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book data demonstrate the practicability of the proposed methods and
highlight the important role played by price volatility co-jumps.
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1. Introduction

In recent years the broad availability of high-frequency intra-day financial data
has spurred a considerable collection of works dedicated to statistical model-
ing and inference for such data. Semimartingales are a general class of time-
continuous stochastic processes to model dynamics of intra-day log-prices in ac-
cordance with standard no arbitrage conditions. We consider a general Itô semi-
martingale log-price model allowing for stochastic volatility, price and volatility
jumps as well as leverage. Uncertainty and risk in these models are usually as-
cribed to two distinct sources: First, the volatility process of the continuous
semimartingale part that permanently influences observed returns and, second,
occasional jumps in prices. Modeling and inference on the two components con-
stitutes a core research topic in statistics, finance and econometrics bringing
forth the seminal contributions by [6], [7], [10], [4] and much more literature
devoted to this aspect. For asset pricing ([20], [42]), macro and monetary eco-
nomics ([43]) and risk management ([34]) information about jumps is of key
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importance. While the literature on price jumps is well developed from both a
statistical and empirical point of view, methods and evidence about volatility
jumps are lagging behind. Empirical evidence about volatility jumps is usually
based on methods for price jumps applied to an observable volatility measure
like the index of implied volatility of S&P 500 index options (VIX), see [17] and
[41]. Such modeling strategies inevitably restrict the number of target variables
and the overall scope of empirical insights. Since price jumps have often been
associated with macro announcements or firm specific news, a natural empirical
question arises, if prices and their volatilities jump at common times stimulated
by the same events, or not. Such common jumps of price and volatility are often
excluded in the statistics literature to avoid technical difficulties. Beyond the
question if one should include simultaneous jump times in price and volatility in
a model, testing locally for volatility jumps opens up new ways to study effects
of information processing and volatility persistence. This is also reflected in an
increasing interest to separate the leverage effect in a continuous and a jump
part in the current literature, see [1] and [30]. The asset pricing model of [39] il-
lustrates economic forces behind contemporaneous price and volatility jumps. In
their model, agents learn about the profitability of a firm in a changing political
environment. A change in government policy does not only affect the expected
profitability of a firm (price jump) but also triggers a simultaneous volatility
jump induced by the impact uncertainty of the new policy.

This article presents a statistical test to decide whether intra-day log-prices
exhibit common price and volatility jumps. Our main contribution is to extend
the pioneering works by Jacod and Todorov [29] and Bandi and Renò [8] and
to provide an approach for an observation model that accounts for market mi-
crostructure. It is widely acknowledged that due to market microstructure of
financial data recorded at high frequencies, as effects of transaction costs and
bid-ask bounce, log-prices are not directly adequately modeled by semimartin-
gales. Taking microstructure frictions into account substantially changes statis-
tical properties and involved mathematical concepts of estimators. We introduce
a spectral spot volatility estimator for noisy observations. The test generalizes
the theory by [29] for non-noisy observations. We obtain a statistical test by
a neat combination of a stable central limit theorem at (almost) optimal rate
for the spectral spot volatility estimator and a suitable test function. In anal-
ogy to [29], the new test is self-scaling in the volatility and rate-optimal. Those
two properties are crucial to obtain an efficient method. The development of
a test that can cope with noise is of high relevance and importance as Jacod
and Todorov [29] already remark in their empirical application: “presence of
microstructure noise in the prices is nonnegligible”. We show in simulations
that compared to an application of the method by [29] based on skip-sampled
returns, we can significantly improve the power of the test.

Jumps in prices and the volatility are of very different nature. Large price
jumps become visible through large returns. More precisely, in a high-frequency
context truncation techniques as suggested by [35], [32] and [24] can be used
to identify returns that involve jumps. Up to some subtle changes due to dilu-
tion by microstructure, this remains valid also in the noisy setup. However, the
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localization of jump times becomes less precise and more difficult under noise.
A first localization method for price jumps in the noisy semimartingale model
has been introduced by [21] using wavelets. Other localization approaches are
included in [33] and in [16]. We adopt the methods from [16] to estimate the
spot volatility in presence of price jumps and also to locate price-jump times
by thresholding. Contrarily to price jumps, volatility jumps are latent and not
as obvious as price jumps due to the fact that we can not observe the volatility
path. The key element to determine volatility jumps will be efficient estimates
of the instantaneous volatility from observed prices.

Our spectral spot volatility estimator relies on the Fourier method promoted
by [40] and [12] for estimating quadratic (co-)variation, combined with trunca-
tion techniques of [16] to deal with price jumps. These methods attain lower vari-
ance bounds for integrated volatility estimation from noisy observations and are,
compared to simple smoothing methods and especially skip-sampling to lower
observation frequencies, more efficient. While we are the first who address the
testing problem under noise, consistent spot volatility estimators under noise are
available. [45] and [36] present local two-scales estimators and prove stable cen-
tral limit theorems. The construction of a rate-optimal pre-average estimator is
sketched in Section 8.7 of [3]. An alternative approach considering deterministic
volatility is presented in [38]. For our estimator, we establish rate-optimality and
a stable central limit theorem with smaller asymptotic variance compared to the
pre-average approach. The asymptotic theory allows for general heteroscedas-
tic, serially correlated and endogenous noise. With this estimation approach at
hand, we design a test, comparing estimated local volatilities and their left lim-
its at the estimated price-jump times. As a special case, this includes a local
test for volatility jumps at some fixed time or stopping time. A test with fast
convergence rate based on second order asymptotics of the estimator is sug-
gested. While the overarching strategy follows [29], the specific test function
and construction in the noisy observation case are different and profit from the
spectral estimation methodology. Compared to previous estimation techniques
to smooth noise, the asymptotic variance structure of the spectral volatility esti-
mates in Theorem 1 admits a simpler form. This facilitates a test statistic which
is self-scaling in the local volatility and thus furnishes an asymptotic distribu-
tion free test with the best possible rate. The Monte Carlo study corroborates
the high precision of the methods in finite samples. Our data study shows that
price volatility co-jumps occur and are practically relevant.

The paper is organized as follows. Section 2 introduces the model and the
statistical problem. We discuss the main ideas for the construction of the test
including a short review of the approach for non-noisy data. Section 2.2 describes
the spectral spot volatility estimation. We state and discuss the assumptions
imposed on the model for the asymptotic theory in Section 3.1 before presenting
the main results in Section 3.2. Practical guidance for the implementation and a
Monte Carlo study are given in Section 4. In Section 5 the methods are used to
analyze price and volatility jumps in NASDAQ high-frequency intra-day trading
data, reconstructed from the order book. Section 6 concludes. All proofs are
gathered in Section 7.
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2. Model, testing problem and statistical approach

Let (ΩX ,FX , (FX
t ),PX) be a filtered probability space satisfying the usual con-

ditions. The latent log-price process X follows an Itô semimartingale

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs +

∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|≤1}(μ− ν)(ds, dx) (1)

+

∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|>1}μ(ds, dx),

with W an (FX
t )-adapted standard Brownian motion, μ a Poisson random mea-

sure on R+ ×R with R+ = [0,∞) and an intensity measure (predictable com-
pensator of μ) ν(ds, dx) = λ(dx)⊗ds for a given σ-finite measure λ. We consider
discrete observation times i/n, i = 0, . . . , n, on the time span [0, 1]. The prevalent
model, capturing market microstructure effects which interfere the evolution of
an underlying semimartingale log-price process at high frequencies, is an indirect
observation model with noise:

Yi = Xi/n + εi, i = 0, . . . , n, (2)

where (εi)0≤i≤n is a discretization of the continuous-time noise process (Ut)t∈[0,1].
We consider X and U on a common probability space (Ω,F , (Ft),P) with
F = σ

(
Us, s ≤ 1

)∨
FX and Ft = σ

(
Us, s ≤ t

)∨
FX

t . Here, for two σ-algebras
F and H, we denote F

∨
H the smallest σ-algebra which contains F ∪H. X has

the same form (1) on this space, see Section 16.1 of [28] for a formal construc-
tion of embedding X and U in a joint probability space. Regularity conditions
on the characteristics of the efficient price X and the noise, under which we es-
tablish asymptotic results, are given in Section 3.1. In particular, we work with
a general smoothness assumption on the volatility (σt)t∈[0,1]. Similar to [29],
resulting convergence rates of the spot volatility estimator and the asymptotic
test hinge on this smoothness. First, readers may think of the typical case that
(σt)t∈[0,1] is an Itô semimartingale with a representation as X in (1) and with
locally bounded characteristics.

2.1. Test for common price and volatility jumps

In the presence of price jumps, we design a statistical test to decide if con-
temporaneous price and volatility jumps occur on the considered time interval
[0, 1]. Let (Sp)p≥1 be a sequence of stopping times exhausting the jumps of X.
We denote the process of left limits of the volatility σt− = limu→t,u<t σu. We
address the null hypothesis of no common jump of volatility and price on [0, 1]:

H[0,1] :
∑
Sp≤1

|σ2
Sp

− σ2
Sp−| = 0, (3)

against the alternative hypothesis that there is at least one jump in the volatility
at a jump time of X.
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Our test for (3) relies on two main ingredients. First, localization of price
jumps using thresholding. Second, a local test for volatility jumps. Suppose we
want to test H∗

0 : |σ2
s − σ2

s−| = 0 at a specific time s ∈ (0, 1), against the
alternative hypothesis that the volatility exhibits a jump |σ2

s − σ2
s−| > 0. For

such a test we require estimates of the squared volatility at time s, σ̂2
s , and before

time s, σ̂2
s−. An intuitive test statistic is the difference σ̂2

s − σ̂2
s−. It turns out

that a more general class of statistics T ∗(s) = g
(
σ̂2
s , σ̂

2
s−
)
with a test function g

facilitates improved asymptotic properties.

If discrete observations of the efficient log-price Xi/n, i = 0, . . . , n, were di-
rectly available, and if we assume for this motivation that there are no jumps
in X, σ2

s and σ2
s− could be estimated by local versions of realized volatility:

σ̂2
s =

n

kn

�sn�+kn∑
j=�sn�+1

(
X j+1

n
−X j

n

)2
, σ̂2

s− =
n

kn

�sn�−1∑
j=�sn�−kn

(
X j

n
−X j−1

n

)2
. (4)

For an Itô semimartingale (σt)t∈[0,1], kn = c
√
n with some constant c, σ̂2

s yields

rate-optimal spot volatility estimators, that is, (σ̂2
s −σ2

s) = OP

(
n−1/4

)
. Further,

on the null hypothesis that σs− = σs, for kn = c nb with b = 1/2− δ and δ > 0
arbitrarily small, a stable central limit theorem can be proved

nb/2
(
σ̂2
s − σ̂2

s−
) (st)−→ MN

(
0, 4σ4

s

)
.

For stochastic volatility the limit is mixed normal and it is important that
the convergence holds stably in law to allow for confidence intervals. This is a
stronger mode of weak convergence which is equivalent to joint weak convergence
with every FX -measurable bounded random variable, see [28] for an overview
on stable limit theorems. This limit theorem readily supplies an asymptotic test
for a volatility jump at time s with a rate of convergence nb/2. However, the
convergence rate is rather slow and not optimal for this testing problem. For
the test statistic

T (s) = 2 log
(
1
2

(
σ̂2
s + σ̂2

s−
))

− log
(
σ̂2
s

)
− log

(
σ̂2
s−
)

(5)

one derives instead nbT (s)
(st)−→ χ2

1 with a χ2
1 limit distribution and a much

faster rate. This improves the (asymptotic) power significantly. A key property
is that the test is pivotal, since T (s) is self-scaling in the volatility. This means
that it does not require some estimated asymptotic variance, since the limit
does not depend on any unknown parameter. Such a local test is not separately
highlighted in [29], but is contained as one ingredient of their general method.
The final test statistic of [29] is a sum of these local test statistics over all
estimated jump times.

It is not obvious how to construct a generalization of the local test for a
volatility jump to the noisy observations setup (2). Spot volatility estimators,
which are local versions of integrated volatility estimators under noise, are avail-



Common price and volatility jumps 2023

able, see for instance [45] and [36]. For an Itô semimartingale (σt)t∈[0,1] and
i.i.d. noise with some moment assumption, stable central limit theorems

nβ/2
(
σ̂2
s − σ2

s

) (st)−→ MN
(
0,AVARs

)
with optimal β = 1/4 − δ, δ > 0, can be proved. Based on σ̂2

s − σ̂2
s−, a test

with rate nβ/2 could be constructed. Asymptotic variances AVARs of such
estimators are usually sums of at least three addends: one depending on the noise
variance, one including the quarticity σ4

s and a cross term depending on both.
This applies to the asymptotic variances of the spot volatility estimators in [45]
and [36], which, however, have sub-optimal slower convergence rates localizing
a sub-optimal two-scales integrated volatility estimator. The construction of a
rate-optimal pre-average spot volatility estimator with an asymptotic variance
of the type above is sketched in Section 8.7 of [3]. Due to this structure of
the asymptotic variance, it appears difficult to find a suitable test function
that facilitates an asymptotic distribution free test with improved convergence
rate.

Apart from attaining asymptotic efficiency, our main motivation to construct
a method based on spectral spot volatility estimation is that we will be able to
prove a stable central limit theorem

nβ/2
(
σ̂2
s − σ2

s

) (st)−→ MN
(
0, 8σ3

sη
1/2
)

under mild assumptions for semimartingale volatility. Here, η = E[ε2i ] is the
variance of i.i.d. noise, while we consider more general heteroscedastic and seri-
ally correlated noise in Section 3. This enables us to find a suitable test function
g
(
σ̂2
s , σ̂

2
s−
)
, such that

nβ T0(s)
(st)−→ χ2

1, (6)

for a test statistic T0(s) which is self-scaling in the volatility. The self-scaling
property and the much faster convergence rate are key features to derive a
reliable testing procedure.

To test the null hypothesis (3), local tests are performed at the estimated
price-jump times which can be detected by truncation methods. Our asymptotic
analysis provides results for the local test at some time s as a special case.

The tests for common price and volatility jumps of [29] for direct observations
and our generalization for noisy observations both restrict to finitely many large
price adjustments at whose arrival times local tests are performed. Testing for
volatility jumps over an interval instead would require a sequence of tests for
volatility jumps at infinitely many points and is rather connected to a high-
dimensional testing problem. A theory without noise recently has been presented
in [14] and a generalization of the techniques, which are quite different to [29],
to the model with noise is a challenging topic for future research. It is clear
that detecting volatility jumps from noisy observations of the price is especially
difficult if we do not specify where to look for potential volatility jumps and
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the finite-sample performance of a global test is limited, see Section 6 of [14].
Restricting to local tests for volatility jumps as in this work facilitates a larger
power in finite-sample applications.

2.2. Spectral spot volatility estimators

Consider a sequence of equispaced partitions of the considered time span [0, 1]
into bins [khn, (k + 1)hn), k = 0, . . . , h−1

n − 1. For a simple notation suppose
nhn ∈ N, such that on each bin we enclose nhn noisy observations. A main
idea of spectral volatility estimation, constructed in [15], is to perform optimal
parametric estimation procedures localized on the bins. Based on these local
estimates, one can build estimators for the spot and the integrated squared
volatility. We utilize L2-orthogonal functions (Φjk)1≤j≤Jn for spectral frequen-
cies 1 ≤ j ≤ Jn in the Fourier domain up to a spectral cut-off Jn ≤ nhn. For
1 ≤ j ≤ Jn, 0 ≤ k ≤ h−1

n − 1 and 0 ≤ t ≤ 1, we define

Φj0(t) =

(√
2hnn sin

(
jπ

2nhn

))−1

sin
(
jπh−1

n t
)
1[0,hn](t), (7)

Φjk (t) = Φj0(t− khn).

