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Abstract. In the early 1980s, Halbert White inaugurated a “model-robust”
form of statistical inference based on the “sandwich estimator” of standard
error. This estimator is known to be “heteroskedasticity-consistent,” but it is
less well known to be “nonlinearity-consistent” as well. Nonlinearity, how-
ever, raises fundamental issues because in its presence regressors are not an-
cillary, hence cannot be treated as fixed. The consequences are deep: (1) pop-
ulation slopes need to be reinterpreted as statistical functionals obtained from
OLS fits to largely arbitrary joint x-y distributions; (2) the meaning of slope
parameters needs to be rethought; (3) the regressor distribution affects the
slope parameters; (4) randomness of the regressors becomes a source of sam-
pling variability in slope estimates of order 1/

√
N ; (5) inference needs to be

based on model-robust standard errors, including sandwich estimators or the
x-y bootstrap. In theory, model-robust and model-trusting standard errors can
deviate by arbitrary magnitudes either way. In practice, significant deviations
between them can be detected with a diagnostic test.
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1. INTRODUCTION

Halbert White’s basic sandwich estimator of stan-
dard error for OLS can be described as follows: In a
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linear model with regressor matrix XN×(p+1) and re-
sponse vector yN×1, start with the familiar derivation
of the covariance matrix of the OLS coefficient esti-
mate β̂ , but allow heteroskedasticity, V [y|X] = D di-
agonal:

V [β̂|X] = V
[(

X′X
)−1X′y|X]

= (
X′X

)−1(
X′DX

)(
X′X

)−1
.

(1)

The last expression has the characteristic “sandwich”
form, (X′X)−1 forming the “bread” and X′DX the
“meat.” Although this sandwich formula does not look
actionable for standard error estimation because the
variances Dii = σ 2

i are not known, White showed that
(1) can be estimated asymptotically correctly. If one
estimates σ 2

i by squared residuals r2
i , each r2

i is not a
good estimate, but the averaging implicit in the “meat”
provides an asymptotically valid estimate:1

(2) V̂ sand[β̂] �= (
X′X

)−1(
X′D̂X

)(
X′X

)−1
,

where D̂ is diagonal with D̂ii = r2
i . Standard error

estimates are obtained by ŜEsand[β̂j ] = V̂ sand[β̂]1/2
jj .

They are asymptotically valid even if the responses are
heteroskedastic, hence the term “Heteroskedasticity-
Consistent Covariance Matrix Estimator” in the title of
one of White’s (1980b) famous articles.

Lesser known is the following deeper result in one of
White’s (1980a, p. 162–163) less widely read articles:
the sandwich estimator of standard error is asymptoti-
cally correct even in the presence of nonlinearity:2

(3) E[y|X] �= Xβ for all β.

The term “heteroskedasticity-consistent” is an unfortu-
nate choice as it obscures the fact that the same estima-
tor of standard error is also “nonlinearity-consistent”
when the regressors are treated as random. The sand-
wich estimator of standard error is therefore “model-
robust” not only against second-order model violations

1This sandwich estimator is only the simplest version of its kind.
Other versions were examined, for example, by MacKinnon and
White (1985) and Long and Ervin (2000). Some forms are perva-
sive in Generalized Estimating Equations (GEE; Liang and Zeger,
1986, Diggle et al., 2002) and in the Generalized Method of Mo-
ments (GMM; Hansen, 1982, Hall, 2005).

2The term “nonlinearity” is meant in the sense of first order
model misspecification. A different meaning of “nonlinearity,” not
intended here, occurs when the regressor matrix X contains mul-
tiple columns that are functions (products, polynomials, B-splines,
. . . ) of underlying independent variables. One needs to distinguish
between “regressors” and “independent variables”: Multiple re-
gressors may be functions of one or more independent variable(s).

but first-order violations as well. Because of the rela-
tive obscurity of this important fact we will pay con-
siderable attention to its implications. In particular, we
will show how nonlinearity “conspires” with random-
ness of the regressors:

(1) to make slopes dependent on the regressor dis-
tribution and

(2) to generate sampling variability, even in the ab-
sence of noise in the response.

For an intuitive grasp of these effects, the reader may
peruse Figure 2 for effect (1) and Figure 4 for ef-
fect (2).3

From the sandwich estimator (2), the usual model-
trusting estimator is obtained by collapsing the sand-
wich form using homoskedasticity, D̂ = σ̂ 2I :

V̂ lin[β̂] �= (
X′X

)−1
σ̂ 2,

σ̂ 2 = ‖r‖2/(N − p − 1).

This yields finite-sample unbiased squared standard er-

ror estimators ŜE
2
lin[β̂j ] = V̂ lin[β̂]jj if the model is

first- and second-order correct: E[y|X] = Xβ (linear-
ity) and V [y|X] = σ 2IN (homoskedasticity). Assum-
ing distributional correctness (Gaussian errors), one
obtains finite-sample correct tests and confidence in-
tervals.

The corresponding tests and confidence intervals
based on the sandwich estimator have only an asymp-
totic justification, but their asymptotic validity holds
under much weaker assumptions. In fact, it may rely
on no more than the assumption that the rows (yi, �x′

i )

of the data matrix (y,X) are i.i.d. samples from a
joint multivariate distribution subject to some techni-
cal conditions. Thus sandwich-based theory provides
asymptotically correct inference that is model-robust.
The question then arises what model-robust inference
is about: When no model is assumed, what are the pa-
rameters, and what is their meaning?

Discussing these questions is a first goal of this ar-
ticle. An established answer is that parameters can be
reinterpreted as statistical functionals β(P ) defined on
a large nonparametric class of joint distributions P =

3A more striking illustration of effect (2) in the form of an ani-
mation is available to users of the R Language (2008) by executing
the following line of code:

source(“http://stat.wharton.upenn.edu/~buja/

src-conspiracy-animation2.R”)
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P (dy, d �x) through best approximation (Section 3),
sometimes called “projection.” The sandwich estima-
tor produces then asymptotically correct standard er-
rors for the slope functionals βj (P ) (Section 5). Vex-
ing is the question of the meaning of slopes in the pres-
ence of nonlinearity as the standard interpretations no
longer apply. We will propose interpretations that draw
on the notions of casewise and pairwise slopes after
linear adjustment (Section 10).

A second goal of this article is to discuss why the
regressors should be treated as random. Based on an
ancillarity argument, model-trusting theories tend to
condition on the regressors and hence treat them as
fixed (Cox and Hinkley, 1974, p. 32f; Lehmann and
Romano, 2008, p. 395ff). However, it will be shown
that under misspecification ancillarity of the regressors
is violated (Section 4). Here are some implications:

• Population parameters β(P ), now interpreted as sta-
tistical functionals, depend on the distribution of
the regressors. Thus it matters where the regressors
fall. The reason is intuitive: When models are ap-
proximations, it matters where the approximation is
made; see Figure 2.

• A natural intuition fails, caused by misleading ter-
minology: Nonlinearity — sometimes called “model
bias”—does not primarily cause bias in estimates
β(P̂ ). It causes sampling variability of order N−1/2,
thereby rivaling error/noise as a source of sampling
variability (Section 6).

• A second intuition fails: While it is correct that an
inference guarantee conditional on the regressors
implies a marginal inference guarantee, this princi-
ple is inapplicable because the premise is false—
under misspecification, there is no inference guar-
antee conditional on the regressors. The reason is
that inference theories that treat regressors as fixed
are incapable of correctly accounting for misspecifi-
cation.

All three implications hold in great generality, but in
this article they will be worked out for OLS linear re-
gression to achieve the greatest degree of lucidity.

A third goal of this article is to argue in favor
of the “x–y bootstrap” which resamples observations
(�x′

i , yi). The better known “residual bootstrap” resam-
ples residuals ri and thereby assumes a linear response
surface and exchangeable errors. There exists theory
to justify both (e.g., Freedman, 1981, and Mammen,
1993), but only the x–y bootstrap is model-robust and

solves the same problem as the sandwich estimator.4

In Part II of this two-part series of articles, it will be
shown that the sandwich estimator is a limiting case of
the x–y bootstrap.

A fourth goal of this article is to practically (Sec-
tion 2) and theoretically (Section 11) compare model-
robust and model-trusting estimators of standard er-
ror in the case of OLS linear regression. To this end,
we define a ratio of asymptotic variances—“RAV” for
short—that describes the discrepancies between the
two standard errors in the asymptotic limit.

A fifth goal is to estimate the RAV for use as a test
statistic. We derive an asymptotic null distribution to
test for model deviations that invalidate the usual stan-
dard error of a specific coefficient. The resulting “mis-
specification test” differs from other such tests in that
it answers the question of discrepancies among stan-
dard errors directly and separately for each coefficient
(Section 12).

A final goal is to briefly discuss issues with sandwich
estimators (Section 13): They can be inefficient when
models are correctly specified. We additionally point
out that they are nonrobust to heavy tails in the joint
x–y distribution. To make sense of this observation, the
following distinctions are needed: (1) classical robust-
ness to heavy tails is distinct from model robustness to
first- and second- order model misspecifications; (2) at
issue is not robustness (in either sense) of parameter
estimates but of standard errors. It is the latter we ex-
amine here.

Throughout we use precise notation for clarity, yet
this article is not very technical. Many results are ele-
mentary, not new, and stated without regularity condi-
tions. Readers may browse the tables and figures and
read associated sections that seem most germane. Im-
portant notations are shown in boxes.

