Eμ[f 2 | F ](z) = 0 for any z ∈ S \⋃K
i=1 Mi and Eμ[f | F ](x) =

EμMi
[f ] for any x ∈ Mi , we obtain

E
(√

Eμ

[
f 2 | F ])≤ (1 + 2δ)E

(|f |)+ 2
(

2 + 1

δ

) K∑
i=1

μ[Mi]VarμMi
[f ],

where we additionally exploited the fact that, by Jensen’s inequality,

EμMi

[(|f | −
√

EμMi

[
f 2

])2]≤ 2 VarμMi
[f ].

Since VarμMi
[f ] ≤ CPI,iE (f ) for any i = 1, . . . ,K and E (|f |) ≤ E (f ), (3.18)

follows by choosing δ =√
2CPI,M . �

PROOF OF THEOREM 3.9. In view of the variational definition of CLSI (cf.
(1.12)), the lower bound in (3.17) follows from the construction of a suitable test
function. For any Mi,Mj ∈ M with i �= j , δ ∈ [0,1/2) and g : {i, j} → R, set

f (x) := g(i)hUMi
(δ),UMj

(δ)(x) + g(j)hUMj
(δ),UMi

(δ)(x),

UMi
(δ) ≡ UMi

(δ,Mj) and UMj
(δ) ≡ UMj

(δ,Mi) are the δ-neighborhoods of Mi

and Mj as defined in (3.9). Then, by Lemma 3.4,

E (f ) = (
g(i) − g(j)

)2 cap
(
UMi

(δ),UMj
(δ)

) (3.10)≤ (
g(i) − g(j)

)2 cap(Mi,Mj)

1 − 2δ
.

Further, notice that a lna − a lnb − a + b ≥ 0 for all a, b > 0. Thus,

Entμ
[
f 2] = min

c>0
Eμ

[
f 2 lnf 2 − f 2 ln c − f 2 + c

]
≥ min

c>0
Eμ

[
f 2 lnf 2 − f 2 ln c − f 2 + c)1UMi

(δ)∪UMj
(δ)

]
(3.11)≥ (

μ[Si] + μ[Sj ])(1 − �δ−1)EntBer(p)

[
g2],

where Ber(p) ∈ P({i, j}) denotes the Bernoulli measure on the two-point space
{i, j} with success probability p = 1 − q = μ[Si]/(μ[Si] + μ[Sj ]). This yields

CLSI ≥ Entμ[f 2]
E (f )

= μ[SMi
] + μ[SMj

]
cap(Mi,Mj)

(1 − 2δ)
(
1 − �δ−1) EntBer(p)[g2]

(g(i) − g(j))2 ,

for any g : {i, j} → R with g(i) �= g(j). Recall that the logarithmic Sobolev con-
stant for Bernoulli measures is explicitly known and given by

sup
{

EntBer(p)[g2]
(g(i) − g(j))2 : g(i) �= g(j)

}

= pq

�(p,q)
= μ[Si]μ[Sj ]

�(μ[Si],μ[Sj ])
(
μ[Si] + μ[Sj ]).
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This was found in [30] and independently in [26]. Thus, by choosing δ = √
�,

lower bound in (3.17) follows.
Let us now address the upper bound. First, since �(μ[Si],μ[Sj ]) ≤ 1 we de-

duce from Lemma 3.10 by following similar arguments as in the proof of Theo-
rem 3.5 that

K∑
i=1

μ[Si]Entμi

[
E
[
f 2 | F ]]

(3.18)≤ cCmassCPI,M �

K∑
i,j=1
i �=j

μ[Si]μ[Sj ]
�(μ[Si],μ[Sj ])

E (f )

cap(Mi,Mj)
.

On the other hand, by [40], Corollary 2.8, we have that

Entμ
[
Eμ

[
f 2 | G ]]

≤ 1

2

K∑
i,j=1
i �=j

μ[Si]μ[Sj ]
�(μ[Si],μ[Sj ])

( ∑
k∈{i,j}

Varμk
[f ] + (

Eμi
[f ] − Eμj

[f ])2).

In view of the projection property of the conditional expectation together with
(1.16) and (3.15)∑

k∈{i,j}
Varμk

[f ] = ∑
k∈{i,j}

(
μk[Mk]VarμMk

[f ] + Varμk

[
Eμ[f | F ]])

≤ cCPI,M
�E (f )

cap(Mi,Mj)
.