The indicator functions localize the sine functions to the bins. For the spectral
volatility estimation, local linear combinations of the noisy data are used with
local weights obtained by evaluating the functions (7) on the discrete grid of ob-
servation times i/n, i = 0, . . . , n. We use the notion of empirical scalar products
and norms for functions f, g as follows:

〈f, g〉n :=
1

n

n∑
l=1

f

(
l

n

)
g

(
l

n

)
and ‖f‖2n :=

1

n

n∑
l=1

f2

(
l

n

)
= 〈f, f〉n. (8)

The empirical norms of the sine functions above give for all bins k = 0, . . . , h−1
n −

1:

‖Φjk‖2n =
(
4n2 sin2 (jπ/(2nhn))

)−1
, (9)

and we have the discrete orthogonality relations

〈Φjk,Φrk〉n = ‖Φjk‖2n δjr, j, r ∈ {1, . . . , Jn}, k = 0, . . . , h−1
n − 1, (10)

where δjr = 1{j=r} is Kronecker’s delta. The latter rely on basic discrete Fourier
analysis, a detailed proof is given in [15]. The central building blocks of spectral
volatility estimation are the spectral statistics

Sjk = ‖Φjk‖−1
n

n∑
i=1

Δn
i Y Φjk

( i
n

)
, j = 1, . . . , Jn, k = 0, . . . , h−1

n − 1, (11)

in which observed returns Δn
i Y = Yi/n−Y(i−1)/n, i = 1, . . . , n, are smoothed by

bin-wise linear combinations. Since the weight functions Φjk(t) are non-zero only
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on the kth bin, the spectral statistics (Sjk) include returns (Δn
i Y ), i = knhn +

1, . . . , (k + 1)nhn only over the bin under consideration. In absence of price
jumps, bin-wise estimates for the squared volatility σ2

khn
, k = 0, . . . , h−1

n −1, are
provided by weighted sums of bias-corrected squared spectral statistics:

ζk(Y ) =

Jn∑
j=1

wjk

(
S2
jk − ‖Φjk‖−2

n

η̂khn

n

)
. (12)

For the moment, readers can interpret (ηt)t∈[0,1] as time varying variance func-
tion of the observation errors in (2) and η̂khn some consistent estimator. In
Section 3.1, this is further generalized. The oracle optimal weights

wjk = I−1
k Ijk =

(
σ2
khn

+ ‖Φjk‖−2
n

ηkhn

n

)−2

∑Jn

m=1

(
σ2
khn

+ ‖Φmk‖−2
n

ηkhn

n

)−2 , (13)

with Ik =
∑Jn

j=1 Ijk, Ijk = 1
2 (σ

2
khn

+ ‖Φjk‖−2
n ηkhn/n)

−2, follow from minimiza-
tion of the variance under the constraint of unbiasedness. For a fully adaptive
approach we apply a two-stage method and obtain adaptive local estimates
ζadk (Y ) by plugging in estimated optimal weights ŵjk in (12).

Remark 1. Spectral statistics are related to pre-averages used by [26], but the
two estimators can not be transformed into one another, see Remark 5.2 in [27]
for a discussion of their connection. One difference is that for the spectral method
we start with a histogram structure and not a rolling kernel and then smooth bin-
wise noisy observations in the Fourier domain. The statistics (11) de-correlate
the data for different frequencies and form their local principal components. This
is key to the asymptotic efficiency attained by the spectral estimators as shown
in [40] and [12]. The latter shows that the estimator’s asymptotic variance coin-
cides with the minimum asymptotic variance among all asymptotically unbiased
estimators. We refer to Remark 3.1 of [27] for a recent discussion about efficient
volatility estimation under noise.

The spectral volatility estimation provides local estimates (12) for the squared
volatility σ2

khn
, k = 0, . . . , h−1

n − 1. In order to derive an estimate σ̂2
s at some

time s, we average the statistics ζk(Y ) over a local window around s of length
(r−1

n hn) → 0 as n → ∞, r−1
n ∈ N, slowly enough to ensure r−1

n → ∞. In
the presence of jumps in (1), truncation disentangles bin-wise statistics (12)
which include jumps from all others. We use the methods from [16] to cope with
price jumps for volatility estimation. If hn|ζk(Y )| > un for a threshold sequence
un = c hτ

n, τ ∈ (0, 1), with some constant c, the statistic is too large to be driven
by the continuous part and is evoked by a jump of X. In order to estimate
the volatility, we thus truncate ζk(Y ) for these k. For estimating the squared
volatility and its left limit at a certain time s, we use two disjoint windows after
and before s, respectively.

When the optimal weights (13) are known, an oracle spot volatility estimator
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σ̂2
s,or for s ∈ [r−1

n hn, 1− r−1
n hn) is:

σ̂2
s,or =

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn

Jn∑
j=1

wjk

(
S2
jk − ‖Φjk‖−2

n
ηkhn

n

)
1{hn|ζk(Y )|≤un}, (14a)

and the estimator for σ̂2
s−,or:

σ̂2
s−,or =

�sh−1
n �−1∑

k=�sh−1
n �−r−1

n

rn

Jn∑
j=1

wjk

(
S2
jk − ‖Φjk‖−2

n
ηkhn

n

)
1{hn|ζk(Y )|≤un}. (14b)

Close to the boundaries, s ∈ [0, r−1
n hn) ∪ (1 − r−1

n hn, 1], we shrink one win-
dow length accordingly. Since the optimal weights (13) hinge on the unknown
squared volatility and the noise level (ηt)t∈[0,1], we proceed with a two-step es-
timation approach. First, select a pilot spectral cut-off Jpi

n � nhn, and build
pilot estimators for the squared volatility

σ̂2
s,pil =

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn

Jpi
n∑

j=1

(Jpi
n )−1

(
S2
jk − ‖Φjk‖−2

n
η̂khn

n

)
(15)

× 1{
hn

∣∣∑J
pi
n

j=1(J
pi
n )−1
(
S2
jk−‖Φjk‖−2

n

η̂khn

n

)∣∣≤un

},
and σ̂2

s−,pil analogously. The pilot estimators are hence averages of squared, bias-

corrected spectral statistics over r−1
n bins and Jpi

n spectral frequencies. In the
second step, these pilot estimators are plugged into (13) to determine adaptive
weights ŵjk for the final estimators. We write

ζadk (Y ) =

Jn∑
j=1

ŵjk

(
S2
jk − ‖Φjk‖−2

n
η̂khn

n

)
. (16)

The spectral estimators of the squared spot volatility at time s and its left limit
are:

σ̂2
s =

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn

Jn∑
j=1

ŵjk

(
S2
jk − ‖Φjk‖−2

n
η̂khn

n

)
1{hn|ζad

k (Y )|≤un}, (17a)

σ̂2
s− =

�sh−1
n �−1∑

k=�sh−1
n �−r−1

n

rn

Jn∑
j=1

ŵjk

(
S2
jk − ‖Φjk‖−2

n
η̂khn

n

)
1{hn|ζad

k (Y )|≤un}. (17b)

Estimates (17a) and (17b) are truncated local averages of the statistics (16). Our
approach entails several tuning parameters whose practical choice is discussed
in Section 4.2.
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3. Asymptotic theory

3.1. Assumptions with discussion

We start with the assumptions on the characteristics of X in (1) which are
similar to the ones in [29].

Assumption 1. For the adapted and locally bounded drift process (bs)s≥0, we
require a minimal smoothness condition that for 0 ≤ t < s ≤ 1, some constant
C and some ι > 0:

E[(bs − bt)
2|Ft] ≤ C (s− t)ι . (18)

The volatility process σt is càdlàg and neither σt nor σt− = limu→t,u<t σs van-
ish.

Assumption (H-r). We assume that supω,x |δ(t, x)|/γ(x) is locally bounded
for a non-negative deterministic function γ satisfying

∫
R
(γr(x)∧ 1)λ(dx) < ∞.

We index the assumption in r ∈ [0, 2] to highlight the role of the jump activity
index r. The larger r, the more general jump components are included in our
model. In particular for r = 0 we consider jumps of finite activity. Imposing
r < 1 instead allows for infinite activity jumps which are absolutely summable.
We state the assumptions on characteristics of X with respect to (Ω,F , (Ft),P),
with the usual extension from (ΩX ,FX , (FX

t ),PX). Especially, (Wt) in (1) is
also a standard Brownian motion on this space. For the volatility process, our
target of inference, we work with the following general smoothness condition
determined by a smoothness parameter α ∈ (0, 1].

Assumption (σ-α). The process σt satisfies σt = fσ
(
σ
(A)
t , σ

(B)
t

)
with some

function fσ : R2 → R, continuously differentiable in both coordinates, and two

(Ft)-adapted processes σ
(A)
t , σ

(B)
t , where

• σ(A) is an Itô semimartingale

σ
(A)
t = σ

(A)
0 +

∫ t

0

b̃s ds+

∫ t

0

σ̃s dWs +

∫ t

0

σ̃∗
s dW

′
s (19)

+

∫ t

0

∫
R

δ̃(s, x)1{|δ̃(s,x)|≤1}(μ̃− ν̃)(ds, dx)

+

∫ t

0

∫
R

δ̃(s, x)1{|δ̃(s,x)|>1}μ̃(ds, dx),

with an (Ft)-Brownian motion W ′ independent of W , locally bounded

characteristics σ̃, σ̃∗, b̃, μ̃ and a random variable σ
(A)
0 . σ

(A)
t satisfies As-

sumptions 1 and (H-2) for α ≤ 1/2. For α > 1/2, the continuous martin-
gale part of σ(A) vanishes and σ(A) satisfies Assumptions 1 and (H-α−1).

• σ(B) lies in a Hölder ball of order α almost surely, i.e.
∣∣σ(B)

t − σ
(B)
s

∣∣ ≤
L|t − s|α, for all t, s ∈ [0, 1] and a random variable L for which at least
fourth moments exist.
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The smaller α, the less restrictive is Assumption (σ-α). It is natural to de-
velop results for general α ∈ (0, 1] to cover a broad framework and preserve
some freedom in the model. This is particularly important, since the preci-
sion of nonparametrically estimating a process (or function) foremost hinges
on its smoothness α. Therefore, convergence rates in Section 3.2 hinge on α.

In the composition of the volatility in Assumption (σ-α), σ
(B)
t can contain a

non-Lipschitz seasonality component (Lipschitz continuous seasonalities can as

well be modeled by the drift of σ
(A)
t ). As pointed out by [29], σ

(B)
t can also

be a long-memory volatility component as the prominent exponential fractional
Ornstein-Uhlenbeck model by [19].

While an i.i.d. assumption on the noise is standard in most works, empir-
ical findings, for instance by [22], motivate to allow for serial correlation and
endogeneity in the noise. We develop our theory under the following general
assumption.

Assumption (η-p). The noise (εi)0≤i≤n process is centered, E[εi] = 0. For
some p ≥ 4, its FX-conditional law has finite p-th moments, E

[
εpi |FX

]
< ∞

almost surely for all i = 0, . . . , n. The long-run variance process converges

n−�tn�∑
l=−�tn�

Cov
(
ε�tn�, ε�tn�+l

)
→ ηt , (20)

for t ∈ [0, 1] uniformly on compacts in probability and we have the mixing be-
havior

sup
i=0,...,n

∣∣Cov(εi, εi+l)
∣∣ = O

(
|l|−1−�

)
, (21)

for some � > 0, which is specified in the discussion below Theorem 1. The
process (ηt)t∈[0,1] is locally bounded and satisfies for all t, (t+s) ∈ [0, 1] the mild
smoothness condition:

|ηt+s − ηt| ≤ Ks(1/2+δ)∨α, (22)

with some δ > 0. The noise εi is for all i uncorrelated to (Δn
l X)l=1,...,(i−Q̃−1∨1)

for some Q̃ < ∞ and

�tn�∑
l=�tn�−Q̃

E
[
ε�tn�Δ

n
l X
]
→ ρt , (23)

for some continuous bounded function (ρt)t∈[0,1]. Furthermore, the noise does
not vanish, ηt > 0 for all t ∈ [0, 1].

The case that Cov(εi, εi+l) = 0 for all l �= 0 and η = Var(εi) constant for all i
is tantamount to the classical setup with i.i.d. noise. In general the noise is seri-
ally correlated, endogenous and heteroscedastic. Different to Assumption (GN)
in Section 7.2 of [3], we do not assume that the noise is conditionally centered
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to include the correlation to the increments of X in (23). The endogeneity con-

dition (23) includes linear models of the form εi =
∑i

l=i−Q̃ cl
√
nΔn

l X+Ui, with
Ui exogenous errors and constants cl, similar as in Equation (6) of [31] or con-
sidered by [9]. If we knew the process (ηt)t∈[0,1], Assumption (η-p) with a mild
lower bound for � would be sufficient for our asymptotic results. For an adaptive
method, however, we need to estimate the process (ηt)t∈[0,1]. Consistent estima-
tion of the noise long-run variance (20) requires stronger structural assumptions.
For aQ-dependent noise process, that is, supi=0,...,n |Cov(εi, εi+q)| = 0 for q > Q
and some given Q < ∞, and if η in (20) is time-invariant, consistent estimation
with

√
n-convergence rate of η has been established by [23]. In [13] it is shown

how Q can be found adaptively if it is unknown. Consistent estimation of the
noise variance process under heteroscedasticity, but without serial correlations,
is discussed in [27]. For the fully adaptive method, we tighten the assumptions
on the noise as follows.

Assumption 2. Assumption (η-p) holds with p ≥ 8. Moreover,

sup
i=0,...,n

∣∣Cov(εi, εi+q)
∣∣ = 0

for all q > Q with some Q < ∞.

Assumption 2 is satisfied by a Q-dependent noise process. Then, a consistent
estimation of the long-run noise variance (20) process is possible.

Proposition 3.1. Under Assumption 2, for hn = κ1n
−1/2 log(n), for all k =

0, . . . , h−1
n −1, the locally constant approximated noise long-run variance process

can be estimated with accuracy

η̂khn = ηkhn + OP

(
n−β
)
. (24)

Our estimator is given in (43) in the appendix. It is somewhat related to the
methods from [23] and [13], but localized to bins.

The assumptions on the noise are more general than in other works on spec-
tral volatility estimation as in [5] and in [13]. In particular, to the best of our
knowledge, we consider for the first time heteroscedastic and serially correlated,
endogenous noise.

Remark 2 (Non-equidistant observations). For a coherent and simple exposi-
tion of the construction of the spectral estimator in (7)-(11), we discuss equidis-
tant observations which allows us to rely on discrete-time Fourier identities
in (10). Considering a heteroscedastic noise-level, our analysis and results are
at the same time informative about non-equidistant observations. For general
observation schemes tni , i = 0, . . . , n, we impose the condition that a differen-
tiable cdf F exists such that observation times tni = F−1(i/n) are obtained by
a quantile transformation from the equidistant setting. Moreover, we require
that the derivative F ′ is strictly positive and satisfies the same smoothness as
(ηt) in (22). These assumptions are the same as in Assumption (Obs-d) of [5].
Then, all our asymptotic results transfer from the equidistant to this general
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setting when we replace ηs by ηs (F
−1)′(s). This follows directly by the asymp-

totic equivalence of the respective experiments established in [12]. In particu-
lar, having locally less frequent observations is equivalent to having locally an
increased noise level. Therefore, under the imposed conditions, (ηt)t∈[0,1] and
(F−1)′(t), t ∈ [0, 1], may be pooled. Note that adding the factor (F−1)′(s) to
the noise level ηs is the same as generalizing the frequently occurring factor
‖Φjk‖−2

n ηkhn/n to ‖Φjk‖−2
n ηkhn/(nF

′(khn)), where nhnF
′(khn) gives the local

sample size. In the equidistant case this is nhn and we have that F ′(s) = 1 is
constant.

3.2. Asymptotic results

Our first main result is on the spot squared volatility estimator and its asymp-
totic distribution.

Theorem 1. Suppose Assumptions 1, 2 and (H-r) with some r < 2 and smooth-
ness Assumption (σ-α), α ∈ (0, 1]. Fix some time s ∈ (0, 1), at which we want to
estimate σ2

s and σ2
s− with (17a) and (17b), respectively. Set hn = κ1n

−1/2 log(n)
and rn = κ2n

−β log(n) with constants κ1, κ2 and Jn → ∞, Jn = O(log(n)), as
n → ∞. Then, as n → ∞ and if

0 < β <

(
α

2α+ 1
∧ τ
(
1− r

2

))
, (25)

and τ < 1 − β/(p − 2) when p < ∞ moments of the noise exist, with τ the
truncation exponent in the sequence un in (15), (17a) and (17b), the estimators
satisfy the F-stable central limit theorem:

nβ/2

(
σ̂2
s − σ2

s

σ̂2
s− − σ2

s−

)
(st)−→ MN

(
0,

(
8σ3

sη
1/2
s 0

0 8σ3
s−η

1/2
s

))
. (26)

For the oracle estimators (14a) and (14b), the same limit theorem applies
under the less restrictive Assumption (η-p) with p = 8, � > β, and if τ < 1 −
β/(p−2). In fact, we can get arbitrarily close to the optimal rate for estimation
which is known to be nα/(4α+2) in this case, see [37]. Balancing the squared
bias and the variance guarantees that the estimators (17a) and (17b) attain
the optimal rate. For a central limit theorem we avoid an asymptotic bias by
slightly undersmoothing. Most interesting is the case when α ≈ 1/2, e.g. when
the volatility is a semimartingale. Then the convergence rate is n1/8. In case
that α > 1/2, we obtain faster convergence rates. In case that α = 1/2 and if
all moments of the noise process exist, for any r < 3/2 in Assumption (H-r),
we can choose β = 1/4 − ε with any ε > 0. Under the standard assumption
that we only have Assumption (η-p) with p = 8, the condition τ < 23/24
results in r < 34/23 ≈ 1.478. Hence, restricting to the condition that up to 8th
moments of the noise exist leads only to a slightly less general condition on the
jump activity. We point out that the restriction r < 3/2 on the jump activity,
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to come close to the optimal convergence rate, is less restrictive than the one
obtained for integrated squared volatility estimation, r < 1, in [16]. The reason
is that for spot volatility estimation we can only obtain slower convergence rates
by local smoothing compared to integrated volatility estimation. This, however,
works also under more active jumps.

