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Existence and uniqueness results for BSDE with
jumps: the whole nine yards
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Abstract

This paper is devoted to obtaining a wellposedness result for multidimensional BSDEs
with possibly unbounded random time horizon and driven by a general martingale
in a filtration only assumed to satisfy the usual hypotheses, i.e. the filtration may be
stochastically discontinuous. We show that for stochastic Lipschitz generators and
unbounded, possibly infinite, time horizon, these equations admit a unique solution in
appropriately weighted spaces. Our result allows in particular to obtain a wellposed-
ness result for BSDEs driven by discrete–time approximations of general martingales.
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1 Introduction

A generally acknowledged fact is that backward stochastic differential equations
(BSDEs for short) were introduced in their linear version by Bismut [20, 21] in 1973, as an
adjoint equation in the Pontryagin stochastic maximum principle. However, around the
same time, and most probably a bit before1, Davis and Varaiya [51] (see in particular their
Theorem 5.1) also studied what can be considered as a prototype of a linear BSDE for
characterizing the value function and the optimal controls of stochastic control problems
with drift control only. Such linear BSDEs, still in the context of the stochastic maximum
principle, were also used by Arkin and Saksonov [2], Bensoussan [19] and Kabanov [90].
The first non–linear versions of these objects were once again introduced, under the
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Existence and uniqueness results for BSDE with jumps

form of a Riccati equation, by Bismut [22] and a few years later by Chitashvili [43] and
Chitashvili and Mania [44, 45]. Nonetheless, the first study presenting a systematic
treatment of non–linear BSDEs is the seminal paper by Pardoux and Peng [125]. Since
then, and especially following the illuminating survey article of El Karoui, Peng and
Quenez [62], BSDEs have become a particularly active field of research, due to their
numerous potential applications to mathematical finance, partial differential equations,
game theory, economics, and more generally in stochastic calculus and analysis2.

Let T > 0 be fixed and consider a fixed filtered probability space (Ω,G,G :=

(Gt)0≤t≤T ,P) where G is a Brownian filtration generated by some d−dimensional Brow-
nian motion W . Solving a BSDE with terminal condition ξ (which is an R−valued and
GT−measurable random variable) and G−adapted generator f : Ω× [0, T ]×R×Rd −→ R,
amounts to finding a pair of processes (Y,Z) which are respectively G−progressively
measurable and G−predictable such that

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z>s dWs, t ∈ [0, T ],

holds, P− a.s. After the work [125] obtained existence and uniqueness of the solution
of the above BSDE in L2−type spaces under square integrability assumptions on ξ and
f(s, 0, 0), and uniform Lipschitz continuity of f in (y, z), generalizations of the theory
have followed several different paths. The first one mainly aimed at weakening the
Lipschitz assumption on f , and still considered Brownian filtrations. Hence, Mao [117]
considered uniformly continuous generators, Hamadène [72] extended the result to
the locally Lipschitz case, Lepeltier and San Martín [106] to the continuous and linear
growth case in (y, z), Briand and Carmona [26] to the case of a continuous generator
Lipschitz in z with polynomial growth in y, and Pardoux [124] to the case of a generator
monotonic with arbitrary growth in y and Lipschitz in z. Some authors also obtained
wellposedness results in Lp−type spaces, among which we mention [62] for p ≥ 2,
Briand, Delyon, Hu, Pardoux and Stoica [29] and Briand and Hu [33] for p ≥ 1 (see also
the papers of Fan [67, 68] and Hu and Tang [80] for recent results and other references).
Some attention has also been given to the so–called stochastic Lipschitz case, where the
generator is Lipschitz continuous in (y, z) but with constants which are actually random
processes themselves. There are few papers going in this direction, among which we
can mention El Karoui and Huang [60], Bender and Kohlmann [18], Wang, Ran and Chen
[138] as well as Briand and Confortola [27].

The first results going beyond the linear growth assumption in z, which assumed
quadratic growth, were obtained independently by Kobylanski [97, 98, 99] and Dermoune,
Hamadène and Ouknine [56], for bounded ξ and f Lipschitz in y. These results were then
further studied by Eddhabi and Ouknine [59], and improved by Lepeltier and San Martín
[107, 108], Briand, Lepeltier and San Martín [35] and revisited by Briand and Élie [31],
but still for bounded ξ. Wellposedness in the quadratic case when ξ has sufficiently
large exponential moments was then investigated by Briand and Hu [33, 34], followed
by Delbaen, Hu and Richou [54, 55], Essaky and Hassani [66], and Briand and Richou
[36]. A specific quadratic setting with only square integrable terminal conditions has
been considered recently by Bahlali, Eddahbi and Ouknine [6, 7], while a result with
logarithmic growth was also obtained by Bahlali and El Asri [8], and Bahlali, Kebiri,
Khelfallah and Moussaoui [13]. The case of a generator with super–quadratic growth in
z was proved to be essentially ill–posed by Delbaen, Hu and Bao [53] in a general non–
Markovian framework, before Richou [129], Cheridito and Stadje [42] and Masiero and

2We emphasize that the references given below are just the tip of the iceberg, though most of them are, in
our view, among the major ones of the field. Nonetheless, we do not make any claim about comprehensiveness
of the following list.
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Richou [118] proved that wellposedness could be recovered in a Markovian setting, when
f has polynomial growth in (y, z). Let us also mention the contributions by Cheridito and
Nam [40], when ξ has a bounded Malliavin derivative, by Drapeau, Heyne and Kupper
[57] who considered minimal super–solutions of BSDEs when the generator is monotone
in y and convex in z, and by Heyne, Kupper and Mainberger [77] who considered lower
semicontinuous generators.

Most of the papers mentioned above treated the so–called one–dimensional BSDEs,
that is for which the process Y is R−valued, but extensions to multidimensional settings
were also explored. Hence in Lipschitz or locally Lipschitz settings with monotonicity
assumptions, we can mention the works of Pardoux [124], Bahlali [3, 4], Bahlali, Essaky,
Hassani and Pardoux [12], and Bahlali, Essaky and Hassani [10, 11]. An early result in
the case of a continuous generator in a Markovian setting was also treated by Hamadène,
Lepeltier and Peng [73]. The quadratic multidimensional case is much more involved.
Tevzadze [137] was the first to obtain a wellposedness result in the case of a bounded and
sufficiently small terminal condition. It was then proved by Frei and dos Reis [70] and
Frei [69] (see also Espinosa and Touzi [65] for a related problem) that even in seemingly
benign situations, existence of global solutions could fail. Later on, Cheridito and Nam
[41], Kardaras, Xing and Žitković [92], Kramkov and Pulido [100, 101], Hu and Tang
[79], Jamneshan, Kupper and Luo [86], or more recently Kupper, Luo and Tangpi [104]
and Élie and Possamaï [63], all obtained some results, but only in particular instances. A
breakthrough was then obtained by Xing and Žitković [139], who obtained quite general
existence and uniqueness results, but in a Markovian framework, while Harter and
Richou [74] and Jamneshan, Kupper and Luo [85] have proved positive results in the
general setting.

A second possible generalization of these results consisted in extending them to the
case where T is assumed to be a, possibly unbounded, stopping time. Hence, Peng [126],
Darling and Pardoux [50], Briand and Hu [32], Bahlali, Elouaflin and N’zi [9], Royer
[131], Hu and Tessitore [81] and Briand and Confortola [28] all studied this problem,
applying it to homogenization or representation problems for elliptic PDEs and stochastic
control in infinite horizon. This theory was recently revisited by Lin, Ren, Touzi and Yang
[110] in the context of second–order BSDEs with random horizon.

Another avenue of generalization concerned the underlying filtration itself, which
could be assumed to no longer be Brownian, as well as the driving martingale, which
could also be more general than a Brownian motion. In such cases, the predictable
(martingale) representation property may fail to hold, and one has in general to add
another martingale to the definition of a solution. Hence, for a given martingale M , the
problem becomes to find a triplet of processes (Y,Z,N) such that N is orthogonal to M
and

Yt = ξ +

∫ T

t

f(s, Ys, Zs)dCs −
∫ T

t

Z>s dMs −
∫ T

t

dNs, t ∈ [0, T ], P− a.s.,

where the non-decreasing process C is absolutely continuous with respect to 〈M〉.
As far as we know, the first paper where such BSDEs appeared is due to Chitashvili

[43] (see in particular the corollary at the end of page 91). Then, results on BSDEs driven
by a general càdlàg martingale were obtained by Buckdahn [37], El Karoui et al. [62], as
well as El Karoui and Huang [60], Briand, Delyon and Mémin [30] and Carbone, Ferrario
and Santacroce [39], in Lipschitz type settings. The case of generators with quadratic
growth has also been investigated by Tevzadze [137], Morlais [120], Réveillac [128],
Imkeller, Réveillac and Richter [82], Mocha and Westray [119] and Barrieu and El Karoui
[16]. More general versions of these equations, coined semimartingale BSDEs, were also
studied in depth in the context of financial applications, especially utility maximization,
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see Bordigoni, Matoussi and Schweizer [24], as well as Hu and Schweizer [78], and
mean–variance hedging, see Bobrovnytska and Schweizer [23], Mania and Tevzadze
[114, 115, 116], Mania, Santacroce and Tevzadze [111, 112], Mania and Schweizer [113]
as well as Jeanblanc, Mania, Santacroce and Schweizer [87].

When one has more information on the filtration, it may be possible to specify the
orthogonal martingale N in the definition of the solution. For instance, if the filtration
is generated by a Brownian motion and an orthogonal Poisson random measure, one
ends up with the so–called BSDEs with jumps, which were introduced first by Tang
and Li [136], followed notably by Buckdahn and Pardoux [38], Barles, Buckdahn and
Pardoux [15], Situ [135], Royer [132], Becherer [17], Morlais [121, 122], Ankirchner,
Blanchet-Scalliet and Eyraud-Loisel [1], Lim and Quenez [109], Jenablanc, Matoussi
and Ngoupeyou [89], Kharroubi, Quenez and Sulem [127], Lim and Ngoupeyou [96],
Kharroubi and Lim [95], Laeven and Stadje [105], Richter [130], Jeanblanc, Mastrolia,
Possamaï and Réveillac [88], Kazi-Tani, Possamaï and Zhou [93, 94], Fujii and Takahashi
[71], Dumitrescu, Quenez and Sulem [58], and El Karoui, Matoussi and Ngoupeyou [61],
while the specific case of Lévy processes was treated by Nualart and Schoutens [123]
and later Bahlali, Eddahbi and Essaky [5]. A general presentation has been proposed
recently by Kruse and Popier [102, 103], to which we refer for more references (see also
the recent paper of Yao [140]).

One point that is actually shared by all the above references, is that the underly-
ing filtration is assumed to be quasi-left continuous, which for instance rules out the
possibility that any of the involved processes has jumps at predictable, and a fortiori
deterministic times. The important simplification that arises is that the process C is then
necessarily continuous in time. As far as we know, the first articles that went beyond this
assumption were developed in a very nice series of papers by Cohen and Elliott [46] and
Cohen, Elliott and Pearce [48], where the only assumption on the filtration is that the
associated L2 space is separable, so that a very general martingale representation result
due to Davis and Varaiya [52], involving countably many orthogonal martingales, holds.
In these works, the martingales driving the BSDE are actually imposed by the filtration,
and not chosen a priori, and the non–decreasing process C is not necessarily related to
them, but has to be deterministic and can have jumps in general, though they have to
be small for existence to hold (see [46, Theorem 5.1]). A similar approach is taken by
Hassani and Ouknine in [75], where a form of BSDE is considered using generic maps
from a space of semimartingales to the spaces of square–integrable martingales and
of finite–variation processes integrable with respect to a given continuous increasing
process. Similarly, Bandini [14] obtained wellposedness results in the context of a gen-
eral filtration allowing for jumps, with a fixed driving martingale and associated random
process C, which must have again small jumps, see [14, Equation (1.1)]. Let us also
mention the work by Confortola, Fuhrman and Jacod [49] which concentrates on the
pure–jump general case and gives in particular counterexamples to existence. Finally,
Bouchard, Possamaï, Tan and Zhou [25] provided a general method to obtain a priori
estimates in general filtrations when the martingale driving the equation has quadratic
variation absolutely continuous with respect to the Lebesgue measure.

In this paper, we improve the general result on existence and uniqueness of solutions
of backward stochastic differential equations given by El Karoui and Huang in [60]
to the case where the martingale M driving the equation is possibly stochastically
discontinuous. In other words, our framework includes as driving martingales discrete–
time approximations of general martingales as well as K−almost quasi–left–continuous
martingales, i.e. processes whose compensator has jumps which are almost surely
bounded by some constant K. Unlike all the related papers mentioned above (with the
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notable exception of [46], see their Theorem 6.1, albeit with a deterministic Lipschitz
constant), this bound K can actually be arbitrarily large. However, the product of this
bound and the maximum (of functionals) of the Lipschitz constants needs to be small,
which is in line with the previous literature. Otherwise, we remain in the same relaxed
framework regarding the generator, that is to say we assume that it satisfies a stochastic
Lipschitz property, and do not assume that the martingale possesses the predictable
representation property. Furthermore, we work in a setting with random horizon. This
result enables us to treat under the same framework continuous–time as well as discrete–
time BSDEs. The method of proof is somehow similar to the one given in [60], but the
required estimates are much harder to prove in our setting due to the possible jumps of
the non–decreasing process C. We also emphasize that this wellposedness result will be
of fundamental importance in a related forthcoming work, where we will use it to study
robustness properties of general BSDEs, extending well–known results on stability of
semimartingale decompositions with respect to the extended convergence.

This paper is structured as follows: in Section 2 we introduce the notation and several
results that will be useful in the analysis. In Section 3 we prove a priori estimates for
the considered class of BSDEs and provide the existence and uniqueness results. Finally,
Section 4 discusses some applications of the main results, while the Appendices contain
proofs and auxiliary results.

Notation

Let R+ denote the set of non-negative real numbers. For any positive integer `, and
for any (x, y) ∈ R` × R`, |x| will denote the Euclidean norm of x. For any additional
integer q, a q × `−matrix with real entries will be considered as an element of Rq×`. For
any z ∈ Rq×`, its transpose will be denoted by z> ∈ R`×q. We endow Rq×` with the norm
defined for any z ∈ Rq×` by ‖z‖2 := Tr[z>z] and remind the reader that this norm derives
from the inner product defined for any (z, u) ∈ Rq×`×Rq×` by Tr[zu>]. We abuse notation
and denote by 0 the neutral element in the group (Rq×`,+). Furthermore, for any finite
dimensional topological space E, B(E) will denote the associated Borel σ−algebra. In
addition, for any other finite dimensional space F , and for any non-negative measure ν
on (R+ × E,B(R+)⊗ B(E)), we will denote indifferently Lebesgue–Stieltjes integrals of
any measurable map f : (R+ × E,B(R+)⊗ B(E)) −→ (F,B(F )), by∫

(u,t]×A
f(s, x)ν(ds,dx), for any (t, A) ∈ R+ × B(E),

∫
(u,∞)×A

f(s, x)ν(ds,dx), for any A ∈ B(E),

where the integrals are to be understood in a component–wise sense. Finally, the letters
p, q, d,m and n are reserved to denote arbitrary positive integers. The reader may already
keep in mind that m will denote the dimension of the state space of an Itō integrator, n
will denote the dimension of the state space of a process associated to an integer–valued
random measure and d will denote the dimension of the state space of a stochastic
integral.

2 Preliminaries

2.1 The stochastic basis

Let (Ω,G,G,P) be a complete stochastic basis in the sense of Jacod and Shiryaev [84,
Definition I.1.3]. Expectations under P will be denoted by E[·]. We will then denote the
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set of Rp−valued, square–integrable G−martingales by H2(Rp), i.e.

H2(Rp) :=
{
X : Ω×R+ → Rp, X is a G−martingale with sup

t∈R+

E[|Xt|2] <∞
}
.

Let X ∈ H2(Rp), then its norm will be defined by

‖X‖2H2(Rp) := E[|X∞|2] = E [Tr[〈X〉∞]] .

In the sequel we will say that M,N ∈ H2(R) are (mutually) orthogonal, denoted by
M ⊥⊥ N , if MN is a martingale, see [84, Definition I.4.11.a, Lemma I.4.13.c, Proposition
I.4.15] for equivalent definitions.

For a subset N of H2(Rp), we denote the space of martingales orthogonal to each
component of every element of N by N⊥, i.e.

N⊥ := {M ∈ H2(Rp), 〈M,N〉 = 0 for every N ∈ N},

where we suppress the explicit dependence in the state space in the notation. Ob-
serve, however, that in the above definition the predictable quadratic covariation is an
Rp×p−valued process. A martingale M ∈ H2(Rp) will be called a purely discontinuous
martingale if M0 = 0 and if each of its components is orthogonal to all continuous
martingales of H2(R). Using [84, Corollary I.4.16] we can decompose H2(Rp) as follows

H2(Rp) = H2,c(Rp)⊕H2,d(Rp), (2.1)

where H2,c(Rp) is the subspace of H2(Rp) consisting of continuous square–integrable
martingales and H2,d(Rp) is the subspace of H2 consisting of all purely discontinuous
square–integrable martingales. It follows then from [84, Theorem I.4.18], that any
G−martingale X ∈ H2(Rp) admits a unique (up to P−indistinguishability) decomposition

X· = X0 +Xc
· +Xd

· ,

where Xc
0 = Xd

0 = 0. The process Xc ∈ H2,c(Rp) will be called the continuous martingale
part of X, while the process Xd ∈ H2,d(Rp) will be called the purely discontinuous
martingale part of X. The pair (Xc, Xd) will be called the natural pair of X (under G).

2.2 Stochastic integrals

Let X ∈ H2(Rm) and C be a predictable, non–decreasing and càdlàg process such
that

〈X〉 =

∫
(0,·]

d〈X〉s
dCs

dCs, (2.2)

where the equality is understood componentwise. That is to say, d〈X〉
dC is a predictable

process with values in the set of all symmetric, non–negative definite m×m matrices. In
the next lines, we follow closely [84, Section III.6.a]. We start by defining

H2(X) :=

{
Z : (Ω×R+,P) −→ (Rd×m,B(Rd×m)), E

[∫ ∞
0

Tr

[
Zt

d〈X〉s
dCs

Z>t

]
dCt

]
<∞

}
,

where P denotes the G−predictable σ−field on Ω×R+; see [84, Definition I.2.1]. Let
Z ∈ H2(X), then the Itō stochastic integral of Z with respect to X is well defined and is
an element of H2(Rd), see [84, Theorem III.6.4]. It will be denoted by

∫ ·
0
Zs dXs or Z ·X

interchangeably, and we will also use the same notation for any Stieltjes–type integral.
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Moreover, by [84, Theorem III.6.4.c)] we have that (Z d〈X〉
dC Z>) · C = 〈Z ·X〉, hence the

following equality holds

‖Z‖2H2(X) := E

[∫ ∞
0

Tr

[
Zt

d〈X〉s
dCs

Z>t

]
dCt

]
= E [Tr[〈Z ·X〉∞]] .

We will denote the space of Itō stochastic integrals of processes in H2(X) with respect
to X by L2(X). In particular, for Xc ∈ H2,c(Rm) we remind the reader that, by [84,
Theorem III.4.5], Z ·Xc ∈ H2,c(Rd) for every Z ∈ H2(Xc), i.e. L2(Xc) ⊂ H2,c(Rd).

Let us define the space(
Ω̃, P̃

)
:=
(
Ω×R+ ×Rn,P ⊗ B (Rn)

)
.

A measurable function U :
(
Ω̃, P̃

)
−→

(
Rd,B

(
Rd
))

is called P̃−measurable function or
G−predictable function.

Let µ :={µ(ω; dt,dx)}ω∈Ω be a random measure on R+ ×Rn, that is to say a family of
non–negative measures defined on(R+ ×Rn,B (R+)⊗ B (Rn)) satisfying µ(ω;{0} ×Rn) =

0, identically. For a G−predictable function U , we define the process

U ? µ·(ω) :=


∫

(0,·]×Rn
U(ω, s, x)µ(ω; ds,dx) , if

∫
(0,·]×Rn

|U(ω, s, x)|µ(ω; ds,dx) <∞,

∞, otherwise.

Let us now consider some X ∈ H2,d(Rn). We associate to X the G−optional integer–
valued random measure µX on R+ ×Rm defined by

µX(ω; dt,dx) :=
∑
s>0

1{∆Xs(ω)6=0}δ(s,∆Xs(ω))(dt, dx) ,

see [84, Proposition II.1.16], where, for any z ∈ R+ ×Rn, δz denotes the Dirac measure
at the point z. Notice that µX(ω;R+ × {0}) = 0. Moreover, for a G−predictable stopping
time σ we define the random variable∫
Rn
U(ω, σ, x)µX(ω;{σ} × dx) := U(ω, σ(ω),∆Xσ(ω)(ω))1{∆Xσ 6=0,|U(ω,σ(ω),∆Xσ(ω)(ω))|<∞}

+∞1{|U(ω,σ(ω),∆Xσ(ω)(ω)|=∞}.

Since X ∈ H2(Rn), the compensator of µX under P exists, see [84, Theorem II.1.8].
This is the unique, up to a P−null set, G−predictable random measure νX on R+ ×Rn,
for which

E
[
U ? µX∞

]
= E

[
U ? νX∞

]
,

holds for every non–negative G−predictable function U.

For a non-negative G−predictable function U and a G−predictable time σ, whose
graph is denoted by JσK (see [84, Notation I.1.22] and the comments afterwards), we
define the random variable∫

Rn
U(ω, σ, x) νX(ω;{σ} × dx) :=

∫
R+×Rn

U(ω, σ(ω), x)1JσK ν
X(ω; ds,dx) ,

if
∫
R+×Rn |U(ω, σ(ω), x)|1JσK ν

X(ω; ds,dx) <∞, otherwise we define it to be equal to∞.
By [84, Property II.1.11], we have∫

Rn
U(ω, σ, x) νX(ω;{σ} × dx) = E

[∫
Rn
U(ω, σ, x)µX(ω;{σ} × dx)

∣∣∣∣Gσ−] . (2.3)
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In order to simplify notations further, let us denote for any G−predictable time σ

ÛXσ :=

∫
Rn
U(ω, σ, x) νX(ω;{σ} × dx) . (2.4)

In particular, for U = 1Rn we define

ζXσ :=

∫
Rn
νX(ω; {σ} × dx) (2.5)

In order to define the stochastic integral of a G−predictable function U with respect
to the compensated integer–valued random measure µ̃X := µX − νX , we will need to
consider the following class

G2(µ̃X) =

{
U :

(
Ω̃, P̃

)
−→

(
Rd,B(Rd)

)
, E

[∑
t>0

(
U(t,∆Xt)1{∆Xt 6=0} − ÛXt

)2
]
<∞

}
.

Any element of G2(µ̃X) can be associated to an element of H2,d, uniquely up to P−indis-
tinguishability via

G2

(
µ̃X
)
3 U 7−→ U ? µ̃X ∈ H2,d,

see [84, Definition II.1.27, Proposition II.1.33.a] and [76, Theorem XI.11.21]. We call
U ? µ̃X the stochastic integral of U with respect to µ̃X . We will also make use of the
following notation for the space of stochastic integrals with respect to µ̃X which are
square integrable martingales

K2(µ̃X) :=
{
U ? µ̃X , U ∈ G2(µ̃X)

}
.

Moreover, by [84, Theorem II.1.33] or [76, Theorem 11.21], we have

E
[〈
U ? µ̃X

〉
∞

]
<∞, if and only if U ∈ G2

(
µ̃X
)
,

which enables us to define the following more convenient space

H2(X) :=

{
U :

(
Ω̃, P̃

)
−→

(
Rd,B(Rd)

)
, E

[∫ ∞
0

dTr
[〈
U ? µ̃X

〉
t

]]
<∞

}
,

and we emphasize that we have the direct identification

H2(X) = G2(µ̃X).

2.2.1 Orthogonal decompositions

We close this subsection with a discussion on orthogonal decompositions of square
integrable martingales. We associate the measure Mµ : (Ω̃,G ⊗ B (R+)⊗ B (Rn)) −→ R+

to a random measure µ, which is defined as Mµ(B) = E[1B ? µ∞]. We will refer to
Mµ as the Doléans measure associated to µ. If there exists a G−predictable partition

(Ak)k∈N of Ω̃ such that Mµ(Ak) < ∞, for every k ∈ N, then we will say that µ is

G−predictably σ−integrable and we will denote it by µ ∈ Ãσ. For a sub–σ–algebra A
of G ⊗ B (R+)⊗ B (Rn), the restriction of the measure Mµ to (Ω̃,A) will be denoted by

Mµ|A. Moreover, for W : (Ω̃,G ⊗ B (R+)⊗ B (Rn)) −→ (R,B (R)), we define the random
measure Wµ as follows

(Wµ)(ω; ds,dx) := W (ω, s, x)µ(ω; ds, dx).
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Existence and uniqueness results for BSDE with jumps

Definition 2.1. Let µ ∈ Ãσ and W : (Ω̃,G ⊗ B (R+) ⊗ B (Rn)) −→ (Rp,B (Rp)) be such
that |W i|µ ∈ Ãσ, for every i = 1, . . . , p, where W i denotes the i−th component of W .
Then, the conditional G−predictable projection of W on µ, denoted by Mµ

[
W |P̃

]
, is

defined componentwise as follows

Mµ

[
W |P̃

]i
:=

dMW iµ|P̃
dMµ|P̃

, for i = 1, . . . , p.