Thus, the upper bound in (3.17) follows up to the additive constant CLSI,M by
combining the estimates above and using Lemma 3.8. To bound the additive error
term CLSI,M , notice that

CLSI,M
(3.16)≤ CLSI,M �

K∑
i,j=1
i �=j

μ[Si]μ[Sj ]
�(μ[Si],μ[cSj ])

1

cap(Mi,Mj)
,

where we used that �(μ[Si],μ[Sj ]) ≤ 1. This allows us to absorb the additive
constant CLSI,M into the right-hand side of the upper bound in (3.17). �

PROOF OF THEOREM 1.14. For K = 2, (1.19) and (1.21) follow directly from
Theorem 3.5 and Theorem 3.9. �

4. Random field Curie–Weiss model. The proof of Theorem 1.24 follows
from Theorems 3.5 and 3.9 after having established Propositions 1.19, 4.8 and 4.2
in each of the three following sections.
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4.1. Verification of �-metastability. In view of (1.5), estimates of hitting prob-
abilities can be deduced from upper and lower bounds of the corresponding capac-
ities. Based on the Dirichlet principle and a comparison argument for Dirichlet
forms, our strategy is to compare the microscopic with suitable mesoscopic capac-
ities via a coarse-graining. One direction of the comparison follows immediately
from the Dirichlet principle. In this way, we can utilize the estimates on capacities
contained in [8].

For disjoint subsets, A,B ⊂ �n set A = ρ−1(A) and B = ρ−1(B). Then the mi-
croscopic capacity cap(A,B) is bounded from above by the mesoscopic capacity
cap(A,B)

(4.1)

cap(A,B)
(1.9)≤ inf

g∈HA,B

E (g ◦ ρ)

= inf
g∈HA,B

1

2

∑
x,y∈�n

μ(x)r(x,y)
(
g(x) − g(y)

)2
=: cap(A,B),

where

(4.2) r(x,y) := 1

μ(x)

∑
σ∈ρ−1(x)

μ(σ )
∑

σ ′∈ρ−1(y)

p
(
σ,σ ′)

and HA,B := {g : �n → [0,1] : g|A = 1, g|B = 0}. Notice that the mesoscopic
transition probabilities (r(x,y) : x,y ∈ �n) are reversible with respect to μ. Re-
call that the metastable sets M1, M2 are defined as preimages under ρ of particular
minima m1, m2 of F . Hence, an upper bound on the numerator in (1.3) follows
from an upper bound on cap(m1,m2).

In the following lemma, we show that the denominator in (1.3) can also be
expressed in terms of mesoscopic capacities.

LEMMA 4.1. For n ≥ 1, let B ⊂ �n be nonempty and set B = ρ−1(B). Fur-
ther, define ε(n) := 2h∞/n. Then, for any A ⊂ S \ B and N ≥ n,

(4.3) PμA
[τB < τA] ≥ ∣∣�n

∣∣−1e−4βε(n)(2N+1) min
x∈�n\B

cap(x,B)

μ(x)
.

PROOF. Notice that the image process (ρ(σ (t)) : t ≥ 0) on �n is in general not
Markovian. For that reason, we introduce an additional Markov chain on S with
the property that its image under ρ is Markov and the corresponding Dirichlet form
is comparable to the original one with a controllable error provided n is chosen
large enough.

For fixed n ≥ 1, let (σ (t) : t ≥ 0) be a Markov chain in discrete-time on S with
transition probabilities

p
(
σ,σ ′) := 1

N
exp

(−βN
[
E
(
ρ
(
σ ′))− E

(
ρ(σ )

)]
+
)
1|σ−σ ′|1=2
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and p(σ,σ ) = 1 −∑
σ ′∈S p(σ,σ ′), which is reversible with respect to the random

Gibbs measure

μ(σ) := Z−1 exp
(−βNE

(
ρ(σ )

))
2−N, σ ∈ S .

Let us denote the law of this process by P, and we write cap(A,B) for the corre-
sponding capacities. Likewise, let μ := μ◦ρ−1, and define r analog to (4.2). Note
that

(4.4) e−2βε(n)N ≤ μ(σ)

μ(σ)
≤ e2βε(n)N and e−2βε(n) ≤ p(σ,σ ′)

p(σ,σ ′)
≤ e2βε(n)

for any σ,σ ′ ∈ S . On the other hand, for any x,y ∈ �n it holds that p(σ,

ρ−1(y)) = p(σ ′,ρ−1(y)) for every σ,σ ′ ∈ ρ−1(x). This ensures (see, e.g., [21])
that the Markov chain (σ (t) : t ≥ 0) is exactly lumpable, that is, (ρ(σ (t)) : t ≥ 0)

is a Markov process on �n with transition probabilities r and reversible mea-
sure μ. As a corollary of [15], Theorem 9.7, we obtain that, for A = ρ−1(a) and
B = ρ−1(B) with {a},B ⊂ �n disjoint,

(4.5) Pσ [τB < τA] = Pσ ′ [τB < τA] ∀σ,σ ′ ∈ A.