The limit variable in (26) is mixed normal which we denote by MN and
defined on a product space of the original probability space (on which Y is
defined) and an orthogonal space independent of F . The convergence is F-stable
in law, marked (st). Stability of weak convergence then allows for a so-called
feasible version of the limit theorem (26) that facilitates confidence sets.

Corollary 3.2. Under the conditions of Theorem 1, and also for any Jn fixed
as n → ∞:

r−1/2
n

⎛
⎝ Î

1/2

�sh−1
n �+1

(σ̂2
s − σ2

s)

Î
1/2

�sh−1
n �−1

(σ̂2
s− − σ2

s−)

⎞
⎠ (st)−→ N

(
0,

(
1 0
0 1

))
, (27)

with Î�sh−1
n �+1 and Î

1/2

�sh−1
n �−1

the estimates of I�sh−1
n �+1 and I�sh−1

n �−1, as defined

in the weights (13), obtained by inserting the pilot estimates.

The results proved for the spot volatility estimator provide a main building
block for our asymptotic test, but are moreover of interest in their own right.
They show that the spectral method renders effective spot squared volatility
estimators under general noise and in the presence of jumps.

In the sequel, let (Sp)p≥1 be a sequence of stopping times exhausting the
jumps of X. We address the null hypothesis (3) that no common jumps of
volatility and price occur on [0, 1]. Under the alternative hypothesis, there is at
least one contemporaneous jump in volatility and price.

Analogously to [29], we specify test hypotheses more precisely by focusing
on jumps of X with absolute values |ΔXSp | > a for a ≥ 0 and write H(a)[0,1].
The reason for this is that a suitable test statistic and associated limit theory
for H(a)[0,1] with a > 0 works under a much more general setup with jumps of

infinite variation while testing H(0)[0,1] requires Assumption (H-0) to hold. In

both cases, we concentrate on a finite number of (large) price jumps under the
null hypothesis. From an applied point of view this is reasonable, since we are
interested in volatility movements at finitely many relevant price adjustments
on a fixed time interval.

Denote by g : R2
+ → R a test function with g(x, x) = 0 for all x. Let us now

state the general form of our test statistics:

T0(hn, rn, g) =

h−1
n −r−1

n −1∑
k=r−1

n

η̂
−1/2
khn

g
(
σ̂2
khn

, σ̂2
khn−
)
1{

hn|ζad
k (Y )|> (un∨a2)

}. (28)

Under mild regularity assumptions on g in terms of differentiability in both
coordinates, limit theorems for (28) can be proved. For testing H(a)[0,1], we
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consider two specific test functions in the following. Adjustments of the test (3)
for sub-intervals of [0, 1] are readily obtained by ignoring all jumps elsewhere.

Theorem 2. Let S1, . . . , SN1 be a finite collection of jump times of X on [0, 1],
with |ΔXSi | > a for all i. Consider H(a)[0,1], if either a > 0 and we impose the
condition that the Lévy measure of X does not have an atom in {a}, or assume
r = 0. On all assumptions of Theorem 1 and if τ < 3/4 for a = 0, when inserting
estimates (17a) and (17b) with hn = κ1n

−1/2 log (n), rn = κ2n
−β log (n), Jn →

∞, Jn = O(log(n)) in (28) with the test function

g(x1, x2) = 2

√
x1 + x2

2
−√

x1 −
√
x2, (29)

the following asymptotic distribution of the test statistic applies under H(a)[0,1]:

nβ T0(hn, rn, g)
(st)−→ χ2

N1
. (30)

Under the alternative hypothesis, nβ T0(hn, rn, g) → ∞ in probability. Therefore,
we obtain an asymptotic distribution free test by the asymptotic χ2-distribution
with N1 degrees of freedom. The test with critical regions

Cn =
{
nβ T0(hn, rn, g) > q1−α(χ

2
N̂1

)}, (31)

where qα(χ
2
N̂1

) denotes the α-quantile of the χ2
N̂1

-distribution, has asymptotic

level α and asymptotic power 1.

In fact, (31) contains the estimated number of price jumps N̂1. Since P(N̂1−
N1 > 0) → 0, (30) applies with N1 also. A naive approach based on the asymp-
totic normality result (27) with test function g̃(x1, x2) = (x1−x2) yields as well
an asymptotic test. It holds that

r−1/2
n

(
2

N̂1∑
i=1

Î−1

�h−1
n Si�+1

)−1/2

T0(hn, rn, g̃)
d−→ N(0, 1), (32)

on the null hypothesis H(a)[0,1]. Apparently, the rate r
−1/2
n � nβ/2,1 close to

n1/8 for α ≤ 1/2, is slower and thus the test in Theorem 2 is preferable.

Remark 3. As mentioned by [29], their test based on (5) corresponds to a
two-sample likelihood ratio test for equal variances in a Gaussian parametric

model with observations
√
nΔn

j X
iid∼ N(0, σ2

s−), j = �sn� − kn, �sn� − 1 and
√
nΔn

j X
iid∼ N(0, σ2

s), j = �sn� + 1, �sn� + kn. In this simpler model – closely
related to our model in case of no noise – the likelihood ratio is

Λ =
(σ̂2

s σ̂
2
s−)

kn/2(
σ̂2
s+σ̂2

s−
2

)kn
, and − 2 log(Λ) = kn

(
2 log

σ̂2
s+σ̂2

s−
2 − log σ̂2

s − log σ̂2
s−

)
,

1We write an � bn for asymptotically equivalent real sequences which means an/bn → c
for some constant c.
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where the estimators (4) are the maximum likelihood estimators for this model,
and we derive the convergence of −2 log(Λ) to a χ2

1-distribution from the stan-
dard asymptotic theory for likelihood ratio tests.

The model with noise is more complicated. Our test from Theorem 2 does
not directly correspond to a parametric likelihood ratio test and our estimators
(17a) and (17b) do also not agree with the non-explicit maximum likelihood
estimators in this model. The choice of g in (29) is motivated by studying which
properties in (5) are important for the asymptotic pivotal distribution under the
null. Any function of the form g(x, y) = 2f(x+y

2 ) − f(x) − f(y), with some
twice differentiable function f , is suitable for the construction of tests (in both
models) with the fast convergence rate based on second order asymptotics of the
estimators, since d

dxg(σ
2
s , σ

2
s) = d

dy g(σ
2
s , σ

2
s) = 0. On the other hand, that the

statistic (5) is self-scaling in the volatility leading to the pivotal limit distribution
is due to the identity

d2

dx2
g(σ2

s , σ
2
s) =

d2

dy2
g(σ2

s , σ
2
s) = −1

2
f ′′(σ2

s) =
(
nb Var(σ̂2

s)
)−1

denoting f ′′ the second derivative of f . With f(x) = log(x), it holds that
−1

2f
′′(σ2

s) = (2σ4
s)

−1, which guarantees the above identity in the model with-
out noise. In light of the efficient asymptotic variance under noise in Theorem
1, it is natural to choose f(x) =

√
x, such that

−1

2
f ′′(σ2

s) =
1

8σ3
s

=
η
1/2
s

nβVar(σ̂2
s)
.

Since the noise level ηs can be estimated with a much faster rate of convergence
than σ2

s – even under our general assumptions for the noise – this choice of (29)
facilitates (30).

The particular choice of the spectral estimators (17a) and (17b) is not crucial
for the construction of the test. Any rate-optimal spot volatility estimator may
be used when it is possible to find a function f satisfying the above identities.
However, with a more complex asymptotic variance structure, for instance for
pre-average or realized kernel estimators, this appears to be difficult. Estimators
attaining the same efficient variance as in (26) may be used with the same
function g in (29), to derive a test with the same asymptotic properties. A
localized QMLE as discussed by [18], for instance, could allow for analogous
results.

4. Implementation and numerical study

4.1. Setup of Monte Carlo simulation study

The simulation study examines the finite-sample performance of the proposed
methods. We implement a model where observed log-prices are given by

Yi/n =

∫ i
n

0

ϕt σt dWt +

∫ i
n

0

∫
R

xμ(dt, dx, dy) + εi,
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with jump intensity measure ν(dt, dx, dy) = λ dtΠ(dx)Π(dy) and with Gaussian
jump sizes Π ∼ N(H, H/100) whose magnitude depend on a parameter H. The
efficient semimartingale log-price process is recorded with additive microstruc-
ture noise

εi = θεi−1 + ui, ui
iid∼ N
(
0, η
(
1− θ
)−2
)
, i = 1, . . . , n, |θ| < 1. (33)

In line with empirical evidence, this model generates serially correlated noise. We
further consider two different noise models (34) and (35) below. We set values
of η according to realistic noise-to-signal ratios. We use the median value of

the estimated measure nη
( ∫ 1

0
ϕ4
tσ

4
t )

−1/2 found in a comprehensive data study
in [13]. Sample sizes n = 30, 000 and n = 5, 000 in our simulations suggest
η1/2 ≈ 0.005 and η1/2 ≈ 0.015, which we use in the following as two realistic
noise levels. According to the data summary in Table 5, 30,000 is a sample
size that matches (approximately) the average daily observation numbers of our
empirical data. We additionally analyze the methods’ performance for smaller
samples sizes n = 5, 000, which is realistic for less frequently traded assets. We
set θ = 0.6 equal to the empirically motivated value in [13].

ϕt = 1 − 3
5

√
t + 1

10 t
2 mimics a deterministic volatility intra-day seasonality

pattern and σ2
t a random stochastic volatility component with leverage:

dσ2
t = 6(1− σ2

t ) dt+ σ2
t dBt + dJt.

B is a standard Brownian motion with d[B,W ]t = ρ dt, where we fix ρ = 0.2.
The jump measure above has a second real argument to incorporate instan-

taneous arrivals of volatility jumps. The volatility jump component is of the
form

Jt = γ

∫ t

0

∫
R

yμ(dt, dx, dy) +

∫ t

0

∫
R

zμ̃(dt, dz)

with γ ∈ R and intensity measure ν̃(dt, dz) = dtΠ(dz). Setting γ = 0 results in
no common price and volatility jumps which means the null hypothesis is valid.
To simulate the model under the alternative hypothesis, we set γ = 1 instead.

4.2. Choice of tuning parameters

In the sequel, we provide advice on how to specify the tuning parameters that
are involved in the nonparametric procedures. We also conduct a sensitivity
analysis for the Monte Carlo study to find suitable values.

First, the bin-width hn � n−1/2 logn balances the number of observations
on bins nhn, which should be large enough to smooth out noise, and the dis-
cretization error by approximating volatility bin-wise constant. The sensitivity
analysis will show that the final test is very robust to modifications of hn. We
advise to select hn such that the number of observations on bins is at least
50 within a range to 250 observations for typical high-frequency financial data.
This results in a time resolution of 50-150 bins per trading day.
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Fig 1. Empirical percentage type-II-error rate (right) and empirical percentage global testing
error rate (left) for the test of size α = 0.05, depending on tuning parameters h−1

n and r−1
n ,

with 50 ≤ h−1
30,000 ≤ 300 and 2 ≤ r−1

30,000 ≤ 25. The empirical type-II-error rate measures the
empirical amount of realizations under the alternative hypothesis which are smaller or equal
the .95-quantile of the χ2

N1
-distribution. The global testing error rate is the sum of the type-

II-error rate and the misspecification of the size, that is, the difference between (1−α) and the
empirical amount of realizations smaller or equal the (1−α)-quantile of the χ2

N1
-distribution,

this time on the null hypothesis.

For the spot volatility estimators (17a) and (17b) and the pilot estimator
(15), we fix spectral cut-offs Jn and Jpi

n , respectively. The values of the spec-
tral cut-offs do not influence the methods when set sufficiently large. Since the
weights (13) decay exponentially for j � √

nhn � logn, the addends with j large
become negligible, such that it suffices to choose Jn � logn. The proportionality
constant should be larger than 1, we take values between 3 and 12. The pilot
estimators (15) instead use averages over frequencies j = 1, . . . , Jpi

n , such that
we fix Jpi

n to be smaller. We thus use Jpi
n � logn with a proportionality factor

smaller than for Jn. The threshold sequence un determines the bins on which
large returns are ascribed to jumps. We use the practical selection presented in
[16].

The most influential tuning parameter for our test is the size of the smoothing
window rn � n−β log n. If we choose rn larger, the spot volatility estimates
have smaller variance but the bias for rapidly varying volatilities increases. For
α = 1/2, we know the exact order of rn depending on n. There is, however,
no simple rule of thumb to fix the constant κ2, and we conduct an extensive
sensitivity analysis to find the best suitable values. The sensitivity analysis
reveals that in order to detect volatility jumps and separate them from a rough
continuous semimartingale volatility component, we should use rather small
smoothing window sizes.

We investigate the performance of the test for common price and volatility
jumps depending on the tuning parameters hn and rn in the Monte Carlo simu-
lation. We implement the setup from paragraph 4.1 with λ = 2, η1/2 = 0.005 and
H = 0.25 for both sample sizes n = 30, 000 and n = 5, 000. We set Jn = 30 in
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Table 1

Empirical power of the α = 0.05-test for n = 5, 000 depending on tuning parameters h5,000

and r5,000.

r−1
n:

h−1
n :

2 3 4 5 6 7 8 9 10

20 0.498 0.737 0.784 0.852 0.890 0.842 0.869 0.843 0.831

30 0.557 0.801 0.852 0.896 0.901 0.898 0.927 0.925 0.937

40 0.571 0.831 0.879 0.927 0.934 0.944 0.927 0.942 0.943

50 0.601 0.834 0.906 0.922 0.954 0.949 0.948 0.950 0.957

60 0.603 0.836 0.914 0.933 0.943 0.945 0.968 0.968 0.972

70 0.595 0.879 0.921 0.931 0.950 0.965 0.967 0.966 0.970

80 0.611 0.848 0.931 0.949 0.965 0.971 0.970 0.972 0.983

90 0.629 0.840 0.926 0.957 0.956 0.977 0.977 0.982 0.984

100 0.626 0.842 0.930 0.956 0.978 0.974 0.983 0.973 0.991

Table 2

Empirical size of the α = 0.05-test, that is, the empirical amount of realizations smaller or
equal the 0.95-quantile of the asymptotic χ2

N1
-distribution, for n = 5, 000 depending on

tuning parameters h5,000 and r5,000.

r−1
n :

h−1
n :

2 3 4 5 6 7 8 9 10

20 0.953 0.851 0.747 0.732 0.630 0.603 0.541 0.421 0.459

30 0.975 0.893 0.794 0.753 0.680 0.614 0.592 0.541 0.491

40 0.975 0.914 0.856 0.781 0.697 0.684 0.608 0.616 0.528

50 0.973 0.915 0.845 0.804 0.742 0.669 0.675 0.606 0.535

60 0.977 0.908 0.855 0.795 0.774 0.737 0.662 0.635 0.614

70 0.976 0.909 0.868 0.792 0.762 0.711 0.673 0.625 0.612

80 0.979 0.911 0.868 0.806 0.787 0.734 0.635 0.666 0.612

90 0.962 0.924 0.872 0.817 0.771 0.713 0.688 0.667 0.603

100 0.959 0.906 0.879 0.795 0.778 0.728 0.720 0.644 0.660

all configurations which is large enough to guarantee high efficiency but smaller
than nhn in any configuration. Jpi

n is set equal to 25.

Figure 1 shows the empirical power and a global testing error including mis-
specification of the size for a typical testing level α = 0.05 and for n = 30, 000.
The power of all configurations is quite high. Starting with values r−1

30,000 = 2,
that means the smoothing window is two bins in each direction, the power sig-
nificantly increases by choosing larger values of r−1

30,000. However, larger values

of r−1
30,000 lead to a misspecification of the size. The global testing error which

adds the misspecification of size with equal weight to the power is minimal for
r−1
30,000 = 4. On the other hand, the performance is remarkably robust across all
considered values of h30,000.

The precise values of empirical power and size for n = 5, 000, depending
on r5,000 and h5,000 are given in Table 1 and Table 2. Again, the global error
measure becomes minimal when r−1

5,000 = 4, not changing much for r−1
5,000 = 3 or

5, and being very robust with respect to h5,000.
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Fig 2. Bin-wise averages of spot squared volatility estimates (points) with bin-wise standard
deviations (dashed lines) in comparison to the true spot squared volatility (solid line), for
n = 5, 000 left. Qq-normal plot for feasible versions of the estimates on bin 40 at t = 1/2
right.

