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Abstract

We study properties of the point process that appears as the local limit at the random
matrix hard edge. We show a transition from the hard edge to bulk behavior and
give a central limit theorem and large deviation result for the number of points in a
growing interval [0, λ] as λ → ∞. We study these results for the square root of the
hard edge process. In this setting many of these behaviors mimic those of the Sineβ
process.
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1 Introduction

In the study of classical Hermitian random matrix ensembles three distinct types of
local behavior have been observed. The Gaussian Unitary Ensemble (GUE) exhibits one
type of behavior in the interior, or bulk, of its spectrum and another at its edge. Scaling
the n×nmodel and passing to the n→ ∞ limit one obtains the Sine2 and Airy2 processes
respectively. The Laguerre (also called Wishart) and Jacobi (MANOVA) ensembles exhibit
the same behavior in the bulk, but depending on the choice of parameters may exhibit
two different types of behavior at the edge. In one case the limit process at the edge is
again the Airy2 process. This is referred to as a soft edge. In the other case the limit
process at the edge is a family of determinantal point processes where the determinant
is defined in terms of Bessel functions Jα,

Kα(x, y) =
Jα(

√
x)
√
yJ ′

α(
√
y)−

√
xJ ′

α(
√
x)Jα(

√
y)

2(x− y)
.

This type of limiting behavior will occur when the eigenvalues of the random matrix are
pushed against some hard constraint, and so will be referred to as hard-edge behavior.
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The random matrix hard edge: rare events and a transition

The Laguerre and Jacobi ensembles may be generalized to one parameter families of
point processes called β-ensembles defined through their joint distribution. In particular
the β-Laguerre ensemble has joint density

pn,m,β(λ1, λ2, . . . , λn) =
1

Zβ,n,m

n∏
i=1

λ
β
2 (m−n+1)−1
i e−

β
2 λi

∏
j<k

|λj − λk|β . (1.1)

Here β may be any value greater than 0, m ≥ n, and Zβ,n,m is an explicitly computable
normalizing constant. With a slight abuse of terminology we refer to the points of the
β-Laguerre ensemble as its eigenvalues. The local limits of these β-ensembles may again
be studied, but can no longer be described by a determinantal point process.

As in the classical case, the β-Laguerre ensemble can exhibit two different types
of limiting behavior at the lower edge of the spectrum. For m/n → γ 6= 1 the lower
edge of the spectrum exhibits soft-edge behavior. In this case the appropriately rescaled
lower edge of the β-Laguerre ensemble converges to the Airyβ process [17]. In the case
where instead m = n+ an and an → a the lower edge of the spectrum exhibits hard-edge
behavior [16]. In the intermediate regime where an → ∞, an/n→ 0 it is expected that
the behavior is soft edge and so the limiting process will be Airyβ . For this regime there
is a partial result in the case β = 2 for an ∼ c

√
n by Deift, Menon, and Trogdon (see [4]),

but otherwise the problem remains open. Similar soft and hard edge scaling results
were shown for the β-Jacobi ensemble [7]. Later universality results extended the soft
edge limit to a wide class of β-ensembles [3, 11], and recent work by Rider and Waters
did the same for the hard edge [18].

Let λ0 < λ1 < λ2 < ... be the ordered eigenvalues of the β-Laguerre ensemble. For
the hard edge regime when an → a the set {nλ0, nλ1, ..., nλk} converges to the first k
eigenvalues of the Stochastic Bessel operator introduced by Ramírez and Rider in [16].
The operator acts on functions R+ → R and is given by:

Gβ,a = − exp

[
(a+ 1)x+

2√
β
b(x)

]
· d
dx

(
exp

[
−ax− 2√

β
b(x)

]
d

dx

)
,

with Dirichlet boundary conditions at 0 and Neumann conditions at infinity, where b(x)
is a Brownian motion, a > −1 and β > 0. Moreover, it can be shown that the spectrum
defines a simple point process which will be referred to as the ‘hard edge process’. For
further discussion of the Stochastic Bessel operator see Ramírez and Rider [16].

The square root of the hard edge process gives a point process description for the
singular values of Gβ,a. This scale is natural one for studying the transition from the
edge to the bulk, and moreover, in this setting the asymptotic likelihood of rare events
mimic those of the Sineβ process. We will denote the singular value process by Bessa,β
in honor of the Bessel functions present in the determinantal description. The results
for the Bessa,β process will be stated in terms of its counting functionMa,β(λ) which we
define to be the number of points of the Bessa,β process in the interval [0, λ].

For a bit of amplification on the choice of the singular value process consider the
following: we may perform the change of variables y =

√
x in the Marchenko-Pastur

distribution, the resulting distribution shows that the mean spacing after the change is
the same order for both the edge and the bulk. This is confirmed by the work Edelman
and LaCroix [5]. They show that the singular values of a GUE are distributed as the
union of the singular values of two independent Laguerre ensembles with hard edge
type distribution. A similar decomposition may also be done for the GOE [2].

In the bulk of the spectrum, with the appropriate centering and rescaling, Jacquot
and Valkó showed that the eigenvalues of the β-Laguerre ensemble converge to the Sineβ
process [10]. This process was first introduced introduced as the limit of the β-Hermite
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The random matrix hard edge: rare events and a transition

ensemble by Valkó and Virág [19]. In this paper we make use of tools developed for the
Sineβ process to study the Bessa,β process and show a transition from Bessa,β to Sineβ .
The Sineβ process may be described via its counting function in the following way: let
αλ be a one parameter family of diffusions indexed by λ that satisfy

dαλ = λ
β

4
e−

β
4 tdt+ Re

[
(e−iαλ − 1)dZ

]
, (1.2)

where Zt = Xt + iYt with X and Y standard Brownian motions and αλ(0) = 0. The αλ
are coupled through the noise term. Define Nβ(λ) =

1
2π limt→∞ αλ(t), then Nβ(λ) is the

counting function for Sineβ .
We might expect that as we move away from the edge of the Bessel process the

effects of the edge will lessen and it will begin to behave like the bulk process. In this
paper we show that this is indeed the case; there is a transition from Bessa,β to Sineβ as
we move from the edge (near 0) out towards ∞ in the Bessa,β process for a > 0. We also
show two results on the asymptotic probability of various rare events for Bessa,β. The
first is a central limit theorem for the number of points in the interval [0, λ] as λ → ∞.
The second is a large deviation result on the asymptotic density of points in a large
interval [0, λ]. We expect to see roughly 2λ/π many point in a large interval. We consider
the asymptotic probability of seeing roughly ρλ many points for ρ 6= 2/π.

1.1 Results

We begin with the transition between the hard edge process and Sineβ .

Theorem 1.1. Let a > 0 and β > 0 fixed, then

1

4
(Bessa,β − λ) ⇒ Sineβ (1.3)

as λ→ ∞.

This can be understood by thinking of this as the distribution of the points in any
neighborhood of λ scaled down by 4 converges as λ→ ∞ to the distribution of Sineβ in a
neighborhood of 0. The centering of the neighborhood in the Sineβ process is irrelevant
since the process is translation invariant.

We now give the two results on the asymptotic behavior of Ma,β(λ) as λ → ∞. The
first of these gives a central limit theorem for the number of points in the interval.

Theorem 1.2. Fix β > 0, a > −1. As λ→ ∞ we have that

1√
log λ

(
Ma,β(λ)−

2λ

π

)
⇒ N

(
0,

1

βπ2

)
.

A similar result except with limiting variance 2
βπ2 was shown using a different method

for the counting function of the Sineβ process by Kritchevski, Valkó, and Virág [12].
The next result describes the large deviation behavior of the counting function.