The present article is limited to OLS linear regres-
sion, both for populations and for data. The case per-
mits explicit calculations and lucid interpretations. Part
II analyzes the notion of regression in a general and
model-free way.

The idea that models are approximations, and hence
generally “misspecified” to a degree has a long his-
tory, most famously expressed by Box (1979). We
prefer to quote Cox (1995): “it does not seem help-
ful just to say that all models are wrong. The very
word model implies simplification and idealization.”

4Note David Freedman’s (1981) surprise when he inadvertently
discovered the same assumption-lean validity of the x–y bootstrap
(ibid. top of p. 1220).
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TABLE 1
LA Homeless data: Comparison of standard errors. See also Table 2 in the Appendix (Buja et al., 2019) for the Boston Housing Data

β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

Intercept 0.760 22.767 16.505 16.209 0.726 0.712 0.981 0.033 0.046 0.047
MedianIncome ($K) −0.183 0.187 0.114 0.108 0.610 0.576 0.944 −0.977 −1.601 −1.696
PercVacant 4.629 0.901 1.385 1.363 1.531 1.513 0.988 5.140 3.341 3.396
PercMinority 0.123 0.176 0.165 0.164 0.937 0.932 0.995 0.701 0.748 0.752
PercResidential −0.050 0.171 0.112 0.111 0.653 0.646 0.988 −0.292 −0.446 −0.453
PercCommercial 0.737 0.273 0.390 0.397 1.438 1.454 1.011 2.700 1.892 1.857
PercIndustrial 0.905 0.321 0.577 0.592 1.801 1.843 1.023 2.818 1.570 1.529

The history of inference under misspecification can
be traced to Cox (1962), Eicker (1963), Berk (1966,
1970), Huber (1967), before being systematically elab-
orated by White’s articles (1980a, 1980b, 1981, 1982,
among others), capped by a monograph (White, 1994).
A wide-ranging discussion by Wasserman (2011) calls
for “Low Assumptions, High Dimensions.” A book by
Davies (2014) elaborates the idea of adequate mod-
els for a given sample size. We, the present authors,
got involved with this topic through our work on post-
selection inference (Berk et al., 2013) because the re-
sults of model selection should certainly not be as-
sumed to be “correct.” We compared the obviously
model-robust standard errors of the x–y bootstrap with
the usual ones of linear models theory and found the
discrepancies illustrated in Section 2. Attempting to ac-
count for these discrepancies became the starting point
of the present article.

2. DISCREPANCIES BETWEEN STANDARD
ERRORS ILLUSTRATED

Table 1 shows regression results for a dataset con-
sisting of a sample of 505 census tracts in Los Angeles
that has been used to relate the local number of home-
less (Y ) to covariates for demographics and building
usage (Berk et al., 2008).5 We do not intend a care-
ful modeling exercise but show the raw results of lin-
ear regression to illustrate the degree to which discrep-
ancies can arise among three types of standard errors:
SElin from linear models theory, SEboot from the x–y

5The response is the raw number of homeless in a census tract.
The tracts do not differ by magnitudes and, according to experts,
size effects seem minor. The homeless tend to clump in certain ar-
eas within census tracts, and it is thought that the regressors de-
scribe features of the tracts that make them magnets for the home-
less. Finally, policy makers are accustomed to thinking in counts,
not percentages.

bootstrap (Nboot = 100,000) and SEsand from the sand-
wich estimator (according to MacKinnon and White’s
(1985) HC2 proposal). Ratios of standard errors that
are far from +1 are shown in bold font.

The ratios SEsand/SEboot show that the sandwich
and bootstrap estimators are in good agreement. Not
so for the linear models estimates: we have SEboot,

SEsand > SElin for the regressors PercVacant,
PercCommercial and PercIndustrial, and
SEboot,SEsand < SElin for Intercept, MedianIn-
come ($K), PercResidential. Only for Per-
cMinority is SElin off by less than 10% from SEboot
and SEsand. The discrepancies affect outcomes of some
of the t-tests: Under linear models theory the regres-
sors PercCommercial and PercIndustrial
have sizable t-values of 2.700 and 2.818, respectively,
which are reduced to unconvincing values below 1.9
and 1.6, respectively, if the x–y bootstrap or the sand-
wich estimator are used. On the other hand, for Me-
dianIncome ($K) the t-value −0.977 from linear
models theory becomes borderline significant with the
bootstrap (−1.601) or sandwich (−1.696) estimator
under a plausible one-sided alternative.

A similar exercise with fewer discrepancies but sim-
ilar conclusions is shown in Appendix B for the Boston
Housing data.

Conclusions: (1) SEboot and SEsand are in sub-
stantial agreement; (2) SElin on the one hand and
{SEboot,SEsand} on the other hand can have substan-
tial discrepancies; (3) the discrepancies are specific to
regressors.

3. THE POPULATION FRAMEWORK FOR LINEAR
OLS

As noted earlier, model-robust inference needs a tar-
get of estimation that is well-defined outside the linear
working model. To this end, we need notation for data
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distributions that are free of model assumptions, essen-
tially relying on i.i.d. sampling of x–y tuples. Subse-
quently, OLS parameters can be introduced as statisti-
cal functionals of these distributions through best linear
approximation. This is sometimes called “projection,”
meaning that the assumption-free data distribution is
“projected” to the “nearest” distribution in the working
model.

3.1 Populations for OLS Linear Regression

In an assumption-lean, model-robust population
framework for OLS linear regression with random re-
gressors, the ingredients are regressor random vari-
ables X1, . . . , Xp and a response random variable Y .
For now, the only assumption is that they are all nu-
meric and have a joint distribution, written as

P = P (dy,dx1, . . . ,dxp).

Data will consist of i.i.d. multivariate samples from this
joint distribution (Section 5). No working model for P
will be assumed.

It is convenient to add a fixed regressor 1 to accom-
modate an intercept parameter; we may hence write

�X = (1,X1, . . . ,Xp)′

for the column random vector of the regressor vari-
ables, and �x = (1, x1, . . . , xp)′ for its values. We fur-
ther write

P
Y, �X = P , P

Y | �X, P �X,

for, respectively, the joint distribution of (Y, �X), the
conditional distribution of Y given �X, and the marginal
distribution of �X. These denote actual data distribu-
tions, free of assumptions of a working model.

All variables will be assumed to be square inte-
grable. Required is also that E[ �X �X′] is full-rank, but
permitted are nonlinear degeneracies among regressors
as when they are functions of underlying independent
variables such as in polynomial or B-spline regression
or product interactions.

3.2 Targets of Estimation: The OLS Statistical
Functional

We write any function f (X1, . . . ,Xp) of the regres-
sors as f ( �X). We will need notation for the “true re-
sponse surface” μ( �X), which is the conditional expec-
tation of Y given �X, and the best L2(P ) approximation
to Y among functions of �X. It is not assumed to be lin-
ear in �X:

μ( �X)
�= E[Y | �X] = argmin

f ( �X)∈L2(P )

E
[(

Y − f ( �X)
)2]

.

The main definition concerns the best population lin-
ear approximation to Y , which is the linear function
l( �X) = β ′ �X with coefficients β = β(P ) given by

β(P )
�= argmin

β∈Rp+1
E

[(
Y − β ′ �X)2]

= E
[ �X �X′]−1

E[ �XY ]

= argmin
β∈Rp+1

E
[(

μ( �X) − β ′ �X)2]

= E
[ �X �X′]−1

E
[ �Xμ( �X)

]
.

Both the second and fourth expressions follow from the
population normal equations:

E
[ �X �X′]

β − E[ �XY ]
= E

[ �X �X′]
β − E

[ �Xμ( �X)
] = 0.

(4)

The population coefficients β(P ) = (β0(P ), β1(P ),

. . . , βp(P ))′ form a vector statistical functional, P �→
β(P ), defined for a large class of joint data distribu-
tions P = P

Y, �X . If the response surface under P hap-

pens to be linear, μ( �X) = β̃
′ �X, as it is for example un-

der a Gaussian linear model, Y | �X ∼ N (β̃
′ �X, σ 2), then

β(P ) = β̃ . The statistical functional is therefore a nat-
ural extension of the traditional meaning of a model pa-
rameter, justifying the notation β = β(P ). The point is,
however, that β(·) is defined even when linearity does
not hold. (Depending on the context, we may write β
to mean β(P ).)

3.3 The Noise-Nonlinearity Decomposition for
Population OLS

The response Y has the following canonical decom-
positions:

Y = β ′ �X + (
μ( �X) − β ′ �X)

︸ ︷︷ ︸+ (
Y − μ( �X)

)
︸ ︷︷ ︸

= β ′ �X + η( �X) + ε︸ ︷︷ ︸
= β ′ �X + δ.

(5)

We call ε = ε| �X the noise and η = η( �X) the nonlin-
earity,6 while for δ there is no standard term, so “pop-
ulation residual” may suffice; see Table 2 and Figure 1.
Important to note is that (5) is a decomposition, not a

6The term “nonlinearity” has two meanings, related to each other.
“The/a nonlinearity” refers to η(�x), but “presence of nonlinearity”
is a property of μ(�x).
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TABLE 2
Random variables and their canonical decompositions

η( �X) = μ( �X) − β ′ �X = η nonlinearity
ε = Y − μ( �X) noise
δ = Y − β ′ �X = η + ε population residual
μ( �X) = β ′ �X + η( �X) response surface
Y = β ′ �X + η( �X) + ε = β ′ �X + δ response

model assumption. In a model-robust framework, there
is no notion of “error term” in the usual sense; its place
is taken by the population residual δ which satisfies few
of the usual assumptions made in generative models.
It naturally decomposes into a systematic component,
the nonlinearity η = η( �X), and a random component,
the noise ε = ε| �X. Model-trusting linear modeling, be-

fore conditioning on �X, must assume η( �X)
P= 0 and ε

to have the same �X-conditional distribution in all of
regressor space, that is, to be independent of �X. No
such assumptions are made here. What is left are or-
thogonalities satisfied by η and ε in relation to �X. If
we call independence “strong-sense orthogonality,” we
have instead

weak-sense orthogonality: η ⊥ �X(
E[η · Xj ] = 0 ∀j = 0,1, . . . , p

)
,

medium-sense orthogonality: ε ⊥ L2(P �X)(
E

[
ε · f ( �X)

] = 0 ∀f ∈ L2(P �X)
)
.