4.3. Simulation results for spot volatility estimation with a
comparison to a multi-scale approach

We analyze the accuracy of the spectral spot volatility estimator. First, we
illustrate its performance in the model from Section 4.1, with only a non-random
but time-varying volatility component ϕt = 1− 3

5 t
1/5 + 1

10 t
2 without volatility

jumps. This allows a convenient visualization of the estimation uncertainty.
We always use h−1

n = 150 for n = 30, 000, and h−1
n = 80 for n = 5, 000,

r−1
n = 4 and J = 30 and an average of estimators (17a) and (17b) for the
spectral spot volatility estimation of σ2

s . For the noise specification (33) with
pronounced serial correlations, we use the global version of (43) for the bias-
correction terms. Figure 2 shows the theoretical squared volatility function in
comparison to the bin-wise average estimates with standard deviations for n =
5, 000 from 3,000 Monte Carlo runs. The empirical standard deviations on the
bins (except the bins close to the boundaries) are quite close to their theoretical

values n−1/8

√
8σ3

sη
1/2
s . For instance, on bin 40 close to t = 1/2, we have a ratio

of ca. 1.1 of empirical to theoretical standard deviation. Figure 2 also depicts
the accuracy of the feasible central limit theorem (27) for bin 40.

Next, we compare the performance of our spectral spot volatility estimator
to that of a noise-robust multi-scale spot volatility estimator. The multi-scale
estimator for integrated volatility is adopted from [44]. Applied to all data it

estimates
∫ 1
0
σ2
t dt and we denote it by 〈̂X,X〉1. In order to obtain an estimator of

σ2
t at some t ∈ (0, 1), we use a local difference 〈̂X,X〉t−〈̂X,X〉t−δ with suitable

small δ. This extends the methods by [36] and [45] from two-scale to multi-scale
versions. Though no theoretical results are established for this estimator, it is
clear that for optimal δ the approach renders a rate-optimal multi-scale spot
volatility estimator. A tuning parameter, the multi-scale frequency, is chosen
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Table 3

Accuracy of spectral and multi-scale spot volatility estimators.

n noise model η1/2 MISE

spectral multi-scale

30,000 (34) 0.01 0.0216 0.0713
30,000 (34) 0.005 0.0162 0.0421
30,000 (34) 0.0025 0.0146 0.0285
5,000 (34) 0.01 0.0328 0.0855
5,000 (34) 0.005 0.0246 0.0702
5,000 (34) 0.0025 0.0227 0.0698

30,000 (35) 0.01 0.0231 0.0792
30,000 (35) 0.005 0.0184 0.0555
30,000 (35) 0.0025 0.0170 0.0469
5,000 (35) 0.01 0.0597 0.1015
5,000 (35) 0.005 0.0540 0.0892
5,000 (35) 0.0025 0.0517 0.0875

data-driven in an optimal-way, for which a formula is provided in Section 6 of
[11].

The multi-scale estimator gets biased under autocorrelated noise as in (33).
Thus, we focus on noise models without serial correlation to draw a meaningful
comparison. First, consider

εi
iid∼ N
(
0, η
(∫ 1

0

ϕ4
tσ

4
t dt
)1/2)

, i = 0, . . . , n. (34)

In this model, the bias-correction of the spectral estimator uses a standard
noise variance estimator for i.i.d. noise. Further, we examine the estimators in
the following noise model with time-varying and endogenous noise:

εi ∼ N
(
0, η
(∫ 1

0

ϕ4
tσ

4
t dt
)1/2

+
( 5∑

l=1

l

15
|Δn

i−lX|
)2)

, i = 5, . . . , n, (35)

and (34) for i = 0, . . . , 5. Here, we use locally bin-wise estimated noise levels for
the bias-correction terms.

Since generated volatility paths in our simulation model are random and thus
different in each run, we measure the discrepancy for each path. A suitable global
quantity to assess the estimators’ qualities from M Monte Carlo iterations is an
average normalized mean integrated squared error

MISE =
1

M

M∑
m=1

∫ 1

0

( σ̂2
t

σ2
t

− 1
)2

dt.

The integrals are approximated by sums. For the multi-scale estimator, we set
δ = K−1

MS and compute spot volatility estimates on a grid of KMS equidistant
time points. An optimization of the MISE led us to fixKMS = 30 for n = 30, 000,
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Fig 3. Bin-wise averages of spectral (points) and multi-scale (crosses) spot squared volatility
estimates with bin-wise standard deviations (dashed lines) in comparison to the true spot
squared volatility (solid line), for n = 30, 000. The area around the spectral estimates deter-
mined by their standard deviations is gray colored such that the other dashed lines depict the
standard deviations of the multi-scale estimates.

and KMS = 10 for n = 5, 000. For the spectral estimator the discretization is
given by the h−1

n bins of length hn.
An overview of the results for different noise levels, each quantity based on

M = 3, 000 Monte Carlo runs, is given in Table 3. The spectral estimation
outperforms the ad hoc multi-scale approach in each model specification. The
efficiency gains are most relevant for larger noise and more frequent observations.
Figure 3 visualizes spectral and multi-scale spot volatility estimates with their
standard deviations when the true volatility is deterministic and given by ϕt =
1 − 3

5

√
t + 1

10 t
2. The confidence regions sketched by the point-wise standard

deviations are wider for the multi-scale than for the spectral estimator. We
further see a small positive bias of the multi-scale estimates. The discretization,
chosen to optimize MISE, is also coarser than the bins of the spectral method
which we expect to be the main reason for this bias.

Overall, the estimation results for the spectral spot volatility estimator are
promising. They confirm that it provides a useful statistical device which is of
interest beyond its use as one ingredient for the statistical test for common price
and volatility jumps.

4.4. Simulation results for the test with a comparison to a
skip-sampling approach

In the sequel, we first study the empirical size and power of our test with re-
spect to different calibrations of volatility jump sizes, noise level and number
of observations. To evaluate the improved performance in comparison to the
test by [29], we also implement the latter based on appropriately down sampled
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Table 4

Parameter specification for Monte Carlo.

Scenario n λ H η1/2 γ h−1
n J Jpi r−1

n

I-Hyp 30,000 2 0.25 0.005 0 150 30 25 4

I-Alt 30,000 2 0.25 0.005 1 150 30 25 4

II-Hyp 5,000 2 0.25 0.005 0 80 30 25 4

II-Alt 5,000 2 0.25 0.005 1 80 30 25 4

III-Alt 30,000 2 0.10 0.005 1 200 30 25 5

IV-Hyp 5,000 2 0.25 0.015 0 80 30 25 4

IV-Alt 5,000 2 0.25 0.015 1 80 30 25 4

discretized simulated paths.

The parameter configurations used in the Monte Carlo study for different
scenarios are summarized in Table 4 together with the chosen tuning parame-
ters according to the values found to be optimal in the sensitivity analysis. In
scenario II (I) the average price jump is approx. 20 (60) times larger than the
average absolute return. The identification of price jumps by truncation thus
works with only very few errors. Hence, we can use the results from all Monte
Carlo iterations to analyze our methods’ performance. Examining the ability of
thresholding to locate price jumps in different situations has been addressed in
[16]. Here, the focus is on the test for common price and volatility jumps. The
volatility jumps in scenarios I, II and IV are a bit smaller than half the size of
the average range of the simulated continuous part of the intra-day volatility
path. Figure 6 illustrates that in empirical applications much larger volatility
jumps occur. In scenario III the jump in the volatility is less than 20% of the
range of the continuous intra-day volatility motion. In scenarios I, II and IV
we thus have a volatility jump size where the test should attain reasonable
power, while scenario III investigates the behavior for rather small volatility
jumps.

We compare the performance of our test based on the statistic (28) in scenario
I for our simulated model with the method by [29]. We cannot apply the latter
to the simulated n = 30, 000 high-frequency observations, since the simulated
data contains noise. If we apply the test for direct observations to noisy data,
the statistics are heavily biased and the performance is very poor. Instead, we
skip-sample simulations at a coarser frequency. A heuristic optimization leads
us in scenario I of our simulation study to an optimal skip-sample frequency
resulting in ca. 500 “de-noised” observations on [0, 1]. For intra-day NASDAQ
data this translates in using one observation per 46.8 seconds. In [29] a one
minute frequency for different – but also very liquid – data is used in the ap-
plication part. Moderate changes of the skip-sampling frequency do not affect
the results substantially. Figure 4 demonstrates a very good performance of our
test in scenario I. The power is 97.7% for the α = 0.05-test and above 90% even
for level α = 0.01. Similar to our test, the performance of the Jacod-Todorov
test applied to the 500 coarse returns is crucially influenced by the length of
the smoothing window of local realized volatilities. We visualize two configu-
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Fig 4. Comparison of the test and the Jacod-Todorov test based on skip-sampled
data.
Empirical size and power of the tests in scenario I under the null hypothesis (left) and al-
ternative hypothesis (right). Empirical amount of realizations smaller or equal percentiles of
theoretical asymptotic distribution under the null (y-axis) against those percentiles (x-axis).
The dotted line shows results for our test and the solid and dashed line two versions of the
Jacod-Todorov test using two different tuning parameters. The skip-sampling frequency is
optimized to allow for the highest power.

Fig 5. Empirical size and power of the tests in scenarios II, III and IV. Empirical amount of
realizations smaller or equal percentiles of theoretical asymptotic distribution under the null
(y-axis) against those percentiles (x-axis).

rations with kn = 50, 100 in the spot volatility estimators given in (4). The
choice kn = 100 is in favor of higher power, but the accuracy of the asymptotic
quantiles on the null hypothesis is not good. Setting kn = 50, we obtain less
power but the empirical quantiles on the null hypothesis track the asymptotic
ones more closely. In all configurations, the performance of the Jacod-Todorov
test applied to skip-sampled data is inferior to the power of our noise-robust
approach. This is not surprising, since for our approach we rely on an efficient
smoothing technique while skip-sampling can be seen as the simplest method
to smooth out noise. The performance of the Jacod-Todorov test is reasonably
well also, but in a situation with large available sample sizes and significant
noise it is worth to apply the more efficient, noise-robust procedure. If sam-
ple sizes are smaller (and the noise not larger), the difference between the two
methods becomes smaller. Figure 5 shows the performance in other scenarios
II, III and IV. Decreasing the sample size to n = 5, 000 observations in scenario
II, while all parameters are equal as in scenario I, leads to a slightly smaller
power and larger misspecification of the size. The power is still higher than for
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the skip-sample approach, but the difference is less relevant. With the tuning
parameters which minimize the global empirical testing error, the misspecifica-
tion of the size is still acceptable. Larger noise levels result in smaller power as
shown for scenario IV in Figure 5, while the fit of the size remains good. In this
situation, the Jacod-Todorov method would only work for less frequent skip-
sampling resulting as well in smaller power. For the alternative hypothesis with
a small volatility jump in scenario III, a sensitivity analysis as in Section 4.2 led
us to slightly different tuning parameters, h−1

30,000 = 200 and r−1
30,000 = 5. Since

smaller bins give a higher time resolution, it is not surprising that detecting
small volatility jumps in a rapidly time-varying spot volatility works better for
a finer time resolution. On the other side, choosing r−1

n slightly larger leads to
almost the same window length r−1

n hn for spot volatility estimation as before.
The power for such small volatility jumps is less, but still ca. 60% for α = 0.05.

5. Data study

To provide evidence about the practical relevance of price-volatility co-jumps
and to study the usefulness of our estimators and test in a real-world data envi-
ronment, we apply our methodology to stocks traded at the exchange platform
NASDAQ. The data study is based on limit order book data taken from the
online data tool LOBSTER2. The example refers to stocks of the online and
technology companies Amazon.com Inc. (AMZN), Apple Inc. (AAPL), Face-
book Inc. (FB), Intel Corp. (INTC) and Microsoft Corp. (MSFT). We focus on
transaction prices of 252 trading days in the year 2013. A trading day spans
from 9:30 to 16:00 EDT and includes for a single stock a minimum of 4,267
(AMZN 2013-07-03) up to a maximum of 210,812 (FB 2013-10-31) transac-
tions. One benefit of our estimator and test is that we can directly plug-in
traded log-prices, reconstructed from the order book, without considering any
skip-sampling or synchronization procedures. Since the method is robust against
market microstructure noise, we efficiently take into account all information
stored in the data.

Guided by our theoretical results and the simulations, estimates and tests are
based on spectral statistics calculated for k = 0, 1, ..., h−1

n −1 bins over a trading
day, with h−1

n = �3√n/ log(n)�. We set J = 30 and Jpi = 15. Jumps in prices
are detected with the locally adaptive threshold ûk = 2 log(h−1

n )hnσ̂
2
khn,pil

, with

σ̂2
khn,pil

the pilot estimator (15) of the spot squared volatility. We fix constant

window lengths r−1
n = 4. Surely, r−1

n determines a crucial parameter which can
be studied to learn about the persistence or live-time of a break in spot volatility.
We apply the test to each day separately.

Table 5 reports the rejection rates for the 5% and 10% significance levels.
Results indicate that on a 10% significance level 36% (INTC) up to 73% (AAPL)
of jumps in prices are accompanied by jumps in volatility. It appears that the
rejection rate decreases in the number of detected price jumps. This leads to

2LOBSTER academic data- lobsterdata.com, powered by NASDAQ OMX

lobsterdata.com
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Table 5

Testing for price and volatility jumps in NASDAQ order book data.

Stocks
# of days with
price jumps

Rejection rate
(price-volatility jumps)

Sample averages
(whole year 2013)

α = 5% α = 10% n Δσ̂2
s

Amazon 21 52.4% 61.9% 10,924 31.2%

Apple 22 63.6% 72.7% 36,947 36.5%

Facebook 37 46.0% 51.4% 41,354 27.8%

Intel 47 27.7% 36.2% 18,535 23.0%

Microsoft 22 50.0% 50.0% 28,052 31.2%

Notes: Estimation and test executed for each day in the year 2013 separately. n indicates
the average number of observed trades per trading day, Δσ̂2

s = | log(σ̂2
s) − log(σ̂2

s−)| is the
average estimated relative size of volatility jumps. Sample period: 01-02-2013 to 12-31-2013
(252 days).

relatively stable frequencies of price-volatility co-jumps over time across the
considered stocks. Referring to the 5% significance level, the Amazon.com stock
displays with around 4.4% of the trading days the lowest frequency of common
price and volatility jumps. With around 6.7% of trading days, Facebook Inc. has
the largest number of common jumps. Absolute jump sizes of the log squared
volatility processes reported in Table 5 are considerably large.

Figure 6 illustrates the mechanisms behind the test for common price and
volatility jumps. Left hand plots show an upward jump in prices on bin k = 58,
whereas right hand plots show a downward jump in prices on bin k = 39. Both
price jumps are associated with a significant contemporaneous upward jump
in spot volatility. The p-value in both examples is 0.00. On the first example
date, August, 13th 2013, the investor Carl Icahn has taken a large stake of AAPL
stocks. On May 14th, the downward jump example date, figures of mobile phone
sales have been reported.

We find evidence for frequent occurrences of simultaneous jumps in price and
volatility and quite large volatility jump sizes. Yet, by far not all detected price
jumps are accompanied by volatility jumps. Understanding the economic sources
of different jump events and their consequences for price-volatility co-jumps is
of interest for future research.

6. Conclusion

We present a new test for the presence of contemporaneous jumps of price and
volatility based on high-frequency data. The test transfers the methodology of
[29] to a setup accounting for microstructure noise by employing a spectral
estimation of the spot volatility and an accurate test function. The nonpara-
metric spot volatility estimator shows appealing asymptotic and finite-sample
qualities and is of interest beyond the scope of this article. It opens up several
new ways for inference in models for high-frequency financial data with noise.
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Fig 6. Examples of common price and volatility jumps. Upper figures indicate price
processes of the Apple Inc. stock. Lower figures display the related spectral quadratic variation
estimates for the bins k = 0, . . . , h−1

n . Estimates exceeding the threshold (dotted line) are
marked as price jumps. The difference between spot volatility estimates (bars) estimate the
volatility jump. 2013-08-13: n = 87, 445, 2013-05-14: n = 40, 707.

Simulations demonstrate that the proposed noise-robust test increases the finite-
sample performance considerably compared to an application of the test by [29]
to skip-sampled data. Our data study reveals cogent significance of price and
volatility co-jumps in NASDAQ high-frequency data. The presented methods
can be generalized in various directions. For instance, our methods guide the
way how a test for correlation of price and volatility jumps, as presented by
[25] for a non-noisy observation design, can be constructed. A general global
test for volatility jumps under noise generalizing the methods from [14] could
be addressed with a related high-dimensional testing procedure.

7. Proofs

7.1. Preliminaries

On the finite time horizon [0, 1], we may augment local boundedness to uniform
boundedness in Assumption (H-r) and Assumption 1, such that we can assume
that there exists a constant Λ with

max {|bs(ω)|, σ2
s(ω), |Xs(ω)|, |δω(s, x)|/γ(x), ηs(ω), ρs(ω)} ≤ Λ,
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for all (ω, s, x) ∈ (Ω,R+,R). This standard procedure can be found in Section
4.4.1 of [28]. Throughout the proofs K is a generic constant and Kp a con-
stant emphasizing dependence on p. We decompose the semimartingale X in its
continuous part

Ct = X0 +

∫ t

0

bs ds+

∫ t

0

σs dWs,

and the jump component

Jt =

∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|≤1}(μ−ν)(ds, dx)+

∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|>1}μ(ds, dx).