Definition 2.2. Let (X◦, X\) ∈ H2(Rm)×H2,d(Rn) and Y ∈ H2(Rd). The decomposition

Y = Y0 + Z ·X◦ + U ? µ̃X
\

+N,

where the equality is understood componentwise, will be called the orthogonal decom-
position of Y with respect to (X◦, X\) if

(i) Z ∈ H2(X◦) and U ∈ H2(µX
\

),

(ii) Z ·X◦ ⊥⊥ U ? µ̃X
\

,

(iii) N ∈ H2(Rd) with 〈N,X◦〉 = 0 and M
µX

\ [∆N |P̃] = 0.

Let X ∈ H2(Rm). Then [84, Lemma III.4.24], which is restated in the coming lines,
provides the orthogonal decomposition of a martingale Y with respect to (Xc, Xd), i.e.
the natural pair of X.

Lemma 2.3. Let Y ∈ H2(Rd) and X ∈ H2(Rm). Then, there exists a pair (Z,U) ∈
H2(Xc)×H2(µX)3 and N ∈ H2(Rd) such that

Y = Y0 + Z ·Xc + U ? µ̃X +N,

where the equality is understood componentwise, with 〈Xc, N c〉 = 0 and MµX
[
∆N |P̃F

]
=

0. Moreover, this decomposition is unique, up to indistinguishability.

In the rest of this subsection, we will provide some useful results, which allow us to
obtain the orthogonal decomposition as understood in Definition 2.2. Their proofs are
relegated to Appendix A. We also need to introduce at this point some further helpful
notation.

• For a multidimensional process L, resp. random variable ψ, its i−component will
be denoted by Li, resp ψi.

• The continuous part of the martingale X◦ will be denoted by X◦,c.

• The purely discontinuous part of the martingale X◦ will be denoted by X◦,d.

• X◦,i denotes the i−component of X◦.

• X◦,c,i denotes the i−component of the continuous part of X◦.

• X◦,d,i denotes the i−component of the purely discontinuous part of X◦.

• X\,j denotes the j−component of X\.

Lemma 2.4. Let (X◦, X\) ∈ H2(Rm)×H2,d(Rn) with M
µX

\ [∆X◦|P̃] = 0. Then, for every

Y ◦ ∈ L2(X◦), Y \ ∈ K2(µX
\

), we have 〈Y ◦, Y \〉 = 0. In particular, 〈X◦, X\〉 = 0.

3We assume that m = n.
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Existence and uniqueness results for BSDE with jumps

In view of Lemma 2.4, we can provide in the next proposition the desired orthogonal
decomposition of a martingale Y with respect to a pair (X◦, X\) ∈ H2(Rm)×H2,d(Rn),
i.e. we do not necessarily use the natural pair of the martingale X. Observe that in this
case we do allow the first component to have jumps. This is particularly useful when one
needs to decompose a discrete–time martingale as a sum of an Itō integral, a stochastic
integral with respect to an integer–valued measure and a martingale orthogonal to the
space of stochastic integrals.

Proposition 2.5. Let Y ∈ H2(Rd) and (X◦, X\) ∈ H2(Rm)×H2,d(Rn) withM
µX

\ [∆X◦|P̃] =

0, where the equality is understood componentwise. Then, there exists a pair (Z,U) ∈
H2(X◦)×H2(µX

\

) and N ∈ H2(Rd) such that

Y = Y0 + Z ·X◦ + U ? µ̃X
\

+N, (2.6)

where the equality is understood componentwise, with 〈X◦, N〉 = 0 and M
µX

\

[
∆N |P̃F

]
=

0. Moreover, this decomposition is unique, up to indistinguishability.

In other words, the orthogonal decomposition of Y with respect to the pair (X◦, X\) is
well–defined under the above additional assumption on the jump parts of the martingales
X◦ and X\.

We conclude this subsection with some useful results. Let X := (X◦, X\) ∈ H2(Rm)×
H2,d(Rn) with M

µX
\ [∆X◦|P̃] = 0. Then we define

H2(X⊥) :=
(
L2(X◦)⊕K2(µX

\

)
)⊥
.

If (Xc, Xd) is the natural pair of X ∈ H2(Rm), then we define H2(X⊥) := H2((Xc, Xd)⊥).
In view of the previous definitions, we will abuse notation and we will denote the natural
pair of X by X as well.

Proposition 2.6. Let X := (X◦, X\) ∈ H2(Rm) × H2,d(Rn) with M
µX

\ [∆X◦|P̃] = 0.
Then,

H2(X⊥) =
{
L ∈ H2(Rd), 〈X◦, L〉 = 0 and M

µX
\ [∆L|P̃] = 0

}
.

Moreover, the space
(
H2(X⊥), ‖ · ‖H2(Rd)

)
is closed.

Corollary 2.7. Let X := (X◦, X\) ∈ H2(Rm)×H2,d(Rn) with M
µX

\ [∆X◦|P̃] = 0. Then,

H2(Rp) = L2(X◦)⊕K2(µX
\

)⊕H2(X⊥),

where each of the spaces appearing in the above identity is closed.

Remark 2.8. The aim of this paper is to provide a general result for the existence and
uniqueness of the solution of a BSDE. In other words, our result should also cover the
case where the underlying filtration is not quasi–left–continuous, see [76, Definition 3.39]
and [76, Theorem 3.40, Theorem 4.35]. In the same vein, we should be able to choose
the Itō integrator to be an arbitrary square integrable martingale, i.e. not necessarily
quasi–left–continuous, not to mention continuous. On the other hand, it is well–known
that the orthogonal decomposition of martingales is hidden behind the definition of the
contraction mapping used to prove wellposedness of solutions to BSDEs. Therefore,
we have by Proposition 2.5 a sufficient condition on the jumps of the two stochastic
integrators X◦ and X\, so that we can obtain the orthogonal decomposition in such a
general framework.
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2.3 Suitable spaces and associated results

Let us first define the maps Rn 3 x q7−→ xx> ∈ Rn×n and Rn 3 x I7−→ x ∈ Rn. Next,
we provide a result which justifies the validity of Assumption 2.10 below, which is based
on [84, Property II.1.2 and Proposition II.2.9].

Lemma 2.9. Let X := (X◦, X\) ∈ H2(Rm)×H2,d(Rn). Then, there exists a predictable,
non-decreasing and càdlàg process CX such that

(i) Each component of 〈X◦〉 is absolutely continuous with respect to CX . In other
words, there exists a predictable, positive definite and symmetric m×m−matrix
d〈X◦〉
dCX such that for any 1 ≤ i, j ≤ m

〈X◦〉ij· =

∫
(0,·]

d〈X◦〉ijs
dCXs

dCXs .

(ii) The disintegration property given CX holds for the compensator νX
\

, i.e. there
exists a transition kernel KX : (Ω×R+,P) −→ R(Rn,B(Rn)), where R

(
Rn,B(Rn)

)
is the space of Radon measures on

(
Rn,B(Rn)

)
, such that

νX
\

(ω; dt,dx) = KX
t (ω; dx) dCXt .

(iii) CX can be chosen to be continuous if and only if X is G−quasi-left-continuous.

Proof. We can follow exactly the same arguments as in [84, Proposition II.2.9] for the
process

CX· :=

m∑
i,j=1

Var
(
〈X◦〉ij

)
· + (|I|2 ∧ 1) ? νX

\

· ,

where Var(A) denotes the total variation process of the finite variation process A.

We need to underline that under our framework the process 〈X◦〉 is not necessarily
continuous. However, we can indeed follow the same arguments as in [84, Proposition
II.2.9].

Assumption 2.10. C Let X := (X◦, X\) ∈ H2(Rm) × H2(Rn) and C be a predictable,
càdlàg and increasing process. The pair (X,C) satisfies Assumption 2.10 if each compo-
nent of 〈X◦〉 is absolutely continuous with respect to C and if the disintegration property

given C holds for the compensator νX
\

.

Remark 2.11. Let X ∈ H2(Rp). Recall that we have abused notation and we denote its
natural pair (Xc, Xd) by X as well. Then there exist several possible choices for CX such
that Assumption 2.10 is satisfied. In [84, Proposition II.2.9], for example, the following
process is used

C̃X :=

n∑
i,j=1

Var
(〈
Xc,i, Xc,j

〉)
+ (|I| ∧ 1)2 ? νX ,

while one could also take

C
X

:= Tr[〈Xc〉] + |I|2 ? νX .

Remark 2.12. Let X := (X◦, X\) ∈ H2(Rm)×H2(Rn) and consider a pair (X,CX) which

satisfies Assumption 2.10. Then, the Radon-Nikodým derivative d〈X◦〉
dCX

is G−predictable,
positive definite and symmetric. Indeed, the predictability and the positive definite-
ness follows from [84, Statement III.6.2], while the symmetry is immediately inherited
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from the symmetry of 〈X◦〉. The above properties enable us to define the following
G−predictable process cX

cX :=

(
d〈X◦〉
dCX

) 1
2

. (2.7)

In addition, if we define the random measure µX∆ on (R+,B (R+)), for any t ≥ 0, via

µX∆ (ω; [0, t]) :=
∑

0<s≤t

(
∆CXs (ω)

)2
then it holds

dµX∆
dCX

(t) = ∆CXt . (2.8)

Assume now that X := (X◦, X\) ∈ H2(Rn)×H2(Rm) with M
µX

\ [∆X◦|P̃] = 0. Assume,

moreover, that there exists a process CX such that (X,CX) satisfies Assumption 2.10.
The process X is not assumed to be quasi–left–continuous, hence it is possible that
it has fixed times of discontinuities. Using [84, Proposition II.2.29.b], we have that
X ∈ H2(Rm)×H2(Rn) if and only if the following holds

E
[
Tr
[
〈X◦〉τ

]
+ ‖q‖2 ? νX

\

τ

]
<∞.

Take into account, now, that X\ ∈ H2(Rm), the fact that the predictable projection of
∆X\ is indistinguishable from the zero process, see [84, Corollary I.2.31], and Property
(2.3). All the above yield ∫

Rn
xνX

\

({s} × dx) = 0.

Therefore, the predictable quadratic variation of X admits, by Lemma 2.4 and [84,
Theorem II.1.33], the following representation

〈X〉· =

[
〈X◦〉· 0

0 q ? νX
\

·

]
.

However, the reader should keep in mind that for the arbitrary element W ? µ̃X
\

of
K2(µX

\

) its predictable quadratic variation is represented as

〈W ? µ̃X
\

〉· = {(W − ŴX\)(W − ŴX\)>} ? νX
\

· +
∑
s≤·

{(1− ζX
\

s )ŴX\
(
ŴX\

)>};
use the polarization identity and [84, Theorem II.1.33].4 If, in addition, E

[∑
s≥0(W (s,

∆X\
s)
)2]

<∞, then

〈W ? µ̃X
\

〉· = (WW>) ? νX
\

· −
∑
s≤·

(
ŴX\

(
ŴX\

)>)
;

see [76, Theorem 11.21] or [47, Theorem 13.3.16], where we use again the polarization
identity in order to conclude in the multidimensional case.

Let U be a G−predictable function taking values in Rd. Then we define, abusing
notations slightly,

K̂X
t (Ut(ω; ·))(ω) :=

∫
Rn
Ut(ω;x)KX

t (ω; dx), t ≥ 0,

where KX is the transition kernel from Assumption 2.10. Using Assumption 2.10 and
(2.8), we get that

ÛX
\

t (ω) =

∫
Rn
U(ω, t, x)νX

\

(ω; {t} × dx) = K̂X
t (Ut(ω; ·))(ω)∆CXt (ω), t ≥ 0.

4The reader may recall (2.4) and (2.5) for the definition of the process ζX
\

and of ŴX\ .
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Using the previous definitions and results, we can rewrite 〈X〉 as follows

〈X〉·=


∫ ·

0

cXs (cXs )>dCXs 0

0

∫
(0,·]×Rn

xx>KX
s (dx)dCXs

=


∫ ·

0

cXs (cXs )>dCXs 0

0

∫ ·
0

K̂X
s (q)dCXs

.
On the other hand, for the predictable quadratic variation of Z ·X◦ ∈ L2(X◦) we have
by [84, Theorem III.6.4]

〈Z ·X◦〉· =

∫ ·
0

Zs
d〈X◦〉s
dCXs

Z>s dCXs =

∫ ·
0

(Zsc
X
s )(Zsc

X
s )> dCXs

and for the predictable quadratic variation of W ? µ̃X
\ ∈ K2(µX

\

) we have by the
definitions and comments above that

〈W ? µ̃X
\

〉· = {(W − ŴX\)(W − ŴX\)>} ? νX
\

· +
∑
s≤·

{(1− ζX
\

s )ŴX\
(
ŴX\

)>}
=

∫ ·
0

K̂X
s

(
(Ws(·)− ŴX\

s )(Ws(·)− ŴX\

s )>
)
dCXs

+
∑
s≤·

{
(1− ζX

\

s )K̂X
s (Ws(·))

(
K̂X
s (Ws(·))

)>(
∆CXs

)2}
=

∫ ·
0

{
K̂X
s

(
(Ws(·)− ŴX\

s )(Ws(·)− ŴX\

s )>
)

+ (1− ζX
\

s )∆CXs K̂
X
s (Ws(·))

(
K̂X
s (Ws(·))

)>}
dCXs . (2.9)

We proceed now by defining the spaces that will be necessary for our analysis, see
also [60]. Let β ≥ 0 and A : (Ω × R+,G ⊗ B (R+)) −→ R+ be a càdlàg, increasing and
measurable process. We then define the following spaces, where the dependence on A is
suppressed for ease of notation:

L2
β(Gτ ) :=

{
ξ, Rd−valued, Gτ−measurable, ‖ξ‖2L2

β(Gτ ;Rd) := E
[
eβAτ |ξ|2

]
<∞

}
,

H2
β :=

{
M ∈ H2, ‖M‖2H2

β
:= E

[∫ τ

0

eβAtdTr [〈M〉t]
]
<∞

}
,

H2
β(X) :=

{
φ is an Rd−valued G−optional semimartingale with càdlàg paths and

‖φ‖2H2
β(X) := E

[∫ τ

0

eβAt |φt|2 dCXt

]
<∞

}
,

S2
β(X) :=

{
φ is an Rd−valued G−optional semimartingale with càdlàg paths and

‖φ‖2S2
β(X) := E

[
sup

t∈J0,τK
eβAt |φt|2

]
<∞

}
,

H2
β(X◦) :=

{
Z ∈ H2(X◦), ‖Z‖2H2

β(X◦) := E

[∫ τ

0

eβAtdTr[〈Z ·X◦〉t]
]
<∞

}
,

H2
β(X\) :=

{
U ∈ H2(X\), ‖U‖H2

β(X\) <∞, with ‖U‖H2
β(X\)

:= E

[∫ τ

0

eβAtdTr[〈U ? µ̃X
\

〉t]
]}

,

H2
β(X⊥) :=

{
M ∈ H2(X⊥), ‖M‖2H2

β(X⊥) := E

[∫ τ

0

eβAtdTr[〈M〉t]
]
<∞

}
.
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Finally, for (Y,Z, U,N) ∈ H2
β(X) × H2

β(X◦) × H2
β(X\) × H2

β(X⊥) and assuming that

A = α2 · CX for a measurable process α : (Ω×R+,G ⊗ B (R+)) −→ R, we define

‖(Y,Z, U,N)‖2β,X := ‖αY ‖2H2
β(X) + ‖Z‖2H2

β(X◦) + ‖U‖2H2
β(X\) + ‖N‖2H2

β(X⊥) ,

and for (Y,Z, U,N) ∈ S2
β(X)×H2

β(X◦)×H2
β(X\)×H2

β(X⊥), we define

‖(Y, Z, U,N)‖2?,β,X := ‖Y ‖2S2
β(X) + ‖Z‖2H2

β(X◦) + ‖U‖2H2
β(X\) + ‖N‖2H2

β(X⊥) .

The next lemma will be useful for future computations and, in addition, justifies the
definition of the norms on the spaces provided above.

Lemma 2.13. Let (Z,U) ∈ H2
β(X◦)×H2

β(X\). Then

‖Z‖2H2
β(X◦) = E

[∫ τ

0

eβAt ‖ctZt‖2 dCXt

]
, (2.10)

‖U‖2H2
β(X\) = E

[∫ τ

0

eβAt
(
|||Ut(·)|||Xt

)2
dCXt

]
, (2.11)

where for every (t, ω) ∈ R+ × Ω(
|||Ut(ω; ·)|||Xt (ω)

)2

:= K̂X
t (|Ut(ω; ·)−ÛX

\

t (ω)|2)(ω)+(1−ζX
\

t )∆CXt (ω)|K̂X
t (Ut(ω; ·))(ω)|2 ≥ 0.5

Furthermore ∥∥Z ·X◦ + U ? µ̃X
\∥∥2

H2
β

= ‖Z‖H2
β(X◦) + ‖U‖H2

β(X\) .

Proof. Let Z ∈ H2
β(X◦), then using [84, Theorem III.6.4], we get that Z ·X◦ ∈ H2 with

〈Z ·X◦〉 = Z
d〈X◦〉
dCX

Z> · CX = ZcX(cX)>Z> · CX , (2.12)

for cX as introduced in (2.7). The first result is then obvious.

Now, let U ∈ H2
β(X\). Then by the previous computations, we have

〈U ? µ̃X
\

〉· =

∫ ·
0

{
K̂X
s

(
(Us(·)− ÛX

\

s )(Us(·)− ÛX
\

s )>
)

+ (1− ζX
\

s )∆CXs K̂
X
s (Us(·))

(
K̂X
s (Us(·))

)>}
dCXs , (2.13)

from which the second result is also clear. Moreover, we have∥∥Z ·X◦ + U ? µ̃X
∥∥2

H2
β

= E

[∫ τ

0

eβAtdTr
[〈
Z ·X◦ + U ? µ̃X

\〉
t

]]
= E

[∫ τ

0

eβAtdTr [〈Z ·X◦〉t] +

∫ τ

0

eβAtdTr
[〈
U ? µ̃X

\〉
t

]]
,

where the second equality holds due to Lemma 2.4.

Notice finally that the process Tr[〈U ? µ̃X
\〉] is non-decreasing, and observe that

∆Tr
[
〈U ? µ̃X

\

〉t
]

=
(
|||Ut(·)|||Xt

)2

∆CXt , t ≥ 0. (2.14)

Since CX is non-decreasing, we can deduce that |||Ut(·)|||Xt ≥ 0.

5The process ζ has been defined in (2.5).
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We conclude this section with the following convenient result. Define the following
space for dCX ⊗ dP− a.e. (t, ω) ∈ R+ × Ω

HXt,ω :=
{
U : (Rn,B(Rn)) −→ (Rd,B(Rd)), ||| U(·)|||Xt (ω) <∞

}
.

Define also

HX :=
{
U : [0, T ]× Ω×Rn −→ Rd, Ut(ω; ·) ∈ HXt,ω, for dCX ⊗ dP− a.e. (t, ω) ∈ R+ × Ω

}
.

Lemma 2.14. The space
(
HXt,ω, |||·|||

X
t (ω)

)
is Polish, for dCX ⊗ dP− a.e. (t, ω) ∈ R+ × Ω.

Proof. The fact that |||·|||Xt (ω) is indeed a norm is immediate from (2.14) and Kunita–
Watanabe’s inequality. Then, the space is clearly Polish since the measure KX

t (ω; dx) is
regular; it integrates x 7−→ |x|2 for dCX ⊗ dP− a.e. (t, ω) ∈ R+ × Ω.

2.4 A useful lemma for generalized inverses

In the following sections we will need a result on generalized inverses which is stated
as a corollary of the following lemma. The proof is presented in Appendix B.

Lemma 2.15. Let g be a non-decreasing sub-multiplicative function on R+, that is to
say

g(x+ y) ≤ `g(x)g(y),

for some ` > 0 and for every x, y ∈ R+. Let A be a càdlàg and non-decreasing function
and define its left-continuous inverse L by

Ls := inf {t ≥ 0, At ≥ s} .

Then it holds that ∫ t

0

g(As)dAs ≤ `g
(

max
{s, Ls<∞}

∆ALs

)∫ At

A0

g(s)ds.

Corollary 2.16. Let A and g as in Lemma 2.15 with the additional assumption that A
has uniformly bounded jumps, say by K. Then there exists a universal constant K ′ > 0

such that ∫ t

0

g(As)dAs ≤ K ′
∫ At

A0

g(s)ds.

The constant K ′ equals `g(K), where ` is the sub-multiplicativity constant of g.

3 Backward stochastic differential equations driven by stochasti-
cally discontinuous martingales

In this section, we will work on the complete stochastic basis (Ω,G,G,P) and fix
throughout

• a G−stopping time T ,

• an Rm+n−valued, G ⊗ B(R+)−measurable process X := (X◦, X\) such that

XT 6 ∈ H2(Rm)×H2,d(Rn) with M
µ(X\)T

[
∆
(
(X◦)T

)∣∣P̃] = 0,

6As usual, for a measurable process X, the corresponding process stopped at T , denoted by XT , is defined
by XT

t := Xt∧T , t ≥ 0.
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• a non–decreasing, predictable and càdlàg process CX such that the pair
(
XT , (CX)T

)
satisfies Assumption 2.10.

Abusing notation, we will refer to the stopped processes XT and (CX)T as simply the
processes X and CX , since T is given. Hence, the time interval on which we will be
working throughout this section will always be the stochastic time interval J0, T K. In
addition, a non-decreasing process A will be fixed below, see (3.3). In order to simplify
notation, and since there is no danger of confusion, we will omit X from our spaces and
norms. Therefore they become, for any β ≥ 0 and (t, ω) ∈ R+ × Ω,

L2
β := L2

β(GT ), H2
β := H2

β(X), S2
β := S2

β(X), H2,◦
β := H2

β(X◦), H2,\
β := H2

β(X\),

H2,⊥
β := H2

β(X⊥), Ht,ω := HXt,ω, H := HX ,

‖·‖β := ‖·‖β,X , ‖·‖?,β := ‖·‖?,β,X , |||·|||t := |||·|||Xt ,

C := CX , c := cX , µ\ := µX
\

, ν\ := νX
\

, µ̃\ := µ̃X
\

When β = 0, we also suppress it from the notation of the previous spaces.

We are interested in proving existence and uniqueness of the solution of a backward
stochastic differential equation of the form

Yt = ξ+

∫ T

t

f(s, Ys, Zs, Us(·))dCs−
∫ T

t

ZsdX
◦
s −
∫ T

t

∫
Rn
Us(x)µ̃\(ds,dx)−

∫ T

t

dNs, (3.1)

which means that, given the data (X,G, T, ξ, f, C), we seek a quadruple (Y,Z, U,N) that
satisfies equation (3.1), P− a.s. The martingale X is not assumed quasi-left-continuous
and may have stochastic discontinuities. As a result, the process C may also have
discontinuities. In other words, we consider BSDEs with jumps that are driven both by
continuous–time and by discrete–time martingales in a unified framework.

3.1 Formulation of the problem

The data of the BSDE should satisfy the following conditions:

(F1) The martingale X belongs to H2(Rm) ×H2(Rn) and (X,C) satisfies Assumption
2.10.

(F2) The terminal condition satisfies ξ ∈ L2
β̂

for some β̂ > 0.

(F3) The generator7 of the equation f : Ω ×R+ ×Rd ×Rd×m × H −→ Rd is such that
for any (y, z, u) ∈ Rd ×Rd×m × H, the map

(t, ω) 7−→ f(t, ω, y, z, ut(ω; ·)) is Ft ⊗ B([0, t])− measurable.

Moreover, f satisfies a stochastic Lipschitz condition, that is to say there exist

r : (Ω×R+,P) −→ (R+,B (R+)) and ϑ = (θ◦, θ\) : (Ω×R+,P) −→ (R2
+,B

(
R2

+

)
),

such that, for dC ⊗ dP− a.e. (t, ω) ∈ R+ × Ω

|f(t, ω, y, z, ut(ω; ·))− f(t, ω, y′, z′, u′t(ω; ·))|2

≤ rt(ω)|y − y′|2 + θ◦t (ω)‖ct(ω)(z − z′)‖2 + θ\t(ω) (|||ut(ω; ·)− u′t(ω; ·)|||t (ω))
2
.

(3.2)
7This is also called driver of the BSDE.
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(F4) Let8 α2
· := max{√r·, θ◦· , θ

\
· } and define the increasing, G−predictable and càdlàg

process

A· :=

∫ ·
0

α2
sdCs. (3.3)

Then there exists Φ > 0 such that

∆At(ω) ≤ Φ, for dC ⊗ dP− a.e. (t, ω) ∈ R+ × Ω. (3.4)

(F5) We have for the same β̂ as in (F2)

E

[∫ T

0

eβ̂At
|f(t, 0, 0,0)|2

α2
t

dCt

]
<∞,

where 0 denotes the null application from Rn to R.