In particular, cap(A,B) = cap(a,B). By using a comparison of Dirichlet forms,
we deduce from (4.4) that, for any A,B ⊂ S ,

(4.6) e−2βε(n)(N+1) ≤ cap(A,B)

cap(A,B)
and e−2βε(n)(N+1) ≤ cap(a,B)

cap(a,B)
.

Now we prove (4.3). For a given ∅ �= B ⊂ �n set B = ρ−1(B) and let A ⊂
S \ B be arbitrary. Then we can find {xk : k = 1, . . . ,L} ⊂ �n such that

A ∩ ρ−1(xk) �=∅ and A ⊂
L⋃

k=1

ρ−1(xk).

We set Xk := ρ−1(xk) and Ak := A ∩ Xk for k ∈ {1, . . . ,L}. Since

cap(Ak,B) ≥ ∑
σ∈Ak

μ(σ)Pσ [τB < τXk
]

(4.5)= μ[Ak]cap(Xk,B)

μ[Xk] = μ[Ak]cap(xk,B)

μ(xk)

an application of (4.6) and (4.4) yields

(4.7)

cap(Ak,B) ≥ e−2βε(n)(N+1)μ[Ak]cap(xk,B)

μ(xk)

≥ e−4βε(n)(2N+1)μ[Ak] min
x∈�n\B

cap(x,B)

μ(x)
.
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Thus,

cap(A,B)
(1.8)≥ 1

L

L∑
k=1

cap(Ak,B)
(4.7)≥ 1

L
e−4βε(n)(2N+1)μ[A] min

x∈�n\B
cap(x,B)

μ(x)
.

Since L ≤ |�n|, the assertion (4.3) follows. �

PROOF OF PROPOSITION 1.19. Let n ≥ 1 and Mk = ρ−1(mk) with mk ∈ �n

for k = 1, . . . ,K the local minima of F as in the assumptions of Proposition 1.19
with decreasing energy barriers {�k : k ∈ {1, . . . ,K}} as defined in (1.30). Then,
by [8], Proposition 4.5, Corollary 4.6 and Proposition 3.1, there exists C < ∞ such
that, Ph-a.s., for any N ≥ N0(h) ∨ N1(h) and all 1 < k ≤ K we have

PμMk
[τ⋃k−1

i=1 Mi
< τMk

] (4.1)≤ cap(Mk−1,mk)

μ(mk)
≤ CNne−βN�k−1 .

On the hand, for any A ⊂ S \⋃K
i=1 Mi Lemma 4.1 implies that

PμA
[τ⋃K

i=1 Mi
< τA] ≥ ∣∣�n

∣∣−1e−4βε(n)(2N+1) min
x∈�n\M

cap(x,M)

μ(x)
,

where M := ⋃K
i=1 mi . For any x ∈ �n \ M a lower bound on the mesoscopic ca-

pacity cap(x,M) follows by standard comparison with the explicitly computable
capacity capγ (x,M) of a one-dimensional path connecting x with M . For x /∈ M ,
there exists a cycle-free mesoscopic path γ = (γ 0, . . . ,γ k) in �n such that γ 0 = x,
γ k ∈ M , r(γ i ,γ i+1) > 0 for all i ∈ {0, . . . , k − 1} and F(γ i) ≤ F(x) + O(1/N).
This path can be obtained from the best-lattice approximation of the continuous
gradient flow trajectory ẋ(t) = −∇F(x(t)) with x(0) = x. In particular, by [8],
Proposition 3.1, there exists C < ∞ such that, Ph-a.s., for any N ≥ N0(h)∨N1(h)

(4.8)
μ(x)

μ(γ i )
≤ CNn ∀i ∈ {0, . . . , k}.

Hence,

cap(x,M)

μ(x)
≥ capγ (x,M)

μ(x)
=
(

k−1∑
i=0

μ(x)

μ(γ i )r(γ i ,γ i+1)

)−1

≥ e−β(2+h∞)

kCNn+1 ,

where we used in the last step (4.8) and the fact that r(z,z′) ≥ N−1e−2β(2+h∞)

for any z,z′ ∈ �n with r(z,z′) > 0. Since the path γ is assumed to be cycle-free,
its length is bounded by |�n|, which itself is bounded by Nn. Thus, by combining
the estimates above and using the fact that by Assumption 1.18 �K−1 > 0, we can
absorb the subexponential prefactors. That is, Ph-a.s., for any c1 ∈ (0,�K−1) there
exists n0(c1) such that for all n ≥ n0(c1) the following holds: there exists N < ∞
such that for every N ≥ N0(h) ∨ N1(h) ∨ N ,

K
maxM∈{M1,...,MK } PμM

[τ⋃K
i=1Mi\M < τM ]

minA⊂S \⋃K
i=1 Mi

PμA
[τ⋃K

i=1 Mi
< τA] ≤ e−βc1N =: �.