The processes

C̃n
t =

∫ t

0

σ�sh−1
n �hn

dWs (36)

serve as an approximation of Ct by simplified processes without drift and with
locally constant volatility. We separate jumps with absolute value bounded from
above by some ε < 1 and larger jumps:

Jt = J(ε)t +

∫ t

0

∫
R\Aε

δ(s, x)1{|δ(s,x)|≤1}(μ− ν)(ds, dx)

+

∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|>1}μ(ds, dx),

with Aε = {z ∈ R|γ(z) ≤ ε} and later let ε → 0. Let us recall some usual
estimates on Assumptions 1, (H-r) and (σ-α) which are crucial for the following
proofs. For the continuous semimartingale part, we have

∀p ∈ N, s, t ≥ 0 : E
[
|Cs+t − Cs|p

∣∣Fs

]
≤ Kpt

p
2 . (37a)

For given 0 < ε < 1, for J(ε) the estimate

E
[
|J(ε)s+t − J(ε)s|p

∣∣Fs

]
≤ Kp E

[( ∫ (s+t)

s

∫
Aε

(γ2(x) ∧ 1)μ(dτ, dx)
) p

2
]

≤ Kpt
( p
2∧1)γ

( p
2∧1)

ε , ∀p ∈ N, ∀s, t ≥ 0, (37b)

holds with γε =
∫
Aε

(
γ2(x) ∧ 1

)
λ(dx) ≤ Kε(2−r).

The continuous semimartingale increments satisfy local Gaussianity in the
sense that

E
[
|Cs+t−Cs−(σs(Ws+t−Ws))|p

∣∣Fs

]
≤ Kp E

[( ∫ s+t

s

|στ − σs|2 dτ
) p

2 ∣∣Fs

]
≤ Kp t

p
2 E

[
sup

τ∈[s,s+t]

(|στ − σs|p)
∣∣Fs

]
≤ Kpt

p
2 (1+2α), ∀p ∈ N, s, t ≥ 0, (37c)
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on Assumption (σ-α). The probability of a frequent occurrence of large jumps
is small. Precisely, the expectation of jumps with absolute value larger than ε
is bounded:

∀s, t ≥ 0 : E
[
|Js+t − Js − (J(ε)s+t − J(ε)s) |

∣∣Fs

]
≤ Ktε−r. (37d)

Under Assumption (H-r) with r ≥ 1, the jumps moreover satisfy

E
[
|Jt − Js|p

∣∣Fs

]
≤ Kp E

[( ∫ t

s

∫
R

(γr(x) ∧ 1)λ(dx)ds
)p/r]

≤ Kp|t− s|((p/r)∧1), ∀s, t ≥ 0. (37e)

Under Assumption (σ-α) for 0 ≤ s < t ≤ 1, the squared volatility satisfies:

E[|σ2
t − σ2

s | |Fs] ≤ |t− s|α. (37f)

Proofs of these bounds can be found, for instance, in Chapter 13 of [28]. (37b)
follows from Equation (54) in [2].

In the sequel, we gather more properties of the basis functions (7). We define
(Φjk) in (7) in the same way as [15] in their Equation (4b) to exploit discrete-
time Fourier identities under equidistant sampling. The asymptotic properties
of the estimator remain the same when we use

Φ̃jk(t) =

√
2hn

jπ
sin
(
jπh−1

n (t− khn)
)
1[khn,(k+1)hn)(t), j ≥ 1, (38)

instead which equals the definition from Equation (2.2) in [12]. We heavily
exploit the summation by parts identity for spectral statistics

Sjk = ‖Φjk‖−1
n

(
n∑

i=1

Δn
i XΦjk

(
i
n

)
−

n−1∑
i=1

εi ϕjk

( i+ 1/2

n

) 1
n

)
, (39)

with ϕjk(t) =
√
2h

−1/2
n cos

(
jπh−1

n (t− khn)
)
1[khn,(k+1)hn](t), see Lemma 6.1 of

[5]. For all (ϕjk), it holds that

n−1
n−1∑
i=1

ϕjk

( i+ 1/2

n

)
ϕj′k

( i+ 1/2

n

)
= δjj′ . (40)

For the asymptotic theory, we shall further use the following identities∫ 1

0

Φ̃2
jk(t) dt =

h2
n

π2j2
,

∫ 1

0

ϕ2
jk(t) dt = 1, (41a)

∫ 1

0

Φ̃jk(t)ϕuk(t) dt =
(1− cos(πj) cos(πu))2hn

π2(j2 − u2)
. (41b)

The latter gives 4hn/(π
2(j2 − u2)) whenever j is odd and u even, or the other

way round, and vanishes in all other cases. Recall the definition of the weights
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(13). The magnitude of these weights is

wjk ≤ Ijk = 1
2

(
σ2
khn

+
ηkhn

n ‖Φjk‖−2
n

)−2

= O
((

1 +
j2

nh2
n

)−2)

=

{
O(1) for j ≤ √

nhn

O(j−4n2h4
n) for j >

√
nhn

, (42)

with ‖Φjk‖−2
n ≈ π2j2h−2

n =
( ∫ 1

0
Φ̃2

jk(t) dt
)−1

.

In the proofs, we use the notation ζadk (Z) and ζk(Z) from (12) analogously
also for different processes Z. This means that we insert in (12) spectral statis-
tics Sjk(Z), analogous to (11), computed from the sequence Zi/n, i = 0, . . . , n,
especially ζk(X) for the statistics based on the unobserved efficient price.

7.2. Estimation of the noise long-run variance

First, consider the standard case where α ≤ 1/2 in Assumption (σ-α), such that
β < 1/4. To estimate (ηkhn) under (22), we use nhn observations on the bin
[khn, (k+1)hn]. For k = 0, . . . , h−1

n −1, and u = 1, . . . , Q, define the cumulative
empirical autocorrelation statistics

Z
(u)
khn

=
1

2nhn

(k+1)nhn∑
i=knhn+1

(Δn
i Y )2 +

1

nhn

u∑
l=1

(k+1)nhn−u∑
i=knhn+1

Δn
i YΔn

i+lY,

Z̃
(u)
khn

=
1

2nhn

(k+1)nhn∑
i=knhn+1

(Δn
i Y )2 +

1

nhn

u∑
l=1

(k+1)nhn∑
i=knhn+u+1

Δn
i YΔn

i−lY.

For u = 0, the rescaled local realized volatilities in the first addend define Z
(0)
khn

.
We estimate ηkhn by

η̂khn =

Q∑
u=0

(u+ 1)Z
(u)
khn

+

Q∑
u=1

uZ̃
(u)
khn

. (43)

We assume that Q is known. However, the same result applies if the process
is Q̃-dependent with Q̃ < Q. It thus suffices to take Q sufficiently large. A
statistical method to infer Q is provided by [13].

We consider separately the case α > 1/2 with possible values 1/4 ≤ β < 1/3.
Then, we exploit the increased smoothness of the noise by (22) to estimate
(ηkhn) with an improved convergence rate. We partition [0, 1] in n/Mn windows

of lengths Mn/n, each with Mn observations, where Mn = cM n1−(2α+1)−1

.
For a simple exposition we may suppose Mn, n/Mn ∈ N again. Completely
analogously as before, we compute the cumulative empirical autocorrelation

statistics Z
(u)

kMn
n

, Z̃
(u)

kMn
n

for k = 0, . . . , n/Mn − 1. The estimates (η̂khn) are now

obtained by

η̂khn = η̂k̃Mn
n

1{khn∈[k̃Mn
n ,(k̃+1)Mn

n )}, (44)
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with η̂k̃Mn
n

analogous to (43) over the coarser time windows.

Proof of Proposition 3.1

We begin with the case α ≤ 1/2 in Assumption (σ-α), such that β < 1/4. We
prove that

η̂khn = ηkhn +OP

(
n−1/4

)
. (45)

Considering the expectation of the cumulative empirical autocorrelation statis-
tics, all terms involving increments Δn

i X are of order OP(n
−1/2), and even

smaller under exogenous noise. Thus, we have that

E
[
Z

(u)
khn

|Fkhn

]
=

1

2nhn

(k+1)nhn∑
i=knhn+1

E
[
ε2i + ε2i−1 − 2εiεi−1|Fkhn

]
+OP(n

−1/2)

+
1

nhn

u∑
l=1

(k+1)nhn−u∑
i=knhn+1

E
[
εiεi+l + εi−1εi+l−1 − εi−1εi+l − εiεi+l−1|Fkhn

]

=
1

nhn

(k+1)nhn∑
i=knhn+1

E
[
ε2i − εiεi−1|Fkhn

]
+OP(n

−1/2)

+
1

nhn

(k+1)nhn−u∑
i=knhn+1

E
[
εiεi+u + εi−1εi − εi−1εi+u − ε2i |Fkhn

]
,

where we use (nhn)
−1 = O(n−1/2) for the first and the telescoping sum for the

second addend. We obtain that

E
[
Z

(u)
khn

|Fkhn

]
=

1

nhn

(k+1)nhn−u∑
i=knhn+1

E
[
εiεi+u − εi−1εi+u|Fkhn

]
+OP(n

−1/2),

for all 0 ≤ u ≤ Q. Summing over u ∈ {0, . . . , Q}, we exploit another telescoping
sum:

Q∑
u=0

(u+ 1)E
[
Z

(u)
khn

|Fkhn

]
=

1

nhn

(k+1)nhn−Q∑
i=knhn+1

Q∑
u=0

(u+ 1)
(
Cov
(
εi, εi+u|Fkhn

)
− Cov

(
εi−1, εi+u|Fkhn

))
+OP(n

−1/2)

=
1

nhn

(k+1)nhn−Q∑
i=knhn+1

Q∑
u=0

Cov
(
εi, εi+u|Fkhn

)
+OP(n

−1/2),

since Cov
(
εi−1, εi+Q|Fkhn

)
= 0. There are at most Q̃ < ∞ addends i = knhn +

1, . . . , knhn + Q̃, for that E[εi|Fkhn ] �= 0 is possible by endogeneity, which are

asymptotically negligible in the above sum. A similar computation for Z̃
(u)
khn
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gives:

E
[
Z̃

(u)
khn

|Fkhn

]
=

1

2nhn

(k+1)nhn∑
i=knhn+1

E
[
ε2i + ε2i−1 − 2εiεi−1|Fkhn

]
+OP(n

−1/2)

+
1

nhn

u∑
l=1

(k+1)nhn∑
i=knhn+u+1

E
[
εiεi−l + εi−1εi−l−1 − εi−1εi−l − εiεi−l−1|Fkhn

]

=
1

nhn

(k+1)nhn∑
i=knhn+1

E
[
ε2i−1 − εiεi−1|Fkhn

]
+OP(n

−1/2)

+
1

nhn

(k+1)nhn∑
i=knhn+u+1

E
[
εiεi−1 + εi−1εi−u−1 − ε2i−1 − εiεi−u−1|Fkhn

]
,

and thus that

Q∑
u=1

uE
[
Z̃

(u)
khn

|Fkhn

]
=

1

nhn

(k+1)nhn∑
i=knhn+Q+1

Q∑
u=1

u
(
Cov
(
εi, εi−u|Fkhn

)
− Cov

(
εi, εi−u−1|Fkhn

))
+OP(n

−1/2)

=
1

nhn

(k+1)nhn∑
i=knhn+Q+1

Q∑
u=1

Cov
(
εi, εi−u|Fkhn

)
+OP(n

−1/2),

since Cov
(
εi, εi−Q−1|Fkhn

)
= 0 for all, except finitely many, i. This yields that

for the estimator (43)

E
[
η̂khn |Fkhn

]
=

1

nhn

(k+1)nhn−Q∑
i=knhn+Q+1

Q∑
u=−Q

Cov
(
εi, εi+u|Fkhn

)
+OP(n

−1/2), (46)

such that supt∈[khn,(k+1)hn] |ηkhn − ηt| = O
(
h
(1/2+δ)∨α
n

)
= O
(
n−1/4

)
and (20)

give that

E
[
η̂khn |Fkhn

]
= ηkhn +OP

(
n−1/4

)
. (47)

The following bound for the conditional variance of the estimator (43) completes
the proof of (45). It holds uniformly in k that

Var
(
Z

(u)
khn

|Fkhn

)
≤ 1

2n2h2
n

(k+1)nhn∑
i=knhn+1

Q∑
u=−Q

Cov
(
(Δn

i ε)
2, (Δn

i+uε)
2|Fkhn

)

+
2

n2h2
n

∑
i,j,l,u

Cov
(
Δn

i εΔ
n
i+lε,Δ

n
j εΔ

n
j+uε|Fkhn

)
+ OP(n

−1/2)

= OP

(
(nhn)

−1Q3
)
= OP

(
n−1/2

)
,
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since the covariances vanish whenever the difference of two indices exceeds Q <

∞. Analogously, we derive that Var
(
Z̃

(u)
khn

|Fkhn

)
= OP

(
n−1/2

)
for all k. This

readily implies that Var(η̂khn) = O
(
n−1/2

)
, and with Chebyshev’s inequality

and (47) we conclude that η̂khn = ηkhn +OP(n
−1/4).

It remains to prove (43) for α ≥ 1/2. Then, supt∈[k̃Mn/n,(k̃+1)Mn/n]
|ηk̃Mn/n

−
ηt| = O

(
(Mn/n)

α
)
= O
(
n− α

2α+1
)
= O(n−β) by (25). Repeating the steps for

estimates η̂khn from nhn observations, we now obtain with Mn observations, for
all k̃ = 0, . . . , n/Mn − 1, that

η̂k̃Mn
n

= ηk̃Mn
n

+OP(M
−1/2
n ) = ηk̃Mn

n
+OP

(
n− 1

2 (1− 1
(2α+1)

)
)

= ηk̃Mn
n

+OP

(
n− α

2α+1
)
= ηk̃Mn

n
+ OP(n

−β).

This proves Proposition 3.1.

7.3. Stable convergence of the spot squared volatility estimators

We first prove two lemmas, one on moments of the noise terms in the spectral
statistics and one on moments of the statistics (12).

Lemma 1. On Assumption (η-p) with p ≥ 4:

E

[( n−1∑
i=1

εi ϕjk

( i+ 1/2

n

)
n−1
)2∣∣∣Fkhn

]
= ηkhnn

−1 + OP

(
n−1
)
, (48a)

E

[( n−1∑
i=1

εi ϕjk

( i+ 1/2

n

)
n−1
)4∣∣∣Fkhn

]
= 3 η2khn

n−2 + OP

(
n−2
)
. (48b)

Under Assumption (η-p) with p = 2p′, p′ > 2, it holds that

E

[( n−1∑
i=1

εiϕjk

( i+ 1/2

n

)
n−1
)2p′∣∣∣Fkhn

]
≤ Kp′ ηp

′

khn
n−p′

+ OP

(
n−p′)

. (48c)

Proof.

E

[( n−1∑
i=1

εiϕjk

( i+ 1/2

n

)
n−1
)2∣∣∣Fkhn

]

=

n−1∑
i=1

n−i−1∑
l=−i

E[εiεi+l|Fkhn ]
ϕjk

(
i+1/2

n

)
ϕjk

(
i+l+1/2

n

)
n2

=
(
ηkhn + OP(1)

)
n−1

n−1∑
i=1

ϕ2
jk

( i+ 1/2

n

)
n−1 +Rn

= ηkhn n−1 + OP(n
−1) +Rn.
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To control the remainder Rn, we perform a Taylor expansion

ϕjk

( i+ l + 1/2

n

)
− ϕjk

( i+ 1/2

n

)
=
∑
r≥1

ϕ
(r)
jk

(
i+1/2

n

)
r!

lr

nr
,

with ϕ
(r)
jk the existing rth derivative of ϕjk. If |E[εiεi+l]| ≤ |l|−1−� for all i =

0, . . . , n− l, it follows for any i = knhn + 1, . . . , (k + 1)nhn that

(k+1)nhn−i∑
l=knhn+1−i

E[εiεi+l|Fkhn ]
lr

nrhr
n

= O
( nhn∑

l=1

lr−1−�

nrhr
n

)
= O
(
(nhn)

−�
)

which tends to zero and is O(n−β/2) when � > β. Since ϕ
(r)
jk � h−r

n ϕjk and ϕjk is

zero outside the interval [khn, (k+1)hn] it follows that Rn = OP(n
−1(nhn)

−�).

Considering fourth moments yields

E

[( n−1∑
i=1

εi ϕjk

( i+ 1/2

n

)
n−1
)4∣∣∣Fkhn

]

=
∑

i,u,l,v

E[εiεlεuεv|Fkhn ]

n4
ϕjk

( i+1/2

n

)
ϕjk

( l+1/2

n

)
ϕjk

(u+1/2

n

)
ϕjk

(v+1/2

n

)

= 3n−4
n−1∑
i=1

n−i+1∑
l=−i

E[εiεi+l|Fkhn ] (1 + OP(1))ϕjk

( i+ 1/2

n

)
ϕjk

( i+ l + 1/2

n

)

×
n−1∑
u=1

n−u+1∑
v=−u

E[εuεu+v|Fkhn ]ϕjk

(u+ 1/2

n

)
ϕjk

(u+ v + 1/2

n

)

= 3n−2η2khn

(
n−1∑
u=1

ϕ2
jk

(
u+1/2

n

)
n

)2

+ R̃n.