Remark 3.1. In the case where the integrator C of the Lebesgue–Stieltjes integral is a
continuous process, we can choose between the integrands(

f(t, Yt, Zt, Ut(·))
)
t∈J0,T K and

(
f(t, Yt−, Zt, Ut(·))

)
t∈J0,T K,

and we still obtain the same solution, as they coincide outside of a dC ⊗ dP−null set.
However, in the case where the integrator C is càdlàg, the corresponding solutions may
differ. In the formulation of the problem we have chosen the first one, while the a-priori
estimates can readily be adapted to the second case as well. However, in order to obtain
the unique solution in the second case we will need an additional property to hold for
the integrator C; see Condition (H5) in Subsection 3.6. Moreover, in Subsection 3.3 we
will see that, in special cases, the conditions for existence and uniqueness of a solution
in these two cases can differ significantly.

In classical results on BSDEs, the pair (ξ, f) is called standard data. In our case, we
generalize the last term and say that the sextuple (X,G, T, ξ, f, C) is the standard data
under β̂, whenever its elements satisfy Assumptions (F1)–(F5) for this specific β̂.

Definition 3.2. A solution of the BSDE (3.1) with standard data (X,G, T, ξ, f, C) under
β̂ > 0 is a quadruple of processes

(Y, Z, U,N) ∈ H2
β ×H

2,◦
β ×H

2,\
β ×H

2,⊥
β or (Y,Z, U,N) ∈ S2

β ×H
2,◦
β ×H

2,\
β ×H

2,⊥
β ,

for some β ≤ β̂ such that, P− a.s., for any t ∈ J0, T K,

Yt = ξ+

∫ T

t

f(s, Ys, Zs, Us(·))dCs−
∫ T

t

ZsdX
◦
s−
∫ T

t

∫
Rn
Us(x)µ̃\(ds,dx)−

∫ T

t

dNs. (3.5)

Remark 3.3. We emphasize that in (3.5), the stochastic integrals are well defined since
(Z,U,N) ∈ H2,◦

β ×H
2,\
β ×H

2,⊥
β . Let us verify that the integral∫ ·

0

f(s, Ys, Zs, Us(·))dCs

is also well–defined. First of all, we know by definition that for any (y, z, u) ∈ Rd ×
Rd×m × H, there exists a dC ⊗ dP−null set N y,z,u such that for any (t, ω) /∈ N y,z,u

f(t, ω, y, z, ut(ω; ·)) is well defined and ut(ω; ·) ∈ Ht,ω.

8We assume, without loss of generality, that αt > 0, dC ⊗ dP− a.e.
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Moreover, by Lemma 2.14, we know also that for some dC ⊗ dP−null set Ñ , we have for
every (t, ω) /∈ Ñ , that Ht,ω is Polish for the norm |||·|||t (ω), so that it admits a countable
dense subset which we denote by Ht,ω. Let us then define

H :=
{
u ∈ H, ut(ω; ·) ∈ Ht,ω, ∀(t, ω) /∈ Ñ

}
, N :=

⋃{
N y,z,u, (y, z, u) ∈ Qd ×Qd×m ×H

}
,

where Q and Qd×m are the subsets of R and Rd×m with rational components.

Then, since H is countable, N is still a dC ⊗ dP−null set. Then, it suffices to use (F3)
to realize that for any (t, ω) /∈ N ∪ Ñ , f is continuous in (y, z, u), and conclude that we
can actually define f(t, ω, y, z, ut(ω; ·)) outside a universal dC ⊗ dP−null set. This implies
in particular that for any (Y, Z, U) ∈ H2

β ×H
2,◦
β ×H

2,\
β

f(t, ω, Yt(ω), Zt(ω), Ut(ω; ·)) is defined for dC ⊗ dP− a.e. (t, ω) ∈ J0, T K× Ω.

Finally, it suffices to use (F3) and (F5) to conclude that∫ T

0

|f(t, ω, Yt(ω), Zt(ω), Ut(ω; ·))|dCt(ω) is finite for dC ⊗ dP− a.e. (t, ω) ∈ J0, T K× Ω.

3.2 Existence and uniqueness: statement

We devote this subsection to the statement of our main theorem. Before that, we
need some preliminary results of a purely analytical nature, whose proofs are relegated
to Appendix C.

Lemma 3.4. Fix β,Ψ > 0 and consider the set Cβ := {(γ, δ) ∈ (0, β]2, γ < δ}. We define
the following quantity

ΠΨ(γ, δ) :=
9

δ
+ (2 + 9δ)

e(δ−γ)Ψ

γ(δ − γ)
.

Then, the infimum of ΠΨ is given by

MΨ(β) := inf
(γ,δ)∈Cβ

ΠΨ(γ, δ) =
9

β
+

Ψ2(2 + 9β)√
β2φ2 + 4− 2

exp
(βΨ + 2−

√
β2Ψ2 + 4

2

)
,

and is attained at the point
(
γΨ(β), β

)
where

γΨ(β) :=
βΨ− 2 +

√
4 + β2Ψ2

2Ψ
.

In addition, if we define

ΠΨ
? (γ, δ) :=

8

γ
+

9

δ
+ 9δ

e(δ−γ)Ψ

γ(δ − γ)
,

then the infimum of ΠΨ
? is given by MΨ

? (β) := inf(γ,δ)∈Cβ ΠΨ
? (γ, δ) = ΠΨ

? (γΨ
? (β), β), where

γΨ
? (β) is the unique solution in (γΨ

? (β), β) of the equation with unknown x

8(β − x)2 − 9βe(β−x)Ψ
(
Ψx2 − (βΨ− 2)x− β

)
= 0.

Moreover, it holds

lim
β→∞

MΨ(β) = lim
β→∞

MΨ
? (β) = 9eΨ.

Theorem 3.5. Let (X,G, T, ξ, f, C) be standard data under β̂. If MΦ(β̂) < 1
2 (resp.

MΦ
? (β̂) < 1

2 ), then there exists a unique quadruple (Y,Z, U,N) which satisfies (3.5) and
with ‖(Y, Z, U,N)‖β̂ <∞ (resp. ‖(Y,Z, U,N)‖?,β̂ <∞).
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Corollary 3.6. Let (X,G, T, ξ, f, C) be standard data under β̂, for β̂ sufficiently large. If
for the constant Φ defined in (3.4) holds

Φ <
1

18e
, (3.6)

then the BSDE (3.5) has a unique solution.

Proof. Using the results of Lemma 3.4 and Theorem 3.5, it is immediate that as soon
as Φ < 1/(18e), then there always exists a unique solution of the BSDE for β̂ large
enough.

3.3 Comparison with the related literature

3.3.1 Some counterexamples

As mentioned already in the introduction, Confortola, Fuhrman and Jacod [49, Section
4.3] provided a counterexample to the existence or the uniqueness of the solution of
a BSDE in case the integrator C is not a continuous process. We would like to shed
some more light on their counterexample here, and discuss various situations in which a
solution may or may not exist.

Let us first rewrite their counterexample using our notation. Let T > 0, ` ∈ (0, T ],
X be a piecewise constant process with potentially a single jump at time `, that is
P(∆X` 6= 0) = p ∈ (0, 1) and P({∆Xt = 0 for every t ∈ (0,∞)}) = 1 − p. Let Π := {ω ∈
Ω, ∆X`(ω) 6= 0} and Πc be its complement. Moreover, let G be the natural filtration of
X, C· = p1[`,∞)(·), and fix some generator f : [0, T ]×R ×R −→ R. Given the structure
of the filtration G, the terminal condition ξ can always have a decomposition of the form

ξ(ω) =: ξΠ1Π(ω) + ξΠc1Πc(ω), (ξΠ, ξΠc) ∈ R×R.

Then, [49] considers the following BSDE

Yt +

∫ T

t

Usµ
X(ds) = ξ +

∫
(t,T ]

f(s, Ys−, Us)dCs, (3.7)

and shows that, if the generator has the form f(t, y, u) = 1
p (y + g(u)) for a deterministic

function g : R −→ R, then the BSDE can admit either infinitely many solutions or none.

Once again because of the structure of G, one can show that the possible solutions
for the BSDE (3.7) necessarily have the following form

Yt(ω) = Y01[0,`)(t) + ξΠ1[`,∞)(t)1Π(ω) + ξΠc1[`,∞)(t)1Πc(ω),

Ut(ω) = υ(t) + υΠ(t)1Π(ω)1(`,T ](t) + υΠc(t)1Πc(ω)1(`,T ](t),

for some Y0 ∈ R and some deterministic functions υ, υΠ, υΠc : [0, T ] −→ R. However,
only the value υ(`) is actually involved. By [84, Theorem II.3.26] we have that C is
the compensator of X, i.e. the process X̃· := X· − C· is a G−martingale. Now we can
distinguish between the following cases.

(C1) Consider the BSDE (3.7). Then, there exists a solution if and only if there exists a
fixed point, called Y ?0 , for the equation

ξΠ + pf(`, x, ξΠ − ξΠc) = x.
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The pair (Y ?0 , ξ
Π − ξΠc) is a solution of (3.7). The solution is unique if and only if

the fixed point is unique. In case f is globally Lipschitz with respect to its second
argument, i.e.

|f(t, y1, u)− f(t, y2, u)|2 ≤ r|y1 − y2|2,

then, a sufficient condition for the existence and uniqueness of the solution is
r∆C2

` < 1.

(C2) Consider the following BSDE instead, where the stochastic integral is taken with
respect to the compensated jump process

Yt +

∫ T

t

Usµ̃
X(ds) = ξ +

∫
(t,T ]

f(s, Ys−, Us)dCs. (3.8)

Then, there exists a solution if and only if there exists a fixed point, called Y ?0 , for
the equation

ξΠ + pf(`, x, ξΠ − ξΠc) + p(ξΠ − ξΠc) = x.

The pair (Y ?0 , ξ
Π − ξΠc) is a solution of (3.8). The solution is unique if and only if

the fixed point is unique. In case f is globally Lipschitz with respect to the second
argument as above, a sufficient condition for the existence and uniqueness of the
solution is again r∆C2

` < 1.

(C3) Consider now a BSDE similar to (3.7), where the integrand of the Lebesgue–
Stieltjes integral depends on Y instead of Y−, i.e.

Yt +

∫ T

t

Usµ
X(ds) = ξ +

∫
(t,T ]

f(s, Ys, Us)dCs. (3.9)

Then, there exists a solution if and only if there exists a fixed point, called υ?(`),
for the equation

ξΠ − ξΠc − pf
(
`r, ξΠc , x

)
+ pf(`, ξΠ, x) = x.

The pair (ξΠc + pf
(
`, ξΠc + pυ?(`), υ?(`)

)
, υ?(`)) is a solution of (3.9). The solution

is unique if and only if the fixed point is unique. In case f is globally Lipschitz with
respect to its third argument, i.e.

|f(t, y, u1)− f(t, y, u2)|2 ≤ θ]|u1 − u2|2,

then, a sufficient condition for the existence and uniqueness of the solution is
4θ]∆C2

` < 1. This condition is not necessary: let f ′(t, y, u) = 1
p (g(y) + u), where g

is a deterministic function, then it holds that θ]∆C2
` = 1; however, (3.9) admits a

unique solution, which is given by the pair(
ξΠ + g(ξΠ), ξΠ − ξΠc + g(ξΠ)− g(ξΠc)

)
.

(C4) Finally, consider a BSDE similar to (3.9) where the stochastic integral is taken
with respect to the compensated jump process

Yt +

∫ T

t

Usµ̃
X(ds) = ξ +

∫
(t,T ]

f(s, Ys, Us)dCs. (3.10)
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Then, there exists a solution if and only if there exists a fixed point, called υ?(`),
for the equation

ξΠ − ξΠc − pf
(
`, ξΠc , x

)
+ pf(`, ξΠ, x) = x.

The pair (ξΠc + pf
(
`, ξΠc , υ?(`)

)
, υ?(`)) is a solution of (3.10). The solution is unique

if and only if the fixed point is unique. In case f is globally Lipschitz with respect to
its third argument as above, a sufficient condition for the existence and uniqueness
of the solution is again 4θ]∆C2

` < 1. Once again this condition in not necessary;
indeed, for f ′ as in (C3), θ]∆C2

` = 1, while the unique solution of the BSDE (3.10)
is the pair(

(1− p)[ξΠ + g(ξΠ)] + p[ξΠc + g(ξΠc)], ξΠ − ξΠc + g(ξΠ)− g(ξΠc)
)
.

Now, returning to the original counterexample of [49], we can observe that the
sufficient condition r∆C2

` < 1 is violated there, which explains why wellposedness issues
can arise. However, an important observation here is that the structure of the generator
plays a crucial role as well. Indeed, if we consider the same BSDE with the following
generator f(t, y, u) = m(y + g(u)) with m 6= 1

p , then the BSDE admits a unique solution.

Let us finally argue why condition (3.6) rules out this counterexample from our
setting. The generator f(t, y, u) = 1

p (y + g(u)) needs to be Lipschitz so that it fits in
our framework, and to satisfy (3.2). Let us further assume that the function g is also
Lipschitz, say with associated constant Lg. Then, using Young’s Inequality, we can obtain

|f(t, y, u)− f(t, y′, u′)|2 ≤ 1 + ε

p2
|y − y′|2 +

1

p2

(
1 +

(Lg)2

ε

)
|u− u′|2, for every ε > 0.

Before we proceed recall (3.3) and (3.4), i.e. A· =
∫ ·

0
α2
sdCs and ∆At(ω) ≤ Φ, for

dC ⊗ dP− a.e. Therefore, we have that α2
r = max

{√
1 + ε/p,

(
1 + (Lg)2

ε

)
/p2
}

, and

α2
r ∆Cr = max

{√
1 + ε,

1

p
+

(Lg)2

pε

}
≥
√

1 + ε >
1

18e
for every ε > 0.

Remark 3.7. Coming back to Remark 3.1, we observe that the dependence of the
integrand on Y or Y− is not always that innocuous. Indeed, the same BSDE might have
a solution in the one formulation but not in the other. Observe furthermore that in the
first situation the Lipschitz constant r appears in the condition for the existence and
uniqueness of a solution, while in the second case the Lipschitz constant θ] appears. As
stated already before, in our framework we can treat both cases simultaneously, hence
naturally both Lipschitz constants appear in our condition, through the definition of α2

as the maximum of all the Lipschitz constants.

3.3.2 Related literature

Let us now compare our work with the papers by Bandini [14] and Cohen and Elliott [46]
who also consider BSDEs in stochastically discontinuous filtrations. The setting in [46] is
rather different from ours. Indeed, in our case a driving martingale X is given right from
the start, and as a consequence the process C with respect to which the generator f is
integrated is linked to the predictable bracket of X. However, the authors of [46] do not
choose any X from the start, but consider instead a general martingale representation
theorem involving countably many orthogonal martingales, which only requires the space
of square integrable random variables on (Ω,F ,P) to be separable to hold. Furthermore,
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their process C can, unlike our case, be chosen arbitrary (in the sense that it does not
have to be related to the driving martingales), but with the restriction that it has to
be deterministic. Moreover, it has to assign positive measure on every interval, see
Definition 5.1 therein, hence C cannot be piecewise constant; the latter would naturally
arise from a discrete-time martingale with independent increments, which is exactly the
situation one encounters when devising numerical schemes for BSDEs. Therefore, their
setting cannot be embedded into our framework, and vice versa.

On the other hand, in [14], the author considers a BSDE driven by a pure–jump
martingale without an orthogonal component, which is a special case of (3.1). The
martingale in this setting should actually have jumps of finite activity, hence many of
the interesting models for applications in mathematical finance, such as the generalized
hyperbolic, CGMY, and Meixner processes, are excluded. Such a restriction is not
present at all in our framework. Otherwise, the assumptions and the conclusion in [14]
are analogous to the present work. A direct comparison is however not possible, i.e. we
cannot deduce the existence and uniqueness results in her work from our setting, since
the assumptions are not exactly comparable. In particular, the integrability condition
(iii) on page 3 in [14] is not compatible with (F5).

Let us also compare our result with the literature on BSDEs with random terminal
time. Royer [131], for instance, considers a BSDE driven by Brownian motion, where the
terminal time is a [0,∞)−valued stopping time. Hence, her setting can be embedded
in ours, by assuming the absence of jumps and of the orthogonal component, and
further requiring that C is a continuous process. She shows existence and uniqueness
of a solution under the assumptions that the generator is uniformly Lipschitz in z and
continuous in y, and the terminal condition is bounded. Moreover, she requires that
either the generator is strictly monotone in y and f(t, 0, 0) is bounded (for all t) or that
the generator is monotone in y and f(t, 0, 0) = 0 (for all t). These conditions are not
directly covered by our Assumptions (F1)–(F5), however if we consider her conditions
and assume in addition that the generator is Lipschitz in y, then we can recover the
existence and uniqueness result from our main theorem. Let us point out that BSDEs
with constant terminal time are related to semi–linear parabolic PDEs, while BSDEs with
random terminal time are associated to semi–linear elliptic PDEs.

We would also like to comment briefly on the choice of the norms we consider here.
They are mostly inspired from the ones defined in the seminal work of El Karoui and
Huang [60], and are equivalent to the usual norms found in the literature when the
process A and time T are both bounded. Bandini [14] uses different spaces, where the
norm is defined using the Doléans–Dade stochastic exponential instead of the natural
exponential. In our setting where A is allowed to be unbounded, we can only say that
our norm dominates hers. This means that we require stronger integrability conditions,
but as a result we will also obtain a solution of the BSDE with stronger integrability
properties. In any case, our method could be adapted to this choice of the norm, albeit
with modified computations in our estimates. We refer the reader to Remark 3.9 below
for a more detailed discussion about the definition of the norms.

Let us conclude this section by commenting on the condition (3.6). We start with
the observation that the analysis of the counterexample of Confortola et al. [49] made
in Sub–sub–section 3.3.1 does not allow for a general statement of wellposedness of
the BSDE when Φ ≥ 1. In this light, the result of Cohen and Elliott [46, Theorem 6.1],
which implies that the condition Φ < 1 ensures the wellposedness of the BSDE, lies in
the optimal range for Φ. Analogously in the case of Bandini [14], once her results are
translated using the Lipschitz assumption in (F3), Φ < 1 also ensures the wellposedness
of the BSDE. On the contrary, condition (3.6) which reads as Φ < 1/(18e), may seem
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much more restrictive. The first immediate remark we can make is that the stochasticity
of the integrator C considerably deteriorates the condition on Φ. In [46] the integrator
is deterministic, while in [14] and in our case the integrator is stochastic. However, we
would like to remind the reader, that, as explained above, the level of generality we
are working with is substantially higher than in these two references. We also want
to emphasize the fact that our condition is clearly not the sharpest one possible, but
we believe it is the sharpest that can be obtained using our method of proof. The main
possibilities for improvement are, in our view, twofold:

• First of all, in specific situations (e.g. T bounded, f Lipschitz, less general driving
processes, . . . ) one should be able to improve the a priori estimates of Lemma
3.8 by refining several of the inequalities. This exactly what we will do in Section
3.6 below, by using an approach reminiscent of the one usually used in the BSDE
literature.

• Second, as highlighted in Remark 3.9, we actually have a degree of freedom in
choosing the norms we are interested in. In this paper, we used exponentials, while
Bandini [14] used stochastic exponentials, but other choices, leading to potentially
better estimates, could also be considered.

We leave this interesting problem of finding the optimal Φ open for future research.

3.4 A priori estimates

The method of proof we will use follows and extends the one of El Karoui and Huang
[60]. In [60], as well as in Pardoux and Peng [125], the result is obtained using fixed–point
arguments and the so-called a priori estimates. However, we would like to underline
that the proof of such estimates in our case is significantly harder, due to the fact that
the process C is not necessarily continuous.

The following result can be seen as the a priori estimates for a BSDE whose generator
does not depend on the solution. In order to keep notation as simple as possible, as well
as to make the link with the data of the problem we consider clearer, we will reuse part
of the notation of (F1)–(F5), namely ξ, T, f, C, α and A, only for the next two lemmata.

Lemma 3.8. Let y be a d−dimensional G−semimartingale of the form

yt = ξ +

∫ T

t

fsdCs −
∫ T

t

dηs, (3.11)

where T is a G−stopping time, ξ ∈ L2
(
GT ;Rd

)
, f is a d−dimensional optional process, C

is an increasing, predictable and càdlàg process and η ∈ H2.

Let A := α2 · C for some predictable process α. Assume that there exists Φ > 0 such
that property (3.4) holds for A. Suppose there exists β ∈ R+ such that

E
[
eβAT |ξ|2

]
+ E

[∫ T

0

eβAt
|ft|2

α2
t

dCt

]
<∞.

Then we have for any (γ, δ) ∈ (0, β]2, with γ 6= δ,

‖αy‖2H2
δ
≤ 2eδΦ

δ
‖ξ‖2L2

δ
+ 2Λγ,δ,Φ

∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

, ‖y‖2S2
δ
≤ 8 ‖ξ‖2L2

δ
+

8

γ

∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

,

‖η‖2H2
δ
≤ 9

(
1 + eδΦ

)
‖ξ‖2L2

δ
+ 9

(
1

γ ∨ δ
+ δΛγ,δ,Φ

)∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

,
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where we have defined

Λγ,δ,Φ :=
1 ∨ e(δ−γ)Φ

γ |δ − γ|
.

As a consequence, we have

‖αy‖2H2
δ

+ ‖η‖2H2
δ
≤ Π̃δ,Φ ‖ξ‖2L2

δ
+ ΠΦ(γ, δ)

∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

, (3.12)

‖y‖2S2
δ

+ ‖η‖2H2
δ
≤ Π̃δ,Φ

? ‖ξ‖
2
L2
δ

+ ΠΦ
? (γ, δ)

∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

, (3.13)

where

Π̃δ,Φ := 9 +

(
9 +

2

δ

)
eδΦ and Π̃δ,Φ

? := 17 + 9eδΦ.

Proof. Recall the identity

yt = ξ +

∫ T

t

fsdCs −
∫ T

t

dηs = E

[
ξ +

∫ T

t

fsdCs

∣∣∣∣∣Gt
]
, (3.14)

and introduce the anticipating function

F (t) =

∫ T

t

fsdCs. (3.15)

For γ ∈ R+, we have by the Cauchy–Schwarz inequality,

|F (t)|2 ≤
∫ T

t

e−γAsdAs

∫ T

t

eγAs
|fs|2

α2
s

dCs ≤
∫ AT

At

e−γALsds

∫ T

t

eγAs
|fs|2

α2
s

dCs

≤
∫ AT

At

e−γsds

∫ T

t

eγAs
|fs|2

α2
s

dCs ≤
1

γ
e−γAt

∫ T

t

eγAs
|fs|2

α2
s

dCs, (3.16)

where for the third inequality we used Lemma B.1.(vii). For t = 0, since we assumed that

E

[∫ T

0

eβAt
|ft|2

α2
t

dCt

]
<∞,

we have that the following holds for 0 < γ < β

E
[
|F (0)|2

]
<∞.

For δ ∈ R+ and by integrating (3.16) w.r.t. eδAtdAt it follows∫ T

0

eδAt |F (t)|2 dAt
(3.16)
≤ 1

γ

∫ T

0

e(δ−γ)At

∫ T

t

eγAs
|fs|2

α2
s

dCsdAt

=
1

γ

∫ T

0

eγAs
|fs|2

α2
s

∫ s−

0

e(δ−γ)AtdAtdCs

≤ 1

γ

∫ T

0

eγAs
|fs|2

α2
s

∫ s

0

e(δ−γ)AtdAtdCs, (3.17)

where we used Tonelli’s Theorem in the equality. We can now distinguish between two
cases:
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• For δ > γ, we apply Corollary 2.16 for g(x) = e(δ−γ)x, and inequality (3.17) becomes

∫ T

0

eδAt |F (t)|2 dAt ≤
e(δ−γ)Φ

γ

∫ T

0

eγAs
|fs|2

α2
s

∫ As

A0

e(δ−γ)tdtdCs ≤
e(δ−γ)Φ

γ(δ − γ)

∫ T

0

eδAs
|fs|2

α2
s

dCs,

(3.18)

which is integrable if δ ≤ β.