Before stating the result we introduce certain special functions that are used in the
statement. We will use

K(m) =

∫ π/2

0

dx√
1−m sin2 x

, and E(m) =

∫ π/2

0

√
1−m sin2 x dx, (1.4)

for the complete elliptic integrals of the first and second kind, respectively. Note that
there are several conventions denoting these functions, we use the modulus notation
from [1]. We also introduce the following function for m < 1:

H(m) = (1−m)K(m)− E(m). (1.5)
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The random matrix hard edge: rare events and a transition

Theorem 1.3. Fix β > 0, a > −1. The sequence of random variables 1
λMa,β(λ) satisfies

a large deviation principle with scale λ2 and good rate function βIBessa,β (ρ) with

IBessa,β (ρ) =
ν

2
+ ρH(ν), ν = γ(−1)(ρ/4), (1.6)

where γ(−1)denotes the inverse of the continuous, strictly decreasing function given by

γ(ν) =



H(ν)
8

ν∫
−∞

H−2(x)dx, if ν < 0,

1
2π , if ν = 0,

H(ν)
8

ν∫
1

H−2(x)dx, if 0 < ν < 1,

0, if ν = 1.

(1.7)

Roughly speaking, this means that the probability of seeing close to ρλ points in [0, λ]

for a large λ is asymptotically e−λ
2βIBessa,β (ρ).

This result is closely related to the analogous result for the counting function Nβ(λ)
of the Sineβ process. There we consider the sequence 1

λNβ(λ) and we find an LDP with
rate λ2 and rate function βISine where IBessa,β (ρ) = 32ISine(ρ/4)[8]. Moreover we can
check that the central limit theorem and the large deviation result are at least formally
consistent. Lastly, observe that the large deviation result is also consistent with the tail

behavior of the lowest eigenvalue P (Ma,β(
√
λ) = 0) ∼ e−

β
2 λ [15].

For a bit of clarification on why we see consistency between results on the bulk and
hard-edge processes we introduce the following characterization of Bessa,β .

Theorem 1.4. LetMa,β(λ) be the number of points of Bessa,β in the interval [0, λ], and
let ϕa,λ be the diffusion that satisfies the stochastic differential equation

dϕa,λ =
β

2
(a+ 1

2 ) sin
(ϕa,λ

2

)
dt+ βλe−βt/8dt+

sinϕa,λ
2

dt+ 2 sin
(ϕa,λ

2

)
dBt (1.8)

with initial condition ϕa,λ(0) = 2π. Then

Ma,β(λ)
d
= lim
t→∞

⌊
1

4π
ϕa,λ(t)

⌋
.

Moreover, for a > 0 we have that limt→∞b(ϕa,λ(t)−2π)/4πc = limt→∞bϕa,λ(t)/4πc almost
surely.

We also make the observation that for a fixed λ the αλ diffusion used in the charac-
terization of the bulk process satisfies the SDE

dαλ = λ
β

4
e−

β
4 tdt+ 2 sin

(αλ
2

)
dBt, αλ(0) = 0,

where Bt is a standard Brownian motion. The Brownian motion Bt that appears depends
on the λ parameter.

Notice now that for λ large the ϕa,λ diffusion will be rapidly increasing until time on
the order of log λ. On this region the finite variation terms involving sin(

ϕa,λ
2 ) and sinϕa,λ

will be rapidly oscillating and so have a minimal contribution. Essentially these terms
are not felt in the λ→ ∞ limit and so they vanish in asymptotic results. The results on
oscillatory integrals involving ϕa,λ will turn out to be the key component in the proof of
all 3 main results and will be given in Section 2.
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It is worth noting that from the characterization in Theorem 1.4 it seems likely
that one could show other results for Bessa,β related to existing results on the Sineβ
process. In particular we anticipate it would not be difficult to determine the asymptotic
probability of overcrowding (P (Ma,β(λ) ≥ n) ∼? as n→ ∞, see [9]).

The remainder of the paper will be organized as follows: Section 2 will give the proof
of Theorem 1.4 as well as several results on the ϕa,λ diffusion. Section 3 will give the
proof of the transition from Bessa,β to Sineβ . Section 4 will give the proof of the central
limit theorem. Section 5 will give the proof of the large deviation result.

2 The counting function of Bessa,β

Before giving the proof of Theorem 1.4 we recall an existing description of Bessa,β
that characterizes the process via diffusions rather then an operator. We consider the
‘Riccati diffusion’ for Gβ,a, given by the stochastic differential equation

dpλ(t) =
2√
β
pλ(t)dB(t) +

((
a+ 2

β

)
pλ(t)− p2λ(t)− λe−t

)
dt, (2.1)

with initial condition p(0) = +∞, which it leaves instantaneously. Note that there is a
positive probability of explosion to −∞.

Theorem 2.1 ([16]). Let Λ0(β, a) < Λ1(β, a) < ... be the ordered eigenvalues of Gβ,a,
and let P∞,t denote the law induced by p(· : β, a, λ) started at +∞ at time t, and restarted
at +∞ and time m upon any m <∞, p(m) = −∞. Then,

P (Λ0(β, a) > λ) = P∞,0(p never hits 0), (2.2)

P (Λk(β, a) < λ) = P∞,0(p hits 0 at least k + 1 times). (2.3)

In other words the counting function of the process is the number of times that pλ(t)
hits 0, and may be denoted byMa,β(

√
λ), whereMa,β is the counting function of Bessa,β .

Proof of Theorem 1.4. The characterization of the hard edge process given in Theorem
2.1 can be rewritten in the following way: For pλ > 0 apply the change of variables
−X1(t) := log(pλ(βt/4)) + βt/8− log λ/2 for pλ > 0. Then X1 satisfies the SDE

dX1(t) =

(
β

4
(−a− 1

2 ) +
β

2

√
λe−βt/8 coshX(t)

)
dt− dB(t). (2.4)

The initial condition p(0) = +∞ gives X1(0) = −∞, moreover when pλ(βt/4) reaches 0
we get that X1(t) = +∞.

We do a similar change of variables for pλ < 0. Take X2(t) = log(−pλ(βt/4)) + βt/8−
log λ/2. This gives us

dX2(t) =

(
β

4
(a+ 1

2 ) +
β

2

√
λe−βt/8 coshX2(t)

)
dt+ dB(t). (2.5)

The boundary condition pλ(βt/4) = 0 gives X2(t) = −∞, and for pλ(βt/4) = −∞ we get
X2(t) = +∞.

To find the ϕa,λ diffusion given in Theorem 1.4 we work back from X1 and X2 to ϕa,
√
λ.

Recall that that the number of eigenvalues in an interval [0, µ2] will be the same as the
number of singular values in the interval [0, µ], and notice that the zeros of pλ describe
the eigenvalue process of Gβ,a. Because of this the resulting diffusion with parameter√
λ is related to the number of singular values in [0,

√
λ], in the theorem statement the
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√
λ is replaced with a λ to give the correct counting function for the singular value

process. Suppressing the subscripts a,
√
λ, let ϕ = −4 arctan e−X1 , then we get

dϕ = 2 sech X1dX1 − sech X1 tanhX1dt

=
β

2
(a+ 1

2 ) sin
(ϕ
2

)
dt+ β

√
λe−βt/8dt+

sinϕ

2
dt+ 2 sin

(ϕ
2

)
dBt.

The conditions X1 = −∞ and X1 = +∞ become ϕ = −2π and ϕ = 0 respectively. For X2

take ϕ = 4arctan eX2 . This gives an identical diffusion with the conditions X2 = −∞ and
X2 = +∞ becoming ϕ = 0 and 2π respectively.

Now notice that this diffusion is invariant under 4π spacial shifts, so for a fixed λ with
initial condition ϕa,

√
λ(0) = 2π we have

P (sup
t
ϕa,

√
λ(t) ≥ 4πk) = P (Λk < λ).

Lastly we use that bϕa,√λc4π is monotone nondecreasing in t to rewrite the supremum as
a limit.