The conditional expectation E[εiεlεuεv|Fkhn ] is negligible unless |i−l| and |u−v|
are small, or |i− u| and |l − v| are small, or |i− v| and |u− l| are small. In the
first identity, we have neglected the sum over terms where all four indices are
close which is of the order

(1 + O(1))
n∑

i=1

ϕ4
jk

(
i+1/2

n

)
n

n−3 · OP(1) = OP(h
−1
n n−3) = OP(n

−2)

given that E[ε4i |FX ] < ∞ almost surely for all i. That no fourth moments of
the noise appear in the leading term is natural, as in standard proofs of central
limit theorems using a moment method, since there are only n addends with
i = l = u = v. That the remainder term R̃n is asymptotically negligible follows
with the Taylor expansion from above.
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Analogously, given that 2p′th moments of the noise process exist for some
p′ > 2, an analogous computation yields that

E

[( n−1∑
i=1

εiϕjk

( i+ 1/2

n

)
n−1
)2p′∣∣∣Fkhn

]

=
(
(2p′ − 1) · (2p′ − 3) · . . . · 1

)ηp′

khn

np′

(
n−1∑
u=1

ϕ2
jk

(
u+1/2

n

)
n

)p′

+ OP(n
−p′

).

Lemma 2. On Assumptions 1, (σ-α), (H-r) and (η-p), we obtain the moment
bounds

E
[
|ζk(C + ε)|p|Fkhn

]
≤ Kp

(
log(n) +OP(1)

)
. (49)

Proof. First, (12) is a convex combination and applying Jensen’s inequality (for
convex combinations) and Young’s inequality, we derive that

E
[
|ζk(C + ε)|p|Fkhn

]
≤

Jn∑
j=1

wjkE
[∣∣S2

jk(C + ε)− ‖Φjk‖−2
n

η̂khn

n

∣∣p|Fkhn

]

≤
Jn∑
j=1

wjk 2
p−1E
[
|Sjk(C + ε)|2p +

∣∣‖Φjk‖−2
n

η̂khn

n

∣∣p|Fkhn

]
.

For the second addends, we obtain with (42) and Jn = O(log(n)) that

Jn∑
j=1

wjk 2
p−1
∣∣‖Φjk‖−2

n

ηkhn

n

∣∣p ≤ Kp

Jn∑
j=1

wjk

( j2

nh2
n

)p

≤ Kp

( Jn∑
j=1

j2p(log(n))−2p
)
≤ Kp log(n).

With Proposition 3.1 this bound applies to the conditional expectation with
η̂khn also.

For the term with spectral statistics Sjk(C + ε), depending on the process
(Ct)t∈[0,1] and the noise, we infer with Young’s inequality and since

E[Δn
i CΔn

l C] = O(n−2) for all i �= l, that

E
[
|Sjk(C + ε)|2p|Fkhn

]
≤ 22p−1

(
E

[(
‖Φjk‖−2

n

n∑
i=1

(Δn
i C)2Φ2

jk

(
i
n

))p ∣∣Fkhn

]

+ E

[∣∣∣‖Φjk‖−1
n

n−1∑
i=1

εi ϕjk

( i+ 1/2

n

) 1
n

∣∣∣2p ∣∣Fkhn

])
.
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Applying Jensen’s inequality again yields for the first addends

E

[(
‖Φjk‖−2

n

n∑
i=1

(Δn
i C)2Φ2

jk

(
i
n

))p ∣∣Fkhn

]

≤ ‖Φjk‖−2
n

n∑
i=1

Φ2
jk

(
i
n

)
n

npE
[
(Δn

i C)2p|Fkhn

]
≤ Kp

by (37a). For the noise term, Lemma 1 implies that

E

[∣∣∣‖Φjk‖−1
n

n−1∑
i=1

εi ϕjk

( i+ 1/2

n

) 1
n

∣∣∣2p ∣∣Fkhn

]
≤ Kp‖Φjk‖−2p

n ηpkhn
(1 + OP(1))n

−p

≤ Kp

( j2

nh2
n

)p
(1 + OP(1)) ≤ Kp(1 + OP(1))

for all j = 1, . . . , Jn = O(log(n)). Inserting the bounds above yields (49).

Proof of Theorem 1

The proof is structured in five steps. We establish the marginal stable central
limit theorem for the estimator (17a). Since we may consider the continuous
martingale part of X time-reversed, the mathematical analysis for the second
component follows the same arguments and we restrict ourselves to the right-
limit case explicitly. Then, we address the joint convergence in the fifth step of
the proof. The Steps 1-4 are structured according to the following decomposi-
tion:

nβ/2
(
σ̂2
s − σ2

s

)
= nβ/2

(( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rnζ
ad
k (Y )1{hn|ζad

k (Y )|≤un}

)
− σ2

s

)

= nβ/2

(( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rnζk(C̃
n + ε)

)
− σ2

s

)

+ nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn
(
ζk(C + ε)− ζk(C̃

n + ε)
))

+ nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn

(
ζk(Y )1{hn|ζk(Y )|≤un} − ζk(C + ε)

))

+ nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn

(
ζadk (Y )1{hn|ζad

k (Y )|≤un} − ζk(Y )1{hn|ζk(Y )|≤un}

))
.

In Step 1, we establish the stable limit theorem for the oracle spectral estimator
(14a) built from observations of the process C̃n in the simplified model with
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noise. Working more generally than under Assumption 2 with Proposition 3.1,
just suppose that we have some estimator

E
[
η̂khn |Fkhn

]
=

1

nhn

(k+1)nhn−1∑
i=knhn

(k+1)nhn−1−i∑
u=knhn−i

Cov
(
εi, εi+u|Fkhn

)
+ OP(n

−β/2),

(50)

as well as

Var(η̂khn |Fkhn) = OP(n
−β). (51)

Then, on Assumptions 1, (η-p) with p = 8, � > β, (H-r) with r < 2 and (σ-α)
and if 0 < β < α/(2α+ 1), as n → ∞:

Step 1 : nβ/2

(( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rnζk(C̃
n + ε)

)
− σ2

s

)
(st)−→ MN(0, 8σ3

sη
1/2
s ). (52)

Proof of Step 1: In order to prove a point-wise central limit theorem we verify
three conditions: one addressing the conditional bias, one the variance and one
Lindeberg-type criterion. Additionally we have to show that the convergence
holds stably in law.

First, we establish asymptotic unbiasedness of the local estimates (12):

E[ζk(C̃
n + ε)|Fkhn ] = σ2

khn
+ OP

(
n−β/2

)
for all k. (53)

Using the summation by parts identity (39), we decompose

E[ζk(C̃
n + ε)|Fkhn ] = E

[ Jn∑
j=1

wjk

(
S2
jk(C̃

n + ε)− ‖Φjk‖−2
n

η̂khn

n

)∣∣Fkhn

]

=

Jn∑
j=1

wjk‖Φjk‖−2
n

(
E

[( n∑
i=1

Δn
i C̃

nΦjk

( i
n

))2∣∣Fkhn

]

− 2E
[ n∑

i=1

Δn
i C̃

nΦjk

( i
n

) n−1∑
l=1

εlϕjk

( l + 1/2

n

) 1
n

∣∣Fkhn

]

+ E

[( n−1∑
i=1

εiϕjk

( i+ 1/2

n

) 1
n

)2
− η̂khn

n

∣∣Fkhn

])

and consider the three terms separately. For the first term we obtain with the
martingale property that

Jn∑
j=1

wjk‖Φjk‖−2
n E

[( n∑
i=1

Δn
i C̃

nΦjk

( i
n

))2∣∣Fkhn

]

=

Jn∑
j=1

wjk‖Φjk‖−2
n

n∑
i=1

σ2
khn

n
Φ2

jk

( i
n

)
= σ2

khn
.
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For the noise and bias-correction term, we obtain with the bound for the re-
mainder from Lemma 1 and with (50) that

Jn∑
j=1

wjk‖Φjk‖−2
n E

[( n−1∑
i=1

εiϕjk

( i+ 1/2

n

) 1
n

)2
− η̂khn

n

∣∣Fkhn

]

=

Jn∑
j=1

wjk‖Φjk‖−2
n

(k+1)nhn−1∑
i=knhn

(k+1)nhn−i−1∑
l=knhn−i

(
E[εiεi+l|Fkhn ]n

−2ϕjk

( i+ 1/2

n

)

× ϕjk

( i+ l + 1/2

n

)
− E[η̂khn |Fkhn ]

n

)

=

Jn∑
j=1

wjk‖Φjk‖−2
n

(k+1)nhn−1∑
i=knhn

(k+1)nhn−i−1∑
l=knhn−i

E[εiεi+l|Fkhn ]

×
(ϕjk

(
i+1/2

n

)
ϕjk

(
i+l+1/2

n

)
n2

− 1

n2hn

)
+ OP(n

−β/2)

=

Jn∑
j=1

wjk‖Φjk‖−2
n n−1

(
ηkhn + OP(1)

)( (k+1)nhn−1∑
i=knhn

ϕ2
jk

(
i+1/2

n

)
n

− 1 + O(n−β/2)

)

+ OP(n
−β/2) = OP(n

−β/2),

by (41a) since ‖Φjk‖−2
n n−1 is uniformly bounded. The expectation of cross terms

clearly vanishes under independence of noise and (Xt). Under (23), we derive
that

Jn∑
j=1

wjk‖Φjk‖−2
n E

[ n∑
i=1

Δn
i C̃

nΦjk

( i
n

) n−1∑
l=1

εlϕjk

( l + 1/2

n

) 1
n

∣∣Fkhn

]

=

Jn∑
j=1

wjk‖Φjk‖−2
n

(k+1)nhn−1∑
i=knhn

i∑
l=knhn

E[εiΔ
n
l C̃

n|Fkhn

]
Φjk

( l
n

)
ϕjk

( i+ 1/2

n

) 1
n

=

Jn∑
j=1

wjk‖Φjk‖−2
n

(
ρkhn + OP(1)

) (k+1)nhn−1∑
i=knhn

1

n

(
Φjk

( i
n

)
+O((hnn)

−1)
)

×
(
ϕjk

( i
n

)
+O(n−1)

)
= OP((nhn)

−1 + h3/2
n )
)
= OP(n

−β/2),

since
∑(k+1)nhn−1

i=knhn
Φjk

(
i
n

)
ϕjk

(
i
n

)
= 0 and using the bound |

∫
Φjk(t)dt| ≤

2
√
2h

3/2
n j−2, whereas (ϕjk) integrate to zero. To put it simply, that the in-

tegrals in (41b) vanish for j = u guarantees that the endogenous noise does not
induce any non-negligible bias term. This completes the proof of (53).
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For the expectation of the left-hand side in (52), we deduce that

nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rnE[ζk(C̃
n + ε)− σ2

s |Fkhn ]

)
= nβ/2

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn(σ
2
khn

− σ2
s)

= OP

(
nβ/2rn

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

(khn)
α

)
= OP

(
nβ/2(hn/rn)

α
)

= OP

(
nβ(α+1/2)n−α/2 logα(n)

)
= OP(1),

because α > 0 and β < α(2α + 1)−1. By (51) and using that ‖Φjk‖−2
n n−1 is

uniformly bounded for all j, we obtain that

Var
( Jn∑

j=1

wjk‖Φjk‖−2
n

η̂khn

n

∣∣Fkhn

)
=
( Jn∑

j=1

wjkn
−1‖Φjk‖−2

n

)2
Var
(
η̂khn |Fkhn

)
= OP(n

−β).

Thus, the estimation of ηkhn in the bias-correction is negligible in the variance of
σ̂2
s . In case of exogenous noise, with Lemma 1, we can readily adopt the identity

Var
(
ζk(C̃

n + ε)|Fkhn

)
=

Jn∑
j=1

w2
jkI

−1
jk = I−1

k (54)

from Section 6.2.2 of [5] with Ik, Ijk from (13). We consider additionally the
conditional variance terms due to endogenous noise under condition (23). With
similar estimates for the remainders as in the bias term above, we obtain that

Cov
(( n∑

i=1

Δn
i C̃

nΦjk

( i
n

))2
,
( n−1∑

l=1

εlϕuk

( l + 1/2

n

) 1
n

)2∣∣Fkhn

)

=
n∑

i,p=1

n−1∑
l,q=1

(
E
[
Δn

i C̃
nΔn

p C̃
nεlεq
∣∣Fkhn

]
− E
[
Δn

i C̃
nΔn

p C̃
n
∣∣Fkhn

]
E
[
εlεq
∣∣Fkhn

])

× n−2Φjk

( i
n

)
Φjk

( p
n

)
ϕuk

( l + 1/2

n

)
ϕuk

(q + 1/2

n

)

= 2

(k+1)nhn−1∑
l=knhn

l∑
i=knhn

E
[
εlΔ

n
i C̃

n|Fkhn

] (k+1)nhn−1∑
q=knhn

q∑
p=knhn

E
[
εqΔ

n
p C̃

n|Fkhn

]

× n−2Φjk

( i
n

)
Φjk

( p
n

)
ϕuk

( l + 1/2

n

)
ϕuk

(q + 1/2

n

)
(1 + OP(1))

= 2

(k+1)nhn−1∑
l=knhn

(
ρkhn + OP(1)

)
n−1Φjk

( l
n

)
ϕuk

( l
n

)

×
(k+1)nhn−1∑

q=knhn

(
ρkhn + OP(1)

)
n−1Φjk

( q
n

)
ϕuk

( q
n

)
+OP

(
h3/2
n n−1

)
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= 2ρ2khn

(∫ 1

0

Φ̃jk(t)ϕuk(t) dt
)2

(1 + OP(1)) +OP

(
h3/2
n n−1

)
.

In the first identity the terms for i = p and i not close to l, q cancel. We used
the smoothness of (Φjk) and (ϕjk) again. Analogously, we obtain that

Cov
(( n−1∑

l=1

εlϕjk

( l + 1/2

n

) 1
n

)2
,
( n∑

i=1

Δn
i C̃

nΦuk

( i
n

))2∣∣Fkhn

)

= 2ρ2khn

(∫ 1

0

Φ̃uk(t)ϕjk(t) dt
)2

(1 + OP(1)) +OP

(
h3/2
n n−1

)
.

With similar computations, we obtain that

Cov
( n∑

i=1

Δn
i C̃

nΦjk

( i
n

) n−1∑
l=1

εlϕjk

( l + 1/2

n

) 1
n
,
( n∑

p=1

Δn
p C̃

nΦuk

( p
n

))2∣∣Fkhn

)

= 2ρkhnσ
2
khn

(∫ 1

0

Φ̃jk(t)Φ̃uk(t) dt

∫ 1

0

Φ̃uk(t)ϕjk(t) dt
)
(1 + OP(1))+OP

(
h3/2
n n−1

)
= OP

(
h3/2
n n−1

)
,

since
∫ 1
0
Φ̃jk(t)Φ̃uk(t) dt

∫ 1
0
Φ̃uk(t)ϕjk(t) dt = 0 for all j, u. Analogously, since∫ 1

0
ϕjk(t)ϕuk(t) dt

∫ 1
0
Φ̃jk(t)ϕuk(t) dt = 0 for all j, u, the conditional covariance

of cross terms and noise terms is of the same order h
3/2
n n−1 in probability. The

only other (at first) non-negligible additional conditional variance term thus
comes from

Cov
( n∑

i=1

Δn
i C̃

nΦjk

( i
n

) n−1∑
l=1

εlϕjk

( l + 1/2

n

) 1
n
,

n∑
p=1

Δn
p C̃

nΦuk

( p
n

) n−1∑
q=1

εqϕuk

(q + 1/2

n

) 1
n

∣∣Fkhn

)
.

Using the same approximations as in the previous terms and subtracting the
term already contained in I−1

jk from the exogenous setup, we obtain the overall
additional conditional variance

Jn∑
j,u=1

wjkwuk‖Φjk‖−2
n ‖Φuk‖−2

n

(
Cov
(( n∑

i=1

Δn
i C̃

nΦjk

( i
n

))2
,

( n−1∑
l=1

εlϕuk

( l + 1/2

n

) 1
n

)2∣∣Fkhn

)

+ Cov
(( n−1∑

l=1

εlϕjk

( l + 1/2

n

) 1
n

)2
,
( n∑

i=1

Δn
i C̃

nΦuk

( i
n

))2∣∣Fkhn

)
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+ 4Cov
( n∑

i=1

Δn
i C̃

nΦjk

( i
n

) n−1∑
l=1

εlϕjk

( l + 1/2

n

) 1
n
,

n∑
p=1

Δn
p C̃

nΦuk

( p
n

) n−1∑
q=1

εqϕuk

(q + 1/2

n

) 1
n

∣∣Fkhn

))

−
Jn∑
j=1

w2
jk4‖Φjk‖−2

n σ2
khn

ηkhn

n

=

Jn∑
j,u=1

wjkwuk‖Φjk‖−2
n ‖Φuk‖−2

n ρ2khn
(1 + OP(1))

(
OP

(
h3/2
n n−1

)

+ 2
(∫

Φ̃jk(t)ϕuk(t) dt
)2

+ 2
(∫

Φ̃uk(t)ϕjk(t) dt
)2

+ 4

∫
Φ̃jk(t)ϕuk(t) dt

∫
Φ̃uk(t)ϕjk(t) dt

)
.