�
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PROOF OF PROPOSITION 1.22. The proof is very similar to the one presented
above. However, one has to be more careful in the construction of the path for
(4.8), which is replaced by the bound

μ(x)

μ(γ i )
≤ CNneβN�2 ∀i ∈ {0, . . . , k}.

The mesoscopic path γ is now constructed such that it passes through the com-
munication height �(x, {m1,m2}) = maxi∈{0,...,k} F(γ i ), where �(x,M) is de-
fined in (1.29). The definition of �2 and the ordering of m1 and m2 ensures that
�(x, {m1,m2}) ≤ �2 for all x ∈ �n. Finally, the nondegeneracy Assumption 1.21
implies that the subexponential factors can be absorbed. �

4.2. Regularity estimates via coupling arguments. The main objective in this
subsection is to show that Assumption 1.11 is satisfied in the random field Curie–
Weiss model.

PROPOSITION 4.2. Let the assumptions of Proposition 1.22 be satisfied. Then
P

h-a.s., for any c2 ∈ (0, c1) there exists n1 ≡ n1(c1, c2, β,h∞) such that for any
n ≥ n0 ∨ n1, for any i �= j ∈ {1,2} and N ≥ N0(h) ∨ N1(h),

(4.9) VarμMi

[
νMi,Mj

μMi

]
≤ ημ[Mi]

cap(Mi,Mj)
with η = e−c2βN .

Moreover, if the external field h takes only finite many discrete values then (4.9)
holds with η = 0.

Let us emphasize that although the bound (4.9) can in principle be deduced
from [8], Proposition 6.12, we include a proof of Proposition 4.2 that is based
on a coupling construction. Coupling methods were first applied in the analysis
of the classical Curie–Weiss model in [34]. Later, this technique was adapted in
[9], Section 3, to obtain pointwise estimates on the mean hitting time for a certain
class of general spin models. This approach was simplified and generalized to
Potts models in [47]. Here, we give a streamlined presentation of [9] thanks to the
simplification of [47] in the setting of the random field Curie–Weiss model.

We are going to construct a coupling (σ (t), ς(t) : t ∈ N0) such that σ(t) and
ς(t) are two versions of the Glauber dynamics of the random field Curie–Weiss
model. Hereby, we choose σ(0) ∈ ρ−1(x) and ς(0) ∈ ρ−1(x), that is, the ini-
tial conditions have the same mesoscopic magnetization x ∈ �n. We use that the
Glauber dynamics of the Curie–Weiss model defined via (1.24) can be imple-
mented by first choosing a site i ∈ {1, . . . ,N} uniform at random and then flipping
the spin at this site i with probability given by the distribution νi,σ in the following
way:

νi,σ [−σi] := Np
(
σ,σ i) and νi,σ [+1] + νi,σ [−1] = 1,
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where σ i
j = σj for all j �= i and σ i

i = −σi . Note that for any σ,ς ∈ ρ−1(x) and

i, j ∈ {1, . . . ,N} such that ρ(σ i) = ρ(ςj ), the estimate (4.4) implies that

(4.10) e−4βε(n)νi,σ [−σi] ≤ νj,ς [−ςj ].
The first objective is to couple the probability distributions νi,σ and νj,ς for σ,ς ∈
ρ−1(x) with i, j chosen such that σi = ςj . In view of (4.10), the coupling can be
constructed in such a way that we can decide in advance by tossing a coin whether
both chains maintain the property of having the same mesoscopic value after the
coupling step.

The actual construction of the coupling is a modification of the optimal cou-
pling result on finite point spaces introduced in [35], Proposition 4.7. The con-
stant e−4βε(n) from (4.10) will play the role of δ, when we apply the following
Lemma 4.3.

LEMMA 4.3 (Optimal coupling [47], Lemma 2.3). Let ν, ν′ ∈ P({−1,1}) and
suppose that there exists δ ∈ (0,1) such that δν(s) ≤ ν′(s) for s ∈ {−1,1}. Then
there exists an optimal coupling (X,X′) of ν and ν′ with the additional property
that for a Bernoulli-δ-distributed random variable V independent of X it holds
that

P
[
X′ = s′ | V = 1,X = s

]= 1s

(
s′) for s, s′ ∈ {−1,1}.

Therewith, we are able to describe the coupling construction. Let T > 0 and
M > 0 and choose a family (Vi : i ∈ {1, . . . ,M}) of i.i.d. Bernoulli variables
with

P[Vi = 1] = 1 − P[Vi = 0] = e−4βε(n).

The coupling is initialized with σ(0) = σ , ς(0) = ς , M0 = 0 and ξ = 0.
for t = 0,1, . . . , T − 1 do

if ξ = 0 and Mt < M then
Choose i uniform at random in {1, . . . ,N} and set It = i.
if σi(t) = ςi(t) then

Choose s ∈ {−1,1} at random according to νi,σ and set

σj (t + 1) =
{
σj (t), j �= i,

s, j = i
and ς(t + 1) =

{
ςj (t), j �= i,

s, j = i.