(6)

These are not assumptions but consequences of popu-
lation OLS and the definitions. Because of the inclu-
sion of an intercept (j = 0 and f = 1, resp.), both the
nonlinearity and noise are marginally centered: E[η] =
E[ε] = 0. Importantly, it also follows that ε ⊥ η( �X)

because η is just some f ∈ L2(P �X).
In what follows, we will need the following natural

definitions:

• Conditional noise variance: The noise ε, not as-
sumed homoskedastic, can have arbitrary condi-
tional distributions P (dε| �X = �x) for different �x ex-
cept for conditional centering and finite conditional
variances. Define

(7) σ 2( �X)
�= V [ε| �X] = E

[
ε2| �X] P

< ∞.

When we use the abbreviation σ 2, we will mean
σ 2 = σ 2( �X) as we will never assume homoskedas-
ticity.

FIG. 1. Illustration of the decomposition (5) for linear OLS.

• Conditional mean squared error: This is the condi-
tional MSE of Y w.r.t. the population linear approxi-
mation β ′ �X. Its definition and bias-variance decom-
position are

(8) m2( �X)
�= E

[
δ2| �X] = η2( �X) + σ 2( �X).

The right-hand side follows from δ = η + ε and ε ⊥
η( �X) noted after (6).

In the above definitions and statements, randomness of
the regressor vector �X has started to play a role. The
next section will discuss a crucial role of the marginal
regressor distribution P �X .

4. BROKEN REGRESSOR ANCILLARITY I:
NONLINEARITY AND RANDOM X JOINTLY

AFFECT SLOPES

4.1 Misspecification Destroys Regressor
Ancillarity

Conditioning on the regressors and treating them as
fixed when they are random has historically been justi-
fied with the ancillarity principle. Regressor ancillarity
is a property of working models p(y|�x; θ) for the con-
ditional distribution of Y | �X, where θ is the parameter
of interest in the usual meaning of a parametric model.
Because we treat �X as random, the assumed joint dis-
tribution of (Y, �X) is

p(y, �x; θ) = p(y|�x; θ)p(�x),
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FIG. 2. Illustration of the dependence of the population OLS solution on the marginal distribution of the regressors: The left figure shows
dependence in the presence of nonlinearity; the right figure shows independence in the presence of linearity.

where p(�x) is the unknown marginal regressor distri-
bution, acting as a “nonparametric nuisance parame-
ter.” Ancillarity of p(�x) in relation to θ is immediately
recognized by forming likelihood ratios,

p(y, �x; θ1)/p(y, �x; θ2) = p(y|�x; θ1)/p(y|�x; θ2),

which are free of p(�x), detaching the regressor distri-
bution from inference about the parameter θ . (For more
on ancillarity, see Appendix C.) This logic is valid if
p(y|�x; θ) correctly describes the actual conditional re-
gressor distribution P

Y | �X for some θ . If this is not so,
the ancillarity argument does not apply.

To pursue the consequences of nonancillarity, one
needs to consider P

Y | �X not in the working model and
interpret parameters as statistical functionals:

PROPOSITION 4.1 (Breaking regressor ancillarity in
linear OLS). Consider joint distributions that share
a function μ(�x) as a (a.s.) version of their conditional
expectation of the response. Among these distributions,
there exist P 1 and P 2 with β(P 1) �= β(P 2) if and only
if μ(�x) is nonlinear.

See Appendix E.1. Because β(P 1,2) depend on Y

only through μ( �X), the cause of β(P 1) �= β(P 2) must
be a difference in their regressor distributions.

The proposition is best explained graphically: Fig-
ure 2 shows single regressor scenarios with nonlin-
ear and linear mean functions, respectively, and the
same two regressor distributions. The two population
OLS lines for the two regressor distributions differ in
the nonlinear case and they are identical in the linear
case.7

7See also White (1980a, p. 155f); his g(Z) + ε is our Y .

Ancillarity of regressors is sometimes informally ex-
plained as the regressor distribution being indepen-
dent of, or unaffected by, the parameters of inter-
est. From the present point of view where param-
eters are not labels for distributions but rather sta-
tistical functionals, this phrasing has things upside
down:

It is not the parameters that affect the regressor dis-
tribution;
it is the regressor distribution that affects the param-
eters.

4.2 Implications of the Dependence of Slopes on
Regressor Distributions

A first practical implication, illustrated by Figure 2,
is that two empirical studies that use the same regres-
sors, the same response, and the same model, may yet
estimate different parameter values, β(P 1) �= β(P 2).
This possibility arises even if the true response sur-
face μ(�x) is identical between the studies. The rea-
son is model misspecification and differences between
the regressor distributions in the two studies. Here is
therefore a potential cause of so-called “parameter het-
erogeneity” in meta-analyses. The single-regressor sit-
uation of Figure 2 gives only an insufficient impres-
sion of the problem because for a single regressor
such differences between regressor distributions are
easily detected. For multiple regressors, the differences
take on a multivariate nature and may become unde-
tectable.

A second practical implication, illustrated by Fig-
ure 3, is that misspecification is a function of the re-
gressor range: Over a narrow range a model has a better
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FIG. 3. Illustration of the interplay between regressors’ high–
density range and nonlinearity: Over the small range of P 1 the
nonlinearity is undetectable and immaterial for realistic sample
sizes, whereas over the extended range of P 2 the nonlinearity is
more likely to be detectable and relevant.

chance of appearing “correctly specified.” In the figure,
over the narrow range of P 1(d �x) the linear approxima-
tion appears nearly correctly specified, whereas over
the wide range of P 2(d �x) it is grossly misspecified.
Again, the issue gets magnified for larger numbers of
regressors where the notion of “regressor range” has a
multivariate meaning.

Finally, the fact that all models have limited ranges
of “acceptable approximation” is a universal issue.
This holds even in physical sciences based on the most
successful theories known to us.

5. THE NOISE-NONLINEARITY DECOMPOSITION
OF OLS ESTIMATES

We turn to estimation from i.i.d. data.8 We de-
note i.i.d. observations from a joint distribution P

Y, �X
by (Yi, �X′

i ) = (Yi,1,Xi,1, . . . ,Xi,p) (i = 1,2, . . . ,N ).
We stack them to vectors and matrices as in Table 3,
inserting a constant 1 in the regressors to accommo-
date an intercept term. In particular, �X′

i is the ith row
and Xj the j th column of the regressor matrix X (i =
1, . . . ,N , j = 0, . . . , p).

8In econometrics, where misspecification has been an important
topic, the assumption of i.i.d. data is too limiting; instead, one as-
sumes time series structures. See, for example, White (1994).

The (unknown) nonlinearity η, noise ε and popula-
tion residual δ generate random N -vectors when eval-
uated at all N observations (again, see Table 3):

η = μ − Xβ, ε = Y − μ,

δ = Y − Xβ = η + ε.
(9)

It is important to distinguish between population and
sample properties: The vectors δ, ε and η are not or-
thogonal to the regressor columns Xj in the sample.
Writing 〈·, ·〉 for the usual Euclidean inner product on
R

N , we have in general

〈δ,Xj 〉 �= 0, 〈ε,Xj 〉 �= 0, 〈η,Xj 〉 �= 0,

even though the associated random variables are or-
thogonal to Xj in the population: E[δXj ] = 0,
E[εXj ] = 0, E[η( �X)Xj ] = 0, according to (6).

The OLS estimate of β(P ) is as usual

(10) β̂ = argminβ̃ ‖Y − Xβ̃‖2 = (
X′X

)−1X′Y.

If we write P̂ for the empirical distribution of the ob-
servations (Yi, �X′

i ), then β̂ = β(P̂ ) is the plug-in es-
timate. Associated is the sample residual vector r =
Y − Xβ̂ , based on β̂ , which is distinct from the pop-
ulation residual vector δ = Y − Xβ , based on β =
β(P ).

In linear models theory which conditions on (or
fixes) X, the target of estimation is what we may call
the “X-conditional parameter”:

(11)

β(X)
�= E[β̂|X]
= argminβ E

[‖Y − Xβ‖2|X]
= (

X′X
)−1X′μ.

In random-X theory, on the other hand, the target of
estimation is β(P ), while the X-conditional parameter
β(X) is a random vector. The vectors β̂ = β(P̂ ), β(X)

and β(P ) lend themselves to the following telescoping
decomposition:

(12) β̂ − β(P ) = (
β̂ − β(X)

) + (
β(X) − β(P )

)
,

which in turn reflects the decomposition δ = ε + η:

DEFINITION AND LEMMA. Define “Estimation
Offsets” (EOs) as follows:

(13)

Total EO
�= β̂ − β(P ) = (

X′X
)−1X′δ,

Noise EO
�= β̂ − β(X) = (

X′X
)−1X′ε,

Approx. EO
�= β(X) − β(P ) = (

X′X
)−1X′η.
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TABLE 3
Random variable notation for estimation in linear OLS based on i.i.d. observational data

β = (β0, β1, . . . , βp)′, parameter vector ((p + 1) × 1)

Y = (Y1, . . . , YN )′, response vector (N × 1)

Xj = (X1,j , . . . ,XN,j )′, j th regressor vector (N × 1)

X = [1,X1, . . . ,Xp] =

⎡
⎢⎢⎢⎣

�X′
1

. . .