• For δ < γ, inequality (3.17) can be rewritten as follows

∫ T

0

eδAt |F (t)|2 dAt ≤ 1

γ

∫ T

0

eγAs
|fs|2

α2
s

∫ As

A0

e(δ−γ)ALtdtdCs

Lem. B.1.(vii)

≤ 1

γ

∫ T

0

eγAs
|fs|2

α2
s

∫ As

A0

e(δ−γ)tdtdCs

≤ 1

γ |δ − γ|

∫ T

0

eγAs
|fs|2

α2
s

(
e(δ−γ)A0 − e(δ−γ)As

)
dCs

≤ 1

γ |δ − γ|

∫ T

0

eγAs
|fs|2

α2
s

dCs, (3.19)

which is integrable if γ ≤ β. To sum up, for γ, δ ∈ (0, β], γ 6= δ, we have

E

[∫ T

0

eδAt |F (t)|2 dAt

]
≤ Λγ,δ,Φ

∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

. (3.20)

For the estimate of ‖αy‖H2
δ

we first use the fact that

‖αy‖2H2
δ

= E

[∫ T

0

eδAt |yt|2 dAt

]
≤ 2E

[∫ T

0

E
[

eδAt |ξ|2 + eδAt |F (t)|2
∣∣∣Gt] dAt

]

= 2E

[∫ ∞
0

E
[

eδAt |ξ|2 + eδAt |F (t)|2
∣∣∣Gt] dATt

]
Cor. D.1

= 2E

[∫ ∞
0

eδAt |ξ|2 + eδAt |F (t)|2 dATt

]
= 2E

[∫ T

0

eδAt |ξ|2 + eδAt |F (t)|2 dAt

]
Cor. 2.16
≤

(3.20)

2eδΦ

δ
‖ξ‖2L2

δ
+ 2Λγ,δ,Φ

∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

. (3.21)

In the second equality we have used that the processes |ξ|2 1Ω×[0,∞](·) and |F (·)|2 are
uniformly integrable, hence their optional projections are well defined. Indeed, using
(3.16) and remembering that E[|F (0)|2] <∞, we can conclude the uniform integrability
of |F (·)|2. Then, by [76, Theorem 5.4] it holds that

o
(

eδA· |ξ|2 + eδA· |F (·)|2
)
t

= eδAt o
(
|ξ|2 1Ω×[0,∞](·)

)
t

+ eδAt o
(
|F (·)|2

)
t

= eδAtE
[
|ξ|2
∣∣∣Gt]+ eδAtE

[
|F (t)|2

∣∣∣Gt]
= E

[
eδAt |ξ|2 + eδAt |F (t)|2

∣∣∣Gt] ,
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which justifies the use of Corollary D.1. For the estimate of ‖y‖S2
δ

we have

‖y‖S2
δ

= E

[
sup

0≤t≤T

(
e
δ
2At |yt|

)2
]

≤ 2E

[
sup

0≤t≤T
E

[√
eδAt |ξ|2 + eδAt |F (t)|2

∣∣∣∣Gt]2
]

≤ 2E

 sup
0≤t≤T

E

√eδAT |ξ|2 +
1

γ
e(δ−γ)At

∫ T

t

eγAs
|fs|2

α2
s

dCt

∣∣∣∣∣∣Gt
2


≤ 2E

 sup
0≤t≤T

E

√eδAT |ξ|2 +
1

γ

∫ T

0

e(γ+(δ−γ)+)As
|fs|2

α2
s

dCs

∣∣∣∣∣∣Gt
2


≤ 8E

[
eδAT |ξ|2 +

1

γ

∫ T

0

e(γ∨δ)As |fs|
2

α2
s

dCs

]

≤ 8 ‖ξ‖2L2
δ

+
8

γ

∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

(3.22)

for γ ∨ δ ≤ β, where in the second and third inequalities we used the inequality a+ b ≤√
2(a2 + b2) and (3.16) respectively.

What remains is to control ‖η‖H2
δ
. We remind once more the reader that

∫ T
t

dηs =

ξ − yt + F (t), hence

E
[
|ξ − yt − F (t)|2

∣∣∣Gt] = E

[∫ T

t

dTr[〈η〉s]

∣∣∣∣∣Gt
]
. (3.23)

In addition, we have∫ T

0

eδAsd Tr〈η〉s =

∫ T

0

∫ As

A0

δeδtdtdTr[〈η〉s] + Tr[〈η〉T ]

Lem. B.1.(vii)

≤
∫ T

0

∫ As

A0

δeδALtdtdTr[〈η〉s] + Tr[〈η〉T ]

= δ

∫ T

0

∫ s

0

eδAtdAtdTr[〈η〉s] + Tr[〈η〉T ]

≤ δ

∫ T

0

eδAt
∫ T

t

dTr[〈η〉s]dAt + Tr[〈η〉T ],

so that

‖η‖H2
δ
≤ δE

[∫ T

0

eδAt
∫ T

t

dTr[〈η〉s]dAt

]
+ E [Tr[〈η〉T ]] . (3.24)

For the first summand on the right-hand-side of (3.24), we have

E

[∫ T

0

eδAt
∫ T

t

dTr[〈η〉s]dAt

]
Cor. D.1

= E

[∫ T

0

eδAtE

[∫ T

t

dTr[〈η〉s]

∣∣∣∣∣Gt
]

dAt

]
(3.23)

= E

[∫ T

0

eδAtE
[
|ξ − yt + F (t)|2

∣∣∣Gt] dAt

]
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≤ 3E

[∫ T

0

eδAtE
[
|ξ|2 + |yt|2 + |F (t)|2

∣∣∣Gt] dAt

]
(3.14)
≤ 3E

[∫ T

0

eδAt |ξ|2 dAt

]
+ 3E

[∫ T

0

eδAt |F (t)|2 dAt

]

+ 6E

[∫ T

0

eδAtE
[
|ξ|2 + |F (t)|2

∣∣∣Gt] dAt

]
Cor. D.1

= 9E

[∫ T

0

eδAt |ξ|2 dAt

]
+ 9E

[∫ T

0

eδAt |F (t)|2 dAt

]
Cor. 2.16
≤

(3.20)

9eδΦ

δ
‖ξ‖2L2

δ
+ 9Λγ,δ,Φ

∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

.

We now need an estimate for E
[∫ T

0
dTr[〈η〉s]

]
, i.e. the second summand of (3.24),

which is given by

E [Tr[〈η〉T ]] = E
[
|ξ − y0 + F (0)|2

]
≤ 3E

[
|ξ|2 + |y0|2 + |F (0)|2

]
(3.14)
≤ 9E

[
|ξ|2
]

+ 9E
[
|F (0)|2

] (3.16)
≤ 9 ‖ξ‖2L2

δ
+

9

γ ∨ δ

∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

,

where we used the fact that E
[
|y0|2

]
≤ 2E

[
|ξ|2 + |F (0)|2

]
.

Then (3.24) yields

‖η‖2H2
δ
≤ 9

(
1 + eδΦ

)
‖ξ‖2L2

δ
+ 9

(
1

γ ∨ δ
+ δΛγ,δ,Φ

)∥∥∥∥fα
∥∥∥∥2

H2
γ∨δ

. (3.25)

Remark 3.9. An alternative framework can be provided if we define the norms in Sub-
section 2.3 using another positive and increasing function h instead of the exponential
function. In order to obtain the required a priori estimates, we need to assume that h
is sub–multiplicative9 and that it shares some common properties with the exponential
function. The following provides the a priori estimates of the semi–martingale decompo-
sition (3.11) in the case h : R→ [1,∞), with h(x) = (1+x)ζ , for ζ ≥ 1, with the additional
assumption that the process A defined in (F4) is P−a.s. bounded by Ψ. It holds for
1
ζ < γ < δ < β̂

‖αy‖2H2
δ

+ ‖η‖2H2
δ
≤

(
2h(Ψ)hδ(Φ) + 9 +

9[h(Ψ)]1−
1
ζ [h(Φ)]δ−

1
ζ

δ − 1
ζ + 1

)
‖ξ‖2L2

δ

+

(
2[h(Ψ)]1+ 1

ζ [h(Φ)]δ−γ+ 1
ζ

δ − γ + 1
ζ + 1

+
9h(Ψ)[h(Φ)]δ−γ

δ − γ + 1
+

9

δζ − 1

)∥∥∥∥fα
∥∥∥∥
H2
δ

,

‖y‖2S2
δ

+ ‖η‖2H2
δ
≤
(
8 + 2h(Ψ)hδ(Φ)

)
‖ξ‖2H2

δ
+

(
[h(Ψ)]

1
ζ

γζ − 1
+

2[h(Ψ)]1+ 1
ζ [h(Φ)]δ−γ+ 1

ζ

δ − γ + 1
ζ + 1

)∥∥∥∥fα
∥∥∥∥2

H2
δ

.

Let us also provide the following pathwise estimates.

Lemma 3.10. Let ξ, T, C, α, A and Φ as in Lemma 3.8. Assume that the d−dimensional
G−semimartingales y1

t and y2
t can be decomposed as follows

yit = ξ +

∫ T

t

f is dCs −
∫ T

t

dηis, for i = 1, 2 (3.26)

9In the proof of [134, Proposition 25.4] we can find a convenient tool for constructing sub–multiplicative
functions.

EJP 23 (2018), paper 121.
Page 27/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP240
http://www.imstat.org/ejp/


Existence and uniqueness results for BSDE with jumps

where f1, f2 are d−dimensional G−optional processes such that

E

[∫ T

0

eβAt
|f it |2

α2
t

dCt

]
<∞,

for i = 1, 2 and for some β ∈ R+, and η1, η2 ∈ H2(Rd). Then, for γ, δ ∈ (0, β], with γ 6= δ∫ T

0

eβAt |yit|2 dAt ≤
2

β
eβΦeβAT sup

t∈[0,T ]

E[|ξ|2|Gt]

+
2

γ(β − γ)
e(β−γ)Φe(β−γ)AT sup

t∈[0,T ]

E

[∫ T

0

eβAt
∣∣f is∣∣2
α2
s

dCs

∣∣∣∣Gt], (3.27)

and∫ T

0

eβAt |y1
t − y2

t |2 dAt ≤
e(β−γ)Φ

γ(β − γ)
e(β−γ)AT sup

t∈[0,T ]

E

[∫ T

0

eβAt
∣∣f1
s − f2

s

∣∣2
α2
s

dCs

∣∣∣∣Gt]. (3.28)

Moreover, for the martingale parts η1, η2 ∈ H2(G;Rn) of the aforementioned decomposi-
tions, we have

sup
t∈[0,T ]

∣∣η1
t − η1

0

∣∣2 ≤ 6 sup
t∈[0,T ]

E

[∣∣ξ∣∣2 +
1

β

∫ T

0

eβAs
∣∣f1
s

∣∣2
α2
s

dCs

∣∣∣∣Gt]+ 3

∫ T

0

eβAt
∣∣f1
s

∣∣2
α2
s

dCs,

(3.29)

and

sup
t∈[0,T ]

∣∣(η1
t − η2

t )− (η1
0 − η2

0)
∣∣2 ≤ 6

β

∫ T

0

eβAt
∣∣f1
s − f2

s

∣∣2
α2
s

dCs

+
3

β
sup
t∈[0,T ]

E

[ ∫ T

0

eβAs
∣∣f1
s − f2

s

∣∣2
α2
s

dCs

∣∣∣∣Gt].
(3.30)

Proof. For the following assume γ, δ ∈ (0, β] with γ 6= δ.

• We will prove Inequality (3.27) for i = 1 by following analogous to Lemma 3.8
calculations. The sole difference will be that we are going to apply the conditional
form of the Cauchy–Schwartz Inequality. Moreover, by Identity (3.26), we have

∣∣y1
t

∣∣2 =

∣∣∣∣E[ξ1 +

∫ T

t

f1
s dCs

∣∣∣∣Gt]∣∣∣∣2. (3.31)

In view of these comments, we have∫ T

0

eβAt |y1
t |2 dAt

∫ T

0

eβAt
∣∣∣∣E[ξ +

∫ T

t

f1
s dCs

∣∣∣∣Gt]∣∣∣∣2 dAt

≤ 2

∫ T

0

eβAt
∣∣E[ξ∣∣Gt]∣∣2 dAt + 2

∫ T

0

eβAt
∣∣∣∣E[ ∫ T

t

f1
s dCs

∣∣∣∣Gt]∣∣∣∣2 dAt

C-S Ineq.
≤ 2

∫ T

0

eβAt
∣∣E[ξ∣∣Gt]∣∣2 dAt

+ 2

∫ T

0

eβAtE
[ 1

γ
e−γAt

∣∣∣Gt]E[∫ T

t

eγAt
∣∣f1
s

∣∣2
α2
s

dCs

∣∣∣∣Gt]dAt

EJP 23 (2018), paper 121.
Page 28/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP240
http://www.imstat.org/ejp/


Existence and uniqueness results for BSDE with jumps

≤ 2

∫ T

0

eβAtE
[
|ξ|2
∣∣Gt]dAt +

2

γ

∫ T

0

e(β−γ)AtE

[∫ T

t

eγAt
∣∣f1
s

∣∣2
α2
s

dCs

∣∣∣∣Gt]dAt

≤ 2 sup
t∈[0,T ]

E
[
|ξ|2
∣∣Gt] ∫ T

0

eβAt dAt

+
2

γ

∫ T

0

e(β−γ)AtE

[∫ T

0

eβAt
∣∣f1
s

∣∣2
α2
s

dCs

∣∣∣∣Gt]dAt

Cor. 2.16
≤ 2 sup

t∈[0,T ]

E
[
|ξ|2
∣∣Gt] ∫ T

0

eβAt dAt

+
2

γ
sup
t∈[0,T ]

E

[∫ T

0

eβAt
∣∣f1
s

∣∣2
α2
s

dCs

∣∣∣∣Gt] ∫ T

0

e(β−γ)At dAt

Cor. 2.16
≤ 2

β
eβΦeβAT sup

t∈[0,T ]

E
[
|ξ|2
∣∣Gt]

+
2

γ(β − γ)
e(β−γ)Φe(β−γ)AT sup

t∈[0,T ]

E

[∫ T

0

eβAt
∣∣f1
s

∣∣2
α2
s

dCs

∣∣∣∣Gt].
• We will prove Inequality (3.28). We will follow analogous arguments as in the

previous case, but we are going to use instead of (3.31) the identity

|y1
t − y2

t |2 =

∣∣∣∣E[ ∫ T

t

f1
s − f2

s dCs

∣∣∣∣Gt]∣∣∣∣2. (3.32)

Now we have∫ T

0

eβAt |y1
t − y2

t |2 dAt
(3.32)

=

∫ T

0

eβAt
∣∣∣∣E[ ∫ T

t

f1
s − f2

s dCs

∣∣∣∣Gt]∣∣∣∣2 dAt

C-S Ineq.
≤

∫ T

0

eβAtE
[ 1

γ
e−γAt

∣∣∣Gt]E[∫ T

t

eγAt
∣∣f1
s − f2

s

∣∣2
α2
s

dCs

∣∣∣∣Gt]dAt

≤ 1

γ

∫ T

0

e(β−γ)AtE

[∫ T

0

eβAt
∣∣f1
s − f2

s

∣∣2
α2
s

dCs

∣∣∣∣Gt]dAt

Cor. 2.16
≤ e(β−γ)Φ

γ(β − γ)
e(β−γ)AT sup

t∈[0,T ]

E

[∫ T

0

eβAt
∣∣f1
s − f2

s

∣∣2
α2
s

dCs

∣∣∣∣Gt].
• Now we are going to prove (3.29) for i = 1. We use initially the analogous to

Inequality (3.16) in order to obtain∣∣∣∣ ∫ T

0

f1
s dCs

∣∣∣∣2 ≤ 1

β

∫ T

0

eβAt
∣∣f1
s

∣∣2
α2
s

dCs. (3.33)

Moreover, by Identity (3.31) we obtain

∣∣y1
t

∣∣2 (3.31)
≤

∣∣∣∣E[ξ +

∫ T

t

f1
s dCs

∣∣∣∣Gt]∣∣∣∣2 ≤ 2E

[∣∣ξ∣∣2 +

∣∣∣∣ ∫ T

t

f1
s dCs

∣∣∣∣2∣∣∣∣Gt]
(3.33)
≤ 2E

[
|ξ|2 +

1

β

∫ T

0

eβAs
∣∣f1
s

∣∣2
α2
s

dCs

∣∣∣∣Gt],
and consequently

sup
t∈[0,T ]

∣∣y1
t

∣∣2 ≤ 2 sup
t∈[0,T ]

E

[
|ξ|2 +

1

β

∫ T

0

eβAs
∣∣f1
s

∣∣2
α2
s

dCs

∣∣∣∣Gt]. (3.34)
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Existence and uniqueness results for BSDE with jumps

Now, by Identity (3.26) we have that

sup
t∈[0,T ]

∣∣η1
t − η1

0

∣∣2 = sup
t∈[0,T ]

∣∣∣∣y1
t − y1

0 +

∫ T

0

f1
s dCs

∣∣∣∣2 ≤ 6 sup
t∈[0,T ]

∣∣y1
t

∣∣2 + 3

∣∣∣∣ ∫ T

0

f1
s dCs

∣∣∣∣2
(3.33)
≤

(3.34)
6 sup
t∈[0,T ]

E

[
|ξ|2 +

1

β

∫ T

0

eβAs
∣∣f1
s

∣∣2
α2
s

dCs

∣∣∣∣Gt]+ 3

∫ T

0

eβAt
∣∣f1
s

∣∣2
α2
s

dCs.

• We are going to prove, now, the Inequality (3.30). We use initially the analogous
to Inequality (3.16) in order to obtain∣∣∣∣ ∫ T

0

(f1
s − f2

s ) dCs

∣∣∣∣2 ≤ 1

β

∫ T

0

eβAt
∣∣f1
s − f2

s

∣∣2
α2
s

dCs. (3.35)

Moreover, by Identity (3.32) we have by Conditional Cauchy-Schwartz Inequality
(analogously to the second case)

sup
t∈[0,T ]

∣∣y1
t − y2

t

∣∣2 ≤ 1

β
sup
t∈[0,T ]

E

[ ∫ T

0

eβAs
∣∣f1
s − f2

s

∣∣2
α2
s

dCs

∣∣∣∣Gt]. (3.36)

By Identity (3.26), we have

(η1
t − η2

t )− (η1
0 − η2

0) = (y1
t − y2

t )− (y1
0 − y2

0) +

∫ t

0

(f1
s − f2

s ) dCs.

Finally, we have

sup
t∈[0,T ]

∣∣(η1
t − η2

t )− (η1
0 − η2

0)
∣∣ ≤ sup

t∈[0,T ]

∣∣∣∣(y1
t − y2

t )− (y1
0 − y2

0) +

∫ t

0

(f1
s − f2

s ) dCs

∣∣∣∣2
≤ 6 sup

t∈[0,T ]

∣∣y1
t − y2

t

∣∣2 +
3

β

∫ T

0

eβAs
∣∣f1
s − f2

s

∣∣2
α2
s

dCs

(3.35)
≤

(3.36)

6

β

∫ T

0

eβAt
∣∣f1
s − f2

s

∣∣2
α2
s

dCs +
3

β
sup
t∈[0,T ]

E

[ ∫ T

0

eβAs
∣∣f1
s − f2

s

∣∣2
α2
s

dCs

∣∣∣∣Gt].
Remark 3.11. Viewing (3.11) as a BSDE whose generator does not depend on y and
η, then this BSDE has a solution, which can be uniquely determined by the pair (y, η).
Indeed, consider the data (G, T, ξ, f, C) and the processes α and A, which all satisfy the
respective assumptions of Lemma 3.8 for some β̂ > 0. Then the semimartingale

yt = E

[
ξ +

∫ T

t

fsdCs

∣∣∣∣Gt] = E

[
ξ +

∫ T

0

fsdCs

∣∣∣∣Gt]− ∫ t

0

fs dCs, t ∈ R+

satisfies yT = ξ and for η· := E
[
ξ +

∫ T
0
fs dCs

∣∣G·]
yt − yT = E

[
ξ +

∫ T

t

fsdCs

∣∣∣∣Gt]− ξ = E

[
ξ +

∫ T

0

fsdCs

∣∣∣∣Gt]− ∫ t

0

fsdCs − ξ

= E

[
ξ +

∫ T

0

fsdCs

∣∣∣∣Gt]+

∫ T

t

fsdCs −
∫ T

0

fsdCs − ξ = ηt +

∫ T

t

fsdCs − ηT .

Now, one possible choice of a square–integrableG−martingaleX such that (X,G, T, ξ, f, C)

become standard data for any arbitrarily chosen integrator C, is the zero martingale.
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Existence and uniqueness results for BSDE with jumps

Hence, given the standard data (0,G, T, ξ, f, C), the quadruple (y, Z, U, η) satisfies the
BSDE

yt = ξ +

∫ T

t

fsdCs −
∫ T

t

dηs, t ∈ J0, T K,

for any pair (Z,U). Assume now that there exists a quadruple (ỹ, Z̃, Ũ , η̃) which satisfies

ỹt = ξ +

∫ T

t

fsdCs −
∫ T

t

dη̃s, t ∈ J0, T K.

Then, the pair (y − ỹ, η − η̃) satisfies

y − ỹt = −
∫ T

t

d
(
η − η̃

)
s
, t ∈ J0, T K,

and by Lemma 3.8, for ξ = 0 and f = 0, we conclude that ‖y − ỹ‖S2 = ‖η − η̃‖H2 = 0.

Therefore y and ỹ, resp. η and η̃, are indistinguishable, which implies our initial statement
that every solution can be uniquely determined by the pair (y, η).

In order to obtain the a priori estimates for the BSDE (3.1), we will have to consider
solutions (Y i, Zi, U i, N i), i = 1, 2, associated with the data (X,G, T, ξi, f i, C), i = 1, 2

under β̂, where we also assume that f1, f2 have common r, ϑ bounds. Denote the
difference between the two solutions by (δY, δZ, δU, δN), as well as δξ := ξ1 − ξ2 and

δ2ft := (f1 − f2)(t, Y 2
t , Z

2
t , U

2
t (·)), ψt := f1(t, Y 1

t , Z
1
t , U

1
t (·))− f2(t, Y 2

t , Z
2
t , U

2
t (·)).

We have the identity

δYt = δξ +

∫ T

t

ψsdCs −
∫ T

t

δZsdX
◦
s −

∫ T

t

∫
Rn
δUs(x)µ̃\(ds,dx)−

∫ T

t

dδNs. (3.37)

For the wellposedness of this last BSDE we need the following lemma.

Lemma 3.12. The processes∫ ·
0

δZsdX
◦
s and

∫ ·
0

∫
Rn
δUs(x)µ̃\ (dt, dx)

are square-integrable martingales with finite associated ‖·‖β̂ −norms.

Proof. The square-integrability is obvious. The inequalities

E [Tr[〈δZ ·X◦]〉] ≤ 2E
[
Tr[〈Z1 ·X◦〉]

]
+ 2E

[
Tr[〈Z2 ·X◦〉]

]
,

E
[
Tr[
〈
δU ? µ̃\

〉
]
]
≤ 2E

[
Tr[〈U1 ? µ̃\〉]

]
+ 2E

[
Tr[〈U2 ? µ̃\〉]

]
,

together with Lemma 2.13 guarantee that

E

[∫ T

0

eβ̂At |ctδZt|2 dCt

]
+ E

[∫ T

0

eβ̂At |||δU |||2t dCt

]
<∞.

Therefore, by defining

Ht :=

∫ t

0

δZsdX
◦
s +

∫ t

0

∫
Rn
δUs(x)µ̃\ (dt, dx) +

∫ t

0

dδNs, (3.38)

we can treat the BSDE (3.37) exactly as the BSDE (3.11), where the martingale H will
play the role of the martingale η.

EJP 23 (2018), paper 121.
Page 31/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP240
http://www.imstat.org/ejp/
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Proposition 3.13 (A priori estimates for the BSDE (3.1)). Let (X,G, T, ξi, f i, C), be
standard data under β̂ for i = 1, 2. Then ψ/α ∈ H2

β̂
and, if MΦ(β̂) < 1/2, the following

estimates hold

‖(αδY, δZ, δU, δN)‖2β̂ ≤ Σ̃Φ(β̂) ‖δξ‖2L2
β̂

+ ΣΦ(β̂)

∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

,

‖(δY, δZ, δU, δN)‖2?,β̂ ≤ Σ̃Φ
? (β̂) ‖δξ‖2L2

β̂

+ ΣΦ
? (β̂)

∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

,

where

Σ̃Φ(β̂) :=
Π̃β̂,Φ

1− 2MΦ(β̂)
, Σ̃Φ

? (β̂) := min
{

Π̃β̂,Φ
? + 2MΦ

? (β̂), Σ̃Φ(β̂), 8 +
16

β̂
Σ̃Φ(β̂)

}
,

ΣΦ(β̂) :=
2MΦ(β̂)

1− 2MΦ(β̂)
, ΣΦ

? (β̂) := min
{

2MΦ
? (β̂)(1 + ΣΦ(β̂)),

16

β̂
(1 + ΣΦ(β̂))

}
.

Proof. For the integrability of ψ, using the Lipschitz property (F3) of f1, f2, we get

|ψt|2 ≤ 2rt |δYt|2 + 2θ◦t ‖ctδZt‖
2

+ 2θ\t |||δU |||
2
t + 2|δ2ft|2.