Set Mt+1 = Mt .
else

Let 	 be such that i ∈ �	.
Choose j uniform at random in {j ∈ �	 : ςj �= σj and ςj = σi}.
Apply Lemma 4.3 to the distributions νi,σ and νj,ς , where VMt

decides if both chains maintain the same mesoscopic value.
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Set Mt+1 = Mt + 1.
if VMt = 0 then

Set ξ = 1.
end if

end if
else

Use the independent coupling to update σ(t) and ς(t).
end if

end for

LEMMA 4.4 (Coupling property). The joint probability measure Pσ,ς of
the processes ((σ (t)), (ς(t)), (Vt ) : t ∈ {1, . . . , T }) obtained from the construction
above is a coupling of two versions of the random field Curie–Weiss model started
in σ and ς , respectively.

PROOF. As soon as ξ = 1 or Mt ≥ M for some t < T , both chains evolve inde-
pendently. Hence, the assertion is immediate. For ξ = 0 and Mt < M , by construc-
tion, i is chosen uniform at random among {1, . . . ,N}. Then, in the case σi = ςi it
follows that νi,σ = νi,ς , whereas in the other case Lemma 4.3 ensures the coupling
property. �

The coupling construction ensures that, once ς(t) and σ(t) have merged, they
evolve together until time T . Hence, we call the event {σ(t) = ς(t)} a successful
coupling. Since conditioning on this event may distort the statistical properties of
the paths ς , we will introduce two independent subevents which are sufficient to
ensure a merging of the processes until time T .

LEMMA 4.5. For any value T and M , define the following two events:

(i) The event that all Bernoulli variables Vi are equal to 1, that is,

A := {
Vi = 1 : i ∈ {0, . . . ,M − 1}}.

(ii) The stopping time ti is the first time the ith spin flips and t is first time all
coordinates of σ have been flipped, that is,

ti = inf
{
t ≥ 0 : σ(t + 1) = −σ(0)

}
and t := max

i∈{1,...,N} ti .

Therewith, the random variable

N :=
N∑

i=1

ti∑
t=0

1It=i

represents the total number of flipping attempts until time t. The event B, only
depending on {σ(t) : t ∈ {0, . . . , T }}, is defined for any B ⊂ S by

B := {t ≤ τB} ∩ {N ≤ M}.
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Then it holds that

A ∩ B ⊂ {
σ(t) = ς(t)

}
.

PROOF. The event B ensures that σ(t) has not reached the set B and all its
spins have flipped once. By the event A , each flipping aligns one more spin with
ς(t), and hence we have σ(t) = ς(t). �

By construction, we have

(4.11) Pς,σ [A ] ≤ e−4βε(n)M,

which is exponentially small in M . Moreover, since

(4.12) νi,σ [−σi] ≥ exp
(−2β(1 + h∞)

)
for any σ ∈ S and i ∈ {1, . . . ,N}, by standard large deviation estimates, we can
bound the tail of the probability of the random variable N .

LEMMA 4.6. Let s > α−1 := exp(2β(1 + h∞)) and set M = c3N . Then

Pσ [N > M] ≤ e−I nBer
α (s−1)N ,

where I nBer
α is the rate function of the negative Bernoulli distribution with param-

eters N and α, that is given by

(4.13) (0,∞) � s �−→ I nBer
α (s) := s ln

s

(1 + s)(1 − α)
− lnα − ln(1 + s) ≥ 0.

In particular, I nBer
α is strictly convex on (0,∞) and I nBer

α (s − 1) > 0 for all s >

α−1.

PROOF. The bound (4.12) implies that if a site is chosen uniformly at ran-
dom among {1, . . . ,N}, it is flipped at least with probability α. Let (ω(t) : t ∈
{0, . . . , T }) be a family of independent Ber(α)-distributed random variables and
define the negative binomial distributed random variable R with parameters N

and α by

R := inf

{
s ≥ 1 :

s∑
t=1

ω(t) = N

}
− N.

Then, by using a straightforward coupling argument (see [47], Lemma 2.6), we
obtain that N ≤ R + N . Further, by using standard large deviation estimates, we
find that

(4.14) Pσ [N > sN ] ≤ P
[
R > (s − 1)N

]≤ e−NI nBer
α (s−1).

Hereby, I nBer
α is given as the Legendre–Fenchel dual of the log-moment generating

function of the negative Bernoulli distribution, that is, t �→ log(α/(1 − (1 − α)et )).
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The rate function I nBer
α is strictly convex, since ∂2

s I nBer
α (s − 1) = 1

s(s+1)
and has

its unique minimum in s = α−1 − 1. Hence, I nBer
α (s − 1) is strictly positive for

s > α−1. �

The above construction allows us to deduce the following bound on hitting prob-
abilities of preimages of mesoscopic sets.