For the final statement when a > 0 we appeal to the erratum for the original con-
vergence result on the hard edge, [14]. Observe that in this case counting 0 of the pλ
diffusion is equivalent to counting explosions to −∞. Therefore any time ϕa,λ passes a
multiple of 4π is must pass the next 2π multiple as well.

It will be useful to consider what is the relationship between two diffusions that
satisfy stochastic differential equations of the form (1.8) with two different λs which are
coupled through their noise terms. Let ψa,λ,x = ϕa,λ+x − ϕa,λ, then the SDE for ψa,λ,x is

dψa,λ,x =
β

2
(a+ 1/2)Im

[
e−i

ϕa,λ
2

(
ei
ψa,λ,x

2 − 1

)]
dt+

1

2
Im
[
e−iϕa,λ

(
eiψa,λ,x − 1

)]
dt

+ βxe−βt/8dt+ 2Im

[
e−i

ϕa,λ
2

(
ei
ψa,λ,x

2 − 1

)]
dBt, (2.6)

with initial condition ψa,λ,x(0) = 0. This follows from standard Itô techniques. This rather
ugly formula can be made more palatable by the observation that the oscillatory terms
may be well controlled.

Proposition 2.2. Let ϕa,λ be defined as above, h(t) = βe−
β
8 t, and c = 1

2 or 1, then there
exists a constantsM and γ (uniform in λ and T , depending on c) such that

E

∣∣∣∣ sup
0≤s≤T

∫ s

0

eicϕa,λdt

∣∣∣∣ ≤ M

|λ|h(T )
, and (2.7)

In particular in the case where T is fixed this gives sup0≤s≤T
∫ s
0
sin (cϕa,λ) dt → 0 in L1

(and hence in probability) as λ→ ∞ (and similarly for cos(cϕa,λ)). Moreover

P

(
sup

0≤s≤T

∫ s

0

eicϕa,λdt− M

λh(T )
≥ C

)
≤ exp

[
−C2λ2γe−

β
4 T
]
. (2.8)

Corollary 2.3. Let ϕa,λ and ψa,λ,x be defined as above with |x| < x0, h(t) = βe−
β
8 t, and

c = 1
2 or 1, then there exists a constantsM and γ (uniform in λ and T , depending on c)

such that

E

∣∣∣∣ sup
0≤s≤T

∫ s

0

e−icϕa,λ
(
eicψa,λ,x − 1

)
dt

∣∣∣∣ ≤ M

|λ− x0|h(T )
. (2.9)

Moreover

P

(
sup

0≤s≤T

∫ s

0

eicϕa,λ
(
e−icψa,λ,x − 1

)
dt− M

λh(T )
≥ C

)
≤ exp

[
−C2(λ− x0)

2γe−
β
4 T
]
.

(2.10)
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Proof of Corollary 2.3. We observe that∣∣∣∣ sup
0≤s≤T

∫ s

0

e−icϕa,λ
(
eicψa,λ,x − 1

)
dt

∣∣∣∣ ≤ ∣∣∣∣ sup
0≤s≤T

∫ s

0

e−icϕa,λ+xdt

∣∣∣∣+ ∣∣∣∣ sup
0≤s≤T

∫ s

0

e−icϕa,λdt

∣∣∣∣ .
Therefore an application of Proposition 2.2 completes the result.

Proof of Proposition 2.2. We write ϕa,λ(t) in its integrated form (dropping the subscripts)

ϕ(t) = λ8
[
1− e−

β
8 t
]
+ 2π +

β

2
(a+ 1/2)

∫ t

0

sin
(ϕ
2

)
ds+

∫ t

0

sin(ϕ)

2
ds+ 2

∫ t

0

sin
(
ϕ
2

)
dBs.

We break this into two pieces, the first term we will write λH(t) = λ8
[
1− e−

β
8 t
]
and the

remaining terms will be grouped together as the process Et = ϕ(t)− λH(t). Then∫ T

0

eicϕa,λdt =

∫ T

0

eicλH(t)eicEtdt.

We use the following version of Itô’s formula to extract the main term. Let f, g be
continuously differentiable functions and let G denote an antiderivative of g. Then for X
and Itô process we have∫ T

0

f ′(t)G(X)dt = f(T )G(X)− f(0)G(0)−
∫ T

0

f(t)g(X)dX − 1

2

∫ T

0

f(t)g′(X)d[X]t.

Let Λ(t) =
∫ t
0
eicλH(s)ds, then∫ T

0

eicλH(t)eicEtdt = eicETΛ(T ) +

∫ T

0

Λ(t)iceicEtdEt +
1

2

∫ T

0

Λ(t)c2eicEtd[E ]t.

Now observe that Λ(t) may be bounded in the following way:∫ t

0

eicλH(s)ds =

∫ t

0

1

λicH ′(s)

d

ds
eicλH(s)ds =

e
β
8 t

λicβ
eicλH(t) − 1

λicβ
− 1

8λic

∫ t

0

e
β
8 seicλH(s)ds.

In absolute value the final integral is bounded by 1
λcβ (e

β
8 t − 1) which gives us that

|Λ(t)| =
∣∣∣∣∫ t

0

eicλH(s)ds

∣∣∣∣ ≤ 3

λcβ
e
β
8 t. (2.11)

From this we get that the dt terms in the dEt integral may be bounded in absolute value
by [β2 (a+ 1/2) + 1/2]

∫ T
0
Λ(t)dt ≤ [β2 (a+ 1/2) + 1/2] 24

λcβ2 e
β
8 T . Similar computation shows

that the d[E ]t term is bounded in absolute value by 96
λcβ2 e

β
8 T . Lastly, for the martingale

term we break it into its real and imaginary parts and use Doob’s martingale inequality
on the associated exponential submartingales. We show the argument for the imaginary
part. The real part may be done the same way. Let

Nt = 2

∫ t

0

Λ(s) sin
(
cEs
)
sin
(Es+λH(s)

2

)
dBs, (2.12)

then Nt is a true martingale because it has L1 bounded quadratic variation. Therefore
exp(ξNt) is a positive submartingale and so P (sup0≤t≤T exp(ξNt) ≥ x) ≤ E(exp(ξNT ))/x.
From this we get that

P

(
sup

0≤t≤T
Nt ≥ C

)
≤ e−ξCE (exp(ξNT )) (2.13)
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To compute E exp(ξNt) we make use of the martingale Mt = exp(ξNt − ξ2

2 [N ]t). This
gives us that

1 = EMt ≥ E

[
exp

(
ξNt −

ξ2

2

1

β
(

8

λcβ
e
β
8 t)2

)]
= E(exp(ξNt)) exp

[
−ξ

2

2

1

β
(

8

λcβ
e
β
8 t)2

]
,

(2.14)

where we use

[N ]t ≤
∫ t

0

4Λ2(t)dt ≤ 1

β
(

8

λcβ
e
β
8 t)2. (2.15)

Optimizing our choice of ξ we get

P

(
sup

0≤t≤T
Nt ≥ C

)
≤ exp

[
−C

2

2
β

(
λcβ

8
e−

β
8 T

)2
]
. (2.16)

This gives the necessary bound for (2.8). Integrating in the C variable gives

E( sup
0≤t≤T

Nt) ≤
√

π

2β

8

λcβ
e
β
8 T , (2.17)

which completes the proof of equation (2.7).

3 From the hard edge to the bulk

In order to show the transition we need the following two results on limits of martin-
gales and stochastic integrals:

Proposition 3.1 (Multidimensional Martingale CLT). Let {Mn(·)} be a sequence of Rd

valued martingales. Suppose

lim
n→∞

E
[
sup
s≤t

|Mn(s)−Mn(s−)|
]
= 0

and [M i
n,M

j
n]t → ci,j(t) in probability for all t ≥ 0 where C = [ci,j ] is a continuous,

symmetric matrix valued function on [0,∞) with C(0) = 0 and∑
i,j≤n

(cij(s)− cij(t))ξiξj ≥ 0, for ξ ∈ Rn, t > s ≥ 0.