Hence by the definition of α, which implies that r
α2 ≤ α2 and the obvious θ◦

α2 ,
θ\

α2 ≤ 1, we
get

|ψt|2

α2
t

≤ 2

(
α2
t |δYt|

2
+ ‖ctδZt‖2 + |||δUt(·)|||2t +

|δ2f |2

α2

)
(3.39)

≤ 2α2
t |δYt|

2
+ 2 ‖ctδZt‖2 + 2 |||δUt(·)|||2t

+
4

α2

(∣∣f1(s, 0, 0,0)
∣∣2 + rt

∣∣Y 2
t

∣∣2 + θ◦t
∥∥ctZ2

t

∥∥2
+ θ\t

∣∣∣∣∣∣δU2
t (·)

∣∣∣∣∣∣2
t

)
+

4

α2

(∣∣f2(s, 0, 0,0)
∣∣2 + rt |δYt|2 + θ◦t

∥∥ctδZ2
t

∥∥2
+ θ\t |||δUt(·)|||

2
t

)
≤ 6
(
α2
t |δYt|

2
+ ‖ctδZt‖2 + |||δUt(·)|||2t

)
+

4

α2

(∣∣f1(s, 0, 0,0)
∣∣2 +

∣∣f2(s, 0, 0,0)
∣∣2) ,

where, having used once more that r
α2 ≤ α2 and θ◦

α2 ,
θ\

α2 ≤ 1, it follows that ψ
α ∈ H

2
β̂
. Next,

for the ‖·‖β̂ −norm, we have

‖(δY, δZ, δU, δN)‖2β̂ = ‖αδY ‖2H2
β̂

+ ‖δZ‖2H2,◦
β̂

+ ‖δU‖2
H

2,\

β̂

+ ‖δN‖2H2,⊥
β̂

(3.38)
= ‖αδY ‖2H2

β̂

+ ‖H‖2H2
β̂

(3.12)

≤ Π̃β̂,Φ ‖δξ‖2L2
β̂

+MΦ(β̂)

∥∥∥∥ψα
∥∥∥∥2

H2
β̂

≤ Π̃β̂,Φ ‖δξ‖2L2
β̂

+ 2MΦ(β̂)

(
‖αδY ‖2H2

β̂

+ ‖δZ‖2H2,◦
β̂

+ ‖δU‖2
H

2,\

β̂

)
+ 2MΦ(β̂)

∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

≤ Π̃β̂,Φ ‖δξ‖2L2
β̂

+ 2MΦ(β̂)

(
‖αδY ‖2H2

β̂

+ ‖H‖2H2
β̂

)
+ 2MΦ(β̂)

∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

.
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Therefore, this implies

‖(αδY, δZ, δU, δN)‖2β̂ ≤ Σ̃Φ(β̂) ‖δξ‖2L2
β̂

+ ΣΦ(β̂)

∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

. (3.40)

We can obtain a priori estimates for the ‖·‖?,β̂ −norm by arguing in two different ways:

• The identity (3.37) gives

‖(δY, δZ, δU, δN)‖2?,β̂
= ‖δY ‖2S2

β̂

+ ‖δZ‖2H2,◦
β̂

+ ‖δU‖2
H

2,\

β̂

+ ‖δN‖2H2,⊥
β̂

(3.38)
= ‖δY ‖2S2

β̂

+ ‖H‖2H2
β̂

(3.13)
≤ Π̃β̂,Φ

? ‖δξ‖2L2
β̂

+MΦ
? (β̂)

∥∥∥∥ψα
∥∥∥∥2

H2
β̂

(3.39)

≤ Π̃β̂,Φ
? ‖δξ‖2L2

β̂

+ 2MΦ
? (β̂) ‖αδY ‖2H2

β̂

+ 2MΦ
? (β̂) ‖H‖2H2

β̂

+ 2MΦ
? (β̂)

∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

(3.40)

≤ Π̃β̂,Φ
? ‖δξ‖2L2

β̂

+ 2MΦ
? (β̂)

∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

+ 2MΦ
? (β̂)

Σ̃Φ(β̂) ‖δξ‖2L2
β̂

+ ΣΦ(β̂)

∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂


=
(

Π̃β̂,Φ
? + 2MΦ

? (β̂)Σ̃Φ(β̂)
)
‖δξ‖2L2

β̂

+ 2MΦ
? (β̂)

(
1 + ΣΦ(β̂)

)∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

.

• The identity (3.14) gives

‖δY ‖2S2
β̂

= E

[
sup

0≤t≤T

(
e
β̂
2At |δYt|

)2
]

(3.14)
≤ E

 sup
0≤t≤T

E

[
e
β̂
2At |δξ|+ e

β̂
2At

∣∣∣∣∣
∫ T

t

ψsdCs

∣∣∣∣∣
∣∣∣∣∣Gt
]2


(3.16)
≤ 2E

 sup
0≤t≤T

E

√eβ̂At |δξ|2 +
1

β̂

∫ T

t

eβ̂As
|ψs|2

α2
s

dCs

∣∣∣∣∣∣Gt
2


≤ 2E

 sup
0≤t≤T

E

√eβ̂AT |δξ|2 +
1

β̂

∫ T

0

eβ̂As
|ψs|2

α2
s

dCs

∣∣∣∣∣∣Gt
2


≤ 8E

[
eβ̂AT |δξ|2 +

1

β̂

∫ T

0

eβ̂As
|ψs|2

α2
s

dCs

]
(3.39)
≤ 8‖δξ‖2L2

β̂

+
16

β̂

∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

+ ‖αδY ‖2H2
β̂

+ ‖δZ‖2H2,◦
β̂

+ ‖δU‖2
H

2,\

β̂

 , (3.41)

where, in the second and fifth inequality we used the inequality a+ b ≤
√

2(a2 + b2) and
Doob’s inequality respectively. Then we can derive the required estimate

‖(δY, δZ, δU, δN)‖2?,β̂ = ‖δY ‖2S2
β̂

+ ‖δZ‖2H2,◦
β̂

+ ‖δU‖2
H

2,\

β̂

+ ‖δN‖2H2,⊥
β̂

(3.38)
= ‖δY ‖2S2

β̂

+ ‖H‖2H2
β̂

(3.41)
≤

(3.38)
8 ‖δξ‖2L2

β̂

+
16

β̂

∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

+
16

β̂
‖αδY ‖2H2

β̂

+
16

β̂
‖H‖2H2

β̂

(3.40)
≤

(
8 +

16

β̂
Σ̃Φ(β̂)

)
‖δξ‖2L2

β̂

+
16

β̂

(
1 + ΣΦ(β̂)

)∥∥∥∥δ2fα
∥∥∥∥2

H2
β̂

.
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3.5 Proof of the main theorem

We will use now the previous estimates to obtain the existence of a unique solution
using a fixed point argument.

Proof of Theorem 3.5. Let (y, z, u, n) be such that (αy, z, u, n) ∈ H2
β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥.

Then the process M defined by

M· := E

[
ξ +

∫ T

0

f(s, ys, zs, us(·))dCs

∣∣∣∣∣G·
]

+ n· ∈ H2,

and by Proposition 2.5 it has a unique, up to indistinguishability, orthogonal decomposi-
tion

M· = M0 +

∫ ·
0

ZsdX
◦
s +

∫ ·
0

∫
Rn
Us(x)µ̃\(ds,dx) + L·,

where (Z,U,L) ∈ H2,◦ ×H2,\ ×H2,⊥. In view of the identity

MT −Mt =

∫ T

t

ZsdX
◦
s +

∫ T

t

∫
Rn
Us(x)µ̃\(ds,dx) +

∫ T

t

dLs, 0 ≤ t ≤ T,

we obtain

E

[
ξ +

∫ T

t

f(s, ys, zs, us(·))dCs

∣∣∣∣∣Gt
]

= ξ +

∫ T

t

f(s, ys, zs, us(·))dCs−
∫ T

t

ZsdX
◦
s

−
∫ T

t

∫
Rn
Us(x)µ̃\(ds,dx)−

∫ T

t

dNs,

where N := L− n. Define

Yt := E

[
ξ +

∫ T

t

f(s, ys, zs, us(·))dCs

∣∣∣∣∣Gt
]
.

In order to construct a contraction using Lemma 3.8, we need to choose δ > γ. Then
by Lemma 3.4 we can choose γ? ∈ (0, β̂] such that inf(γ,δ)∈Cβ̂ ΠΦ(γ, δ) = ΠΦ(γ?(β̂), β̂).

Now we get that (αY,Z ·X◦ + U ? µ̃ + N) ∈ H2
β̂
×H2

β̂
, and due to the orthogonality of

the martingales we conclude that (αY,Z, U,N) ∈ H2
β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥

β̂
. Hence, the

operator
S : H2

β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥

β̂
−→ H2

β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥

β̂
,

with the associated norms, that maps the processes (αy, z, u, n) to the processes (αY,Z, U,

N) defined above, is indeed well-defined.

Let (αyi, zi, ui, ni) ∈ H2
β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥

β̂
for i = 1, 2, with

S
(
αyi, zi, ui, ni

)
= (αY i, Zi, U i, N i), for i = 1, 2.

Denote, as usual, δy, δz, δu, δn the difference of the processes and ψt := f
(
t, y1

t , z
1
t , u

1
t (·)
)
−

f
(
t, y2

t , z
2
t , u

2
t (·)
)
. It is immediate that ψ

α ∈ H
2
β̂

and that∥∥S (αy1, z1, u1, n1
)
− S

(
αy2, z2, u2, n2

)∥∥2

β̂
= ‖αδY ‖2H2

β̂

+ ‖δZ‖2H2,◦
β̂

+ ‖δU‖2
H

2,\

β̂

+ ‖δN‖2H2,⊥
β̂

δξ=0

≤
Lem. 3.8

MΦ(β̂)

∥∥∥∥ψα
∥∥∥∥2

H2
β̂

(3.39)
≤ 2MΦ(β̂)

(
‖αδy‖2H2

β̂

+ ‖δz‖2H2,◦
β̂

+ ‖δu‖2
H

2,\

β̂

)
≤ 2MΦ(β̂)

∥∥(αy1, z1, u1, n1
)
−
(
αy2, z2, u2, n2

)∥∥2

β̂
.
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Existence and uniqueness results for BSDE with jumps

Hence, for MΦ(β̂) < 1/2, we can apply Banach’s fixed point theorem to obtain the
existence of a unique fixed point (Ỹ , Z, U,N). To obtain a solution in the desirable spaces
we substitute Ỹ in the quadruple with Y , the corresponding càdlàg version; indeed, G
satisfies the usual conditions and Ỹ is a semimartingale. The exact same reasoning using
the ‖·‖S2

β̂

−norm for Y leads to a contraction when MΦ
? (β̂) < 1/2.

Remark 3.14. Let us have a closer look at the proof of Theorem 3.5. In the following
we adopt the notation introduced there. Let us fix an initial point (αy0, z0, u0, n0) ∈
H2
β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥

β̂
and define (αyk, zk, uk, nk) ∈ H2

β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥

β̂
by

(αyk, zk, uk, nk) := S(αyk−1, zk−1, uk−1, nk−1) for every k ∈ N.

Let, moreover, (Y,Z, U,N) denote the fixed-point. Then, by Corollary 2.7 we can verify
that

zk ·X◦ H2

−−−−−→ Z ·X◦, uk ? µ̃\
H2

−−−−−→ U ? µ̃\ and nk
H2

−−−−−→ N.

Corollary 3.15 (Picard approximation). Assume that MΦ(β̂) < 1/2 (resp. MΦ
? (β̂) < 1/2)

and define a sequence (Υ(p))p∈N onH2
β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥

β̂
(resp. on S2

β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥

β̂
)

such that Υ(0) is the zero element of the product space and Υ(p+1) is the solution of

Y
(p+1)
t = ξ +

∫ T

t

f(s, Y (p)
s , Z(p)

s , U (p)
s (·))dCs −

∫ T

t

Z(p+1)
s dX◦s −

∫ T

t

dN (p+1)
s

−
∫ T

t

∫
Rn
U (p+1)
s (x)µ̃\(ds,dx)

Then

(i) The sequence (Υ(p))p∈N converges in H2
β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥

β̂
(resp. in S2

β̂
×H2,◦

β̂
×

H
2,\

β̂
×H2,⊥

β̂
) to the solution of the BSDE (3.5).

(ii) The following convergence holds(
Z(p), U (p)

s , N (p)
)
−−−−−→
p→∞

(Z,U,N), in H
2,◦
β̂
×H2,\

β̂
×H2,⊥

β̂
.

(iii) There exists a subsequence (Υ(pm))m∈N which converges eβ̂AdC ⊗ dP− a.e.

Proof. As in the proof of Theorem 3.5, we obtain∥∥∥Υ(p+1) −Υ(p)
∥∥∥2

β̂

≤
(

2MΦ(β̂)
)p ∥∥∥Υ(1)

∥∥∥2

β̂

(
resp.

∥∥∥Υ(p+1) −Υ(p)
∥∥∥2

?,β̂
≤
(

2MΦ
? (β̂)

)p ∥∥∥Υ(1)
∥∥∥2

?,β̂

)
, (3.42)

and consequently, since
∑
p∈N

∥∥Υ(p+1) −Υ(p)
∥∥2

β̂
< ∞ (resp.

∑
p∈N

∥∥Υ(p+1) −Υ(p)
∥∥2

?,β̂
<

∞), the sequence (Υ(p))p∈N is Cauchy in H2
β̂
×H2,◦

β̂
×H2,\

β̂
×H2,⊥

β̂
(resp. in S2

β̂
×H2,◦

β̂
×

H
2,\

β̂
×H2,⊥

β̂
). Denote by Υ the unique limit on the product space. Then, it coincides with

the unique fixed point for the contraction S (see the proof of Theorem 3.5 above) due to
the construction of (Υ(p))p∈N, which proves (i).

For (ii), the result is immediate by the Cauchy property of the sequence (Υ(p))p∈N
and Corollary 2.710.

10The reader may recall Remark 3.14.
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Finally, for (iii), by the ‖·‖β̂ −convergence, we can extract a subsequence{pm}m∈N
such that ∥∥∥Υ(pm+1) −Υ(pm)

∥∥∥
β̂
≤ 2−2m, for every m ≥ 0. (3.43)

Define, for any ε ≥ 0, Np,ε :=
{

(ω, t) ∈ Ω× J0, T K, |Y (p)
t (ω)− Yt(ω)| > ε

}
. Then we have

eβ̂AdC ⊗ dP

(
lim sup
m→∞

Npm,ε

)
= lim
m→∞

eβ̂AdC ⊗ dP

( ∞⋃
`=m

[∣∣∣Y (p`) − Y
∣∣∣ > ε

])

≤ lim
m→∞

1

ε2

∞∑
`=m

E

[∫ T

0

eβ̂At
∣∣∣Y (p`)
t − Yt

∣∣∣2 dCt

]

≤ lim
m→∞

1

ε2

∞∑
`=m

∥∥∥Y (p`) − Y
∥∥∥2

β̂

≤ lim
m→∞

1

ε2

∞∑
`=m

( ∞∑
n=1

2n
∥∥∥Y (p`+n+1) − Y (p`+n)

∥∥∥2

H2
β̂

)

≤ lim
m→∞

1

ε2

∞∑
m=`

( ∞∑
n=1

2n
∥∥∥Υ(p`+n+1) −Υ(p`+n)

∥∥∥2

β̂

)
(3.43)
≤ lim

m→∞

1

ε2

∞∑
`=m

( ∞∑
n=1

2n2−2(`+n)

)
= 0, for any ε > 0.

Hence

eβ̂AdC ⊗ dP

(
lim sup
m→∞

Npm,0

)
≤
∑
n∈N

eβ̂AdC ⊗ dP

(
lim sup
m→∞

Npm,1/n

)
= 0.

Following the same arguments, we have the almost sure convergence of Zpm , Upm , Npm

to the corresponding processes of the ‖·‖β −solution of the BSDE (3.5). Moreover, using
the same steps, we can obtain the analogous result for the ‖·‖?,β̂ −norm.

3.6 An alternative approach in the Lipschitz setting

In this subsection we derive the a priori estimates for the BSDE (3.1) by means of an
alternative method. It is essentially the classical one used to obtain estimates in a BSDE
setting, namely apply Itō’s formula to an appropriately weighted L2−type norm of the Y
part of the solution, and then take conditional expectations. We will see that even though
this approach still works in this setting (albeit with significant complications) and leads
to sufficient conditions for wellposedness which are very similar to the ones obtained in
[14, 46], it also requires an additional assumption, which is completely inherent to the
approach, and turns out to be slightly restrictive in terms of applications, see Remark
3.19 for more details.

Let us, initially, introduce some auxiliary processes. Let ε be a G−predictable process
such that εs(ω) ≥ ∆Cs(ω), for dC ⊗ dP − a.e (s, ω) ∈ R+ × Ω. Fix, moreover, a non-
negative, G−predictable process γ and define the increasing, G−predictable and càdlàg
process

v· :=

∫ ·
0

γsdCs. (3.44)

Let E denote the stochastic exponential operator. The following assumptions will be
in force throughout this subsection11.

11The reader may recall the notation introduced at the beginning of the section.
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(H1) The martingale X belongs to H2(Rm)×H2(Rn) and (X,C) satisfies Assumption
2.10.

(H2) The terminal condition ξ satisfies E
[
E(v)T ξ

2
]
<∞.

(H3) The generator of the equation f : Ω×R+ ×Rd ×Rd×m ×H −→ Rd is such that for
any (y, z, u) ∈ Rd ×Rd×m × H, the map

(t, ω) 7−→ f(t, ω, y, z, ut(ω; ·)) is G−predictable.

Moreover, f satisfies a stochastic Lipschitz condition12, that is to say there exist

r : (Ω×R+,P) −→ (R+,B (R+)) and ϑ = (θ◦, θ\) : (Ω×R+,P) −→ (R2
+,B

(
R2

+

)
),

such that, for dC ⊗ dP− a.e. (t, ω) ∈ R+ × Ω

|f(t, ω, y, z, ut(ω; ·))− f(t, ω, y′, z′, u′t(ω; ·))|2

≤ rt(ω)|y − y′|2 + θ◦t (ω)‖ct(ω)(z − z′)‖2 + θ\t(ω) (|||ut(ω; ·)− u′t(ω; ·)|||t (ω))
2
.

(3.45)

(H4) We have

E

[∫ T

0

E(v)s−(1 + γs∆Cs)(εs −∆Cs) |f(s, 0, 0,0)|2 dCs

]
<∞,

where 0 denotes the null application from Rn to R.

(H5) For every pair Y 1, Y 2 ∈ H2, the measure dC ⊗ dP is such that Y 1, Y 2 are equal
dC ⊗ dP− a.e. if and only if Y 1

−, Y
2
− are equal dC ⊗ dP− a.e.

(H6) If X◦,c 6= 0 then one of the following is true dC ⊗ dP− a.e.

(i) Cs−(θ◦s ∨θ\s) < 1 and rs < min

{
(θ◦s ∨ θ\s)(1− Cs−(θ◦s ∨ θ\s))
Cs(1 + (θ◦s ∨ θ

\
s)∆Cs)

,
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2

}
,

(ii) Cs−∆Csθ
◦
s < Cs and

(∆Cs)
2rs < min

{
∆Cs + Cs−(1− θ◦s∆Cs)

Cs
,

(
√
Cs −

√
Cs−)2

Cs

}
,

(iii) (θ◦s ∨ θ\s)Cs− < 1 and rs < min

{
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
,

1− θ◦sCs−
Cs∆Cs

}
.

If X◦,c = 0 then one of the following holds true dC ⊗ dP− a.e.

(i) rs < min

{
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
,
θ◦s ∨ θ\s(1− Cs−(θ◦s ∨ θ\s))
Cs(1 + (θ◦s ∨ θ

\
s)∆Cs)

}
,

(ii) Cs−∆Csθ
◦
s < Cs and

(∆Cs)
2rs < min

{
∆Cs + Cs−(1− θ◦s∆Cs)

Cs
,

(
√
Cs −

√
Cs−)2

Cs

}
.

For this subsection we understand the term standard data as follows: we will say
that the sextuple (G, X, T, ξ, f, C) are standard data, whenever its elements satisfy
Assumptions (H1)–(H6). Therefore, we also modify the definition of a solution of the
BSDE (3.1) given the standard data (G, X, T, ξ, f, C).

12This is exactly the same as (F3).
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Definition 3.16. A solution of the BSDE (3.1) with standard data (X,G, T, ξ, f, C) is a
quadruple of processes

(Y,Z, U,N) ∈ H2 ×H2,◦ ×H2,\ ×H2,⊥ or (Y,Z, U,N) ∈ S2 ×H2,◦ ×H2,\ ×H2,⊥

such that, P− a.s., for any t ∈ J0, T K,

Yt = ξ +

∫ T

t

f(s, Ys−, Zs, Us(·))dCs −
∫ T

t

ZsdX
◦
s −

∫ T

t

∫
Rn
Us(x)µ̃\(ds,dx)−

∫ T

t

dNs.

Remark 3.17. In order to obtain the a priori estimates by means of the method described
in the next sub–sub–section, we will need to distinguish between the cases X◦,c 6= 0 and
X◦,c = 0. After doing so, the analysis that we are going to make will lead us to specific
conditions that the processes C, r and ϑ should satisfy. These conditions are described
in the sub–parts of Assumption (H6).

Remark 3.18. The attentive reader may have observed that the conditions appearing in
(H6) never impose a lower bound on the process r. Notice however that the analysis
that will be carried out in Appendix E could, in principle, lead to additional sufficient
conditions imposing such lower bounds. We have decided to ignore them because we
wanted to be able to always include in our framework the case where the generator of
the BSDE does not depend on the solution Y .

Remark 3.19. Assumption (H5) is the tricky one here, and already appears in the work
of Cohen and Elliott [46]. The main point is that the fixed point argument which will be
used here only allows to define uniquely the process of left–limits of Y , dC ⊗ dP− a.e.
Without Assumption (H5), we cannot define Y itself from its left–limits alone. We
emphasize that we did not require this condition with our first approach, and that it is
inherent to the current approach and cannot be avoided with this method. This is the
main advantage of our approach. We will now present two situations where it is actually
satisfied.

(i) If C is a deterministic process such that C assigns positive measure to every non–
empty open subinterval of R+, then Condition (H5) is satisfied; see [46, Lemma
5.1].

(ii) The previous case is somehow of limited interest, as it excludes the case where
C is a piecewise–constant, increasing integrator. This corresponds to a so–called
backward stochastic difference equation (BS∆E), and would be the object of
interest in numerical schemes where one would approximate the martingale driving
the BSDE by, for instance, appropriate random walks. The following describes how
we can allow for some discrete–time processes C.

Let us initially describe the properties the standard data should have in order
to embed a BS∆E into a continuous–time framework. Let π := {0 = t0 < t1 <

· · · < tn < . . . } be a partition of R+ and (G, X, T, ξ, f, C) be standard data with the
following properties.

• The filtration G := (Gt)t∈R+ is such that Gt = Gtn for every t ∈ [tn, tn+1)

and for every n ∈ N ∪ {0}.
• The martingale X is such that Xt = Xtn P − a.s. for every t ∈ [tn, tn+1)

and for every n ∈ N ∪ {0}.
• The generator f is such that f(t, ω, y, z, u(ω; ·)) = f(tn, ω, y, z, u(ω; ·)), P−

a.s. for every t ∈ [tn, tn+1) and for every n ∈ N ∪ {0}, y ∈ Rd, z ∈ Rm×m and
u(ω; ·) : (Rn,B(Rn)) −→ (Rd,B(Rd)).
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• The integrator C is of the form

C· = C(0) +
∑
n∈N

C(n)1[tn,tn+1)(·),

where
(
C(n)

)
n∈N∪{0} is a sequence of non-negative random variables such

that

� the random variable C(0) is G0−measurable and the random variable C(n)

is Gtn−1
−measurable for every n ∈ N,

� for every n ∈ N ∪ {0} holds 0 ≤ C(n) ≤ C(n+ 1) P− a.s.

Let now τ be a stopping time for the (discretely–indexed) filtration (Gtn)n∈N∪{0}, i.e.
τ ∈ π P− a.s., and [τ = tn] ∈ Gtn , for every n ∈ N ∪ {0}. Let us assume, moreover,
that there are t̄1 < t̄2 ∈ π\{0} such that P([τ = t̄i]) > 0 for every i ∈ {1, 2}.
Additionally, let us assume that P([∆Ct̄2 > 0]∩ [τ = t̄1]) > 0. We can assume without
loss of generality that there exists a δ > 0 such that P([∆Ct̄2 > δ] ∩ [τ = t̄1]) > 0.
Define, now, the stopping times σ1, σ2 as follows

σ1, σ2 = τ on Ω\
⋃
tn 6=t̄1

[τ = tn], σ1 := t̄2 and σ2 := s ∈ (t̄1, t̄2) on [τ = t̄1].

Then, dP⊗ dC
(
1Jσ1,∞J 6= 1Jσ2,∞J

)
= 0, however

dP⊗ dC
(
1Kσ1,∞J 6= 1Kσ2,∞J

)
= dP⊗ dC

(
{t̄2} × [τ = t̄1]

)
= E[∆Ct̄21[τ=t̄1]

]
≥ δP([∆Ct̄2 ≥ δ] ∩ [τ = t̄1]) > 0.