LEMMA 4.7. For any n ∈ N and A,B ⊂ �n disjoint, set A = ρ−1(A) and
B = ρ−1(B). Further, let x ∈ �n and choose s > α−1 according to Lemma 4.6.
Then

(4.15)
Pς [τB < τA]

≥ e−4βε(n)sN (
Pσ [τB < τA] − e−I nBer

α (s−1)N ) ∀σ,ς ∈ ρ−1(x),

where I nBer
α is given by (4.13).

PROOF. We are going to use the above coupling construction with involved
parameters T = ∞ and M = sN . For that purpose, consider the following addi-
tional event:

B := {τB ≤ t} ∩ {N ≤ M}.
Notice that by Lemma 4.5, on the event A ∩ B, we have σ(t) = ς(t) and, in
particular, τσ

B = τ
ς
B . Moreover, on the event A ∩ B ∩ {τς

B < τ
ς
A}, it follows that

τ
ς
A = τσ

A .
On the event A ∩ B, the process (ς(t) : t ≥ 0) reaches B before time t. How-

ever, by the coupling construction, we have that ρ(σ (t)) = ρ(ς(t)) for all t ≤ τB .
Since, by assumption, the sets A, B are preimages of the mesoscopic sets A, B ,
we conclude τσ

B = τ
ς
B and on the event {τς

B < τ
ς
A} the σ -chain can not reach A

before time τσ
B . Thus, we have

Pς [τB < τA] ≥ Pς,σ

[
τ

ς
B < τ

ς
A,A ∩ B

]+ Pς,σ

[
τ

ς
B < τ

ς
A,A ∩ B

]
= Pς,σ

[
τσ
B < τσ

A,A ∩ B
]+ Pς,σ

[
τσ
B < τσ

A,A ∩ B
]

≥ Pς,σ [A ](Pσ [τB < τA] − Pσ [N > M]),
which concludes the statement thanks to the estimates (4.11) and (4.14). �

We are now in the position to apply the above lemma to the metastable situation
of Proposition 4.2 and use the connection of hitting probabilities and the last exit
biased distribution in (1.5).
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PROOF OF PROPOSITION 4.2. For an arbitrary n ∈ N , choose {a},B ⊂ �n

disjoint and set A := ρ−1(a) and B := ρ−1(B). Then Lemma 4.7 implies that

eA,B(σ )
(1.5)= Pσ [τB < τA]

(4.15)≤ e4βε(n)sN

(
cap(A,B)

μ[A] + e−I nBer
α (s−1)N

)
∀σ ∈ A.

Hence, in view of (1.10) we obtain

VarμA

[
νA,B

μA

]
= μ[A]

cap(A,B)
EνA,B

[eA,B] − 1

≤ μ[A]
cap(A,B)

((
e4βε(n)sN − 1

)cap(A,B)

μ[A] + e(4βε(n)s−I nBer
α (s−1))N

)
.

In particular, under the assumptions of Proposition 1.22, we conclude from the
estimate above that

(
e4βε(n)sN − 1

)cap(M1,M2)

μ[M2] + e(4βε(n)s−I nBer
α (s−1))N

≤ e4βε(n)I nBer
α (s−1)N (e−c1βN + e−I nBer

α (s−1)N ).
We have to show that the right-hand side is smaller e−c2βN as state in (4.9). By
exploiting the explicit definition of the rate function I nBer

α in (4.13), we can choose
s large enough such that I nBer

α (s − 1) ≥ βc1 with c1 as in Proposition 1.22. Then,
for any c2 ∈ (0, c1), we find n1 = n1(c1, c2, h∞) such that for all n > n1, it follows
4ε(n)s = 8h∞s/n < c1 − c2, and hence η = e−c2βN as stated in (4.9). �

4.3. Local mixing estimates within metastable sets. For the proof of Propo-
sition 4.8, we follow [36] to compare the Poincaré constant CPI,i in (1.16) and
logarithmic Sobolev constant CLSI,i in (1.17) for any M ∈ M with the ones of
the Bernoulli–Laplace model. First, we compare the variance and entropy. Then
we introduce the Bernoulli–Laplace model, for which we provide its Poincaré and
logarithmic Sobolev constant from the literature. Finally, by comparing the differ-
ent Dirichlet forms we deduce a Poincaré and logarithmic Sobolev constant inside
the metastable sets.