Then Mn → M , where M is a Gaussian process with independent increments and
E[M(t)M(t)T ] = C(t).

For a proof see e.g. Theorem 7.1.4 in Ethier and Kurtz [6].
The following proposition gives conditions under which a sequence of diffusions Xn

satisfying the stochastic integral equations

Xn(t) = Xn(0) +

∫ t

0

σ(Xn, s−)dMn(s) +

∫ t

0

b(Xn, t)dVn(t) (3.1)

converge to a limiting process. Here we takeMn : R+ → (C[0,∞))d to be a d–dimensional
martingale and Vn : R+ → Rd×d is a finite variation process. The following is a special-
ization of Theorem 5.4 from from [13].

Proposition 3.2 (Kurtz, Protter [13]). Suppose in (3.1) Mn is a martingale, and Vn
is a finite variation process. Assume that for each t ≥ 0, supnE[[Mn]t] < ∞ and
supnE[TV (Vn)] < ∞ (where TV indicates the total variation) and (Mn, Vn) ⇒ (W,V ),
where W is a standard Brownian motion and V (t) = tI. Suppose that the diffusion X
satisfies

X(t) = X(0) +

∫ t

0

σ(X(s), s)dW (t) +

∫ t

0

b(X(s), s)ds (3.2)

and that (3.2) has a unique strong solution. Then Xn ⇒ X.
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The random matrix hard edge: rare events and a transition

Lastly we will need a property of the diffusion αλ(t).

Proposition 3.3 ([19]). The diffusion αλ satisfying (1.2) converges a.s. to a multiple of
2π as t→ ∞.

Proof of Theorem 1.1. We study the differenceMa,β(λ+ x)−Ma,β(λ) as λ→ ∞ by way
of the SDE characterization. For convenience we use the diffusion ψa,λ,x = ϕa,λ+x − ϕa,λ
defined in Section 2 (see (2.6)). The proof breaks into two pieces. The first is to show
that for any finite set {x1, x2, ..., xk} the family of diffusions {ψa,λ,xi}i=1,...,k converge
weakly to a family of diffusions {ψ̂xi}i=1,...,k on compact sets [0, T ]. We then show that
for any ε > 0 there exists a T so that the behavior of the diffusions at ∞ is determined by
the behavior of the diffusions at time T with probability at least 1−ε. These together will
be sufficient for process convergence because they will show that the finite marginals of
Ma,β(λ+ x)−Ma,β(λ) will converge to those of Nβ(x/4) where Nβ is distributed as the
counting function of Sineβ .

Recall that ψa,λ,x satisfies the SDE in (2.6). In order to study the limit as λ→ ∞ we
start by showing that the martingales

Wλ,1(t) =
√
2

∫ t

0

sin
(ϕa,λ

2

)
dBs and Wλ,2(t) =

√
2

∫ t

0

cos
(ϕa,λ

2

)
dBs (3.3)

converge in distribution to two independent Brownian motionsW1(t) andW2(t) as λ→ ∞.
We then use these limits to show the convergence of the vector (ψa,λ,x1(t), ..., ψa,λ,xk(t))

to (ψ̂x1(t), . . . , ψ̂xk(t)), which is a vector of time and space changed versions of αx, for
x = x1, ..., xk.

We show that (W1,W2) is a 2 dimensional Brownian using Proposition 3.1. Since
Wλ,1(t) and Wλ,2(t) are continuous we need only check the quadratic variations
[Wλ,1]t, [Wλ,2]t → t and [Wλ,1,Wλ,2]t → 0 as λ→ ∞. We use the integral representation
of Wλ,1 and Proposition 2.2 to observe that for any T ∈ [0,∞)

[Wλ,1]t = 2

∫ t

0

sin2
(ϕa,λ

2

)
dt = t−

∫ t

0

cos(ϕa,λ)ds→ t

in probability as λ → ∞ for t ∈ [0, T ]. Similar calculations may be done for [Wλ,2]t and
[Wλ,1,Wλ,2]t.

To show the SDE convergence we can again use Proposition 2.2 to show that the first
two drift terms in (2.6) vanish as λ→ ∞. We have now identified that for a fixed x the
limiting diffusion should satisfy the SDE

dψ̂x = βxe−βt/8dt+
√
2

[
cos

(
ψ̂x
2

)
− 1

]
dW1 +

√
2 sin

(
ψ̂x
2

)
dW2, ψx(0) = 0. (3.4)

Proposition 3.2 gives us that if this SDE has a strong solution, then ψ̂x
d
= limλ→∞ ψa,λ,x

exists and satisfies (3.4). To show that (3.4) has a strong solution we will show this is
equivalent to the SDE for αλ having a strong solution. Apply time change t/2 7→ s and
space change ψ̂x/2 7→ ψ̃x to get

dψ̃x = βxe−βs/4ds+ Re
[
(e−iψ̃x − 1)d(W̃1 + iW̃2)

]
, (3.5)

where W̃1 and W̃2 here are the time changed W1 and W2. Notice that the time change is
independent of x and so W̃1 and W̃2 are the same driving Brownian motions for x1, ..., xk.
Therefore the diffusions ψ̃xi are coupled through their Brownian terms. Lastly observe

that ψ̃xi
d
= α4xi and αλ has a strong solution [19].
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The random matrix hard edge: rare events and a transition

For the next step we need to show that convergence of the diffusions implies conver-
gence of the processes Bessa,β to Sineβ. To do this we show convergence of the finite
dimensional marginals of the counting function. That is we show that for any finite
collection {x1, ..., xk} ∈ R we have

{Ma,β(λ+ xi/4)−Ma,β(λ)}i=1,...,k ⇒ {Nβ(xi)}i=1,...,k

jointly in law as λ→ ∞.
We begin with the following lemma, which gives us that it is enough to study the

diffusion ψa,λ,x.

Lemma 3.4. For ψa,λ,x andMa,β(λ) defines as above we have

P
(
lim
t→∞

b(ψa,λ,x(t) + 2π)/4πc =Ma,β(λ+ x)−Ma,β(λ)
)
= 1.

For convenience we introduce the notation byc4π = 4πby/(4π)c. We now show that
for any ε > 0 we can choose λ and T sufficiently large so that

P (bψa,λ,xi(∞) + 2πc4π = bψa,λ,xi(T ) + 2πc4π, i = 1, . . . , k) > 1− ε, and (3.6)

P
(
ψ̂xi(∞) =

⌊
ψ̂xi(T ) + 2π

⌋
4π
, i = 1, . . . , k

)
> 1− ε, (3.7)

where evaluation at ∞ should be understood as a limit. We have that

{ψa,λ,x1
(T ), . . . , ψa,λ,xk(T )} ⇒ {ψ̂x1

(T ), . . . , ψ̂xk(T )} as λ→ ∞

which in particular gives us that for any `1, ..., `k ∈ N

P (ψa,λ,xj (T ) + 2π ∈ [4π`j , 4π(`j + 1)), j = 1, .., k)

λ→∞−→ P (ψ̂x1
(T ) + 2π ∈ [4π`j , 4π(`j + 1)), j = 1, .., k).

by the definition of distributional convergence. Therefore it follows that the floor
functions used in equations (3.6) (3.7) converge in distribution and so proving these two
inequalities will be sufficient to complete the proof.

For equation (3.7) Proposition 3.3 gives us that ψ̂x converges almost surely to a
multiple of 4π. Therefore for a finite collection {x1, . . . , xk} and 0 < δ < 2π we may
choose T sufficiently large so that P (|ψ̂xi(T )− ψ̂xi(∞)| < δ, i = 1, . . . , k) > 1− ε. From
this (3.7) follows.