If, however, we restrict ourselves in the subspace

H2
π :=

{
Y ∈ H2, (Ytn)n∈N∪{0} is adapted to (Gtn)n∈N∪{0}

and Yt = Ytn on [tn, tn+1) for every n ∈ N ∪ {0}
}
,

then, under the additional assumption that P(∆Ctn > 0) = 1 for every n ∈ N ∪ {0},
we have that Y 1, Y 2 ∈ H2

π are equal dP⊗ dC − a.e., if and only if Y 1
−, Y

2
− are equal

dP ⊗ dC − a.e., where Y0− := Y0 for every Y ∈ H2
π. In this case, we can also

conclude that Y 1 and Y 2 are indistinguishable. However, the reader may observe
that for Y 1, Y 2 ∈ H2 such that Y 1, Y 2 are equal dP⊗ dC − a.e. we cannot conclude
that they are indistinguishable, as we concluded above.

3.6.1 New estimates

As we have already mentioned, we are going to derive the a priori estimates for BSDE
(3.1). To this end, let us fix a d−dimensional, G−predictable process h and consider the
BSDE

Yt = ξ +

∫ T

t

hsdCs −
∫ T

t

ZsdX
◦
s −

∫ T

t

∫
Rn
Us(x)µ̃\(ds,dx)−

∫ T

t

dNs, (3.46)

for some (Z,U,N) ∈ H2,◦ × H2,\ × H2,⊥. Moreover, we abuse notation (see Footnote
13) and for the finite variation process C we define Cd· :=

∑
s≤·∆Cs. Our first result

is the following estimates, which in conjunction with Theorem 3.21 can be seen as the
analogous of Lemma 3.8.
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Theorem 3.20. For any positive G−predictable process (εt)t≥0, if (Y, Z, U,N) ∈ H2 ×
H2,◦ ×H2,\ ×H2,⊥ solves BSDE (3.46), we have the estimate

E(v)t|Yt|2 + E

[ ∫ T

t

E(v)s−
(
γs − (1 + γs∆Cs)ε

−1
s

)
|Ys−|2dCs

∣∣∣∣Gt]
+ E

[ ∫ T

t

(
E(v)s −∆E(v)s1{X◦,c 6=0}

)
dTr[〈Z ·X◦〉]s

∣∣∣∣Gt]+ E

[ ∫ T

t

E(v)sdTr[〈U ? µ̃\〉]s
∣∣∣∣Gt]

+ E

[ ∫ T

t

E(v)s−dTr[〈N〉]s +

∫ T

t

∆E(v)s1{X◦,c=0}∪{X◦,d=0}dTr[〈Nd〉]s
∣∣∣∣Gt]

≤ E
[
E(v)T |ξ|2 +

∫ T

t

E(v)s−(1 + γs∆Cs)(εs −∆Cs)|hs|2dCs

∣∣∣∣Gt].
Proof. In the following we are going to use the identities [C] = [Cd] and∑

0≤s≤·

∆Cs∆Ls = [Cd, Ld]· = [C,Ld]· = [C,L]·

for every semimartingale L13, which are true due to the fact that C is of finite variation;
see [84, Theorem I.4.52]. We also use the fact that since v is predictable and has finite
variation, so is E(v). Moreover, ∆E(v)t(ω) 6= 0 if and only if ∆Ct(ω) 6= 0. This allows us
to write (∆E(v)) · Cd as (∆E(v)) · C.

Let us fix an i = 1, . . . , d. We apply Itō’s product rule in order to calculate the
differential of the process E(v)(Y i)2 and obtain

E(v)·(Y
i
· )2 = E(v)0(Y i0 )2 − 2

∫ ·
0

E(v)s−Y
i
s−h

i
sdCs + 2

∫ ·
0

E(v)s−Y
i
s−d(Z ·X◦)is︸ ︷︷ ︸

martingale

+ 2

∫ ·
0

E(v)s−Y
i
s−d(U ? µ̃\)is︸ ︷︷ ︸

martingale

+2

∫ ·
0

E(v)s−Y
i
s−dN i

s︸ ︷︷ ︸
martingale

+

∫ ·
0

E(v)s−(his)
2d[C]s

− 2

∫ ·
0

E(v)s−h
i
sd[C, (Z ·X◦)i]s︸ ︷︷ ︸

martingale; see [84, Proposition I.4.49]

+

∫ ·
0

E(v)s−(Y is−)2γsdCs

− 2

∫ ·
0

E(v)s−h
i
sd[C,U i ? µ̃\]s︸ ︷︷ ︸

martingale

−2

∫ ·
0

E(v)s−h
i
sd[C,N i]s︸ ︷︷ ︸

martingale

+

∫ ·
0

E(v)s−d[(Z ·X◦)i]s

+ 2

∫ ·
0

E(v)s−d[(Z ·X◦)i, U i ? µ̃\]s︸ ︷︷ ︸
martingale, since Mµ[∆X◦|P̃]=0

+2

∫ ·
0

E(v)s−hsd[(Z ·X◦)i, N i]s︸ ︷︷ ︸
martingale, since 〈X◦,N〉=0

+

∫ ·
0

E(v)s−d[U ? µ̃\]s

+ 2

∫ ·
0

E(v)s−d[U i ? µ̃\, N i]s︸ ︷︷ ︸
martingale, since Mµ[∆N |P̃]=0

+

∫ ·
0

E(v)s−d[N i]s

+

∫ ·
0

∆E(v)sd
([(

(Z ·X◦)i
)d]

+ [U i ? µ̃\] + [(N i)d]
)
s

+

∫ ·
0

∆E(v)sh
i
s(h

i
s∆Cs − 2Y is−)dCs

+
[(

2E(v)s−γsY
i
s− − 2∆E(v)sh

i
s

)
· C,

(
(Z ·X◦)i

)d
+ U i ? µ̃\ + (N i)d

]
·︸ ︷︷ ︸

martingale; see [84, Proposition I.4.49]

13Recall that a semimartingale L can be written in the form L = L0 +M +A, where M is a local martingale
and A is a finite variation process. We will denote by Ld the process Md +A.
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+

∫ ·
0

∆E(v)s
{

2d
[(

(Z ·X◦)i
)d
, U i ? µ̃\]s︸ ︷︷ ︸

martingale

+2d[
(
(Z ·X◦)i

)d
, (N i)d]s + 2d [U i ? µ̃\, (N i)d]s︸ ︷︷ ︸

martingale

}
.

(3.47)

By writing Identity (3.47) in its integral form on the interval [t, T ] and by taking condi-
tional expectation with respect to the σ−algebra Gt, we deduce

E
[
E(v)T (ξi)2

∣∣Gt]− E(v)t(Y
i
t )2 =

= E

[ ∫ T

t

E(v)s−(his)
2d[C]s − 2

∫ T

t

E(v)s−Y
i
s−h

i
sdCs +

∫ T

t

E(v)s−d[(Z ·X◦)i]s
∣∣∣∣Gt]

+ E

[ ∫ T

t

E(v)s−d[U i ? µ̃\]s +

∫ T

t

E(v)s−d[N i]s +

∫ T

t

E(v)s−(Y is−)2γsdCs

∣∣∣∣Gt]
+ E

[ ∫ T

t

∆E(v)sh
i
s(h

i
s∆Cs − 2Y is−)dCs +

∫ T

t

∆E(v)sd
[(

(Z ·X◦)i
)d]

s

∣∣∣∣Gt]
+ E

[ ∫ T

t

∆E(v)sd[U i ? µ̃\]s + 2

∫ T

t

∆E(v)sd
[(

(Z ·X◦)i
)d
, (N i)d

]
s

∣∣∣∣Gt]
+ E

[ ∫ T

t

∆E(v)sd[(N i)d]s

∣∣∣∣Gt].
Reordering the terms in the above equality we obtain

0 ≤ E(v)t(Y
i
t )2 + E

[ ∫ T

t

E(v)s−d[(Z ·X◦)i]s +

∫ T

t

∆E(v)sd
[(

(Z ·X◦)i
)d]

s

∣∣∣∣Gt]
+ E

[ ∫ T

t

E(v)s−d[U i ? µ̃\]s

∣∣∣∣Gt]+ E

[ ∫ T

t

∆E(v)sd[U i ? µ̃\]s

∣∣∣Gt]
+ E

[ ∫ T

t

E(v)s−d[N i]s +

∫ T

t

∆E(v)sd[(N i)d]s

∣∣∣∣Gt]+ E

[ ∫ T

t

E(v)s−(Y is−)2γsdCs

∣∣∣Gt]
= E

[
E(v)T (ξi)2

∣∣Gt]+ 2E

[ ∫ T

t

E(v)s−Y
i
s−h

i
sdCs

∣∣∣Gt]− E[ ∫ T

t

E(v)s−(his)
2d[C]s

∣∣∣Gt]
− E

[ ∫ T

t

∆E(v)sh
i
s(h

i
s∆Cs − 2Y is−)dCs

∣∣∣Gt]− 2E

[ ∫ T

t

∆E(v)sd
[(

(Z ·X◦)i
)d
, (N i)d

]
s

∣∣∣Gt]
≤ E

[
E(v)T (ξi)2

∣∣Gt]+ 2E

[ ∫ T

t

E(v)s−Y
i
s−h

i
sdCs

∣∣∣Gt]− E[ ∫ T

t

E(v)s−(his)
2∆CsdCs

∣∣∣Gt]
− E

[ ∫ T

t

∆E(v)sh
i
s(h

i
s∆Cs − 2Y is−)dCs

∣∣∣Gt]
+ E

[ ∫ T

t

∆E(v)sd
[(

(Z ·X◦)i)d] +

∫ T

t

∆E(v)sd[(N i)d]s

∣∣∣∣Gt], (3.48)

where we obtained Inequality (3.48) by using the Kunita–Watanabe inequality and then

Young’s inequality for the summand 2E
[ ∫ T
t

∆E(v)sd
[(

(Z · X◦)i
)d
, (N i)d

]
s

∣∣Gt]. More
precisely, we have

− 2

∫ T

t

∆(E(v))sd
[(

(Z ·X◦)i
)d
, (N i)d

]
s
≤ 2

∫ T

t

∆(E(v))sdVar
([(

(Z ·X◦)i
)d
, (N i)d

])
s

≤ 2
(∫ T

t

∆(E(v))sd
[(

(Z ·X◦)i
)d]

s

) 1
2
(∫ T

t

∆(E(v))sd[(N i)d]s

) 1
2

≤
∫ T

t

∆(E(v))sd
[(

(Z ·X◦)i
)d

]s +

∫ T

t

∆(E(v))sd[(N i)d]s.
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Therefore, by Inequality (3.48) we obtain

0 ≤ E(v)t(Y
i
t )2 + E

[ ∫ T

t

E(v)s−(Y is−)2γsdCs

∣∣∣Gt]+ E

[ ∫ T

t

E(v)s−d[(Z ·X◦)i]s
∣∣∣Gt]

+ E

[ ∫ T

t

(E(v)s− + ∆E(v)s)︸ ︷︷ ︸
E(v)s

d[U i ? µ̃\]s

∣∣∣Gt]+ E

[ ∫ T

t

E(v)s−d[N i]s

∣∣∣Gt]

≤ E
[
E(v)T (ξi)2

∣∣Gt]+ E

[ ∫ T

t

E(v)s−h
i
s(1 + γs∆Cs)(2Y

i
s− − his∆Cs)dCs

∣∣∣Gt]. (3.49)

Notice now that if X◦ ∈ H2,c or X◦ ∈ H2,d, then the term E
[ ∫ T
t

∆E(v)sd
[(

(Z · X◦)i
)d
,

(N i)d
]
s

∣∣Gt] in the right–hand side of Identity (3.50) vanishes. This is true since in

the former case
[(

(Z · X◦)i
)d
, (N i)d

]
= 0, while in the latter case the process

[(
(Z ·

X◦)i
)d
, (N i)d

]
is a uniformly integrable martingale; recall that by the Galtchouk–Kunita–

Watanabe decomposition we have that 〈X◦, N〉 = 0 and since X◦ = X◦,d we can easily
conclude. Therefore, we can incorporate the above special cases into Inequality (3.49)
as follows

0 ≤ E(v)t(Y
i
t )2 + E

[ ∫ T

t

E(v)s−d[(Z ·X◦)i]s
∣∣∣∣Gt]

+ E

[ ∫ T

t

∆E(v)s1{X◦∈H2,d}d
[(

(Z ·X◦)i
)d]

s

∣∣∣∣Gt]+ E

[ ∫ T

t

E(v)s−d[U i ? µ̃\]s

∣∣∣∣Gt]
+ E

[ ∫ T

t

E(v)s−(Y is−)2γsdCs

∣∣∣∣Gt]+ E

[ ∫ T

t

∆E(v)sd[U i ? µ̃\]s

∣∣∣∣Gt]
+ E

[ ∫ T

t

E(v)s−d[N i]s

∣∣∣∣Gt]+ E

[ ∫ T

t

∆E(v)s1{X◦∈H2,c}∪{X◦∈H2,d}d[(N i)d]s

∣∣∣∣Gt]
≤ E

[
E(v)T (ξi)2

∣∣Gt]+ E

[ ∫ T

t

E(v)sh
i
s(2Y

i
s− − his∆Cs)dCs

∣∣∣∣Gt]. (3.50)

This rewrites equivalently as

0 ≤ E(v)t(Y
i
t )2 + E

[ ∫ T

t

E(v)s−(Y is−)2γsdCs

∣∣∣Gt]+ E

[ ∫ T

t

(E(v)s−1{X◦,c 6=0}

+ E(v)s1{X◦,c=0})d[(Z ·X◦)i]s
∣∣∣∣Gt]

+ E

[ ∫ T

t

E(v)sd[U i ? µ̃\]s

∣∣∣Gt]+ E

[ ∫ T

t

E(v)s−d[N i]s

+

∫ T

t

∆E(v)s1{X◦,c=0}∪{X◦,d=0}d[(N i)d]s

∣∣∣∣Gt]
≤ E

[
E(v)T (ξi)2

∣∣Gt]+ E

[ ∫ T

t

E(v)sh
i
s(2Y

i
s− − his∆Cs)dCs

∣∣∣Gt].
Next, for any positive G−predictable process (εt)t≥0, we have the estimate

his
(
2Y is− − his∆Cs

)
≤ ε−1

s (Y is−)2 + (εs −∆Cs)(h
i
s)

2,

so that we deduce the desired result using that [L] − 〈L〉 is a uniformly integrable
martingale for any L ∈ H2. Finally, taking the sum for i = 1, . . . , d we obtain the required

EJP 23 (2018), paper 121.
Page 42/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP240
http://www.imstat.org/ejp/


Existence and uniqueness results for BSDE with jumps

estimates

E(v)t|Yt|2 + E

[ ∫ T

t

E(v)s−
(
γs − (1 + γs∆Cs)ε

−1
s

)
|Ys−|2dCs

∣∣∣∣Gt]
+ E

[ ∫ T

t

(
E(v)s −∆E(v)s1{X◦,c 6=0}

)
dTr[〈Z ·X◦〉]s

∣∣∣∣Gt]+ E

[ ∫ T

t

E(v)sdTr[〈U ? µ̃\〉]s
∣∣∣∣Gt]

+ E

[ ∫ T

t

E(v)s−dTr[〈N〉]s +

∫ T

t

∆E(v)s1{X◦,c=0}∪{X◦,d=0}dTr[〈Nd〉]s
∣∣∣∣Gt]

≤ E
[
E(v)T |ξ|2 +

∫ T

t

E(v)s−(1 + γs∆Cs)(εs −∆Cs)|hs|2dCs

∣∣∣∣Gt].
Our next result provides now estimates for the difference of the solutions of two

BSDEs.

Theorem 3.21. Fix some processes (y, ȳ, z, z̄, u, ū) ∈
(
H2(X)

)2×(H2(X◦)
)2×(H2(X\)

)2
and consider the following two BSDEs

Yt = ξ +

∫ T

t

fs(ys−, z, u)dCs −
∫ T

t

ZsdX
◦
s −

∫ T

t

∫
Rn
Us(x)µ̃\(ds,dx)−

∫ T

t

dNs,

Y t = ξ +

∫ T

t

fs(ȳs−, z̄, ū)dCs −
∫ T

t

ZsdX
◦
s −

∫ T

t

∫
Rn
Us(x)µ̃\(ds,dx)−

∫ T

t

dNs,

where f is the process in (H3). Denoting δL := L− L, for L = y, Y, z, Z, u, U,N , we have

E

[ ∫ T

0

E(v)s−
(
1 + Cs

(
γs − (1 + γs∆Cs)ε

−1
s

))
|δYs−|2dCs

]
+ E

[ ∫ T

0

Cs
(
E(v)s −∆E(v)s1{X◦,c 6=0}

)
dTr[〈δZ ·X◦〉]s

]
+ E

[ ∫ T

0

E(v)sCsdTr[〈δU ? µ̃\〉]s
]

+ E

[ ∫ T

0

E(v)s−CsdTr[〈δN〉]s
]

+ E

[ ∫ T

0

∆E(v)sCs1{X◦,c=0}∪{X◦,d=0}dTr[〈δNd〉]s
]

≤ E
[ ∫ T

0

E(v)s−(1 + γs∆Cs)Cs(εs −∆Cs)
(
rs|δys−|2 + θ◦sdTr[〈δz ·X◦〉]s

+ θ\sdTr[〈δu ? µ̃\〉]s
)]
. (3.51)

Proof. First, we have

δYt =

∫ T

t

fs(ys−, zs, us(·))− fs(ȳs−, z̄s, ūs(·))dCs −
∫ T

t

δZsdX
◦
s

−
∫ T

t

∫
Rn
δUs(x)µ̃\(ds,dx)−

∫ T

t

dδNs.

The estimate from Theorem 3.20 and the Lipschitz property of f ensure then that

E(v)t|δYt|2 + E

[ ∫ T

t

E(v)s−
(
γs − (1 + γs∆Cs)ε

−1
)
|δYs−|2dCs

∣∣∣∣Gt]
+ E

[ ∫ T

t

E(v)sdTr[〈δU ? µ̃\〉]s
∣∣∣∣Gt]+ E

[ ∫ T

t

(
E(v)s −∆E(v)s1{X◦,c 6=0}

)
dTr[〈δZ ·X◦〉]s

∣∣∣∣Gt]
+ E

[ ∫ T

t

E(v)s−dTr[〈δN〉]s +

∫ T

t

∆E(v)s1{X◦,c=0}∪{X◦,d=0}dTr[〈δNd〉]s
∣∣∣∣Gt]

≤ E
[ ∫ T

t

E(v)s−(1 + γs∆Cs)(εs −∆Cs)
(
rs|δys−|2 + θ◦s ‖csδzs‖

2
+ θ\s |||δus|||

2 )
dCs

∣∣∣∣Gt].
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Writing the integrals above as difference of integrals on (0, T ] and (0, t], we can take
left–limits for t ↑ u (use [76, Theorem 3.4.11] and apply Lévy’s upward theorem), then
integrate between 0 and T with respect to the measure dC, which, using [47, Theorem
8.2.5] for the predictable projection and Fubini’s theorem, leads us to the desired
estimate.

The previous result leads to naturally define new norms. More precisely, assume that
v and ε additionally satisfy

1 + Cs
(
γs − (1 + γs∆Cs)ε

−1
s > 0, dP⊗ dCs − a.e.,

and define for any (Y, Z, U,N) with appropriate dimensions and measurability the follow-
ing norms, as well as the associated spaces

‖Y ‖2H2(X,v) := E

[ ∫ T

0

E(v)s−
(
1 + Cs

(
γs − (1 + γs∆Cs)ε

−1
s

))
|Ys−|2dCs

]
,

‖U‖2H2(X\,v) := E

[ ∫ T

0

E(v)sCsdTr[〈U ? µ̃\〉]s
]
,

‖N‖2H2(X⊥,v) := E

[ ∫ T

0

E(v)s−CsdTr[〈N〉]s +

∫ T

0

∆E(v)sCs1{X◦,c=0}∪{X◦,d=0}dTr[〈Nd〉]s
]
,

‖Z‖2H2(X◦,v) := E

[ ∫ T

0

Cs
(
E(v)s −∆E(v)s1{X◦,c 6=0}

)
dTr[〈Z ·X◦〉]s

]
.

Our goal is now to use the the results of Theorems 3.20 and 3.21 to obtain sufficient
conditions ensuring that the map associating the quadruplet (y, z, u, n) to the quadruplet
(Y,Z, U,N) defined as the solution to the BSDE

Yt = ξ +

∫ T

t

f(s, ys−, zs, us)dCs −
∫ T

t

ZsdX
◦
s −

∫ T

t

∫
Rn
Us(x)µ̃(ds,dx)−

∫ T

t

dNs,

is a contraction in the Banach space H2(X, v)×H2(X◦, v)×H2(X\, v)×H2(X⊥, v). These
spaces are defined completely analogously to the H2

β(·) spaces on page 13, with the
requirement that the respective norms, defined above, are finite. Given that the norm
for Z depends a lot on whether X◦ is purely discontinuous or not, we will distinguish
between these two cases. The detailed analysis will be relegated to Appendix E.

Remark 3.22. The above norms may seem curious at first sight. However, we believe
they are the natural ones in the current framework for the following two reasons:

(i) First of all, when C is bounded, T is finite, and the generator is actually Lipschitz,
these norms are equivalent to the usual ones considered in the BSDE literature.
This result therefore subsumes earlier and simpler ones in the literature.

(ii) Second, we believe that the natural spaces for solutions to BSDEs should somehow
be dictated by the a priori estimates that can be obtained, and the method we used
here to derive them is, by any means, a simple generalization of the classical one
based on Itō’s formula and classical inequalities.

After these remarks, we can state our main result of this subsection.

Theorem 3.23. Let Assumptions (H1)–(H6) hold true. Then we can find a non–
decreasing process v such that the BSDE (3.1) has a unique solution in H2(X, v) ×
H2(X◦, v)×H2(X\, v)×H2(X⊥, v).
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3.6.2 Comparison with the literature

In Subsection 3.3 we have already discussed the differences between the related liter-
ature and Theorem 3.5. In this sub–sub–section we are going to make an analogous
discussion regarding the conditions for the existence and uniqueness of the solution
under the framework of Subsection 3.6.

• Having in mind the counterexample provided in [49], we would like to see how our
conditions translate if we consider the BSDE (3.8). To this end, we assume X◦ = 0

and θ◦ = 0. Then, our conditions are equivalent to p2rs < 1, which is weaker than
the condition extracted in case (C2) of Subsection 3.3. The reader may observe
that this condition is analogous to that of [46, Theorem 6.1], under of course a
different framework. Comparing also with [14, Theorem 4.1], we recall that the
condition in this work read here rs(∆Cs)2 < 1−ε dP⊗dC−a.e., for some ε ∈ (0, 1).

• Having in mind the BSDE (3) of [46], we assume that X\ = 0 and θ\ = 0. Then, our
conditions translate to14

Cs−∆Csθ
◦
s < Cs and

(∆Cs)
2rs < min

{
(
√
Cs −

√
Cs−)2

Cs
,

∆Cs + Cs−(1− θ◦sCs−)

Cs

}
, dP⊗ dC − a.e.

The second condition is reminiscent of the ones found in [46, Theorem 6.1], as the
upper bound is also upper bounded by 1, and can be as close as 1, depending on
the properties of C. The different form and the additional constraint may appear
because of the method we have followed here, which slightly differs from that of
[46]. Indeed, the approach of [46] is to apply Itō’s formula to Y 2, and then use
Gronwall’s lemma to make the stochastic exponential appear. This can be done in
this order because their process C is deterministic, and thus can be taken out of
conditional expectations. Since in our case C is random, we apply Itō’s formula
to the product of Y 2 and E(v) immediately. Since C jumps, this creates additional
cross–variation terms that need to be controlled as well, and which are the ones
worsening the estimates. Obviously, in the case where C is deterministic, the
method of [46] could be readily applied and would lead us to similar results.

3.6.3 A comparison theorem in dimension 1

The comparison theorem has always been recognized as a powerful tool in BSDEs
analysis. In this sub–sub–section, we specialize the discussion to the one–dimensional
case, that is to say d = 1.

We will need to work under the following assumptions.

(Comp1) The martingale X◦ is continuous.

(Comp2) The generator f is such that for any (s, y, z, u, u′) ∈ R+×R×Rm×H×H, there
is some map ρ ∈ H2,\ with ∆

(
ρ?µ̃\

)
> −1 on J0, T K, such that for dP⊗dC−a.e.

(ω, s) ∈ R+ × Ω, denoting δu := u− u′,

f
(
ω, s, y, z, u(·)

)
− f

(
ω, s, y, z, u′(·)

)
≤ K̂s

(
δus(·)− δ̂us

)
(ρs(·)− ρ̂s)

)
+ (1− ζs)∆CsK̂s

(
δus(·)− δ̂us

)
K̂s

(
ρs(·)− ρ̂s

))
.

14When X◦,c 6= 0 and θ\ = 0, one can verify that condition (H6).(ii) is weaker than (H6).(i) as well as than
(H6).(iii).
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(Comp3) The generator f is such that it satisfies Assumption (H3) and r∆C2 < 1, dP⊗
dC − a.e.