Step 1: Comparison of variance and entropy. We compare the variance and en-
tropy with respect to μM with the ones with respect to μ̄M . Note that, by definition,
μ̄M is the uniform measure on M . For the comparison of the variance, we use the
two-sided comparison

(4.16) H(σ) − εN ≤ H(σ) ≤ H(σ) + εN

and obtain

(4.17) VarμM
[f ] = inf

a∈REμM

[
(f − a)2]≤ eβε(n)N Varμ̄M

[f ].
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Similarly, for the entropy we use the fact that b logb − b loga − b + a ≥ 0 for any
a, b > 0. Then, by following essentially the same argument as given in [31],

EntμM

[
f 2]= inf

a>0
EμM

[
f 2 logf 2 − f 2 loga − f 2 + a

]≤ eβε(n)N Entμ̄M

[
f 2].

Step 2: Poincaré and logarithmic Sobolev constant of the Bernoulli–Laplace
model. In the sequel, we introduce a dynamics on M . For that purpose, denote by
σj,k the spin-exchange configuration, that is, σ

j,k
i := σi for i /∈ {j, k} and σ

j,k
j :=

σk as well as σ
j,k
k := σj . Then, since M = ρ−1(m), we have for σ ∈ M , that

σj,k ∈ M if and only if j, k ∈ �	 for some 	 ∈ {1, . . . , n}. Hence, for σ,σ ′ ∈ M

with |σ − σ ′|1 = 4, we find 	 ∈ {1, . . . , n} and j, k ∈ �	 such that σ ′ = σ j,k . Let
us denote the according mesoscopic index by 	(σ,σ ′). Therewith, we define the
transition probabilities (pBL(σ, σ ′) : σ,σ ′ ∈ M) by

pBL
(
σ,σ ′) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

|�	(σ,σ ′)| ,
∣∣σ − σ ′∣∣

1 = 4,

0,
∣∣σ − σ ′∣∣

1 > 4,

1 − ∑
η∈M\σ

pBL(σ, η), σ = σ ′.

Note that pBL is reversible with respect to the uniform distribution μ̄M . Since
|M| = ∏n

	=1
(|�	|

k	

)
with k	 = m	N and ρ−1(m) = M , μ̄M is a product measure.

Moreover, the transition probabilities, pBL, are compatible with the tensorization,
since any jump only occurs among two coordinates in �	 for some 	 ∈ {1, . . . , n}.
Hence, if we regard the coordinates of σ such that σi = +1 as particle position,
then the Markov chain induced by pBL is an exclusion process of particles in n

boxes of size {�	}n	=1 such that in each box 	 ∈ {1, . . . , n} the particle number is
k	. This is the product of n Bernoulli–Laplace models. Both the spectral gap and
logarithmic Sobolev constant are well known; cf. [27] and [33], Theorem 5. Let
us denote by E BL the Dirichlet form corresponding to (μ̄M,pBL). Then, by the
tensorization property of the Poincaré and logarithmic Sobolev constant (see [26],
Lemma 3.2), we obtain

Varμ̄M
[f ] ≤ max

	∈{1,...,n}{CPI,BL(|�	|,k	)}E BL(f ),

Entμ̄M

[
f 2]≤ max

	∈{1,...,n}{CLSI,BL(|�	|,k	)}E BL(f ),

where for some universal constant cBL > 0,

(4.18)

CPI,BL(|�	|,k	) :=
( |�	|

k	(|�	| − k	)

)−1

≤ N

4
,

CLSI,BL(|�	|,k	) := CPI,BL(|�	|,k	)

(
cBL log

|�	|2
k	(|�	| − k	)

)−1

≤ N

8 log 2cBL
.
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Step 3: Comparison of Dirichlet forms. Note that, for σ,σ ′ ∈ M , the transition
probabilities pBL(σ, σ ′) are not absolutely continuous with respect to p(σ,σ ′).
For this reason, consider the auxiliary Dirichlet form E2 associated to the two-step
transition probabilities (p2(σ, σ ′) : σ,σ ′ ∈ S ) given by

p2
(
σ,σ ′) :=∑

σ ′′
p
(
σ,σ ′′)p(σ ′′, σ ′).

Since μ is reversible with respect to p, μ is also reversible with respect to p2. In
addition, p and p2 have the same eigenvectors ϕj and if we denote by −1 ≤ λj ≤ 1
the according eigenvalue of p, then the j th eigenvalue of p2 is λ2

j . Hence,

(4.19) E2(f ) =
|Sn|∑
j=1

(
1 − λ2

j

)∣∣〈f,ϕj 〉μ
∣∣2 ≤ 2

|Sn|∑
j=1

(1 − λj )
∣∣〈f,ϕj 〉μ

∣∣2 = 2E (f ).