. . .

�X′
N

⎤
⎥⎥⎥⎦ ,

regressor matrix
with intercept

(N × (p + 1))

μ = (μ1, . . . ,μN)′, μi = μ( �Xi ) = E[Y | �Xi ], conditional means (N × 1)

η = (η1, . . . , ηN )′, ηi = η( �Xi ) = μi − β ′ �Xi , nonlinearities (N × 1)

ε = (ε1, . . . , εN )′, εi = Yi − μi, noise values (N × 1)

δ = (δ1, . . . , δN )′, δi = ηi + εi , population residuals (N × 1)

σ = (σ1, . . . , σN )′, σi = σ( �Xi ) = V [Y | �Xi ]1/2, conditional sdevs (N × 1)

β̂ = (β̂0, β̂1, . . . , β̂p)′ = (X′X)−1X′Y, parameter estimates ((p + 1) × 1)

r = (r1, . . . , rN )′ = Y − Xβ̂, sample residuals (N × 1)

The right-hand sides follow from (9): ε = Y − μ,
η = μ − Xβ , δ = Y − Xβ , and

β̂ = (
X′X

)−1X′Y,

E[β̂|X] = (
X′X

)−1X′μ,

β(P ) = (
X′X

)−1X′(Xβ).

The first defines β̂ , the second uses E[Y|X] = μ, and
the third is a tautology.

REMARK. One might be tempted to interpret the
approximation EO β(X) − β(P ) as a bias because it is
the difference of two targets of estimation. This inter-
pretation is entirely wrong. The approximation EO is
a random variable when nonlinearity is present. It will
be seen to contribute not a bias but a N−1/2 order term
to the sampling variability of β̂ (Section 7).

6. BROKEN REGRESSOR ANCILLARITY II:
NONLINEARITY AND RANDOM X CREATE

SAMPLING VARIATION

6.1 Sampling Variation’s Two Sources: Noise and
Nonlinearity

For the X-conditional parameter β(X) to be a non-
trivial random variable, two factors need to be present:
(1) the regressors �X need to be random and (2) the
nonlinearity η( �X) must not vanish: P [η( �X) �= 0] > 0.
These factors conspire to produce sampling variation
according to (13), which shows the approximation EO
to depend on the random matrix (X′X)−1X′ and the
vector of nonlinearity values η. We have

(14) V [β̂] = E
[
V [β̂|X]] + V

[
E[β̂|X]],

where the left-hand side represents the full uncondi-
tional variability of β̂ relevant for statistical inference.
By the definition of EOs and the lemma in Section 5
this decomposition parallels δ = ε + η:

V [β̂] = V
[(

X′X
)−1X′δ

]
,

E
[
V [β̂|X]] = E

[(
X′X

)−1X′ V [ε|X] X
(
X′X

)−1]
,

V
[
E[β̂|X]] = V

[
β(X)

] = V
[(

X′X
)−1X′η

]
The center line represents the marginal sampling vari-
ability due to noise combined with randomness in X.
Note that V [ε|X] = Dσ 2 is the diagonal matrix of noise
variances. The box shows how the vector of nonlinear-
ities η “conspires” with the randomness of X to gener-
ate sampling variability in β(X).

Intuition for the sampling variability of β(X) is best
provided by a graphical illustration. In order to isolate
this effect, we consider a noise-free situation where the
response is deterministic and nonlinear, hence a linear
fit is “misspecified.” To this end, let Y = μ( �X) where
μ(·) is some nonlinear function, and hence V [β̂|X] =
0 a.s. An example is shown in the left-hand frame of
Figure 4 for a single regressor, with OLS lines fitted
to two “datasets” consisting of N = 5 regressor values
each. The randomness in the regressors causes the fit-
ted line to differ between datasets, hence exhibit sam-
pling variability due to the nonlinearity of the response.
This effect is absent in the right-hand frame of Figure 4
where the response is linear.9

9We remind the reader of the more striking animated illustration
of this effect by executing the line of code shown in footnote 3.
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FIG. 4. Noise-less response: The filled and the open circles represent two “datasets” from the same population. The x-values are random;
the y-values are a deterministic function of x: y = μ(x) (shown in gray). Left: The true response μ(x) is nonlinear; the open and the filled
circles have different OLS lines (shown in black). Right: The true response μ(x) is linear; the open and the filled circles have the same OLS
line (black on top of gray).

6.2 Quandaries of Fixed-X Theory and the Need
for Random-X Theory

The fixed-X approach of linear models theory nec-
essarily assumes correct specification. Its only source
of sampling variability is the noise EO β̂ − β(X) aris-
ing from the conditional response distribution, ignoring
the approximation EO β(X) − β(P ) due to condition-
ing on X. A partial remedy in fixed-X theory is to rely
on diagnostics to detect lack of fit (misspecification).
We emphasize that diagnostics should be part of every
regression analysis. In fact, to assist such diagnostics
and make them relevant for correctly sized standard er-
rors, we propose in Section 12 a test to identify slopes
that may have their usual standard errors invalidated by
misspecification. Furthermore, in Part II we propose a
misspecification diagnostic for regression parameters.

Data analysts may not stop with negative findings
from model diagnostics and instead continue with data-
driven model improvement by, for example, transform-
ing variables and adding terms to the fitted equation till
the residuals “look right.” However, model improve-
ment based on the data can have drawbacks and limits.
A drawback is that it can invalidate subsequent infer-
ences in unpredictable ways, as does any data-driven
variable selection, formal or informal (see, e.g., Berk
et al., 2013, Lee et al., 2016). A limitation is that resid-
ual diagnostics lose power as the number of regres-
sors increases. This fact follows from what we may
call “Mammen’s dilemma.” Mammen (1996) showed,
roughly speaking, that for models with numerous re-
gressors the residual distribution tends to look as as-

sumed by the working model, for example, Gaussian
for OLS, Laplacian for LAD, irrespective of the true
error distribution. For these reasons, data analysts who
diagnose and improve their models will find them-
selves torn at some point between hunches of having
done too much of a good thing and missing out on
something.

In light of such uncertainties arising from diagnos-
tics and model improvement, it may be of some com-
fort that tools are available for asymptotically cor-
rect inference under model misspecification, includ-
ing misspecified deterministic responses (Y = μ( �X),
σ 2( �X) = 0). These tools—sandwich and x–y boot-
strap10 estimators of standard error—derive their jus-
tification from central limit theorems (CLTs) to be de-
scribed next.

7. MODEL-ROBUST CLTS, CANONICALLY
DECOMPOSED

Random-X CLTs for OLS are standard, and the
novel aspect of the following proposition is in decom-
posing the overall asymptotic variance into contribu-
tions stemming from the noise EO and the approxima-
tion EO according to (13), thereby providing an asymp-

10It needs to pointed out again that the residual bootstrap is not
assumption-lean. It requires the population residual δ to be a con-
ventional error term, i.i.d. across the N observations, implying first
and second order correct specification (η( �X) = 0 and σ 2( �X) = σ 2

constant). The only lean aspect is that the error term no longer
needs to be Gaussian.
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totic analog of the finite-sample decomposition (14) of
sampling variance in Section 6.1.

PROPOSITION 7.1. For linear OLS, the three EOs
follow CLTs:

√
N(β̂ − β)

D−→
N

(
0,E

[ �X �X′]−1
E

[
m2( �X) �X �X′]

E
[ �X �X′]−1)

√
N

(
β̂ − β(X)

) D−→
N

(
0,E

[ �X �X′]−1
E

[
σ 2( �X) �X �X′]

E
[ �X �X′]−1)

√
N

(
β(X) − β

) D−→
N

(
0,E

[ �X �X′]−1
E

[
η2( �X) �X �X′]

E
[ �X �X′]−1)

These statements again reflect the decomposition
(8), m2( �X) = σ 2( �X) + η2( �X). According to (7) and
(8), m2( �X) can be replaced by δ2 and σ 2( �X) by ε2:

E
[
m2( �X) �X �X′] = E

[
δ2 �X �X′]

,

E
[
σ 2( �X) �X �X′] = E

[
ε2 �X �X′]

.
(15)

The asymptotic variance of linear OLS can therefore
be written as

(16) AV [P ;β] �= E
[ �X �X′]−1

E
[
δ2 �X �X′]

E
[ �X �X′]−1

.

As always, β stands for the statistical functional β =
β(P ) and by implication its plug-in OLS estimator
β̂ = β(P̂ ). The formula is the basis for plug-in that
produces the sandwich estimator of standard error
(Section 8.1).

Special cases covered by the above proposition are
the following:

• First-order correct specification: η( �X)
P= 0. The

sandwich form is solely due to heteroskedasticity.

• Deterministic nonlinear response: σ 2( �X)
P= 0. The

sandwich form is solely due to the nonlinearity and
randomness of X.

• First- and second-order correct specification:

η( �X)
P= 0, σ 2( �X)

P= σ 2
0 . The nonsandwich form is

asymptotically valid without Gaussianity:
√

N(β̂ −
β)

D−→ N (0, σ 2
0 E[ �X �X′]−1).