However, by (41b) the integrals sum up to zero. Since the remainder is
OP

(
(log(n))3n−1/4

)
, the effect of the endogenous noise becomes negligible at

first asymptotic order. We conclude (54).

In the sequel we write wjk, Ijk, Ik as functions of the squared volatility and

η: Ij(σ
2, η) = 1

2

(
σ2 + ‖Φjk‖−2

n
η
n

)−2
, I(σ2, η) =

∑Jn

j=1 Ij(σ
2, η) and wj(σ

2, η) =

(I(σ2, η))−1Ij(σ
2, η). Note that ‖Φjk‖−2

n is equal for all k such that the time-
dependence of I, Ij , wj is only in the squared volatility σ2 and η. For the sum
of conditional variances of the left-hand side of (52), we obtain that

nβ

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

r2nVar
(
ζk(C̃

n + ε)|Fkhn

)
=nβrn

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

Jn∑
j=1

rnw
2
jkI

−1
jk +OP(1)

)

= log (n)I−1
(
σ2
�sh−1

n �hn
, η�sh−1

n �hn

)
+Rn.

We exploit bounds on the derivative of the weights with respect to σ2 and η

∂wj(σ
2, η)

∂σ2
= O
(
wj(σ

2, η) log2 (n)
)
, (55)

here and several times below. The bound is proved as Equation (77) in [5].
∂wj(σ

2, η)/(∂η) can be bounded analogously. Observe that by the chain and
product differentiation rule

∂

∂σ2

(
w2

j (σ
2, η)(Ij(σ

2, η))−1
)
= 2wj(σ

2, η)
∂wj

∂σ2
(σ2, η)(Ij(σ

2, η))−1

+ w2
j (σ

2, η)4
(
σ2 + ‖Φjk‖−2

n
η
n

)
.
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Thus, we can find an upper bound for the remainder Rn using

Jn∑
j=1

(
1 ∨ ‖Φjk‖−2

n n−1
)(
1 ∧ ‖Φjk‖8nn4

)
= O
( �√nhn�∑

j=1

1 +

Jn∑
j=1

‖Φjk‖6nn3

)

= O(log6 (n))

⇒ Rn = OP

(
nβr2n

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

log6 (n)
(
σ2
khn

− σ2
�sh−1

n �hn

))

= OP

(
log7 (n)(hn/rn)

α
)

with (42), which tends to zero as n → ∞ because α > 0. By (22), the locally
constant approximation of the long-run noise variance induces an error of smaller
or at most equal order.

The Lindeberg condition is proved by the stronger Lyapunov criterion con-
sidering fourth moments:

n2β

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

r4n E

[
ζ4k(C̃

n + ε)
∣∣Fkhn

]
= OP

(
n−β log(n)

)
= OP(1),

using Lemma 2 (replacing C by C̃n, the proof of Lemma 2 applies in the same
way). We obtain the variance in (52), since the bin-wise Fisher informations

Ik =
1

2

Jn∑
j=1

(
σ2
khn

+ ‖Φjk‖−2
n

ηkhn

n

)−2

satisfy the following convergences (see Section 6.2.2 of [5]):

1

log (n)
Ik −→

∫ ∞

0

1

2

(
σ2
khn

+ ηkhnπ
2x2
)−2

dx =
(
8σ3

sη
1/2
s

)−1

, (56)

and the reciprocal of the right-hand side thus constitutes the asymptotic vari-
ance of σ̂2

s .

Finally, stability of the weak convergence is proved similarly as in Proposition
8.2 of [29]. For later use, let us directly consider a collection of times where
we consider estimates of the spot volatilities instead of only one fixed time.
In particular, for our test, we shall focus on finitely many jumps of X with
absolute value larger than some constant. Consider a finite set (Sp)1≤p≤P with
fix P < ∞ of ordered stopping times exhausting those jump arrivals of X on
[0, 1]. The restriction of Ω to

Ωn =
{
ω ∈ Ω|S1 > r−1

n hn, SP < 1− r−1
n hn, ∀p : (Sp − Sp−1) > 2r−1

n hn

}
(57)
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satisfies P(Ωn) → 1 as n → ∞. Thus, we work on Ωn. We aim at establishing
for

αn = nβ/2

( �Sph
−1
n �+r−1

n∑
k=�Sph

−1
n �+1

rnζk(C̃
n + ε)− σ2

Sp
, (58)

�Sph
−1
n �−1∑

k=�Sph
−1
n �−r−1

n

rnζk(C̃
n + ε)− σ2

Sp−

)
1≤p≤P

that E[Zg(αn)] → E[Zg(α)] with α =
(
2
√
2σ

3/2
Sp

η
1/4
Sp

Up, 2
√
2σ

3/2
Sp−η

1/4
Sp−U

′
p

)
1≤p≤P

for any F-measurable bounded random variable Z and continuous bounded
function g and for (Up, U

′
p) a sequence of standard normals defined on an ex-

ogenous space being independent of F . This is the definition of the claimed
F-stable convergence.

The strategy is to exclude intervals on which the spot estimators are built
and conditioning. Thereto, define

Bn =

P⋃
p=1

[(Sp − (r−1
n + 1)hn) ∨ 0, (Sp + (r−1

n + 1)hn) ∧ 1]

and G̃n
t as the smallest filtration to which C̃n and U are adapted and such that

the σ-field generated by the Poisson measure which determines S1, . . . , SP lies
in G̃n

0 . Then each αn is G̃n
1 -measurable. The following decomposition of C̃n is

well-defined:

X̃(n)t =

∫ t

0

1Bn(s)σ�sh−1
n �hn

dWs, X̄(n)t = C̃n
t − X̃(n)t,

and analogously (Ũt) and (Ūt). It is enough to consider Z being G̃n
1 -measurable,

as we can simply substitute with E[Z|G̃n
1 ] otherwise. When Hn is the σ-field

generated by G̃n
0 , X̄(n)t and Ūt,

(
Hn

)
n
is an isotonic sequence and

∨
n Hn = G̃n

1 .

Since E[Z|Hn] → Z in L1(P), it is enough to show

E[Z1Ωng(αn)] → E[Z g(α)] = E[Z]E[g(α)] (59)

for Z Hq-measurable for some q. We can use the approximation with constant
Hq-measurable squared volatilities σ2

Sp
, σ2

Sp− and with ηSp locally constant on
the single intervals of Bn, where the errors have been bounded above. Restricted
to Ωn the vector αn then includes only Brownian increments Δn

i W independent
of the Brownian increments of X̄(n)t. Further, the noise is under Assumption
(η-p) only short-term dependent on the past and in particular covariances of
any such Z and αn tend to zero. Then for all n ≥ q, conditional on Hq, the
vector αn has a law asymptotically independent of X̄(n)t and Ūt, such that the
ordinary central limit theorem implies the claimed convergence. The above proof
includes the stable convergence of the spot volatility estimator at one fixed time
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s ∈ (0, 1) as a special case. Thus, we have verified all conditions and infer the
stable limit theorem (52).

To prove that the same limit theorem as (52) is valid for nβ/2
(
σ̂2
s − σ2

s

)
, we

show for the other addends above that they converge to zero in probability for
all s ∈ (0, 1). We proceed with

Step 2 : nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn

(
ζk(C + ε)− ζk(C̃

n + ε)

))
= OP(1), (60)

under the same conditions as in Step 1. This remainder due to approximating
C by the simplified processes C̃n has exactly the same structure as the one
for integrated squared volatility estimation examined in paragraph 6.3 of [5].
We just incorporate the additional jump component in the volatility using an
estimate as (37e). Then, repeating the proof along the same lines, only changing
the mean over all bins to the mean over local windows of size r−1

n hn, renders
with β < 1/2 the order:

ζk(C + ε)− ζk(C̃
n + ε) = OP

(
hα
n

)
= OP

(
n−β/2

)
,

uniformly for all k. Analogously to [5], we require here the mild condition (18).

Step 3 : nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn
(
ζk(Y )1{hn|ζk(Y )|≤un} − ζk(C + ε)

))
= OP(1),

(61)

when, additional to the assumptions for Steps 1 and 2, we have β < τ(1− r/2)
and τ < 1 − β/(p − 2) when p < ∞ moments of the noise exist in Assumption
(η-p).

Proof of Step 3: This part of the proof is related to Chapter 13 of [28] and the
proofs in [16]. Our strategy here is related, but slightly different. We differentiate
three cases. For some fixed ρ ∈ (0, 1), for instance ρ = 1/2, consider

nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn
(
ζk(Y )1{hn|ζk(Y )|≤un} − ζk(C + ε)

))
=

nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn1{hn|ζk(C+ε)|>ρun}
(
ζk(Y )1{hn|ζk(Y )|≤un} − ζk(C + ε)

))

− nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn1{hn|ζk(C+ε)|≤ρun}1{hn|ζk(Y )|>un}ζk(C + ε)

)
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+ nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn1{hn|ζk(C+ε)|≤ρun}1{hn|ζk(Y )|≤un}
(
ζk(Y )− ζk(C + ε)

))
.

We prove that all three sums tend to zero in probability. For the first term,
when hn|ζk(C + ε)| > ρun = cρhτ

n, it suffices to prove that uniformly for all k:

|ζk(Y )1{hn|ζk(Y )|≤un} − ζk(C + ε)| = OP

(
n−β/2

)
.

We can choose N0 ∈ N, such that h
N0(1−τ)
n = O(n−β/2−ε) for some ε > 0. Given

that hn|ζk(C+ ε)| > ρun, when we have enough moments of the noise such that
τ < 1− β/(p− 2), we conclude with Lemma 2 that

|ζk(Y )1{hn|ζk(Y )|≤un} − ζk(C + ε)| ≤
(
h−1
n un + |ζk(C + ε)|

)∣∣∣hnζk(C + ε)

ρun

∣∣∣N0+1

≤
(
|ζk(C + ε)|N0+1 + |ζk(C + ε)|N0+2h1−τ

n (cρ)−1
)
(c ρ)−N0hN0(1−τ)

n

= OP

(
log(n)hN0(1−τ

n

)
= OP

(
n−β/2

)
.

This shows that the first sum above tends to zero in probability. Next, we prove
that

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn1{hn|ζk(C+ε)|≤ρun}1{hn|ζk(Y )|>un}ζk(C + ε) = OP

(
n−β/2

)
. (62)

We have the decomposition

ζk(Y )= ζk(C + ε)+

Jn∑
j=1

wjk‖Φjk‖−2
n

((
n∑

i=1

Δn
i JΦjk

(
i
n

))2

+ 2

n∑
i=1

Δn
i JΦjk

(
i
n

) n∑
v=1

Δn
vCΦjk

(
v
n

))
,

neglecting cross terms of jumps and noise. All cross terms can be bounded using
the Cauchy-Schwarz inequality. Observe that

1{hn|ζk(C+ε)|≤ρun}∩{hn|ζk(Y )|>un} ≤
1{

hn

∣∣∑Jn
j=1 wjk‖Φjk‖−2

n (
∑n

i=1 Δn
i JΦjk(i/n))2

∣∣>ρ̃ un

},
for some fix ρ̃ ∈ (0, 1) depending on ρ. This means that if the terms from the con-
tinuous part are not exceptionally large, the jumps need to be sufficiently large

such that hn|ζk(Y )| > un. The simple uniform bound Φjk(t) ≤
√
2h

−1/2
n ‖Φjk‖n

yields that

hn

∣∣∣ Jn∑
j=1

wjk‖Φjk‖−2
n

( n∑
i=1

Δn
i JΦjk

(
i
n

))2∣∣∣ ≤ 2
( n�(k+1)hn�∑

i=n�khn�+1

Δn
i J
)2
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and we obtain that

1{hn|ζk(C+ε)|≤ρun}1{hn|ζk(Y )|>un} ≤ 1{|J(k+1)hn−Jkhn |>ρ∗√un},

with ρ∗ = ρ̃/
√
2. Therefore, it is sufficient to prove that

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

1{|J(k+1)hn−Jkhn |>ρ∗√un} = OP

(
nβ/2
)
. (63)

Similar terms have been addressed several times in the literature, see, for in-

stance, (13.1.14) in [28]. Applying (37d) with ε = ρ∗u
1/2
n , we derive the condition

r−1
n hnu

−r/2
n = O

(
nβ/2
)

⇔ 1− τr

2
> β, (64)

to ensure (63). When hn|ζk(C + ε)| ≤ ρun and hn|ζk(Y )| ≤ un, it follows that

hn

∣∣∣ Jn∑
j=1

wjk‖Φjk‖−2
n

( n∑
i=1

Δn
i JΦjk(i/n)

)2∣∣∣ ≤ c un

with some constant c < 4. In this case, we obtain by (37b):(
|J(k+1)hn

− Jkhn | ∧
√
c un

)
= OP

(
h1/2
n u1−r/2

n

)
,

and hence, if we can ensure that h
τ(1−r/2)
n = O(n−β/2), using again Φjk(t) ≤√

2h
−1/2
n ‖Φjk‖n,

|ζk(Y )− ζk(C + ε)| ≤ c
(∣∣∣ Jn∑

j=1

wjk‖Φjk‖−2
n

n∑
i=1

(
Δn

i J ∧√
un

)2
Φ2

jk

(
i
n

)∣∣∣ ∧ un

)

≤ 2c h−1
n

(( n�(k+1)hn�∑
i=n�khn�+1

Δn
i J
)2

∧ un

)

= OP

(
u1−r/2
n

)
= OP

(
n−β/2

)
,

on the set where {hn|ζk(C + ε)| ≤ ρun, hn|ζk(Y )| ≤ un}. The condition β <
τ(1 − r/2) implies (64) and is exactly what we need to complete the proof of
(61).

Step4 :nβ/2

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn
(
ζadk (Y )1{hn|ζad

k (Y )|≤un}−ζk(Y )1{hn|ζp(Y )|≤un}
)
=OP(1).

Proof of Step 4: In Step 3 we have not used the specific form of the oracle
weights (13) and the proof analogously extends to

nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn
(
ζadk (Y )1{hn|ζad

k (Y )|≤un} − ζadk (C + ε)
))

= OP(1). (65)
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Thus it suffices to prove that

nβ/2

( �sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn
(
ζadk (C + ε)− ζk(C + ε)

))
= OP(1). (66)

We decompose this remainder as follows. Since both, oracle weights wj(σ
2
khn

,
ηkhn) and estimated weights wj(σ̂

2
khn

, η̂khn) sum up to one, we can replace (S2
jk−

‖Φjk‖−2
n η̂khn/n) by (S2

jk−E[S2
jk]). First, consider the difference of pre-estimated

and oracle weights, when the pilot estimator is the same for the whole window.
When max

(
η̂�sh−1

n �hn
−η�sh−1

n �hn
, σ̂2,pilot

�sh−1
n �hn

−σ2
�sh−1

n �hn

)
= OP(δn) with δn → 0

as n → ∞, we derive that

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

rn

Jn∑
j=1

(
wj

(
σ̂2,pilot

�sh−1
n �hn

, η̂�sh−1
n �hn

)
− wj

(
σ2
�sh−1

n �hn
, η�sh−1

n �hn

))

×
(
S2
jk − E[S2

jk]
)

= rn

Jn∑
j=1

(
wj

(
σ̂2,pilot

�sh−1
n �hn

, η̂�sh−1
n �hn

)
− wj

(
σ2
�sh−1

n �hn
, η�sh−1

n �hn

))

×
�sh−1

n �+r−1
n∑

k=�sh−1
n �+1

(
S2
jk − E[S2

jk]
)

= OP

⎛
⎝r1/2n

Jn∑
j=1

(
1 + ‖Φjk‖−2

n n−1
)
wj

(
σ2
�sh−1

n �hn
, η�sh−1

n �hn

)
log (n)δn

⎞
⎠

= OP

(
n−β/2

)
.

We have used that the expectation is zero and that the weights do not hinge on
k. Then, we can bound the variance using the derivative bound (55). Covariances
of the S2

jk over different bins for k �= k′ are negligible what is shown in Step 5

of the proof. Finally, since r
1/2
n = n−β/2

√
log (n) some δn < n−ε for any ε > 0

is enough here, while we actually attain δn = n−β/2. It remains to bound

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

r2n Var

( Jn∑
j=1

(
wj

(
σ̂2,pilot
khn

, η̂khn

)
− wj

(
σ̂2,pilot

�sh−1
n �hn

)
, η̂�sh−1

n �hn

)

×
(
S2
jk − E[S2

jk]
))

+

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

r2n Var

( Jn∑
j=1

(
wj

(
σ2
khn

, ηkhn

)
− wj

(
σ2
�sh−1

n �hn
, η�sh−1

n �hn

))

×
(
S2
jk − E[S2

jk]
))



Common price and volatility jumps 2065

= O
(
rn log

5 (n)
(
n−β ∨ (r−1

n hn)
2α
))

= O
(
n−β
)
.