For equation (3.6) we begin with the bound

P
(
bψa,λ,xi(∞) + 2πc4π = bψa,λ,xi(T ) + 2πc4π , i = 1, . . . , k

)
(3.8)

≥ 1−
k∑
i=1

P
(
bψa,λ,xi(∞) + 2πc4π 6= bψa,λ,xi(T ) + 2πc4π

)
(3.9)

And observe that

P
(
bψa,λ,xi(∞) + 2πc4π 6= bψa,λ,xi(T ) + 2πc4π

)
(3.10)

≤ 1−P
(
bψa,λ,xi(∞)+2πc4π = bψa,λ,xi(T )+2πc4π , |ψa,λ,xi(T )−bψa,λ,xi(T )+2πc4π|<δ

)
.

We use the following lemma to complete the proof.

Lemma 3.5. For |η| < δ < 1/16 there exists λ0 > 0 and A (uniform in x) so that for
λ ≥ λ0, and T ≥ − 8

β log(δ)

P
(
bψa,λ,x(∞) + 2πc4π 6= bψa,λ,x(T ) + 2πc4π

∣∣∣ψa,λ,x(T )− bψa,λ,x(T ) + 2πc4π = η
)

(3.11)

≤ (x+A)
√
δ.
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The random matrix hard edge: rare events and a transition

This gives us that

P
(
bψa,λ,xi(∞) + 2πc4π 6= bψa,λ,xi(T ) + 2πc4π , |ψa,λ,xi(T )− bψa,λ,xi(T )+2πc4π| < δ

)
≤ (xi +A)

√
δ.

In order to complete the bound in equation (3.6) we follow the reasoning from when
we proved (3.7). We observe that ψa,λ,x(T ) converges in distribution to ψ̂(T ) as λ→ ∞,
and ψ̂xi(T ) will be close to a multiple of 4π with high probability when T is large
enough. Therefore for any ε > 0 we may choose T and λ large enough so P (|ψa,λ,xi(T )−
bψa,λ,xi(T ) + 2πc4π| < δ) > 1− ε. Together these bounds give us that

P
(
bψa,λ,xi(∞) + 2πc4π 6= bψa,λ,xi(T ) + 2πc4π

)
≤ ε+ (x+A)

√
δ,

where ε and δ may be chose arbitrarily small.

Proof of Lemma 3.5. We first show this for the case where η > 0, in which case
bψa,λ,x(T )c4π = bψa,λ,x(T ) + 2πc4π. We study the diffusion ψa,λ,x on two regions. The
first is [T, Tλ,δ] and the second is [Tλ,δ,∞), where Tλ,δ =

8
β log(λδ). For x > 0 the process

bψa,λ,x(t)c4π is monotone increasing in t, therefore it follows that ψa,λ,x(∞)−bψa,λ,x(T )c4π
is a strictly positive random variable so we can apply Markov’s inequality. We use the
integral form of (2.6) together with Proposition 2.2 to get a bound on the expected value.
Let M̂ = 1

2 ((a+ 1/2) + 1)M , then from the integrated form we have

ψa,λ,x(Tλ,δ)− bψa,λ,x(T )c4π =

∫ Tλ,δ

T

dψa,λ,x(t) + (ψa,λ,x(T )− bψa,λ,x(T )c4π).

We compute the expected value of the integral term conditioned on the FT σ-field. The
oscillatory dt integrals may be bounded using Proposition 2.2 by M̂d, the exponential
integral is bounded by the value of the exponential at T , and the martingale term has
expectation 0. With the additional inequality |η| < δ this gives us

E
(
ψa,λ,x(Tλ,δ)− bψa,λ,x(T )c4π

∣∣ψa,λ,x(T )− bψa,λ,x(T )c4π = η
)
≤ xe−

β
8 T + (M̂ + 1)δ.

Therefore

P
(
ψa,λ,x(Tλ,δ)−bψa,λ,x(T )c4π >

√
δ
∣∣ψa,λ,x(T )−bψa,λ,x(T )c4π = η

)
≤ x√

δ
e−

β
8 T+

(M̂ + 1)√
δ

δ.

(3.12)
The restriction T ≥ − 8

β log δ gives us the bound in Lemma 3.5 on the region [T, Tλ,δ).
For the case η < 0 we observe that we are more likely to move towards the multiple

of 2π then in the η > 0 case, therefore if we compare the diffusion ψa,λ,x with a related
diffusion with the sign of the drift flipped. This new diffusion behaves exactly as ψa,λ,x
does in the case where η > 0 except with a reflection over the 4π increment line. In
particular we couple the diffusion ψa,λ,x with a diffusion ψ̂a,λ,x which satisfies the same
stochastic differential equation as ψa,λ,−x with initial condition ψ̂a,λ,x(T ) = ψa,λ,x(T ) =

(η+2π) mod 4π. Then for t ≥ T and ψ̂a,λ,x is coupled with ψa,λ,x through the noise term
and we get we get

ψ̂a,λ,x(t) ≤ ψa,λ,x(t) (3.13)

The same arguments used for the case η > 0 give us

P
(
bψ̂a,λ,x(T ) + 2πc4π − ψ̂a,λ,x(Tλ,δ) >

√
δ
∣∣ψa,λ,x(T )− bψa,λ,x(T )c4π = η

)
≤ x√

δ
e−

β
8 T + (M̂ + 1)

√
δ,
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The random matrix hard edge: rare events and a transition

The observation ψ̂a,λ,x(T ) = ψa,λ,x(T ) and choosing T > 8
β log(1/δ) is sufficient to give

us the bound in (3.11) for the interval [T, Tλ,δ].
We now turn to the stretch [Tλ,δ,∞). First observe that at time Tλ,δ we have (λ +

x)e−
β
8 Tλ,δ = 1

δ +
x
λδ . We return to the original diffusions ϕa,λ+x and ϕa,λ. We show that

for η <
√
δ

P

(
bϕa,λ+x(∞)c4π−bϕa,λ(∞)c4π 6= bψa,λ,x(Tλ,δ)c4π

∣∣∣∣ ψa,λ,x(Tλ,δ) = η mod 4π

)
≥ C(λ, δ),

(3.14)
where for any ε > 0 we may choose δ > 0 small enough and λ large enough (here
we think of δ begin fixed depending on the choice of ε and later take λ → ∞) so that
C(λ, δ) > 1− ε.

To start we note that this problem is equivalent to studying the diffusions restarted
at Tλ,δ, that is ϕ̃a, 1δ+ x

λδ
and ϕ̃a, 1δ satisfying (1.8) with initial conditions ϕ̃a, 1δ+ x

λδ
(0) =

ϕa,λ+x(Tλ,δ) mod 4π and ϕ̃a, 1δ (0) = ϕa,λ(Tλ,δ) mod 4π.
Before moving forward we make the following observation: For large enough time S

(depending on δ, assuming x/λ ≤ 1)

P
(
bϕ̃a, 1δ+ x

λδ
(S)c4π = bϕ̃a, 1δ+ x

λδ
(∞)c4π, bϕ̃a, 1δ (S)c4π = bϕ̃a, 1δ (∞)c4π

)
≥ 1− ε/2. (3.15)

This follows from the fact that bϕ̃(t)c4π is a monotone increasing function with an almost
surely finite limit. Then by using continuous dependence on parameters and initial
conditions (ϕ̃a, 1δ+ x

λδ
(0)− ϕ̃a, 1δ (0) = η with |η| <

√
δ) there exist δ0 and λ0 so that for δ < δ0

and λ > λ0 such that

P
(
|ϕ̃a, 1δ+ x

λδ
(S)− ϕ̃a, 1δ (S)| < 2π

)
≥ 1− ε/2. (3.16)

Taking the intersection of the two events in (3.15) and (3.16) we can get the lower bound
in equation (3.14). From Lemma 3.4 we get that

lim
t→∞

bϕa,λ+x(t)c4π − bϕa,λ(t)c4π = lim
t→∞

bψa,λ,x(t) + 2πc4π.