8. SANDWICH ESTIMATORS AND THE M-OF-N
BOOTSTRAP

Empirically one observes that standard error esti-
mates obtained from the x–y bootstrap and from the
sandwich estimator are generally close to each other
(Section 2). This is intuitively unsurprising as they both

estimate the same asymptotic variance, that of the first
CLT in Proposition 7.1. A closer connection between
them will be described here and established in general-
ity in Part II.11

8.1 The Plug-in Sandwich Estimator of Asymptotic
Variance

Plug-in estimators of standard error are obtained by
substituting the empirical distribution P̂ for the true P
in formulas for asymptotic variances. As the asymp-
totic variance AV [P ;β] in (16) is given explicitly and
is suitably continuous in the two arguments, one ob-
tains a consistent estimator by plugging in P̂ for P :

ÂV[β] �= AV [β, P̂ ],

ŜE[βj ] �= 1

N1/2

(
ÂV[β])1/2

jj .

(17)

[Recall again that β = β(P ) stands for the OLS sta-
tistical functional which specializes to its plug-in esti-
mator through β̂ = β(P̂ ).] Concretely, one estimates
expectations E[. . .] with sample means Ê[. . .], β =
β(P ) with β̂ = β(P̂ ), and hence population residu-
als δ2 = (Y − �Xβ)2 with sample residuals r2

i = (Yi −
�Xi β̂)2. Collecting the latter in a diagonal matrix D2

r ,
one has

Ê
[
r2 �X �X′] = 1

N

(
X′D2

rX
)
,

Ê
[ �X �X′] = 1

N

(
X′X

)
.

The sandwich estimator ÂVsand[β] = ÂV[β] for linear
OLS in its original form (White, 1980a) is therefore
obtained explicitly as follows:

ÂVsand[β] �= Ê
[ �X �X′]−1

Ê
[
r2 �X �X′]

Ê
[ �X �X′]−1

= N
(
X′X

)−1(
X′D2

rX
)(

X′X
)−1

(18)

This is version “HC” in MacKinnon and White (1985).
A modification accounts for the fact that residuals have
smaller variance than noise, calling for a correction by
replacing 1/N1/2 in (17) with 1/(N − p − 1)1/2, in
analogy to the linear models estimator (“HC1” ibid.).
Another modification is to correct individual residu-
als for their reduced variance according to V [ri |X] =
σ 2(1−Hii) under homoskedasticity and ignoring non-
linearity (“HC2” ibid.). Further modifications include
a version based on the jackknife (“HC3” ibid.) using

11A third assumption-lean method of inference is empirical like-
lihood. See Owen (2001).
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leave-one-out residuals. MacKinnon and White (1985)
also mention that some forms of sandwich estimators
were independently derived by Efron (1982, p. 18f) us-
ing the infinitesimal jackknife, and by Hinkley (1977)
using a “weighted jackknife.” See Weber (1986) for a
concise comparison in the linear model limited to het-
eroskedasticity.

8.2 Sandwich Estimators Are Limits of M-of-N
Bootstrap Estimators

An alternative to plug-in is estimating asymptotic
variance with the x–y bootstrap whose justification es-
sentially derives from the validity of the CLT. Conven-
tionally the resample size, here denoted by M , is taken
to be the same as the sample size N , but it is useful
to distinguish between these two quantities and allow
the resample size M to differ from N , resulting in the
“M-of-N bootstrap.” One distinguishes

• M-of-N bootstrap resampling with replacement
from

• M-out-of-N subsampling without replacement.

In resampling, M can be any M < ∞; in subsam-
pling, M must satisfy M < N .12 To fix notation,
denote bootstrap estimates by β∗

M = β(P ∗
M), where

P ∗
M is the empirical distribution of bootstrap data

{(Y ∗
i , �X∗′

i )}i=1,...,M drawn i.i.d. from P̂N . Bootstrap
estimates of asymptotic variance are therefore

(19) ÂVboot[β] �= MVP̂ N

[
β∗

M

]
.

The connection between bootstrap and sandwich esti-
mates is as follows.

PROPOSITION 8.1. The sandwich estimator (18) is
the M-of-N bootstrap estimator (19) in the limit M →
∞ for a fixed dataset P̂N of size N .

See Part II for full generality. Bootstrap approaches
may be more flexible than sandwich approaches be-
cause the bootstrap distribution can be used to generate
confidence intervals that are second-order correct (see,
e.g., Efron and Tibshirani, 1993; Hall 1992; McCarthy,
Zhang et al., 2018).

12The M-of-N bootstrap for M � N “works” more often than the
conventional N -of-N bootstrap; see Bickel, Götze and van Zwet
(1997) who showed that the favorable properties of M � N sub-
sampling obtained by Politis and Romano (1994) carry over to the
M � N bootstrap.

9. ADJUSTED REGRESSORS

This section prepares the ground for two projects:
(1) proposing meanings of slopes in the presence of
nonlinearity (Section 10), and (2) comparing standard
errors of slopes, model-robust versus model-trusting
(Section 11). The first requires the well-known adjust-
ment formula for slopes in multiple regression, while
the second requires adjustment formulas for stan-
dard errors, both model-trusting and model-robust. Al-
though the adjustment formulas are standard, they will
be stated explicitly to fix notation. [See Appendix D
for more notational details.]

• Adjustment in populations: The population-adjusted
regressor random variable Xj• is the “residual” of
the population regression of Xj , used as the re-
sponse, on all other regressors. The response Y can
be adjusted similarly, and we may denote it by Y•−j

to indicate that Xj is not among the adjustors, which
is implicit in the adjustment of Xj . The multiple re-
gression coefficient βj = βj (P ) of the population
regression of Y on �X is obtained as the simple re-
gression through the origin of Y•−j or Y on Xj•:

βj = E[Y•−jXj•]
E[X2

j•]
= E[YXj•]

E[X2
j•]

= E[μ( �X)Xj•]
E[X2

j•]
.

(20)

The last representation holds because Xj• is a func-
tion of �X only which permits conditioning of Y on
�X in the numerator.

• Adjustment in samples: Define the sample-adjusted
regressor column Xj •̂ to be the residual vector of the
sample regression of Xj , used as the response vector,
on all other regressor vectors. The response vector
Y can be sample-adjusted similarly, and we may de-
note it by Y•̂−j to indicate that Xj is not among the
adjustors, which is implicit for Xj •̂. (Note the use
of hat notation “•̂” to distinguish it from population-
based adjustment “•.”) The coefficient estimate β̂j of
the multiple regression of Y on X is obtained as the
simple regression through the origin of Y•̂−j or Y on
Xj•:

(21) β̂j = 〈Y•̂−j ,Xj •̂〉
‖Xj •̂‖2 = 〈Y,Xj •̂〉

‖Xj •̂‖2 .

[For practice, the patient reader may wrap his/her mind
around the distinction between Xj •̂ and Xj•, the lat-
ter being the vector of population-adjusted Xi,j•. The
components of the former are dependent, those of the
latter independent.]
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10. MEANINGS OF SLOPES IN THE PRESENCE OF
NONLINEARITY

A first use of regressor adjustment is for proposing
meanings of linear slopes in the presence of nonlin-
earity, and responding to Freedman’s (2006, p. 302)
objection: “. . . it is quite another thing to ignore bias
[nonlinearity]. It remains unclear why applied work-
ers should care about the variance of an estimator for
the wrong parameter.” Against this view, one may ar-
gue that “flawed” models are a fact of life. Flaws
such as nonlinearity can go undetected, or they can
be tolerated for insightful simplification. A “param-
eter” based on best approximation is then not in-
trinsically wrong but in need of a useful interpreta-
tion.

The issue is that, in the presence of nonlinearity,
slopes lose their usual interpretation: βj is no longer
the average difference in Y associated with a unit dif-
ference in Xj at fixed levels of all other Xk . Such an
interpretation holds for the best approximation β ′ �x but
not the conditional mean function μ(�x). The challenge
is to provide an alternative interpretation that remains
valid and intuitive. As mentioned, a plausible approach
is to use adjusted variables, hence by (20) and (21) it
is sufficient to solve the interpretation problem for sim-
ple regression through the origin. In a sense to be made
precise, slopes can then be interpreted as weighted av-
erages of “casewise” and “pairwise” slopes. To lighten
the notational burden, we drop subscripts from ad-
justed variables:

y ← Y•−j , x ← Xj•,

β ← βj for populations,

yi ← (Y•̂−j )i, xi ← (Xj •̂)i,

β̂ ← β̂j for samples.

By (20) and (21), the population slopes and their esti-
mates are, respectively,

β = E[yx]
E[x2] and β̂ =

∑
yixi∑
x2
i

.

Slope interpretation will be based on the following de-
vices:

• Population parameters β can be represented as
weighted averages of . . .

– casewise slopes: For a random case (x, y), we
have

β = E[wb], where b
�= y

x
, w

�= x2

E[x2] .

Thus b is the casewise slope through the origin
and w its weight.

– pairwise slopes: For i.i.d. cases (x, y) and (x′, y′).
we have

β = E[wb],

where b
�= y − y′

x − x′ , w
�= (x − x′)2

E[(x − x′)2] .

Thus b is the pairwise slope and w its weight.
• Sample estimates β̂ can be represented as weighted

averages of . . .
– casewise slopes:

β̂ = ∑
i

wibi, where bi
�= yi

xi

, wi
�= x2

i∑
i′ x

2
i′
.