This proves (66).

Step 5 : nβ

�sh−1
n �+r−1

n∑
k,k′=�sh−1

n �+1,

k �=k′

r2nCov
(
ζk(C̃

n + ε), ζk′(C̃n + ε)
)
= O(1).

Moreover, it holds that Cov(σ̂2
s , σ̂

2
s−) = O(n−β).

Proof of Step 5: Covariances of S2
jk and S2

uk′ for different bins k �= k′ are only
due to the noise parts and the endogeneity between noise and signal terms. All
covariances of the signal parts vanish by the martingale property of C̃n

t . Under
(23), covariances of S2

jk and S2
uk′ due to correlations between (εi)0≤i≤n and

(Δn
i X)1≤i≤n are only non-zero when |k − k′| = 1. Since there are only a finite

number of indices with |i− l| < Q̃ on two neighboring bins, we obtain the bound

Cov

(( n∑
i=1

Δn
i C̃

nΦj(k−1)

( i
n

))2
,
( n−1∑

l=1

εlϕuk

( l + 1/2

n

) 1
n

)2)

=

( knhn+Q̃∑
i=knhn

i∑
l=i−Q̃

E[εiΔ
n
l C̃

n]Φj(k−1)

( l
n

)
ϕuk

( i+ 1/2

n

))2

n−2(1 + O(1))

= O(n−2),

uniformly for all k, u, j. We used the same approximations as for the variance
terms in Step 1. For the two other covariance terms due to endogeneity, analo-
gous estimates yield bounds of the same order. Under Assumption 2, a similar
bound can be proved for the covariances due to serial correlation of the noise.
Here, we provide a proof that does not use Assumption 2, but only Assumption
(η-p) with (21). We derive that

Cov
(
S2
jk, S

2
uk′
)

= ‖Φjk‖−2
n ‖Φuk′‖−2

n Cov
(( n−1∑

i=1

εiϕjk

( i+ 1/2

n

) 1
n

)2
,

( n−1∑
l=1

εlϕuk′

( l + 1/2

n

) 1
n

)2)

=

(k+1)nhn−1∑
i=knhn

(k+1)nhn−i−1∑
p=knhn−i

(k′+1)nhn−1∑
l=k′nhn

(k′+1)nhn−p−1∑
q=k′nhn−p

(
E[εiεi+pεlεl+q]

−E[εiεi+p]E[εlεl+q]
)

× ϕjk

( i+ 1/2

n

)
ϕjk

( i+ p+ 1/2

n

)
ϕuk′

( l + 1/2

n

)
ϕuk′

( l + q + 1/2

n

)
× ‖Φjk‖−2

n ‖Φuk′‖−2
n

n4
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≤K

(k+1)nhn−1∑
i=knhn

(k′+1)nhn−1∑
l=k′nhn

((E[εiεl])
2+O(1))

‖Φjk‖−2
n ‖Φuk′‖−2

n

n4
ϕ2
jk

( i+ 1/2

n

)

× ϕ2
uk′

( l + 1/2

n

)

≤ K

(k+1)nhn−1∑
i=knhn

(k′+1)nhn−1∑
l=k′nhn

((E[εiεl])
2 + O(1))n−2ϕ2

jk

( i+ 1/2

n

)
ϕ2
uk′

( l + 1/2

n

)

= O
(
((k − k′)nhn)

−2−�
)
, (67)

where we use similar approximations as in the proof of Lemma 1 and that∫
ϕ2
jk(t) dt = 1 for all (j, k). Thereby, we obtain that

nβ

�sh−1
n �+r−1

n∑
k,k′=�sh−1

n �+1,

k �=k′

r2nCov
(
ζk(C̃

n + ε), ζk′(C̃n + ε)
)

= nβrn

�sh−1
n �+r−1

n∑
k,k′=�sh−1

n �+1

k �=k′

rn

Jn∑
u,j=1

wjkwuk′Cov(S2
jk, S

2
uk′)

= O(r−1
n (log(n))2(nhn)

−2) = O(r−1
n n−1) = O(1).

This completes the proof of the marginal central limit theorem. At the same
time, we obtain analogously

nβ

�sh−1
n �+r−1

n∑
k=�sh−1

n �+1

�sh−1
n �−1∑

k′=�sh−1
n �−r−1

n

r2nCov
(
ζk(C̃

n + ε), ζk′(C̃n + ε)
)
= O(1).

This yields that the covariances of σ̂2
s and σ̂2

s− are asymptotically negligible. We
conclude the joint stable central limit theorem (26).

7.4. Asymptotic theory for the test

Denote by {S1, . . . , SN1} the finite sequence of stopping times exhausting the
jumps of X on [0, 1] with |ΔXSi | > a for all i and some a ∈ R+ and the Lévy
measure of X does not have an atom in {a}. In the case of finite activity jumps,
r = 0 in Assumption (H-r), we can set a = 0.

Proposition 7.1. On the null hypothesis H(a)[0,1], when Assumptions 1, 2,
(H-r) and (σ-α) are satisfied, the test statistic is asymptotically χ2-distributed,

nβ T0(hn, rn, g)
(st)−→ χ2

N1
, (68)

with N1 degrees of freedom .
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Corollary 7.2. Under the alternative hypothesis
(
Ω \ H(a)[0,1]

)
, when there

exists at least one s ∈ [0, 1] with |ΔXs| > a and |Δσ2
s | > 0, it holds as n → ∞

that:

P

(
nβT0(hn, rn, g) > q1−α(χ

2
N̂1

)
)
→ 1. (69)

Proof of Proposition 7.1:.
1. Detection of (large) price jump arrivals

Consider the set

Ω̃n =
{
ω ∈ Ω|Si = k · hn , i = 1, . . . , N1, k = 0, . . . , h−1

n

}� ∪{
ω ∈ Ω|S1 > r−1

n hn, SN1 < 1− r−1
n hn, Si − Si−1 > 2r−1

n hn , i = 1, . . . , N1 − 1
}

∪
{
ω ∈ Ω|∃(s, i) s.t. |Δσ2

s | > 0 and s ∈ [Si − r−1
n hn, Si + r−1

n hn] \ {Si}
}�

.

Since P(Ω̃n) → 1 as n → ∞ with (37d), we work conditionally on Ω̃n. The jump
times {Si, i = 1, . . . , N1} are estimated with thresholding by {Ŝi, i = 1, . . . , N̂1},
where we set Ŝi = khn when hn|ζadk (Y )| > un ∨ a2. We prove that

h−1
n −r−1

n −1∑
k=r−1

n

g(σ̂2
khn

, σ̂2
khn−)1{hn|ζad

k (Y )|>un∨a2} −
∑
s≤1

g(σ̂2
s , σ̂

2
s−)1{|ΔXs|>a}

= OP(n
−β). (70)

Denote K = {0 ≤ k ≤ h−1
n − 1|Si ∈ (khn, (k + 1)hn)} and K� = {0, . . . , h−1

n −
1} \ K. First, we show that∑

k∈K�

g(σ̂2
khn

, σ̂2
khn−)1{hn|ζad

k (Y )|>un∨a2} = OP(n
−β). (71)

With the Markov inequality, Lemma 2 and using that at least p = 8 moments
of the noise exist, we obtain that

P

(
sup
k∈K�

|ζadk (Y )| > h−1
n

(
un ∨ a2

))
≤ Kh−1

n

log(n)(
un ∨ a2

)8 h8
n,

for some constantK, and the same order without the factor h−1
n for P

(
|ζadk (Y )| >

h−1
n (un∨a2)

)
and some k ∈ K�. Indicator functions 1An , with pn = P(An) → 0,

satisfy 1An = OP(p
1/2
n ), using that E[1An ] = pn and Var(1An) ≤ pn. Most

factors g(σ̂2
khn

, σ̂2
khn−) in (71) tend to zero in probability. When |Δσ2

s | = 0 for all

s ∈ [(k− 1)hn, khn], we have that g(σ̂2
khn

, σ̂2
khn−) = OP

(
n−β). However, for k ∈

K�, jumps in (σ2
s)0≤s≤1 can occur. From the summability of

∑
s≤1(Δσ2

s)
2 < ∞,

it follows that at most n2v volatility jumps of sizes bounded by n−v, v ∈ [0, 1/2),
can occur. Since g(x, y) = O((x − y)2) for (29) as (x − y) → 0, for a = 0 we
obtain that∑
k∈K�

g(σ̂2
khn

, σ̂2
khn−)1{hn|ζad

k (Y )|>un∨a2} = OP

(
n−β log(n)h3−4τ

n +log(n)h4(1−τ)
n

)
,
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respectively n−β log(n)h3
n+log(n)h4

n for a > 0. For a > 0, (71) is clearly satisfied,
while for a = 0 the condition

3− 4τ > 0 ⇒ τ < 3/4

ensures (71). We have proven that the error due to false jump detections is
asymptotically negligible.

It remains to prove that the error due to non-detection of one of the finitely
many jump times S1, . . . , SN1 is also asymptotically negligible. This is ensured
by

−
∑
k∈K

g(σ̂2
khn

, σ̂2
khn−)1{hn|ζad

k (Y )|≤un∨a2} = OP(n
−β). (72)

By the results from Section 3.1.3 of [16],3 for Si ∈ ((k−1)hn, khn), it holds that

hn|ζadk (Y )| = (ΔXSi)
2 + ξi = a2 + ε+ ξi with ξi = OP(1) and ε > 0.4

On the hypothesis, there are no simultaneous jumps in the volatility, i.e. σ2
Si

−
σ2
Si− = 0 for all i = 1, . . . , N1. On the finitely many bins with k ∈ K, we thus

have that
sup
k∈K

g(σ̂2
khn

, σ̂2
khn−) = OP(n

−β).

Hence, ξi = OP(1) suffices to ensure (72). (71) and (72) imply (70).

2. Stable convergence of spot volatility estimates around detected
(large) price-jump times

The asymptotic distribution of the test statistic is derived with (70) and the
stable convergences of the spot volatility estimates:

nβ/2

(
σ̂2
s − σ2

s

σ̂2
s− − σ2

s−

)
(st)−→ MN

(
0,

(
8σ3

sη
1/2
s 0

0 8σ3
s−η

1/2
s

))
,

which hold jointly for all i = 1, . . . , N1. The stable limit theorems of the spot
volatility estimators are given in Theorem 1. Concerning the convergence of the
spot estimates at stopping times, observe that

• Thresholding and identification of a jump is based on ζadk (Y ).

• Given that hn|ζadk (Y )| > un ∨ a2, Ŝi = khn for some i ∈ {1, . . . , N̂1}, σ̂2
Ŝi

is computed from ζadl (Y ), l = (k + 1), . . . , (k + r−1
n ).

• Given Ŝi = khn, σ̂
2
Ŝi−

is computed from ζadl (Y ), l = (k− r−1
n ), . . . , (k−1).

We restrict to Ω̃n again. For the stability of weak convergences, we have already
considered a sequence of stopping times in Step 1 of the proof of Theorem 1.
Recall the definition of G̃n

t from this paragraph. The Sp, p = 1, . . . , N1, are

3See Proposition 3.2. of [16].
4Since the Lévy measure of X does not have an atom in {a}.
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G̃n
0 -measurable random variables and denote ip integer-valued G̃n

0 -measurable
random variables such that iphn < Sp < (ip + 1)hn. The stable limit theorem
in Theorem 1 is valid when replacing the fixed time s by stopping times Sp, p =
1, . . . , N1. Analogously as in Lemma 8.1 of [29], this readily follows with the
points above by the asymptotic independence of the statistics in Step 1 of the
proof of Theorem 1 with s = Sp for σ̂2

Sp
, or s = iphn for σ̂2

iphn
respectively,

from FSp . Here, we exploit that the noise is under Assumption 2 only weakly
serially dependent over asymptotically decreasing intervals and only dependent
on finitely many preceding increments of X, and the strong Markov property of
Brownian motion.

On assumption (σ-α), maxp |σ2
iphn

− σ2
Sp
| = OP(h

α
n) = OP(n

−α/2), the latter

being much smaller than n−β/2. Therefore, a discretization of estimated jump
arrivals is asymptotically negligible.

Moreover, on Ω̃n all spot squared volatility estimates are computed from
disjoint data subsets. Therefore, by (67), covariations between all estimates
converge to zero in probability what implies joint weak convergence.5 Stability
of the convergence of the vector has been established above in Step 1 of the
proof of Theorem 1.

3. Convergence of the test statistic

For test functions which are twice continuously differentiable with bounded
second derivatives, Taylor’s formula yields

g(x1, x2)− g(a1, a2) =
∂g

∂x1
(a1, a2)(x1 − a1) +

∂g

∂x2
(a1, a2)(x2 − a2)

+
∂2g

2 ∂x2
1

(a1, a2)(x1 − a1)
2 +

∂2g

2 ∂x2
2

(a1, a2)(x2 − a2)
2

+
∂2g

∂x1∂x2
(a1, a2)(x1 − a1)(x2 − a2)

+ O
(
max
(
(x1 − a1)

2, (x2 − a2)
2
))
.

We apply the generalized Δ-method for stable convergence and set (a1, a2) =
(σ2

Si
, σ2

Si−) and the random vector (x1, x2) = (σ̂2
Si
, σ̂2

Si−) with estimators (17a)
and (17b) at the times Si, Si−, i = 1, . . . , N1. When we focus on the test function
(29) in Theorem 2, it holds that

∂g

∂x1
(σ2

Si
, σ2

Si
) =

∂g

∂x2
(σ2

Si
, σ2

Si
) = g(σ2

Si
, σ2

Si
) = 0.

The second order term comes into play and the equalities

∂2g

∂x2
1

(σ2
Si
, σ2

Si
) =

∂2g

∂x2
2

(σ2
Si
, σ2

Si
) = − ∂2g

∂x1∂x2
(σ2

Si
, σ2

Si
) =

1

8
σ−3
Si

. (73)

5Note that by Step 4 in the proof of Theorem 1, this is still true if the pre-estimated noise
long-run variance was computed from all observations.
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Under Assumption 2 we have by Proposition 3.1 estimators η̂
1/2
khn

= η
1/2
khn

+

OP(n
−β) for all k. This renders the estimation errors of η̂

−1/2
khn

in (28) asymptot-
ically negligible in (30).

Cramér-Wold’s theorem gives equivalence of the weak convergence of the
vector (σ̂2

Si
, σ̂2

Si−)1≤i≤N1 to weak convergence of linear combinations. Under

H(a)[0,1], when σ2
Si

= σ2
Si− for all i, the limit of nβT0(hn, rn, g) can thus be

described by a random variable

N1∑
i=1

(
∂2g

2 ∂x2
1

(σ2
Si
, σ2

Si
)Z2

i +
∂2g

2 ∂x2
2

(σ2
Si
, σ2

Si
)Z̃2

i +
∂2g

∂x1∂x2
(σ2

Si
, σ2

Si
)ZiZ̃i

)
8σ3

Si
,

where Zi and Z̃i, i = 1, . . . , N1, are two independent collections of i.i.d. standard
normals defined on the orthogonal extension of (Ω,F ,P) in the product space
that accommodates all random variables. Since (1/

√
2)(Zi−Z̃i) are i.i.d. standard

normals, the χ2-distribution with N1 degrees of freedom appears as limiting dis-
tribution. Proposition 7.1 follows with the binomial formula and by the second
derivatives of the test function (29) from (73). Even though the limit above
could depend on the particular choice of stopping times its F-conditional law
does not.

Proof of Corollary 7.2:.
Under the alternative hypothesis, σ2

Si
�= σ2

Si−, for at least one i ∈ {1, . . . , N1}.
In this case, we have that

nβT0(hn, rn, g) = OP(1) + nβ η̂
−1/2

�Sih
−1
n �hn

g
(
σ̂2
�Sih

−1
n �hn

, σ̂2
�Sih

−1
n �hn−

)
× 1{hn|ζad

�Sih
−1
n �hn

(Y )|>(un∨a2)}

with Proposition 7.1. Since

g
(
σ̂2
�Sih

−1
n �hn

, σ̂2
�Sih

−1
n �hn−

)
≥ cΔσ2

Si
− OP(1)

for some constant c and since hn|ζadk (Y )| = (ΔXSi)
2 + ξi = a2 + ε + ξi with

ξi = OP(1) and some ε > 0, we conclude with the reverse triangle inequality
that

P

(
nβT0(hn, rn, g) > q1−α(χ

2
N̂1

)
)
→ 1

for any arbitrarily small α > 0. This proves Corollary 7.2.
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