Remark 3.24. Let f be a generator. Then, for every (y, z, u), (y′, z′, u′) ∈ R × Rm × H

and dP⊗ dC − a.e. (ω, s) ∈ Ω×R+ we can write

f
(
s, y, z, us(ω; ·)

)
− f

(
s, y′, z′, u′s(ω; ·)

)
= λy,y

′,z,u
s (ω)(y − y′) + ηy

′,z,z′,u,c
s (ω)cs(ω)(z − z′)> + f

(
s, y′, z′, us(ω; ·)

)
− f

(
s, y′, z′, u′s(ω; ·)

)
,

where

λy,y
′,z,u

s (ω) :=

 f
(
s,y,z,us(ω;·)

)
−f
(
s,y′,z,us(ω;·)

)
y−y′ , for y − y′ 6= 0

0, otherwise

and

ηy
′,z,z′,u,c
s (ω) :=

 f
(
s,y′,z,us(ω;·)

)
−f
(
s,y′,z′,us(ω;·)

)
|(z−z′)cs(ω)|2 (z − z′)cs(ω), for (z − z′)cs(ω) 6= 0

0, otherwise
.

Moreover, if f satisfies Assumption (H3), then for every (y, z, u), (y′, z′, u′) ∈ R×Rm×H

holds |λy,y′,z,us (ω)|2 ≤ rs(ω) as well as |ηy′,z,z′,u,cs (ω)|2 ≤ θ◦s(ω) dP⊗ dC − a.e. on Ω×R+.
In the following, whenever no confusion may arise and in order to simplify the introduced
notation, we will omit y, y′, z′z′, u, u′, c and we will simply write λ and η, instead of λy,y

′,z,u

and ηy
′,z,z′,u,c.

Theorem 3.25. For i = 1, 2, let (Y i, Zi, U i, N i) be solutions, in the sense of Definition
3.16 of the BSDEs with standard data (X,G, T, ξi, f i, C)15. Assume that Assumption
(Comp1) holds and that f1 satisfies Assumptions (Comp2)–(Comp3). If

• ξ1 ≤ ξ2, P−a.s.

• f1
(
s, Y 2

s−, Z
2
s , U

2
s (·)

)
≤ f2

(
s, Y 2

s−, Z
2
s , U

2
s (·)

)
, dP⊗ dC − a.e.,

• the process E
(

η
1−λ∆C ·X

◦ + ρ ? µ̃\
)

is a uniformly integrable martingale, where λ, η
are the processes associated to the generator f1 by Remark 3.24 for (Y 1

−, Z
1, U1(·))

and (Y 2
−, Z

2, U2(·))16 and ρ comes from Assumption (Comp2),

then, we have Y 1
t ≤ Y 2

t , for any t ∈ J0, T K, P−a.s.

Proof. Fix some non–negative predictable process γ and define v· :=
∫ ·

0
γsdCs. Define

also

δY· := Y 1
· − Y 2

· , δZ· := Z1
· − Z2

· , δU· := U1
· − U2

· , δN· := N1
· −N2

· , δξ· := ξ1 − ξ2,

δf1,2
· := f1

(
·, Y 2
·−, Z

2
· , U

2
· (·)

)
− f2

(
·, Y 2
·−, Z

2
· , U

2
· (·)

)
,

δf1
· := f1

(
·, Y 1
·−, Z

1
· , U

1
· (·)

)
− f1

(
·, Y 2
·−, Z

2
· , U

2
· (·)

)
.

15The stochastic Lipschitz bounds of the generator f1, resp. f2, will be denoted by r1, θ1,◦, θ1,\, resp.
r2, θ2,◦, θ2,\.

16More precisely, λ = λY
1
−,Y

2
−,Z

1,U1
and η = ηY

2
−,Z

1,Z2,U1,c.
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Arguing similarly as in the proof of Theorem 3.20, we deduce from Itō’s formula17

E(v)tδYt = E(v)T δξ +

∫ T

t

E(v)s−

((
δf1
s + δf1,2

s

)(
1 + γs∆Cs

)
− γsδYs−

)
dCs

−
∫ T

t

E(v)s−δZsdX
◦
s −

∫ T

t

E(v)s−dδNs −
∫ T

t

∫
Rn
E(v)s−δUs(x)µ̃\(ds,dx)

−
∫ T

t

E(v)s−γsd
[
Cd, δU ? µ̃\ + δN

]
s
. (3.52)

Now, by Remark 3.24 we can write

δf1
s = λ

Y 1
s−,Y

2
s−,Z

1
s ,U

1
s

s δYs− + η
Y 2
s−,Z

1
s ,Z

2
s ,U

1
s ,cs

s csδZ
>
s + f1

(
s, Y 2

s−, Z
2
s , U

1
s (·)

)
− f1

(
s, Y 2

s−, Z
2
s , U

2
s (·)

)
,

where λ is a 1−dimensional predictable process such that |λ|2 ≤ r1, dP⊗ dC − a.e., and
η is an Rm−dimensional predictable process such that |η|2 ≤ θ1,◦, dP⊗ dC − a.e.18

At this point we choose γ = λ
1−λ∆C ; our choice will be justified later. Define then the

following measure Q with density

dQ

dP
:= E

(
η(1 + γ∆C) ·X◦ + ρ ? µ̃\

)
T

= E
(

η

(1− λ∆C)
·X◦ + ρ ? µ̃\

)
T

.

Since ρ has been assumed to verify ∆
(
ρ? µ̃\

)
> −1 on J0, T K, up to P−indistinguishability,

the stochastic exponential process remains (strictly) positive on J0, T K, as well as its
càglàd version; see [47, Remark 15.3.1]. In other words, the measure Q is equivalent to
the measure P. Let us initially translate the stochastic integrals appearing in (3.52) into
semimartingales under the measure Q. To this end, we will apply Girsanov’s Theorem in
its form [47, Theorem 15.2.6]. For convenience define M := η(1 + γ∆C) ·X◦ + ρ ? µ̃\. We
have

(E(v)−δZ) ·X◦ =
(
(E(v)−δZ) ·X◦ − E(M)−1

− · 〈(E(v)−δZ) ·X◦, E(M)〉
)︸ ︷︷ ︸

=:P◦ which is a Q−martingale

+ E(M)−1
− · 〈(E(v)−δZ) ·X◦, E(M)〉

= P ◦ + E(M)−1
− E(v)−E(M) · 〈δZ ·X◦,M〉 = P ◦ + (E(v)−δZcη

>) · C,

and

E(v)− ·
(
(δU) ? µ̃\

)
=
[
E(v)− ·

(
(δU) ? µ̃\

)
− E(M)−1

− · 〈E(v)− ·
(
(δU) ? µ̃\

)
, E(M)〉

]︸ ︷︷ ︸
=:P \ which is a Q−martingale

+ E(M)−1
− · 〈E(v)− ·

(
(δU) ? µ̃\

)
, E(M)〉

= P \ + E(v)− · 〈(δU) ? µ̃\,M〉
= P \ + E(v)− · 〈(δU) ? µ̃\, ρ ? µ̃\〉

(2.9)
= K\ +

∫ ·
0

E(v)s−

(
K̂s

(
(δUs(·)− δ̂Us)(ρs(·)− ρ̂s)

)
+ (1− ζs)∆CsK̂s

(
δUs(·)− δ̂Us

)
K̂s

(
ρs(·)− ρ̂s

))
dCs.

17Recall that the notation Cd was introduced before Theorem 3.20.
18Observe that there exists a constant Dm, which depends only on the dimension of Rm, such that

η> d〈X◦〉
dC

η ≤ Dmθ1,◦∑m
j=1

∑m
i=1

(
d〈X◦〉

dC

)ij
dP ⊗ dC − a.e. Given the Assumption (Comp3), the process

η
1−λ∆C

·X◦ is a well–defined (local) martingale.

EJP 23 (2018), paper 121.
Page 47/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP240
http://www.imstat.org/ejp/


Existence and uniqueness results for BSDE with jumps

For the term E(v)− · (δN) observe that it is a Q−martingale, since

〈δN,M〉 = E(M)− ·
(
〈δN c, η ·X◦〉+ 〈δNd, ρ ? µ̃\〉

)
= 0,

where we have used [84, Theorem III.6.4.b)] and [47, Theorem 13.3.16]. The last term
of (3.52) can be written as

E(v)−γ · [Cd, (δU) ? µ̃\ + δNd
]

=
[
E(v)−γ[Cd, (δU) ? µ̃\ + δNd

]
− E(M)−1

− · 〈E(v)−γ · [C, (δU) ? µ̃\ + δNd
]
, E(M)〉

]
︸ ︷︷ ︸

=:P which is a Q−martingale

+ E(v)−γ · 〈[C, (δU) ? µ̃\ + δNd
]
,M〉

= P + E(v)−γ∆C · 〈(δU) ? µ̃\ + δNd,Md〉
= P + E(v)−γ∆C · 〈(δU) ? µ̃\, ρ ? µ̃\〉

= P +

∫ ·
0

E(v)s−γs∆Cs

(
K̂s

(
(δUs(·)− δ̂Us)(ρs(·)− ρ̂s)

)
+ (1− ζs)∆CsK̂s

(
δUs(·)− δ̂Us

)
K̂s

(
ρs(·)− ρ̂s

))
dCs.

Using Girsanov’s theorem, i.e. the above Q−canonical decompositions, as well as
the assumption on δξ and δf1,2,we deduce from (3.52) after applying the Q−conditional
expectation with respect to Gt

E(v)tδYt ≤ EQ
[ ∫ T

t

E(v)s−

([
λs(1 + γs∆Cs)− γs

]
δYs−

)
dCs

∣∣∣∣Gt]
+ EQ

[ ∫ T

t

E(v)s−(1 + γs∆Cs)
(
f1
(
s, Y 2

s−, Z
2
s , U

1
s (·)

)
− f1

(
s, Y 2

s−, Z
2
s , U

2
s (·)

)
−K̂s

(
(δUs(·)−δ̂Us)(ρs(·)−ρ̂s)

)
−(1−ζs)∆CsK̂s

(
δUs(·)−δ̂Us

)
K̂s

(
ρs(·)−ρ̂s

))
dCs

∣∣∣∣Gt].
Recall our choice for γ, i.e. γ = λ

1−λ∆C , and we have that the first conditional expectation
on the right–hand side vanishes. In view of Assumption (C2), we can conclude if the
stochastic exponential E(v) (as well as the process E(v)−) remains strictly positive, which
is true if and only if

∆vs > −1⇐⇒ (λs∆Cs)
2 < 1,

which is automatically satisfied since we assumed that r1
s∆C

2
s < 1.

Remark 3.26. The Assumption (Comp2) is the natural generalization of the Assumption
(Aγ) in [132], where we have abstained from assuming that the predictable function
γ (we follow at this point the notation of [132]) may depend on y, z, u, u′. In order to
verify our statement, let us assume that the martingale X\ exhibits jumps only on totally
inaccessible times19. In this case, by [47, Corollary 13.3.17] and the polarization identity,
we have

〈(δU) ? µ̃\, ρ ? µ̃\〉· =
(
(δU)ρ

)
? ν\· = ∆C·K̂·

(
(δU·(·))ρ·(·)

)
.

In other words, Assumption (Comp2) can be simplified to: for dP⊗dC−a.e. (ω, s) holds

f
(
ω, s, y, z, u(·)

)
− f

(
ω, s, y, z, u′(·)

)
≤ K̂s

(
δus(·)ρs(·)

)
,

for any (s, y, z, u, u′) ∈ R+ ×R×Rm × H× H.
19In [132] the filtration is quasi–left–continuous, which means that the uniformly integrable purely discontin-

uous martingale jumps only on totally inaccessible times.
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Remark 3.27. Recall that |η|2 ≤ θ1,◦ dP ⊗ dC − a.e. Observe, now, that there exists a
constant Dm, which depends only on the dimension of Rm, such that

η>
d〈X◦〉

dC
η ≤ Dmθ

1,◦
m∑
j=1

m∑
i=1

(
d〈X◦〉

dC

)ij
, dP⊗ dC − a.e.

Therefore, given Assumption (Comp3), a sufficient condition for the process η/(1−λ∆C)·
X◦ to be well–defined is the existence of the (local) martingale

√
θ1,◦/(1−

√
r1∆C) ·X◦.

For the comment which comes after the following lines, the reader may recall some
criteria which guarantee the (true) martingale property of a stochastic exponential and
which involve an integrability condition on the predictable covariation of the continuous
part of the density (in our case 〈η/(1− λ∆C) ·X◦〉), for instance [47, Theorem 15.4.2 –

Theorem 15.4.6]. Having these criteria in mind, one may check if the process E
( √

θ1,◦

1−
√
r1∆C

·
X◦ + ρ ? µ̃\

)
satisfies any of them. If the answer is affirmative, then we have a sufficient

condition for the process E
(

η
1−λ∆C ·X

◦ + ρ ? µ̃\
)

to be a uniformly integrable martingale
for any choice of λ and η.

4 Applications

As an application of the main theorem, we show that a BSDE driven by an extended
Grigelionis process, which is, roughly speaking, a superposition of a time–inhomogeneous
Lévy process with a (discrete-time) random walk, admits a unique solution under appro-
priate conditions. The main point here is that when C is allowed to have jumps, there is
a subtle interplay between the size of the jumps of C and the strength of the dependence
of the generator of the BSDE, measured by the value of the Lipschitz coefficients, in the
sense that their product has to remain small.

Definition 4.1. A square–integrable Rm−valued martingale X is called K−almost
quasi–left–continuous if there exists a constant K ≥ 0 such that |∆〈Xi,j〉|t ≤ K for every
i, j = 1, . . . , ` and for every t ∈ R+, P − a.s. In other words, the predictable quadratic
covariation 〈X〉 of X has jumps uniformly bounded by K.

The next result follows directly from the definition above and Theorems 3.5 and 3.23.

Corollary 4.2. Let (X,G, T, ξ, f, C) be standard data under β̂, X be K−almost quasi–
left–continuous and the process α2 (defined in (F4)) be bounded by 1/(18emK), P− a.s.,
where m is the dimension of X. Then, for C = Tr[〈X〉] and for β̂ large enough, there
exists a unique solution (Y, Z, U,N) to the BSDE (3.5). Similarly, if Conditions (H1)–(H6)
are satisfied, then there is a unique solution in the sense of Definition 3.16.

Example 4.3. Let (X,G, T, ξ, f, C) be standard data under β̂ such that X = λG, for some
λ ∈ R and some extended Grigelionis martingale G. In other words, C can be chosen to
be of the form

Ct = λ2
(
t+
∑
s≤t

1Θ(s)
)
,

where Θ ⊂ (0,+∞) is at most countable, see [91, Definition 2.15]. Then, since X is
λ2−almost quasi–left–continuous, for α2 bounded by 1/(18eλ2) and for β̂ large enough,
there exists a unique solution to the BSDE (3.5). Similarly, if Conditions (H1)–(H6) are
satisfied, then there is a unique solution in the sense of Definition 3.16.

Another interesting application of this result consists in ensuring the existence and
uniqueness of the solution of the BSDE (3.5) when X is the continuous–time extension of
a discrete time martingale X̂. In particular, when X̂n is the discretization of a square
integrable, quasi–left continuous martingale with independent increments. Then, as
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the mesh of the grid tends to 0, the bound Kn of the jumps of 〈X̂n〉 tends to 0. Hence,
we have that the sequence of BSDEs is, for n large enough, well–posed, given that the
associated α2 is bounded P − a.s. We emphasize again that in general, Theorem 3.23
cannot be applied in this setting, recall Remark 3.19, and the only result available in the
literature in such a general framework is our Theorem 3.5.

A Proofs of results of Subsection 2.2.1

Let us fix a pair (X◦, X\) ∈ H2(Rm) ×H2,d(Rn) such that Mµ\ [∆X
◦|P̃] = 0. We will

adopt the notation which follows (H6). Moreover, FY denotes the natural filtration of
the process Y .

Proof of Lemma 2.4. For every Y \ ∈ K2(µX
\

) holds

〈X◦, Y \〉 = 〈X◦,c, Y \〉+ 〈X◦,d, Y \〉 = 0, (A.1)

where the summand 〈X◦,c, Y \〉 vanishes because X◦,c ∈ H2,c(Rm) and Y \ ∈ H2,d(Rd),
while the summand 〈X◦,d, Y \〉 equals 0 in view of the assumption M

µX
\ [∆X◦|P̃] = 0, of

[84, Theorem III.4.20] and of [47, Theorem 13.3.16]. The equality (A.1) already proves

the second statement. Indeed, for j = 1, . . . , n define Rn 3 x πj7−→ (xj , 0, . . . , 0) ∈ Rd20.

Then, we have that πj ∈ H2(µX
\

) and X\,j = πj ? µ̃
X\ , since X\ ∈ H2,d(Rn).

Assume now the factorization

〈X◦〉 =

∫
(0,·]

d〈X◦〉s
dFs

dFs.

In view of (A.1) we obtain21 for the predictable process rY
\

:= d〈Y \,X◦〉s
dFs

= 0. Conse-
quently, by [84, Theorem III.6.4.b)] we have for every Z ∈ H2(X◦) that

〈Y \, Z ·X◦〉 =

∫
(0,·]

rY
\

Z> dFs = 0,

where the equality is understood componentwise.

Proof of Proposition 2.5. By the Galtchouk–Kunita–Watanabe Decomposition, see [83,
Chapitre IV, Section 2], there exists Z ∈ H2(X◦) such that

Y − Y0 = Z ·X◦ +N (A.2)

with N ∈ H2(Rd) and 〈X◦, N〉 = 0. Moreover, by [84, Theorem III.4.20], there exists a

unique U ∈ H2(µX
\

) and N ∈ H2(Rd) with M
µX

\ [∆N |P̃] = 0 such that

N = U ? µ̃(X\,G) +N. (A.3)

In total, we have determined Z ∈ H2(X◦), U ∈ H2(µX
\

) and N ∈ H2(Rd) such that

Y = Y0 + Z ·X◦ + U ? µ̃(X\,G) +N. (A.4)

We have to verify that this decomposition satisfies the properties of Definition 2.2
and, moreover, that it does not depend on the way we have determined Z,U and N .

20 xj is the j−component of the vector x. In other words, πj behaves as the canonical j−projection.
21One can follow similar arguments to those following [84, Statement III.4.3].

EJP 23 (2018), paper 121.
Page 50/68

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP240
http://www.imstat.org/ejp/


Existence and uniqueness results for BSDE with jumps

We will prove initially that the G−predictable function U is the one characterized by
the triplet (G, µX

\

, Y ). To this end, we are going to prove that M
µX

\

[
∆(Z ·X◦)

∣∣P̃] = 0.
By [84, Proposition III.6.9], we can write

∆(Z ·X◦)i =

m∑
j=1

Zij∆X◦,j .

Therefore, for every positive and bounded G−predictable function W holds for every
i = 1, . . . , d

M
µX

\

[
W∆(Z ·X◦)i

]
= M

µX
\

[
W

m∑
j=1

Zij∆X◦,j
]

=

m∑
j=1

M
µX

\

[
WZM

µX
\

[
∆X◦,j

∣∣P̃]] = 0,

where, in order to conclude, we used the assumption M
µX

\ [∆X◦|P̃] = 0 and that W ,
resp. Z, is a G−predictable function, resp. G−predictable process. The above, after
using standard monotone class arguments, allows us to conclude the required prop-
erty M

µX
\

[
∆(Z · X◦)

∣∣P̃] = 0. By Equality (A.4), the equality M
µX

\ [∆(Z · X◦)|P̃] = 0

and the linearity of the Doléans-Dade measure Mµ\ we obtain that the following hold
M
µX

\−almost everywhere

M
µX

\

[
∆Y

∣∣P̃] = M
µX

\

[
∆N

∣∣P̃] = M
µX

\

[
∆(U ? µ̃(X\,G))

∣∣P̃].
Hence the G−predictable function U is uniquely determined M

µX
\−almost everywhere,

see [84, Theorem III.4.20] and [84, Lemma III.4.19].

We need to prove now that 〈Z · X◦, U ? µ̃X
\〉 = 0 as well as 〈N,X◦〉 = 0. But the

former is immediate by Lemma 2.4. We proceed to prove the 〈N,X◦〉 = 0. By the
Galtchouk–Kunita–Watanabe decomposition (A.2) and the orthogonality of the stochastic
integrals, we obtain

〈N,X◦〉 (A.3)
= 〈N,X◦〉 − 〈U ? µ̃X

\

, X◦〉 = 0. (A.5)

To sum up,

(i) Z ∈ H2(X◦) and U ∈ H2(µX
\

), by Decompositions (A.2) and (A.3). Moreover, Z ·X◦

and U ? µ̃(X\,G) are unique up to indistinguishability. Therefore, also N is unique
up to indistinguishability.

(ii) 〈Z ·X◦, U ? µ̃(X\,G)〉 = 0 and

(iii) 〈N,X◦〉 = 0 and M
µX

\ [∆N |P̃] = 0.

Proof of Proposition 2.6. Let us define

N :=
{
L ∈ H2(Rd), 〈X◦, L〉 = 0 and M

µX
\ [∆L|P̃] = 0

}
.

It is immediate that N is a linear subspace of H2(Rd). By the properties of the stochastic
integrals, see [84, Theorem III.6.4] and [47, Theorem 13.3.16], we have that N ⊂
H2(X⊥). Therefore, we need to prove the inverse inclusion.

Let L ∈ H2(X⊥). Then, we have immediately 〈X◦, L〉 = 0. We need, now, to prove
that M

µX
\ [∆L|P̃] = 0. By Proposition 2.5 and due to the fact that 〈X◦, L〉 = 0 we can

assume that

L = W ? µ̃X
\

+N, (A.6)
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where W ∈ H2(µX
\

) and N ∈ H2(Rd) be such that M
µX

\ [∆N |P̃] = 0. The last property
implies that

〈W ? µ̃X
\

, Nd〉 = 〈W ? µ̃X
\

, N〉 = 0;

see [47, Theorem 13.3.16]. On the other hand, since 〈L,U ? µ̃X
\〉 = 0 for every U ∈

H2(µX
\

), we have

0 = 〈L,W ? µ̃X
\

〉 = 〈Ld,W ? µ̃X
\

〉
(A.6)
= 〈W ? µ̃X

\

,W ? µ̃X
\

〉+ 〈Nd,W ? µ̃X
\

〉 = 〈W ? µ̃X
\

,W ? µ̃X
\

〉.

Therefore, the stochastic integral W ? µ̃X
\

in Decomposition (A.6) is indistinguishable
from the zero martingale. This further implies that Ld is indistinguishable from Nd or in
other words the processes ∆L and ∆N are indistinguishable. Therefore, for L holds also
M
µX

\ [∆L|P̃] = 0, which proves that L ∈ N .

It is only left to prove that the space
(
H2(X⊥), ‖ · ‖H2(Rd)

)
is closed. To this end,

assume the sequence (Lk)k∈N ⊂ N and L∞ ∈ H2(Rd) be such that Lk
‖·‖H2(Rd)−−−−−−→
k→∞

L∞22. By

Proposition 2.5 we have that there exist Z∞ ∈ H2(X◦), U∞ ∈ H2(µX
\

) and N∞ ∈ H2(Rd)

such that

L∞ = Z∞ ·X◦ + U∞ ? µ̃X
\

+N∞, (A.7)

where 〈X◦, N∞〉 = 0 and M
µX

\ [∆N∞|P̃] = 0.

By Vitali’s Convergence Theorem, we have that the sequence
(
Tr([Lk]∞

)
k∈N∪{∞}

is uniformly integrable and, consequently,
(
Tr([Lk]∞

)
k∈N∪{∞} ∪ {Tr([X◦]∞)} as well.

Therefore, by the Kunita–Watanabe and Young inequalities we have that the family{
Var([Lk, X◦])∞

}
k∈N∪{∞} is uniformly integrable. For more details in the last argument,

one can consult [133, Lemma A.2]. Consequently, from [84, Theorem VI.6.26] we have
for every A ∈ G∞ that(

[Lk, X◦],E[1A|G·]
)
−−−−→
k→∞

(
[L∞, X◦],E[1A|G·]

)
and by [84, Proposition IX.1.12] that [L∞, X◦] is a uniformly integrable martingale with
respect to the natural filtration of Y A := (L∞, X◦,E[1A|G·]); the latter is denoted by FY

A

.
It is easy to verify now that [L∞, X◦] is a uniformly integrable G−martingale. Indeed, fix
0 ≤ s < t. For every A ∈ Gs holds∫

A

E
[
[L∞, X◦]t

∣∣Gs]dP =

∫
A

E
[
E
[
[L∞, X◦]t

∣∣Gs]∣∣∣FY As ]
dP =

∫
A

E
[
[L∞, X◦]t

∣∣FY As ]
dP

=

∫
A

[L∞, X◦]sdP.

Therefore, 〈L∞, X◦〉 is well-defined and, in view of the previous information, it is equal
to 0. The properties of the Itō Integral allow us to conclude that 〈L∞, Z · X◦〉 = 0 for
every Z ∈ H2(X◦). Following similar arguments, we can prove that 〈L∞, U ? µ̃〉 = 0 for

every U ∈ H2(µX
\

).