Thus bi are casewise slopes and wi their weights.
– pairwise slopes:

β̂ = ∑
ik

wikbik,

where bik
�= yi − yk

xi − xk

, wik
�= (xi − xk)

2∑
i′k′(xi′ − xk′)2 .

Thus bik are pairwise slopes and wik their weights
(i �= k).

See Figure 5 for an illustration for samples. The for-
mulas support the intuition that, even in the presence
of nonlinearity, a linear fit can describe the overall di-
rection of the association between the response and a
regressor after adjustment.

There exist of course examples where no global di-
rection of association exists, as when E[y|x] ∼ x2 and
the regressor distribution P x is symmetric about 0.
There exists, however, local association, which is nega-
tive for x < 0 and positive for x > 0. If E[x]/SD[x] �
0, the overall direction of association is positive and
a linear fit provides an excellent approximation to x2,
illustrating once again the crucial role of P x .

We conclude with a note on the history of the above
formulas: Stigler (2001) points to Edgeworth, while
Berman (1988) traces them back to an 1841 article by
Jacobi written in Latin. A generalization based on tu-
ples rather than pairs of cases was used by Wu (1986)
for the analysis of jackknife and bootstrap procedures
(see his Section 3, Theorem 1). Gelman and Park
(2009) also refer to the representation of OLS slopes
as weighted means of pairwise slopes.



536 A. BUJA ET AL.

FIG. 5. Casewise and pairwise average weighted slopes illustrated: Both plots show the same six points (“cases”) as well as the OLS line
fitted to them (fat gray). The left-hand plot shows the casewise slopes from the mean point (open circle) to the six cases, while the right-hand
plot shows the pairwise slopes between all 15 pairs. In both plots, the observed slopes are positive with just one exception each, supporting
the impression that the direction of association is positive.

11. ASYMPTOTIC VARIANCES—PROPER AND
IMPROPER

The following prepares the ground for an asymptotic
comparison of model-robust and model-trusting stan-
dard errors, one regressor at a time.

11.1 Preliminaries: Adjustment Formulas for EOs
and Their CLTs

The vectorized formulas for estimation offsets (12)
can be written componentwise using adjustment:

Total EO : β̂j − βj = 〈Xj •̂, δ〉
‖Xj •̂‖2 ,

Noise EO : β̂j − βj (X) = 〈Xj •̂, ε〉
‖Xj •̂‖2 ,

Approximation EO : βj (X) − βj = 〈Xj •̂,η〉
‖Xj •̂‖2 .

To see these identities directly, note the following,
in addition to (21): E[β̂j |X] = 〈μ,Xj •̂〉/‖Xj •̂‖2 and
βj = 〈Xβ,Xj •̂〉/‖Xj •̂‖2, the latter due to 〈Xj •̂,Xk〉 =
δjk‖Xj •̂‖2. Finally use δ = Y − Xβ , η = μ − Xβ and
ε = Y − μ.

From the above expressions for the EOs one obtains
asymptotic normality for each using population adjust-
ment:

COROLLARY.

N1/2(β̂j − βj )

D−→ N
(

0,
E[m2( �X)X2

j•]
E[X2

j•]2

)
= N

(
0,

E[δ2X2
j•]

E[X2
j•]2

)
,

N1/2(
β̂j − βj (X)

)
D−→ N

(
0,

E[σ 2( �X)X2
j•]

E[X2
j•]2

)
= N

(
0,

E[ε2X2
j•]

E[X2
j•]2

)
,

N1/2(
βj (X) − βj

)
D−→ N

(
0,

E[η2( �X)X2
j•]

E[X2
j•]2

)

The equalities on the right-hand side in the first
and second case are based on (15). The first CLT in
its right-side form is useful for plug-in estimation of
asymptotic variance, one slope at a time. The sandwich
form of matrices has been reduced to ratios where nu-
merators correspond to the “meat” and squared denom-
inators to the “breads.”

11.2 Model-Robust Asymptotic Variances in Terms
of Adjusted Regressors

The CLTs in the corollary of Section 11.1 contain
three asymptotic variances of the same form with argu-
ments m2( �X), σ 2( �X) and η2( �X). We will use m2( �X)

in the following definition for the overall asymptotic
variance, but by substituting σ 2( �X) or η2( �X) for
m2( �X) one obtains terms that can be interpreted as
components of the overall asymptotic variance or else
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as asymptotic variances in the absence of nonlinearity
or absence of noise.

DEFINITION. Proper asymptotic variance.

AVlean
[
βj ;m2] �= E[m2( �X)X2

j•]
E[X2

j•]2
.

From (8), m2( �X) = σ 2( �X) + η2( �X), one obtains

AVlean
[
βj ;m2] = AVlean

[
βj ;σ 2] + AVlean

[
βj ;η2]

.

The subscript “lean” refers to validity in the
assumption-lean model-robust framework. This proper
asymptotic variance will be compared to the potentially
improper asymptotic variance of model-trusting linear
models theory (Section 11.4).

11.3 Model-Trusting Asymptotic Variances in
Terms of Adjusted Regressors

The goal is to provide an asymptotic limit for the
usual model-trusting standard error estimate of lin-
ear models theory in the model-robust framework. To
this end, we need the model-robust limit of the usual
estimate of the noise variance, σ̂ 2 = ‖Y − Xβ̂‖2/

(N − p − 1) as N → ∞:

σ̂ 2 P−→E
[
δ2] = E

[
m2( �X)

]
.

Thus the model-robust limit of σ̂ 2 is the average condi-
tional MSE of Y , which again decomposes according
to m2( �X) = σ 2( �X) + η2( �X).

Squared standard error estimates are, in matrix and
adjustment form,

V̂ lin[β̂] = σ̂ 2(
X′X

)−1
,

ŜE
2
lin[β̂] = σ̂ 2

‖Xj •̂‖2 .
(22)

Their assumption-lean scaled limits are

N V̂ lin[β̂] P−→ E
[
m2( �X)

]
E

[ �X �X′]−1
,

N ŜE
2
lin[β̂j ] P−→ E[m2( �X)]

E[X2
j•]

.

DEFINITION. Improper asymptotic variance.

AVlin
[
βj ;m2] �= E[m2( �X)]

E[X2
j•]

.

This decomposes as usual:

AVlin
[
βj ;m2] = AVlin

[
βj ;σ 2] + AVlin

[
βj ;η2]

.

The subscript “lin” refers to validity of this asymptotic
variance under the assumption-loaded model-trusting
framework of linear models theory.

11.4 RAV—Ratio of Proper and Improper
Asymptotic Variances

To examine the discrepancies between proper and
improper asymptotic variances, we form their ratio,
which results in the following elegant functional of
the conditional MSE and the squared adjusted regres-
sor:

DEFINITION. Ratio of Asymptotic Variances.

RAV
[
βj ,m

2] �= AVlean[βj ,m
2]

AVlin[βj ,m2]

= E[m2( �X)X2
j•]

E[m2( �X)]E[X2
j•]

.

In order to examine the effect of heteroskedasticities
and nonlinearities on the discrepancies separately, one
can also define RAV[βj , σ

2] and RAV[βj , η
2]. By the

decomposition lemma in Appendix E.2, RAV[βj ,m
2]

is a weighted mixture of these two terms. Belabor-
ing the obvious, the interpretation of the RAV is
this: If RAV

[
βj ,m

2]
> 1, then ŜElin[β̂j ] is asymp-

totically too small/optimistic; if RAV
[
βj ,m

2] = 1, it
is asymptotically correct; else it is asymptotically too
large/pessimistic.

We will later have use for the following sufficient
conditions for RAV = 1. The second condition says
that when the population residual δ is a traditional error
term (but not necessarily Gaussian), the usual standard
error of linear models theory is asymptotically correct.

LEMMA 11.1. Sufficient conditions for RAV[βj ,

m2] = 1 are the following:

(a) m2( �X) = m2
0 is constant.

(b) δ2 and Xj•2 are independent.

PROOF. Assertion (a) is immediate from the def-
inition of RAV[βj ,m

2]. Assertion (b): The numera-
tor of RAV[βj ,m

2] is E[m2( �X)Xj•2] = E[δ2Xj•2] =
E[δ2]E[Xj•2], hence equals the denominator. �

The ratio RAV[βj ,m
2] is the inner product between

the random variables

m2( �X)

E[m2( �X)] and
X2

j•
E[X2

j•]
.

It is not a correlation as both m2( �X) and X2
j• are L1-

normalized; a noncentered correlation would require
L2-normalization with denominators E[m4( �X)]1/2

and E[X4
j•]1/2, respectively. Its upper bound is obvi-

ously not +1 but rather ∞.
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11.5 The Range of RAV

The analysis of the RAV is simplified by condition-
ing m2( �X) on X2

j•.

DEFINITION AND LEMMA 11.1. Letting

m2
j

(
X2

j•
) �= E

[
m2( �X)|X2

j•
]
,

we have

RAV
[
βj ,m

2] = RAV
[
βj ,m

2
j

]
.

Thus the analysis of the RAV is reduced to single
squared adjusted regressors X2

j•. This fact lends itself
to simple case studies and graphical illustrations.

Next, we describe the extremes of the RAV over sce-
narios of m2( �X) or, by Lemma 11.1, of m2

j (X
2
j•).

PROPOSITION. If E[X2
j•] < ∞ and X2

j• has un-
bounded support, then

sup
m2

j

RAV
[
βj ,m

2
j

] = ∞.

If E[X2
j•] < ∞ and X2

j• has 0 in its support, then

inf
m2

j

RAV
[
βj ,m

2
j

] = 0.