Using this observation we get

E
(
1
(
bψa,λ,x(∞) + 2πc4π 6= bψa,λ,x(T ) + 2πc4π

) ∣∣∣ψa,λ,x(T )− bψa,λ,x(T ) + 2πc4π = η
)

≥ E

(
1 (bϕa,λ+x(∞)c4π − bϕa,λ(∞)c4π 6= bψa,λ,x(Tλ,δ)c4π)

× 1
(
ψa,λ,x(Tλ,δ)− bψa,λ,x(T )c4π <

√
δ
) ∣∣∣∣∣ψa,λ,x(T )− bψa,λ,x(T ) + 2πc4π = η

)
We condition on the inside with respect to natural filtration at FTλ,δ . The second indicator
is measurable with respect to this σ-field and so may be pulled out of the inter conditional
expectation. The conditional expectation of the first indicator may be bounded for any
sufficiently small δ by using (3.14). The remaining term is exactly of the form in (3.12).
This completes the proof of (3.11) which completes the proof of the lemma.

Proof of Lemma 3.4. We need the final statement in Theorem 1.4. This gives us that
for a fixed λ and large enough T we will have that for t ≥ T , ϕa,λ(t) ∈ (Ma,β(λ)4π +

2π,Ma,β(λ)4π + 4π). Let k = Ma,β(λ) and ` = Ma,β(λ+ x), then we can choose T large
enough so that for t ≥ T

ϕa,λ(t) ∈ (k4π + 2π, (k + 1)4π), and ϕa,λ+x(t) ∈ (`4π + 2π, (`+ 1)4π).
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The random matrix hard edge: rare events and a transition

This gives us that for t ≥ T

4(`− k)π + 2π > ψa,λ,x(t) > 4(`− k)π − 2π.

Therefore limt→∞b(ψa,λ,x(t) + 2π)/4πc = Ma,β(λ + x) −Ma,β(λ), and it is sufficient to
study the ψa,λ,x diffusion.

4 The central limit theorem

The proof of the central limit theorem may be done in a manner similar to the proof
for the Sineβ process which was done by Kritchevski, Valkó, and Virág in [12], but here
we will get the result as an easy consequence of Proposition 2.2.

Proof of Theorem 1.2. First notice that the process ϕ̂a,λ(t) = ϕa,λ(t+T )with T = 8
β log(λ)

satisfies the same SDE (1.8) with λ = 1with a random initial condition. Since the equation
is 4π periodic in the ϕ variable and we wish to consider the difference with its limit we
may shift the process down so that the initial condition is in the interval [0, 4π]. That is
ϕ̂a,λ(∞)− ϕ̂a,λ(t) = ϕ̃a,λ(∞)− ϕ̃a,λ(t) where ϕ̃a,λ(t) = ϕ̂a,λ(t)−bϕ̂a,λ(0)c4π. Here we use
b·c4π to denote rounding down to the next multiple of 4π as in Section 3. From this we
get that

ϕa,λ(∞)− ϕa,λ(T )√
log λ

→ 0

in distribution and hence in probability. Because of this it is sufficient to consider the
weak limit of

ϕa,λ(T )− 8λ

4π
√
log λ

as λ→ ∞.

Written in its integrated form (and dropping the a, λ subscripts), the SDE for ϕa,λ gives
us

ϕ(T )− 8λ+ 8− 2π =
β

2
(a+ 1/2)

∫ T

0

sin
(ϕ
2

)
dt+

∫ T

0

sin(ϕ)

2
dt+ 2

∫ T

0

sin
(
ϕ
2

)
dBt. (4.1)

We will show that when scaled down by
√
log λ the first two terms vanish in the limit,

then show that the martingale term has the appropriate variance. An application of
Proposition 2.2 gives that the expected value of the first two integrals is finite for all λ,
and so when scaled down by

√
log λ we get convergence to 0 in probability.

We now turn our attention to the last remaining term in (4.1). We rewrite this as

1√
log λ

2

∫ T

0

sin
(
ϕ
2

)
dBt = B̂

(
1

log λ
4

∫ T

0

sin2
(
ϕ
2

)
dt

)
= B̂

(
16

β
− 2

log λ

∫ T

0

cos cos(ϕ)dt

)
for some standard Brownian motion B̂t which depends on λ. By Proposition 2.2 this final
integral term goes to 0 in probability. Therefore

P

(∣∣∣∣∣B̂
(
16

β
− 2

log λ

∫ T

0

cos(ϕ)dt

)
− B̂

(
16

β

)∣∣∣∣∣ > ε

)
may be made arbitrarily small. This is enough to give the desired convergence in
distribution, and so completes the proof.

5 Large deviations

In [8] a large deviation result was proved for the Sineβ process on growing intervals
[0, λ]. The proof of the large deviation for the Bessa,β process is similar with a few
notable differences. The details of the proof will be largely omitted, but we will give an
outline of the proof and fill in the details in the steps where the proof differs significantly
from the one for Sineβ .
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The random matrix hard edge: rare events and a transition

Outline of the proof of Theorem 1.3

The proof of the large deviation principle is done by first proving a large deviation
principle for the path of the ϕa,λ diffusion. We use this together with the contraction
principle to prove the large deviation result for the end point of the diffusion. The proof
of the LDP for the path begins with the observation that bϕa,λc2π := 2πbϕa,λ/2πc is a
monotone nondecreasing function for λ > 0. Because of this it is enough to understand
the time it take ϕa,λ to traverse an interval of the form [2πk, 2π(k + 1)]. Bounds on these
travel times will be done using a Girsanov change of measure and for various reasons
are easier to compute when the β

4λe
− β

4 tdt term is replaced with a constant (or piecewise
constant) drift. What follows is a more detailed outline of how to prove Theorem 1.3.

Step 1: An LDP for a modified diffusion

To start we define a diffusion with no time dependence in the drift. Let ϕ̃a,λ satisfy

dϕ̃a,λ =
β

2
(a+ 1

2 ) sin
(ϕa,λ

2

)
dt+ λdt+

sinϕa,λ
2

dt+ 2 sin
(ϕa,λ

2

)
dBt, (5.1)

with ϕ̃a,λ(0) = 2π. We prove a path large deviation principle for this diffusion on finite
time intervals. To prove this we take the following steps:

1. We can see that when ϕ̃a,λ is a multiple of 2π all of the terms vanish except for
the λdt term. From this we get that bϕ̃a,λc2π is nondecreasing when λ > 0. Define
τk = inft{ϕ̃a,λ(t) = 2π(k + 1)} − inft{ϕ̃a,λ(t) = 2πk} to be the travel time for the

interval [2πk, 2π(k+1)]. Then we will get that for all k ∈ N, τ2k
d
= τ2 and τ2k+1

d
= τ3.

We make use of the same change of variables and Girsanov arguments as the Sineβ
to get: for A < 1, then for τ = τ2, τ3 we have

Ee
λ2A
8 τ−λτ

4 (|A|∧
√

|A|)(1+β2 (a+
1
2 )) ≤ e−λH(A).

Let tA = 4K(A) and fix 0 < ε < |tA − 2π|, then

P (λτ ∈ [tA − ε, tA + ε]) ≥ C(ε, λ,A)e−λ(H(A)+
AtA
8 )−λ |A|ε

8 −λ|A|(tA+ε)(1+
β
2 (a+

1
2 )),

where lim
λ→∞

C(ε, λ,A) = 1 for fixed a, ε. See Proposition 8 in [8] for the idea of the

proof.