Proof of Corollary 2.7. In view of the previous results we need only to justify the closed-
ness of the spaces L2(X◦) and K2(µX

\

). For the former see [84, Theorem III.6.26] and
use the fact that the topology induced by ‖ · ‖H2(Rd) is stronger than the Emery topology.
For the latter, we can follow arguments analogous to the proof of Proposition 2.5.

22It is well-known that H2(Rd) is closed.
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Let (Uk)k∈N ⊂ H2(µX
\

) such that Uk ? µ̃X
\ H2(Rd)−−−−−−−→

k→∞
L∞, for some L∞ ∈ H2(Rd)

with orthogonal decomposition

L∞ = Z∞ ·X◦ + U∞ ? µ̃X
\

+N∞,

where Z∞ ∈ H2(X◦), U∞ ∈ H2(µX
\

) and N∞ ∈ H2(X⊥). We need to prove that the
martingales Z∞ ·X◦ and N∞ are indistinguishable from the zero process. Using the
convergence (

[Uk ? µ̃X
\

, X◦],E[1A|G·]
)
−−−−→
k→∞

(
[L∞, X◦],E[1A|G·]

)
and (

[Uk ? µ̃X
\

, L],E[1A|G·]
)
−−−−→
k→∞

(
[L∞, L],E[1A|G·]

)
,

which are true for every A ∈ G∞ and L ∈ H2(X⊥), we can obtain the martingale property
of [L∞, X◦] and of the elements of the family ([L∞, L])L∈H2(X⊥). In particular, we obtain
that 〈Z∞ · X◦〉 = 0, by making use of the usual properties of the Itō integral, and
〈N∞〉 = 0, which provide the required result.

B Proof of Lemma 2.15

The proof of Lemma 2.15 heavily relies on Lemma B.1.(vii), which is a complement
result to the already known ones about generalized inverses.

Lemma B.1. Let A : R+ −→ R+ be a càdlàg and increasing function with A0 = 0.
Denote by L : R+ → R+ ∪ {∞} the càglàd generalized inverse of A, i.e.

L(s) := inf {t ∈ R+, A(t) ≥ s}

and by R : R+ → R+ ∪ {∞} the càdlàg generalized inverse of A, i.e.

R(s) := inf {t ∈ R+, A(t) > s} .

We have

(i) L,R are increasing.

(ii) L(s) = R(s−) and L(s+) = R(s).

(iii) s ≤ A(t) if and only if L(s) ≤ t and s < A(t) if and only if R(s) < t.

(iv) A(t) < s if and only if t < L(s) and A(t) ≤ s if and only if t ≤ R(s).

(v) A (R(s)) ≥ A (L(s)) ≥ s, for s ∈ R+, and at most one of the inequalities can be
strict.

(vi) For s ∈ A(R+), A(L(s)) = s.

(vii) For s such that L(s) <∞, we have

s ≤ A (L(s)) ≤ s+ ∆A(L(s)),

where ∆A(L(s)) is the jump of the function A at the point L(s).
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Proof. Here we will prove only inequality (vii). However, we present the other properties,
since we will make use of them in the proof. The interested reader can find their proofs
in a slightly more general framework in [64] and the references therein.

We need to prove that A(L(s))− s ≤ ∆A(L(s)) for any s such that L(s) <∞. By (vi),
when s ∈ A(R+), we have since A is increasing

A(L(s))− s = 0 ≤ ∆A(L(s)).

Now if s /∈ A(R+) and s > A∞, then L(s) = ∞, so that this case is automatically
excluded. Therefore, we now assume that s /∈ A(R+) and s ≤ A∞. Since s /∈ A(R+),
there exists some t ∈ R+ such that s ∈ [A(t−), A(t)). Then, we immediately have L(s) = t.
Hence

s+ ∆A(L(s)) = s+ ∆A(t) ≥ A(t) = A(L(s)),

since s ≥ A(t−).

Proof of Lemma 2.15. Using a change of variables, Lemma B.1.(vii) and that g is non-
decreasing and sub-multiplicative, we have∫ t

0

g(As)dAs =

∫ At

A0

g(ALs)ds ≤
∫ At

A0

g(s+ ∆ALs)ds

≤
∫ At

A0

g
(
s+ max
{s, Ls<∞}

∆ALs

)
ds ≤ cg

(
max

{s, Ls<∞}
∆ALs

)∫ At

A0

g(s)ds.

C Proof of Lemma 3.4

Proof. Let (γ, δ) ∈ Cβ . We shall begin by obtaining the critical points of the map ΠΦ. We
have

∂

∂γ
ΠΦ(γ, δ) = (2 + 9δ) e(δ−γ)Φ Φγ2 + (2− δΦ)γ − δ

γ2(δ − γ)2
,

∂

∂δ
ΠΦ(γ, δ) = − 9

δ2
+ e(δ−γ)Φ

{[
9 + (2 + 9δ)Φ

]
(δ − γ)

γ(δ − γ)2
− 2 + 9δ

γ(δ − γ)2

}
.

The only possible critical points for ΠΦ are therefore such that δ = −2/9 or γ =
δΦ−2±

√
4+δ2Φ2

2Φ . However, the values δ = −2/9 and γ = δΦ−2−
√

4+δ2Φ2

2Φ are ruled out
as negative. For 0 < δ ≤ β we have(δΦ− 2 +

√
4 + δ2Φ2

2Φ
, δ
)
∈ Cβ .

Let us define γΦ(δ) := δΦ−2+
√

4+δ2Φ2

2Φ , for 0 < δ ≤ β. It is easy to verify that γΦ(δ) ∈ (0, δ).

Then, some tedious calculations yield that

∂ΠΦ

∂δ

(
γ̄Φ(δ), δ

)
= − 9

δ2
−

exp[
(
δ − γ̄Φ(δ)

)
Φ]

γ̄Φ(δ)
(
δ − γ̄Φ(δ)

)2 · 2γ̄Φ(δ)Φ + 9γ̄Φ(δ) + 2

(γ̄Φ(δ)Φ + 1)2
< 0

therefore ΠΦ does not admit any critical point on Cβ, for which 0 < γ < δ < β. Hence,
the infimum on this set is necessarily attained on its boundary. The cases where at least
one among δ and γ goes to 0, or where their difference goes to 0, lead to the value∞.
The only remaining case is therefore 0 < γ < δ = β, where β is fixed. Then we get

d

dγ
ΠΦ
(
γ, β

)
= (2 + 9β) e(β−γ)Φ Φγ2 + (2− βΦ)γ − β

γ2(β − γ)2
,
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and ΠΦ(γ, β) viewed as a function of γ attains its minimum at its critical point given by

γΦ(β), since dΠΦ

dγ

(
γ, β

)
< 0 on (0, γΦ(β)) and dΠΦ

dγ

(
γ, β

)
> 0 on (γΦ(β), β).

Now, we proceed to the second case, and start by determining the critical points of
ΠΦ
? . It holds

∂

∂γ
ΠΦ
? (γ, δ) = − 8

γ2
+ 9δe(δ−γ)Φ Φγ2 − (δΦ− 2)γ − δ

γ2(δ − γ)2
,

∂

∂δ
ΠΦ
? (γ, δ) = − 9

δ2
+ 9e(δ−γ)Φ (1 + δΦ)(δ − γ)− δ

γ(δ − γ)2
.

Following analogous computations as above we can prove that, for (γ, δ) ∈ Cβ, the
equation

∂

∂γ
ΠΦ
? (γ, δ) = 0⇔ Pδ(γ) := 8(δ − γ)2 − 9δe(δ−γ)Φ

(
Φγ2 − (δΦ− 2)γ − δ

)
= 0

has a unique root, say γΦ
? (δ), which moreover satisfies γΦ

? (δ) ∈ (γΦ(δ), δ). This can be
proved because the function Pδ : (0, δ)→ R is decreasing, for each fixed δ ∈ (0, β), with

Pδ
(
γΦ(δ)

)
> 0 and Pδ(δ) < 0. Now observe that for γ > δ2Φ

1+δΦ it holds ∂
∂δΠΦ

? (γ, δ) < 0

and that Pδ
(
δ2Φ

1+δΦ

)
> 0. Using the monotonicity of Pδ we have that γΦ

? (δ) > δ2Φ
1+δΦ and

therefore also ∂
∂δΠΦ

? (γΦ
? (δ), δ) < 0. Arguing as above we can conclude that the infimum is

attained for δ = β at the point
(
γΦ
? (β), β

)
.

Finally, the limiting statements follow by straightforward but tedious computations.

D Auxiliary results on optional measures

Let (Ω,G,G,P) be a filtered probability space and Y = {Yt}t∈[0,∞] be a uniformly
integrable measurable process. Then, thanks to the uniform integrability, we have by
a clear adaptation of [76, Theorem 5.1] that there exists a unique optional process,
denoted by oY , such that for every G−stopping time τ , we have Eτ [Yτ ] = oYτ , P − a.s.
Observe that τ is allowed to take infinite values, since Y∞ is well-defined and integrable.
For any increasing, càdlàg and G−adapted process A, the measure µA : (Ω× [0,∞],G ⊗
B([0,∞])) −→ (R,B(R)) defined as

µA(H) = E

[ ∫ ∞
0

1HdAt

]
, for H ∈ G ⊗ B([0,∞]),

is optional, see [76, Definition 5.10, Definition 5.12 and Theorem 5.13]. For convenience,
we state the following well-known result as a lemma.

Lemma D.1. Let A be an increasing, càdlàg and adapted process and Y be a uniformly
integrable and measurable process, then it holds µA(Y ) = µA(oY ).

Proof. Let L be the càglàd generalized inverse of A (see Lemma 2.15 for the definition).
We have

E

[ ∫ ∞
0

YtdAt

]
= E

[ ∫ ∞
0

YLs1[Ls<∞]ds

]
=

∫ ∞
0

E[YLs1[Ls<∞]]ds

=

∫ ∞
0

E[oYLs1[Ls<∞]]ds = E

[ ∫ ∞
0

oYtdAt

]
,

where for the change of variables we used [76, Lemma 1.38], and for the third equality
the definition of the optional projection, see [76, Theorem 5.1].
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E Auxiliary analysis of Subsection 3.6

• Case A. : X◦,c 6= 0.

In order to obtain a contraction, we need to choose positive predictable processes ε
and γ such that

εs > ∆Cs,

1− (1 + γs∆Cs)(εs −∆Cs)θ
◦
s > 0,

1− θ\s(εs −∆Cs) > 0,

1 + Cs
(
γs − (1 + γs∆Cs)ε

−1
s

)
> 0,

Csrs(1 + γs∆Cs)(εs −∆Cs)

1 + Cs
(
γs − (1 + γs∆Cs)ε

−1
s

) < 1,

⇐⇒



∆Cs < εs < ∆Cs +
1

θ◦s ∨ θ
\
s

,(
Cs − εs

)+
Cs(εs −∆Cs)

< γs <
1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
,

(εsrs∆Cs − 1)γs <
−rsCsε2

s + (1 + rsCs∆Cs)εs − Cs
Cs(εs −∆Cs)

.

We need then to distinguish two cases.

• Case A.i. : εsrs∆Cs > 1. Then, it can be proven that the system is not compatible.

• Case A.ii. : εsrs∆Cs < 1. We need to consider two sub–cases

• Case A.ii.a. : −rsCsε2
s + (1 + rsCs∆Cs)εs − Cs ≥ 0.

The above condition, after some computations, implies that

rs ∈
(

0,
(
√
Cs−
√
Cs−)2

Cs(∆Cs)2

)⋃( (
√
Cs+
√
Cs−)2

Cs(∆Cs)2 ,+∞
)
,

1 + rsCs∆Cs −
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs

< εs <
1 + rsCs∆Cs +

√
(1 + rsCs∆Cs)2 − 4C2

s rs
2rsCs

.

This will be compatible with εsrs∆Cs < 1 if and only if

1 + rsCs∆Cs −
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs
<

1

rs∆Cs
⇐⇒ rs <

Cs + Cs−
Cs∆C2

s

.

Therefore, the system now becomes

max

{
∆Cs,

1 + rsCs∆Cs −
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs

}
< εs,

εs < min

{
1

rs∆Cs
,∆Cs +

1

θ◦s ∨ θ
\
s

,
1 + rsCs∆Cs +

√
(1 + rsCs∆Cs)2 − 4C2

s rs
2rsCs

}
,(

Cs − εs
)+

Cs(εs −∆Cs)
≤ γs <

1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
,

with the requirement that

rs <
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
.
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For the system to have solutions, we necessarily need to have

1 + rsCs∆Cs +
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs
> ∆Cs ⇐⇒ rs <

1

Cs∆Cs
,

as well as
1

rs∆Cs
> ∆Cs ⇐⇒ rs <

1

∆C2
s

,

and in addition

∆Cs +
1

θ◦s ∨ θ
\
s

>
1 + rsCs∆Cs −

√
(1 + rsCs∆Cs)2 − 4C2

s rs
2rsCs

⇐⇒ rs >
θ◦s ∨ θ\s

Cs(2 + (θ◦s ∨ θ
\
s)∆Cs)

or rs <
θ◦s ∨ θ\s(1− Cs−(θ◦s ∨ θ\s))
Cs(1 + (θ◦s ∨ θ

\
s)∆Cs)

.

The last four conditions on r are then equivalent to

rs < min

{
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
,
θ◦s ∨ θ\s(1− Cs−(θ◦s ∨ θ\s))
Cs(1 + (θ◦s ∨ θ

\
s)∆Cs)

}
, or

θ◦s ∨ θ\s
Cs(2 + (θ◦s ∨ θ

\
s)∆Cs)

< rs <
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
.

We then need to distinguish two further sub–cases

• Case A.ii.a.1. : εs > Cs

Under this additional condition, we necessarily need to have

1 + rsCs∆Cs +
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs
> Cs ⇐⇒ rs <

1

Cs(Cs + Cs−)
,

as well as

∆Cs +
1

θ◦s ∨ θ
\
s

> Cs ⇐⇒ (θ◦s ∨ θ\s)Cs− < 1,

and
1

rs∆Cs
> Cs ⇐⇒ rs <

1

Cs∆Cs
,

so that in this case the final system is

max

{
Cs,

1 + rsCs∆Cs −
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs

}
< εs,

εs < min

{
1

rs∆Cs
,∆Cs +

1

θ◦s ∨ θ
\
s

,
1 + rsCs∆Cs +

√
(1 + rsCs∆Cs)2 − 4C2

s rs
2rsCs

}
,

0 ≤ γs <
1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
,

which has solutions if and only if
Cs−(θ◦s ∨ θ\s) < 1,

rs ∈
(

θ◦s ∨ θ\s
Cs(2 + (θ◦s ∨ θ

\
s)∆Cs)

,
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2

)
,

or 
Cs−(θ◦s ∨ θ\s) < 1,

rs < min

{
(θ◦s ∨ θ\s)(1− Cs−(θ◦s ∨ θ\s))
Cs(1 + (θ◦s ∨ θ

\
s)∆Cs)

,
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2

}
.
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Therefore, we will discard the condition that imposes a lower bound on r and we will
keep only the right one.

• Case A.ii.a.2 : εs ≤ Cs
Under this additional condition, we necessarily need to have

1 + rsCs∆Cs −
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs
< Cs ⇐⇒ rs >

1

Cs(Cs + Cs−)
.

However, this is not compatible with the constraint rs < (
√
Cs −

√
Cs−)2/(Cs(∆Cs)

2),
and the system does not admit any solutions in this case.

• Case A.ii.b. : −rsCsε2
s + (1 + rsCs∆Cs)εs − Cs < 0.

This requires either that

rs ∈
(

(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
,

(
√
Cs +

√
Cs−)2

Cs(∆Cs)2

)
,

and no further restrictions on εs, or

rs ∈
(

0,
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2

)⋃(
(
√
Cs +

√
Cs−)2

Cs(∆Cs)2
,+∞

)
,

and either

εs <
1 + rsCs∆Cs −

√
(1 + rsCs∆Cs)2 − 4C2

s rs
2rsCs

, or

εs >
1 + rsCs∆Cs +

√
(1 + rsCs∆Cs)2 − 4C2

s rs
2rsCs

.

Let us distinguish between these two cases.

• Case A.ii.b.1. : rs ∈
(

(
√
Cs−
√
Cs−)2

Cs(∆Cs)2 ,
(
√
Cs+
√
Cs−)2

Cs(∆Cs)2

)
. We will not examine

this case since r will be bounded from below.

• Case A.ii.b.1.α. : εs < min
{
Cs,

Cs
θ◦sCs−

}
.

Then the system becomes
∆Cs < εs < min

{
1

rs∆Cs
, Cs,

Cs
θ◦sCs− + rsCs∆Cs

,∆Cs +
1

θ◦s ∨ θ
\
s

}
,

max

{
rsCsε

2
s − (1 + rsCs∆Cs)εs + Cs

Cs(εs −∆Cs)(1− rs∆Csεs)
,

Cs − εs
Cs(εs −∆Cs)

}
< γs <

1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
,

which admits solutions if and only if
θ◦s∆Cs < 2

√
Cs
Cs−

− 1,

(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
< rs < min

{
1

∆C2
s

,
∆Cs + Cs−(1− θ◦s∆Cs)

Cs(∆Cs)2

}
.

Therefore, we will not take into account this case.

• Case A.ii.b.1.β. : εs ≥ Cs.

Then the system becomes
Cs ≤ εs < min

{
1

rs∆Cs
,

Cs
θ◦sCs− + rsCs∆Cs

,∆Cs +
1

θ◦s ∨ θ
\
s

}
,

rsCsε
2
s − (1 + rsCs∆Cs)εs + Cs

Cs(εs −∆Cs)(1− rs∆Csεs)
< γs <

1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
,
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which admits solutions if and only if

(θ◦s ∨ θ\s)Cs− < 1,

θ◦s < min

{
2
√
Cs −

√
Cs−

∆Cs
√
Cs−

,
1

Cs−
,

2(
√
Cs −

√
Cs−)

∆Cs
√
Cs−

}
=

2(
√
Cs −

√
Cs−)

∆Cs
√
Cs−

,

(
√
Cs −

√
Cs−)2

Cs(∆Cs)2

< rs < min

{
1

Cs∆Cs
,

∆Cs + Cs−(1− θ◦s∆Cs)

Cs(∆Cs)2
,

1− θ◦sCs−
Cs∆Cs

}
=

1− θ◦sCs−
Cs∆Cs

.

Therefore, we will not take into account this case as well.

• Case A.ii.b.2. : rs ∈
(

0,
(
√
Cs−
√
Cs−)2

Cs(∆Cs)2

)⋃( (
√
Cs+
√
Cs−)2

Cs(∆Cs)2 ,+∞
)
.

The system becomes either
∆Cs < εs < min

{
1

rs∆Cs
,

1 + rsCs∆Cs −
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs
,∆Cs +

1

θ◦s ∨ θ
\
s

}
,

max

{
rsCsε

2
s − (1 + rsCs∆Cs)εs + Cs

Cs(εs −∆Cs)(1− rs∆Csεs)
,

(
Cs − εs

)+
Cs(εs −∆Cs)

}
< γs <

1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
,

or

max

{
∆Cs,

1 + rsCs∆Cs +
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs

}
< εs

< min

{
1

rs∆Cs
,∆Cs +

1

θ◦s ∨ θ
\
s

}
,

max

{
rsCsε

2
s − (1 + rsCs∆Cs)εs + Cs

Cs(εs −∆Cs)(1− rs∆Csεs)
,

(
Cs − εs

)+
Cs(εs −∆Cs)

}
< γs <

1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
.

In both cases, this imposes that
rs∆C

2
s < 1,

as well as

(Cs − εs)+

Cs(εs −∆Cs)
<

1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
⇐⇒ εs < min

{
Cs,

Cs
θ◦sCs−

}
, or εs ≥ Cs,

and

1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
>
rsCsε

2
s − (1 + rsCs∆Cs)εs + Cs

Cs(εs −∆Cs)(1− rs∆Csεs)
⇐⇒ εs <

Cs
θ◦sCs− + rsCs∆Cs

.

This requires in turn that we must necessarily have

Cs
θ◦sCs− + rsCs∆Cs

> ∆Cs ⇐⇒ rs <
∆Cs + Cs−(1− θ◦s∆Cs)

Cs(∆Cs)2
and θ◦s <

Cs
Cs−∆Cs

.

Furthermore, the first system requires in addition that

1 + rsCs∆Cs −
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs
> ∆Cs ⇐⇒ rs <

1

Cs∆Cs
,

while the second one requires

1 + rsCs∆Cs +
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs
<

1

rs∆Cs
⇐⇒ rs <

Cs + Cs−
Cs∆C2

s

,
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as well as

∆Cs +
1

θ◦s ∨ θ
\
s

>
1 + rsCs∆Cs +

√
(1 + rsCs∆Cs)2 − 4C2

s rs
2rsCs

⇐⇒ rs > max

{
θ◦s ∨ θ\s

Cs(2 + (θ◦s ∨ θ
\
s)∆Cs)

,
(θ◦s ∨ θ\s)(1− Cs−(θ◦s ∨ θ\s))
Cs(1 + (θ◦s ∨ θ

\
s)∆Cs)

}
,

and
1 + rsCs∆Cs +

√
(1 + rsCs∆Cs)2 − 4C2

s rs
2rsCs

<
Cs

θ◦sCs− + rsCs∆Cs
.

We do not proceed, since the process r will be bounded from below.

• Case A.ii.b.2.α. : εs < min
{
Cs,

Cs
θ◦sCs−

}
.

Then the system becomes

∆Cs < εs < min

{
1

rs∆Cs
, Cs,

Cs
θ◦sCs− + rsCs∆Cs

,

1 + rsCs∆Cs −
√

(1 + rsCs∆Cs)2 − 4C2
s rs

2rsCs
,∆Cs +

1

θ◦s ∨ θ
\
s

}
,

max

{
rsCsε

2
s − (1 + rsCs∆Cs)εs + Cs

Cs(εs −∆Cs)(1− rs∆Csεs)
,

Cs − εs
Cs(εs −∆Cs)

}
< γs <

1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
,

which admits solutions if and only if
∆Csθ

◦
s <

Cs
Cs−

,

(∆Cs)
2rs < min

{
∆Cs + Cs−(1− θ◦s∆Cs)

Cs
,

(
√
Cs −

√
Cs−)2

Cs

}
.

• Case A.ii.b.2.β. : εs ≥ Cs.

Then the system becomes

Cs < εs < min

{
1

rs∆Cs
,

Cs
θ◦sCs− + rsCs∆Cs

,
1 + rsCs∆Cs −

√
(1 + rsCs∆Cs)2 − 4C2

s rs
2rsCs

,

∆Cs + 1

θ◦s∨θ
\
s

}
,

rsCsε
2
s − (1 + rsCs∆Cs)εs + Cs

Cs(εs −∆Cs)(1− rs∆Csεs)
< γs <

1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
,

which admits solutions if and only if

(θ◦s ∨ θ\s)Cs− < 1,

rs < min

{
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
,

1

Cs(Cs + Cs−)
,

1− θ◦sCs−
Cs∆Cs

}
= min

{
(
√
Cs−
√
Cs−)2

Cs(∆Cs)2 ,
1−θ◦sCs−
Cs∆Cs

}
.

• Case B. X◦,c = 0.
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In order to obtain a contraction, we need to choose positive predictable processes ε
and γ such that

εs > ∆Cs,

1− θ◦s(εs −∆Cs) > 0,

1− θ\s(εs −∆Cs) > 0,

1 + Cs
(
γs − (1 + γs∆Cs)ε

−1
s

)
> 0,

Csrs(1 + γs∆Cs)(εs −∆Cs)

1 + Cs
(
γs − (1 + γs∆Cs)ε

−1
s

) < 1,

⇐⇒



∆Cs < εs < ∆Cs +
1

θ◦s ∨ θ
\
s

,

γs <
1− θ◦s(εs −∆Cs)

θ◦s∆Cs(εs −∆Cs)
,

(εsrs∆Cs − 1)γs <
−rsCsε2

s + (1 + rsCs∆Cs)εs − Cs
Cs(εs −∆Cs)

.

This is exactly the same system as in Case A, except that we no longer need the inequality
(Cs − εs)+/(Cs(εs −∆Cs)) < γs. Hence, the exact same reasoning as before will tell us
that the system admits solutions if one of the following set of conditions is satisfied

rs < min

{
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
,
θ◦s ∨ θ\s(1− Cs−(θ◦s ∨ θ\s))
Cs(1 + (θ◦s ∨ θ

\
s)∆Cs)

}
, or

θ◦s ∨ θ\s
Cs(2 + (θ◦s ∨ θ

\
s)∆Cs)

< rs <
(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
,

or 
θ◦s∆Cs < 2

√
Cs
Cs−

− 1,

(
√
Cs −

√
Cs−)2

Cs(∆Cs)2
< rs < min

{
1

∆C2
s

,
∆Cs + Cs−(1− θ◦s∆Cs)

Cs(∆Cs)2

} ,

or 
∆Csθ

◦
s <

Cs
Cs−

,

(∆Cs)
2rs < min

{
∆Cs + Cs−(1− θ◦s∆Cs)

Cs
,

(
√
Cs −

√
Cs−)2

Cs

} .
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