Thus, when the adjusted regressor distribution is un-
bounded, the usual standard error can be too small to
any degree. Conversely, if the adjusted regressor is not
bounded away from zero, it can be too large to any de-
gree.

What shapes of m2
j (X

2
j•) approximate these ex-

tremes? The answer can be gleaned from Figure 6
which illustrates the proposition for normally dis-
tributed Xj•: If nonlinearities and/or heteroskedastici-
ties blow up . . .

• in the tails of the Xj• distribution, then RAV takes
on large values;

• in the center of the Xj• distribution, then RAV takes
on small values.

The proof in Appendix E.3 bears this out. As the
main concern is with usual standard errors that are too
small, RAV > 1, the proposition indicates that Xj•-
distributions with bounded support enjoy some protec-
tion from the worst case.

11.6 Illustration of Factors That Drive the RAV

We further analyze the RAV in terms of the con-
stituents of m2

j (X
2
j•), conditional variance and squared

nonlinearity, as functions of X2
j•:

σ 2
j

(
X2

j•
) = E

[
σ 2( �X)|X2

j•
]

and

η2
j

(
X2

j•
) = E

[
η2( �X)|X2

j•
]
.

(23)

FIG. 6. A family of functions f 2
t (x) that can be interpreted

as conditional MSEs m2
j (X2

j•), heteroskedasticities σ 2
j (X2

j•) or

squared nonlinearities η2
j (X2

j•) (shown as functions of x = Xj•
rather than X2

j•): The family interpolates RAV from 0 to ∞ for

x = Xj• ∼ N(0,1). The three solid black curves show f 2
t (x) that

result in RAV = 0.05, 1, and 10. (See Appendix E.4 for details.)
RAV = ∞ is approached as f 2

t (x) bends ever more strongly in
the tails of the x-distribution. RAV = 0 is approached by an ever
stronger spike in the center of the x-distribution.

For qualitative insights into the drivers of the RAV,
we translate (23) to concrete data scenarios. Figure 7
shows three noise scenarios and Figure 8 three non-
linearity scenarios. The illustrated effects will both be
present to degrees in real data. Their combined effect is
described by a decomposition lemma in Appendix E.2:
RAV[βj ,m

2
j ] is a weighted mixture of RAV[βj , σ

2
j ]

and RAV[βj , η
2
j ]. Therefore:

• Heteroskedasticities with large σ 2
j (X2

j•) in the tail of

Xj•2 produce an upward contribution to
RAV[βj ,m

2
j ]; heteroskedasticities with large

σ 2
j (X2

j•) near X2
j• = 0 imply a downward contribu-

tion to RAV[βj ,m
2
j ].

• Nonlinearities with large average values η2
j (X

2
j•)

in the tail of X2
j• imply an upward contribution

to RAV[βj ,m
2
j ]; nonlinearities with large η2

j (X
2
j•)

concentrated near X2
j• = 0 imply a downward con-

tribution to RAV[βj ,m
2
j ].

These facts also suggest that large values RAV > 1
should occur more often than small values RAV < 1
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FIG. 7. The effect of heteroskedasticity on the sampling variability of slope estimates: How does the treatment of the heteroskedasticities
as homoskedastic affect statistical inference? Left: High noise variance in the tails of the regressor distribution elevates the true sampling
variability of the slope estimate above the usual standard error: RAV[βj ,σ 2] > 1. Center: High noise variance near the center of the

regressor distribution lowers the true sampling variability of the slope estimate below the usual standard error: RAV[βj ,σ 2] < 1. Right: The

noise variance oscillates in such a way that the usual standard error is coincidentally correct (RAV[βj ,σ 2] = 1).

because large conditional variances as well as nonlin-
earities are often more pronounced in the extremes
of regressor distributions, not their centers. This is
most natural for nonlinearities which are often con-
vex or concave. Also, it follows from the RAV de-
composition lemma (Appendix E.2) that either of
RAV[βj , σ

2
j ] or RAV[βj , η

2
j ] is able to single-handedly

pull RAV[βj ,m
2
j ] to +∞, whereas both have to be

close to zero to pull RAV[βj ,m
2
j ] toward zero. These

heuristics support the observation that in practice ŜElin

is more often too small than too large compared to the
asymptotically correct ŜEsand.

12. SANDWICH ESTIMATORS IN ADJUSTED FORM
AND A RAV TEST

The goal here is to write the RAV in adjustment form
and estimate it with plug-in for use as a test statistic to
decide whether the usual standard error is adequate. We
will obtain one test per regressor. The proposal is re-
lated to the class of “misspecification tests” for which
there exists a literature starting with Hausman (1978)
and continuing with White (1980a, 1980b, 1981, 1982)
and others. These tests are largely global rather than
coefficient-specific, which ours is. The test proposed
here has similarities to White’s (1982, Section 4) “in-
formation matrix test” which compares two types of

FIG. 8. The effect of nonlinearities on the sampling variability of slope estimates: The three plots show three different noise-free nonlinear-
ities; each plot shows for one nonlinearity 20 overplotted datasets of size N = 10 and their fitted lines through the origin. The question is how
the misinterpretation of the nonlinearities as homoskedastic random errors affects statistical inference. Left: Strong nonlinearity in the tails
of the regressor distribution elevates the true sampling variability of the slope estimate above the usual standard error (RAV[βj , η2] > 1).
Center: Strong nonlinearity near the center of the regressor distribution lowers the true sampling variability of the slope estimate below the
usual standard error (RAV[βj , η2] < 1). Right: An oscillating nonlinearity mimics homoskedastic random error to make the usual standard

error coincidentally correct (RAV[βj , η2] = 1). Caveat: These are cartoons illustrating potential causes of standard error discrepancies.
Nonlinearities may not be detectable in actual data in the presence of noise and other regressors.
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information matrices globally, while we compare two
types of standard errors, one coefficient at a time.

12.1 Sandwich Estimators in Adjustment Form and
the ˆRAVj Test Statistic

The adjustment versions of the asymptotic variances
in the CLTs of Corollary 11.1 can be used to rewrite the
sandwich estimator by replacing expectations E[. . .]
with means Ê[. . .], β with β̂ , Xj• with Xj •̂, and rescal-
ing by N :

ŜEsand[β̂j ]2 = 1

N

Ê[(Y − �X′
β̂)2Xj •̂

2]
Ê[Xj •̂

2]2

= 〈r2,Xj •̂
2〉

‖Xj •̂‖4 .

(24)

The squaring of N -vectors is meant to be coordinate-
wise. Formula (24) is algebraically equivalent to the
diagonal elements of (18).

To match the raw plug-in form of the sandwich esti-
mator (24), we use the plug-in version of the standard
error estimator of linear models theory, the only differ-
ence being division by N rather than N − p − 1:

(25) ŜElin[β̂j ]2 = 1

N

Ê[(Y − �X′
β̂)2]

Ê[Xj •̂
2] = 1

N

‖r‖2

‖Xj •̂‖2 .

Thus the plug-in estimate of RAV[βj ,m
2] is

ˆRAVj
�= Ê[(Y − �X′

β̂)2Xj •̂
2]

Ê[(Y − �X′
β̂)2]Ê[Xj •̂

2]

= N
〈r2,Xj •̂

2〉
‖r‖2‖Xj •̂‖2 .

(26)

This is the proposed test statistic. Analogous to the
population-level RAV[βj ,m

2], the sample-level ˆRAVj

responds to associations between squared residuals and
squared adjusted regressors.

12.2 The Asymptotic Null Distribution of the RAV
Test Statistic

Here is an asymptotic result that would be expected
to yield approximate inference under a null hypothesis
that implies RAV[βj ,m

2] = 1 based on Lemma 11.1.

PROPOSITION. Under the null hypothesis H0 that
the population residuals δ and the adjusted regressor
Xj• are independent, it holds:

N1/2( ˆRAVj − 1)

D−→ N
(

0,
E[δ4]
E[δ2]2

E[Xj•4]
E[X2

j•]2
− 1

)
.

(27)

As always, we ignore technical assumptions. A proof
outline is in Appendix E.5.

The asymptotic variance of ˆRAVj under H0 is driven
by the standardized fourth moments or the kurtoses (=
same − 3) of δ and Xj•. Some observations:

1. The larger the kurtosis of population residuals δ

and/or adjusted regressors Xj•, the less likely is de-
tection of first- and second-order model misspecifi-
cation resulting in standard error discrepancies.

2. As standardized fourth moments are always ≥ 1 by
Jensen’s inequality, the asymptotic variance is ≥ 0,
as it should be. The asymptotic variance vanishes iff
the minimal standardized fourth moment is +1 for
both δ and Xj•, hence both have symmetric two-
point distributions (as both are centered). For such
Xj•, it holds RAV[βj ,m

2] = 1 by Proposition E.3
in the Appendix.

3. A test of the stronger H0 that includes normality
of δ is obtained by setting E[δ4]/E[δ2]2 = 3 rather
than estimating it. The result, however, is an overly
sensitive nonnormality test much of the time, which
does not seem useful as nonnormality can be diag-
nosed and tested by other means.