Thus, it suffices to compare the Dirichlet forms EBL and E2. For that purpose,
we are left with establishing a bound on the ratio of the rates μ̄M(σ )pBL(σ, σ ′)
and μ(σ)p2(σ, σ ′) for σ,σ ′ ∈ M . For σ,σ ′ ∈ M with |σ − σ ′|1 = 4, we find σ ′′
such that |σ − σ ′′|1 = 2 and |σ ′ − σ ′′|1 = 2, which allows us to obtain a lower
bound using the explicit representation of the Hamiltonian (1.22) as well as the
boundedness of the external field (1.23)

p2
(
σ,σ ′)≥ p

(
σ,σ ′′)p(σ ′′, σ ′)≥ 1

N2 exp
(−4β(1 + h∞)

)
.

Hence, the bound (4.16) and the trivial estimate |�	| ≥ 1 leads to

(4.20)
μ̄M(σ )pBL(σ, σ ′)

μ(σ)p2(σ, σ ′)
≤ N2 exp

(
β
(
ε(n)N + 4 + 4h∞

))
,

which results in a comparison of the Dirichlet form E BL and E2 with the same
constant.

PROPOSITION 4.8. Assumption 1.9 holds with constants CPI,M and CLSI,M
satisfying

max{CPI,M ,2 log 2cBLCLSI,M } ≤ N3

2
exp

(
2β

(
ε(n)N + 2 + 2h∞

))
for some universal cBL > 0.

PROOF. The conclusion follows by combining the chain of estimates for the
variance

VarμM
[f ] (4.17)≤ eβε(n)N Varμ̄M

[f ] (4.18)≤ N

4
eβε(n)NE BL(f )

(4.20)≤ N3

4
e2β(ε(n)N+2+2h∞)E2(f )

(4.19)≤ N3

2
e2β(ε(n)N+2+2h∞)E (f )
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and likewise for the entropy. Notice that the final estimate on CPI,M and CLSI,M
is independent of M . Since the constants CPI,M and CLSI,M are convex combina-
tions of CPI,M and CLSI,M for M ∈ M and, the assertion follows. �

APPENDIX: YOUNG FUNCTIONS

LEMMA A.1 (Properties of Young functions). A function � : [0,∞) →
[0,∞] is a Young function if it is convex, �(0) = limr→0 �(r) = 0 and
limr→∞ �(r) = ∞. Then it holds that:

(i) � is nondecreasing;
(ii) its Legendre–Fenchel dual � : [0,∞) → [0,∞] defined by

�(r) := sup
s∈[0,∞]

{
sr − �(s)

}
is again a Young function;

(iii) the (pseudo)-inverse of �, defined by �−1(t) := inf{s ∈ [0,∞] : �(s) > t}
is concave and nondecreasing.

PROOF. (i) By convexity, it holds for any α ∈ (0,1) that

�(αt) = �
(
αt + (1 − α) · 0

)≤ α�(t) + (1 − α�(0) = α�(t).

Hence, by using additionally the nonnegativity of � it follows for any α ∈ (0,1),

�(t) ≥ 1

α
�(αt) ≥ �(αt).

(ii) The convexity of � follows by convex duality for Legendre–Fenchel trans-
form, since � is a convex function. Since �(s) ≥ 0 for all s and at least equality
for s = 0, it first follows �(r) ≥ 0 for all r and in particular

�(0) = sup
s∈[0,∞]

{−�(s)
}= 0.

Now from limr→∞ �(r) = ∞ and the convexity of � follows that there exists
κ > 0 such that �(r) ≥ κr for r ≥ R. Hence, we get

lim
r→0

sup
s∈[0,∞]

{
sr − �(s)

}≤ lim
r→0

max
{

sup
s∈[0,R]

sr, sup
s≥R

{
s(r − κ)

}}= 0.

Similarly, since limr→∞ �(r) = 0, it follows that �(r) ≤ ε < ∞ for all r ∈ [0, δ],
and hence

lim
r→∞ sup

s∈[0,∞]
{
sr − �(s)

}≥ lim
r→∞(δr − ε) = ∞.

(iii) The fact, that �−1 is nondecreasing follows immediately from its definition
and that � is nondecreasing. Now let u, v ∈ {�(s) : s ∈ R,�(s) < ∞}. Then, by
convexity of � follows for α ∈ (0,1) and β = 1 − α,

�
(
α�−1(u) + β�−1(v)

)≤ α�
(
�−1(u)

)+ β�
(
�−1(v)

)= αu + βv,
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where we used that � is continuous on its finite support, since it is convex. Since
�−1 is nondecreasing, the inequality is preserved after applying it,

�−1(�(
α�−1(u) + β�−1(v)

))≤ �−1(αu + βv).

Now by noting

�−1(�(x)
)= inf

{
s : �(s) > �(x)

}≥ x,

if follows that �−1 is concave on the finite range of �. If this range is finite, then
�−1 gets extended continuously as a constant, and hence still concave. �
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