2. From the bounds on the τk we get the following estimates for comparing the
diffusion with a linear path: There exist a constant c so that for λ > 2 we have

e−λ
2tI(q)+λc(t+1)(I(q)+1) ≥

P (dα̃λ(t)e2π ≥ qtλ) if q > 1,

P (bα̃λ(t)c2π ≤ qtλ) if 0 < q < 1.
(5.2)

Moreover, there are absolute constants c0, c1 so that if qtλ, q and λq log q are all
bigger than c0 then

P (dϕ̃a,λ(t)e2π ≥ qtλ) ≤ e−c1λ
2t q2 log q. (5.3)

3. The bounds from the previous step may be used to derive a path deviation result
for ϕ̃a,λ.

Theorem 5.1. Fix T > 0 and let ϕ̃a,λ(t) be the process defined in (5.1). Then

the sequence of rescaled processes (
ϕ̃a,λ(t)
λ , t ∈ [0, T ]) satisfies a large deviation
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principle on C[0, T ] with the uniform topology with scale λ2 and good rate function
Jϕ̃ Path. The rate function is defined as

Jϕ̃ Path(g) =

∫ T

0

I (g′(t)) dt

in the case where g(0) = 0 and g is absolutely continuous with non-negative
derivative g′, and Jϕ̃ Path(g) = ∞ in all other cases.

Step 2: From a path deviation for ϕ̃a,λ to one for ϕa,λ

We use the path deviation on ϕ̃a,λ, together with some bounds on the behavior of the
diffusion for large t to get the following path diffusion for ϕa,λ.

Theorem 5.2. Fix β > 0 and let ϕa,λ(t) be the process defined in (1.8) with a > −1.

Then the sequence of rescaled processes (
ϕa,λ(t)
λ , t ∈ [0,∞)) satisfies a large deviation

principle on C[0,∞) with scale λ2 and good rate function JBessa,β . The rate function
JBessa,β is defined as

JBessa,β (g) =

∫ ∞

0

h2(t)I (g′(t)/h(t)) dt, with h(t) = hβ(t) = βe−
β
8 t

in the case where g(0) = 0 and g is absolutely continuous with non-negative derivative
g′. In all other cases JBessa,β (g) is defined as ∞.

1. Upper bound

Approximation 1: Truncation

Fix T > 0, the value of which will go to infinity later. Define

ϕ
(1)
a,λ = ϕa,λ(t)1(t ≤ T ) +

(
ϕa,λ(T ) + λ(e−

β
8 T − e−

β
8 t)
)
1(t > T ).

Then for T sufficiently large (not depending on λ), lim supλ→∞
1
λ2 logP (‖ϕ(1)

a,λ −
ϕa,λ‖∞ ≥ δλ) ≤ −c1Tδ2 for some constant c1 > 0. The proof of this for the bulk is
done in Proposition 13 of [8] with the exception of the very last bound used, which
bounds P (ϕa,λ(∞)− ϕa,λ(Tλ) ≥ δλ/2). This bound is replaced by Proposition 5.3
which will be given below.

Approximation 2: Piecewise constant drift

Define a piecewise constant function that approximates the function f(t) = β
8 e

− β
8 t

by
fN (t) = f(Ti/N), t ∈ [Ti/N, T (i+ 1)/N)

Suppose ϕa,λ,N (t) is a diffusion that satisfies the same SDE as ϕa,λ except where
the f(t)dt has been replaced by a fN (t)dt term. Then define

ϕ
(2)
a,λ(t) = ϕa,λ,N (t)1(t ≤ T ) + (ϕa,λ,N (T ) + λ(e−

β
8 T − e−

β
8 t)
)
1(t > T ).

Then

lim
λ→∞

1

λ2
logP (‖ϕ(1)

a,λ − ϕ
(2)
a,λ‖ ≥ δλ) ≤ −D

(
βT

8N

)2

TH
(
δ8N

βT 2

)
,

for some constant D > 0. The method of proof is the same as in [8], but the bound
used in line (56) does not hold for the ϕ̃a,λ diffusion and is replaced by Lemma 5.5
given below with C = βT

8N , t = T, q = δ/T .

EJP 23 (2018), paper 85.
Page 15/20

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/18-EJP212
http://www.imstat.org/ejp/


The random matrix hard edge: rare events and a transition

Approximation 3: Piecewise constant path

Let πMN be the projection of a path onto a piecewise linear path defined by

(πMNg)(Ti/(MN)) = bg(Ti/(MN))c2π, for t = Ti/(MN)

and linear in between these values. Define

ϕ
(3)
a,λ(t) = πMNϕa,λ,N (t)1(t ≤ T ) + (πMNϕa,λ,N (T ) + λ(e−

β
8 T − e−

β
8 t)
)
1(t > T ).

This approximation may be treated in the same manor as α(3)
λ defined in [8] for

both determining the probability of it being close to some particular path, as well
as the probability that it is close to ϕ(2)

a,λ.

2. Lower bound

The proof of the lower bound uses similar ideas. We will essentially reuse ap-
proximations ϕ(1)

a,λ and ϕ
(2)
a,λ. We show that ϕ(2)

a,λ stays close to a particular path by
making use of the path deviation result on ϕ̃a,λ. The approximation bounds to show
that this is sufficient are the same as those in the upper bound. For more on the
argument we refer the reader to [8].

Step 3: From a path deviation to the endpoint

The final step in the proof of Theorem 1.3 is to use the contraction principle to go from the
path deviation to a large deviation result on the end point. We use the existing analysis
in section 7 of [8] and a relationship between the Bessa,β and Sineβ rate functions to
draw our conclusion. Consider the JBessa,β rate function given in Theorem 5.2, we apply

the change of variables x = 1− e−
8
β t to get the modified rate function

J̃Bessa,β (g̃) = 8β

∫ 1

0

(1− x)I(g̃′(x)/8)dy

where g̃(x) = g(− 8
β log(1 − x)). The path large deviation rate function for the Sineβ

process [8] is related to this one by

J̃Bessa,β (g) = 32J̃Sine(g/8).

Lastly note that we want to optimize over g with endpoint 4πρ where in the Sineβ case
we had an endpoint of 2πρ. This gives us that IBessa,β (ρ) = 32ISine(ρ/4).

The details for step 2 part 1 approximations 1 and 2

The following proposition replaces a tail bound used for the αλ diffusion that does not
exist for the ϕa,λ diffusion because of the diffusion dependent drift terms.

Proposition 5.3. Let ϕa,λ be the diffusion defined in (1.8), T > 0 and ε > 0 fixed, then

lim
λ→∞

1

λ2
logP (ϕa,λ(∞)− ϕa,λ(Tλ) ≥ ελ) ≤ −cβTε.

where cβ is some explicitly computable constant depending only on β.

Proof. Recall that for a fixed T > 0 the diffusion ϕa,λ(t+ T ) satisfies the same stochastic

differential equation as ϕa,λ̃(t) with λ̃ = λe−
β
8 T and initial condition ϕa,λ̃(0) = ϕa,λ(T ).

In particular to study ϕa,λ(∞)− ϕa,λ(λT ) it is sufficient to study the ϕa,λ̂ diffusion with

λ̂ = λe−
β
8 λT and random initial condition in [0, 4π].
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We will start with the case a ≥ −1/2. Recall the diffusion X1 from Section 2 defined
in (2.4). We are working with the singular value process, therefore we work with a
diffusion where

√
λ has been replaced with λ. In particular we study Xλ which satisfies

dXλ(t) =

(
β

4
(−a− 1

2
) +

β

2
λe−

β
8 t coshXλ(t)

)
dt− dBt, Xλ(0) = −∞.