12.3 An Approximate Permutation Distribution for
the RAV Test Statistic

The asymptotic result of the proposition in Sec-
tion 12.2 provides qualitative insights, but it is not suit-
able for practical application because the null distribu-
tion of ˆRAVj can be very nonnormal for finite N , and
this in ways that are not easily overcome with simple
tools such as nonlinear transformations. Another ap-
proach to null distributions for finite N is needed, and
it is available in the form of an approximate permu-
tation test because H0 is just a null hypothesis of in-
dependence, here between δ and Xj•. The test is not
exact, requiring N � p, because population residu-
als δi must be estimated with sample residuals ri and
population adjusted regressor values Xi,j• with sam-
ple adjusted analogs Xi,j •̂. The permutation simula-
tion is cheap: Once coordinatewise squared vectors r2

and Xj •̂
2 are formed, a draw from the conditional null

distribution of ˆRAVj is obtained by randomly permut-
ing one of the vectors and forming the inner product
with the other, rescaled by a permutation-invariant fac-
tor N/(‖r‖2‖Xj •̂‖2). A retention interval should be
formed directly from the α/2 and 1 − α/2 quantiles
of the permutation distribution to account for distribu-
tional asymmetries. The permutation distribution also
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TABLE 4
LA Homeless data: Permutation inference for ˆRAVj (10,000 permutations). The value of ˆRAVj for PercIndustrial detects a

statistically significant difference between SElin and SEsand for this regressor. See also Table 4 in the Appendix for the Boston Housing data
where significant differences are detected for six of 13 regressors

β̂j SElin SEsand ˆRAVj 2.5% Perm. 97.5% Perm.

(Intercept) 0.760 22.767 16.209 0.495 0.354 3.182
MedianIncome ($K) −0.183 0.187 0.108 0.318 0.274 5.059
PercVacant 4.629 0.901 1.363 2.071 0.303 3.823
PercMinority 0.123 0.176 0.164 0.860 0.403 2.238
PercResidential −0.050 0.171 0.111 0.406 0.369 3.058
PercCommercial 0.737 0.273 0.397 2.046 0.355 3.073
PercIndustrial 0.905 0.321 0.592 3.289∗ 0.323 3.215

yields an easy diagnostic of nonnormality (see Ap-
pendix F for examples). Finally, by applying permu-
tation simulations simultaneously to RAV statistics of
multiple regressors, one can calibrate the retention in-
tervals to control familywise error. See Table 4 (as well
as Table 4 in Appendix B) for examples of RAV tests.

13. ISSUES WITH MODEL-ROBUST STANDARD
ERRORS

Model-robustness is a highly desirable property, but
as always there is no free lunch. Kauermann and Car-
roll (2001) have shown that a cost of the sandwich esti-
mator can be inefficiency when the assumed model is
correct. Sandwich estimators should be accurate only
when the sample size is sufficiently large.

Another cost associated with the sandwich estimator
is nonrobustness in the sense of robust statistics (Hu-
ber and Ronchetti, 2009; Hampel et al. 1986), mean-
ing strong sensitivity to heavy-tailed distributions: The

statistic ŜE
2
sand[β̂j ] of (24) is a ratio of fourth-order

quantities of the data, whereas ŜE
2
lin[β̂j ] of (25) is

“only” a ratio of second order quantities.13 The two
types of robustness are in conflict: Model-robust stan-
dard error estimators are highly nonrobust to heavy
tails compared to their model-trusting analogs. This is
a large issue which we can only raise but not solve.
Here are some observations and suggestions:

• Classical robust regression may confer partial ro-
bustness to the sandwich standard error as it caps
residuals with a bounded ψ function, thereby ad-
dressing robustness to heavy tails in the vertical (y)

13Note we are here concerned with nonrobustness of standard er-
ror estimates, not parameter estimates.

direction. Anecdotal evidence suggests partial ben-
efits. In the LA Homeless data, for example, when
comparing bootstrap standard errors and standard
errors reported by the R (2008) software (function
lmrob in package robustbase), we observed
ratios SEboot

SElmrob
of 1.470 and 0.957 for the coeffi-

cients of PercVacant and PercIndustrial,
respectively. For linear OLS, the corresponding ra-
tios SEboot

SElin
in Table 1 were 1.513 and 1.843, re-

spectively. Thus the roughly 50% discrepancy for
PercVacant persists, but the 80% discrepancy for
PercIndustrial is completely corrected.

• Heavy-tail robustness in the horizontal (�x) direc-
tion can be achieved with bounded-influence regres-
sion (e.g., Krasker and Welsch, 1982, and references
therein) which downweights observations in high-
leverage positions.

• Robustness to horizontally heavy tails can also be
addressed by transforming the regressor variables to
bounded ranges (though this changes the meaning of
the slopes). Taking a cue from Proposition E.3 in the
Appendix, one might search for transformations that
obviate the need for a model-robust standard error in
the first place.

To illustrate the last point, we transformed the regres-
sors of the LA Homeless data with their empirical cdfs
to achieve approximately uniform marginal distribu-
tions. The transformed data are no longer i.i.d., but the
point is to examine the effect of transforming the re-
gressors to a finite range. As a result, shown in Table 1
of Appendix A, the discrepancies between sandwich
and usual standard errors have all but disappeared. The
same drastic effect is not seen in the Boston Housing
data (Appendix B, Table 3), although the discrepancies
are greatly reduced, too.
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14. SUMMARY AND OUTLOOK

We explored for linear OLS the idea that statistical
models imply “simplification and idealization” (Cox,
1995), and hence should be treated as approximations
rather than truths. The implications are many: (1) Slope
parameters need to be reinterpreted as statistical func-
tionals β(P

Y, �X) arising from best-approximating lin-
ear equations to essentially arbitrary conditional mean
functions μ( �X); (2) the presence of nonlinearity η( �X)

requires new interpretations of slope parameters and
their estimates; (3) regressors are no longer ancillary
for the slope parameters; hence (4) conditioning on
the regressors is not justified and regressors must be
treated as random, arising from a regressor distribu-
tion P �X; (5) nonlinearity causes slope parameters to
depend not only on the conditional response distribu-
tion P

Y | �X but on the regressor distribution P �X as well;

(6) nonlinearity causes randomness in the regressors �X
to generate sampling variation in slope estimates of or-
der N−1/2; (7) sampling variability due to Y | �X and due
to �X are asymptotically correctly captured by model-
robust standard error estimates from the x–y bootstrap
and sandwich plug-in, the latter being a limiting case
of the former; (8) the factors that render the usual stan-
dard error of a slope too liberal are strong nonlinearity
and/or large noise variance in the extremes of the ad-
justed regressor; (9) validity of the usual standard er-
ror varies from slope to slope but can be tested with a
slope-specific test; (10) unresolved remains the prob-
lem that model-robustness and classical heavy-tail ro-
bustness of standard error estimates appear to be in
conflict with each other.

A vexing item in this list is (2): What is the mean-
ing of a slope in the presence of nonlinearity? We gave
an answer in terms of average observed slopes, but this
issue may remain controversial. Yet, the traditional in-
terpretation of slopes should be even more controver-
sial because the notion of “average difference in the
response for a unit difference in the regressor, ceteris
paribus,” tacitly assumes the fitted linear equation to
be correctly specified. It remains correct if “in the re-
sponse” is replaced by “in the best linear approxima-
tion,” but this correction may leave some dissatisfied
as well. Yet, misspecification is often a fact, as when
simple models are needed for substantive reasons or
for communication with consumers of statistical anal-
ysis. It may then be prudent to use interpretations and
inferences that do not assume correct specification.

Since White’s seminal work, research into mis-
specification has progressed far in addressing spe-
cific classes of misspecification: dependencies, het-
eroskedasticities and nonlinearities. A generalization

of White’s sandwich estimator to time series depen-
dence in regression is the “heteroskedasticity and au-
tocorrelation consistent” (HAC) estimator of standard
error by Newey and West (1987). Structured second or-
der misspecification such as over/underdispersion have
been addressed with quasilikelihood. Intra-cluster de-
pendencies in clustered (e.g., longitudinal) data have
been addressed with generalized estimating equations
(GEE) where the sandwich estimator is in common
use, as it is in the generalized method of moments
(GMM) literature. Finally, nonlinearities have been
modeled with specific function classes or estimated
nonparametrically with, for example, additive models,
spline and kernel methods, and tree-based fitting. In
spite of these advances, in finite data not all possibil-
ities of misspecification can be approached simulta-
neously, and there still arises a need for model-robust
inference.

There exist, finally, areas that frequently rely on
model-trusting theory:

• Bayes inference based on uninformative priors is
asymptotically equivalent to model-trusting fre-
quentist inference (Hartigan, 1983, Ch. 11). It should
be reasonable to ask how much inferences from
Bayesian models are adversely affected by misspec-
ification. After the early work by Berk (1966, 1970)
we find some more recent promising developments:
Szpiro, Rice and Lumley (2010) derive a sandwich
estimator from Bayesian assumptions, and a lively
discussion of misspecification from a Bayesian per-
spective involved Walker (2013), De Blasi (2013),
Hoff and Wakefield (2013) and O’Hagan (2013),
who provide further references.

• High-dimensional inference is the subject of a large
literature that often relies on the assumptions of lin-
earity, homoskedasticity as well as normality. It may
be uncertain whether procedures proposed in this
area are model-robust. Recently, however, attention
to the issue started to be paid by Bühlmann and van
de Geer (2015). Relevant is also the incorporation
of ideas from classical robust statistics by, for exam-
ple, El Karoui et al. (2013), Donoho and Montanari
(2014) and Loh (2017).

In summary, while interesting developments are in
progress, there remain open problems, especially in
some of today’s most lively research areas. Even in the
non-Bayesian and low-dimensional domain there re-
mains the conflict between model-robustness and clas-
sical robustness. The implications of statistical models
viewed as approximations are not yet satisfactorily re-
alized.
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