Notice that in order to have ϕa,λ(∞) ≥ k4π we must have that it crosses an interval of
the type [`4π − 2π, `4π] at least k times. On this interval we can do a change of variables

so this is equivalent to X1,λ` exploding for ` ≤ k where λ` is λe−
β
4 t` where t` is the hitting

time of `4π − 2π. Notice that as λ decreases the likelihood of explosion decreases, so we
may use the following bound

P (ϕa,λ(∞)− ϕa,λ(λT ) ≥ λε) ≤ P (ϕa,λ̂(∞) ≥ λε− 4π) ≤
[
P
(
Xλ̂explodes

)]b λε4π c−1

. (5.4)

In order to study the probability that Xλ̂ explodes we define Z = Xλ̂ + Bt, then Z

explodes at the same time as Xλ̂ and satisfies the differential equation

Z ′(t) = −β
4
(a+

1

2
) +

β

2
λ̂e−

β
8 t cosh(Z(t)−Bt), Z(0) = −∞.

In its integrated form we get

Z(t) = −β
4
(a+

1

2
)t+

β

2
λ̂

∫ t

0

e−
β
8 s cosh(Z(s)−Bs)ds

We now observe that cosh(Z −B) ≤ 2 coshZ coshB, therefore since the remaining drift
term is less than or equal to 0 for a ≥ −1/2 we get that

P (Z(t) crosses[−M,M ]) ≤ P

(
βλ̂

∫ ∞

0

e−
β
8 s coshZ(s) coshBs1{M≥Z(s)≥−M}ds ≥ 2M

)
≤ P

(
β

2
λ̂ coshM

∫ ∞

0

(
e−

β
8 s+Bs + e−

β
8 s−Bs

)
ds ≥ 2M

)
≤ 2P

(
β

2
λ̂ coshM

∫ ∞

0

e−
β
8 s+Bsds ≥M

)
,

where the final line comes because Bs and −Bs have the same distribution. Recall that
λ̂ = λe−

β
8 λT therefore for large λ we will get that 2M

βλ̂ coshM
is large and so it will be

enough to use the following bound:

P

(
β

4
λ̂ coshM

∫ ∞

0

e−
β
8 s+Bsds ≥ M

2

)
≤ P

(
sup
t≥0

eBt−
β
8 t ≥ 2M

βλ̂ coshM

)
.

We now observe that e
β
4Bt−

β2

42
t
2 is a martingale and so an application of Doob’s martingale

inequality and the substitution of λ̂ = λe−
β
8 λT gives us

P

(
sup
t≥0

eBt−
β
8 t ≥ 2M

βλ̂ coshM

)
= P

(
sup
t≥0

e
β
4 (Bt− β

8 t) ≥
(

2M

βλ̂ coshM

) β
4

)

≤ exp

(
−β

2

32
λT +

β

4
log λ− β

4
log

2M

β coshM

)
. (5.5)

Putting the bound from (5.5) into the bound in (5.4) completes the proof of the proposition
for a ≥ −1/2. For a < −1/2 we may do a similar analysis using the X2 diffusion in
(2.5).
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We now focus on the second approximation ϕ
(2)
a,λ(t). Observe that the diffusion

ψ
(N)
a,λ (t) = ϕa,λ,N (t)−ϕa,λ(t) that appears will be stochastically dominated by an diffusion

that satisfies the SDE

dψ̃λ,λ̃ =
β

2
(a+ 1/2)Im

[
ei
ϕa,λ

2

(
e−i

ψ̃
λ,λ̃
2 − 1

)]
dt+

1

2
Im
[
eiϕa,λ

(
e−iψ̃λ,λ̃ − 1

)]
dt

+ λ̃dt+ Im

[
ei
ϕa,λ

2

(
e−i

ψ̃
λ,λ̃
2 − 1

)]
dBt, (5.6)

with initial condition ψ̃(0) = 0 for λ̃ = λ βT8N . To prove that ψ̃λ,λ̃ has the desired behavior
we need to revert to working with the times it takes the diffusion to travel increments of
the form [2πk, 2π(k + 1)]. In particular we can show:

Proposition 5.4. Let σk = inft{ψ̃λ̃,λ(t) = 4π(k + 1)} − inft{ψ̃λ̃,λ(t) = 4πk} and fix A <

0, T > 0 and 0 < δ < 1/4, then there exist constants C1 and C2 depending only on T, δ
and A such that for λ̃ ≥ 1

Ee8(1+2δ)2λ̃2Aσk−2λ̃(1+2δ)σk(|A|∧
√

|A|)(2+8δ) ≤ e−8λ̃(1+2δ)H(A) + C1e
−C2λ

2(T+1/T ). (5.7)

Following the proof of Lemma 10 in [8] this can be used to show the following bound.

Lemma 5.5. Let ψ̃λ̃,λ be defined as in (5.6) with λ̃ = Cλ for some constant C, then for

q > C there exists a constant D > 0 so that for λ̃ > 2 we have

lim
λ→∞

1

λ2
logP

(
bψ̃λ̃,λ(t)c4π ≥ qtλ

)
≤ −DC2tH(q/C).

These two propositions are the only major changes needed to adapts the proof of the
large deviation result for Sineβ given in [8] to the Bessa,β process.

Sketch of proof of Proposition 5.4. The proof of the jump time bound for σk is done
through a coupling argument. Let Tk = σ1 + · · ·+ σk−1, we make the change of variables
ψ̃λ̃,λ(Tk + t) = 8 arctan(eY (t)) on the interval [4πk, 4π(k + 1)). We get that (dropping the
subscripts) Y satisfies the stochastic differential equation

dY =
λ̃

4
coshY dt− 1

8
tanhY dt− β

4
(a+ 1

2 )
[
sin
(ϕ
2

)
sech Y − cos

(ϕ
2

)
tanhY

]
dt

− 1

8

[
2 cosϕ sech 2Y tanhY + 2 sinϕ sech Y tanh2 Y − cosϕ tanhY

]
dt

+
1

2

[
sin
(ϕ
2

)
sech Y − cos

(ϕ
2

)
tanhY

]
dBt.

with initial condition Y (0) = −∞ and Y explodes at the hitting time σk. These oscillatory
integrals are not the same as the ones that appear in Proposition 2.2, but they are
amenable to the same type of analysis. We can check that the quadratic variation of this
process is

d[Y ]t =
1

8
dt+

1

8

[
2 cosϕ tanhY + 2 sinϕ sech Y tanhY − cosϕ

]
dt.

Let OscY,t denote the finite variation terms involving sin(cϕ) or cos(cϕ). We can check

that P (|
∫ T
0
OscY,tdt| ≥ δ) ≤ exp

[
−Cδ2λ2/T

]
for some constant C. For convenience we

write
1

2

[
sin
(ϕ
2

)
sech Y − cos

(ϕ
2

)
tanhY

]
dBt =

1

2

[ 1√
2
+ g(Y, ϕ)

]
dBt.
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Let Wt =
∫ t
0
g(Y, ϕ)dBs and consider the diffusion Ŷ given by Ŷt = Yt −Wt. Then

dŶ =
λ̃

4

(
cosh Ŷ coshWt − sinh Ŷ sinhWt

)
dt+

1

2
√
2
dBt −

1

8
tanhY dt+ OscY,tdt

with Ŷ (0) = −∞. Notice that Wt is finite almost surely, and so Ŷ explodes at the same
time as Y . This explosion time is σk. Therefore proving bounds on the explosion time of
Ŷ is enough.

We can choose δ small enough, so that we get Z−
t ≤ Ŷt ≤ Z+

t where

dZ± =
λ̃

4
(1± 2δ) coshZ±dt± ( 18 + δ)dt+

1

2
√
2
dBt Z±(0) = −∞. (5.8)

The explosion time of Ŷt will be bounded between the explosion times of Z± (on the set
where the oscillatory integrals are small). Now the Z± diffusions may be treated using
the same methods as Proposition 8 in [8].
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