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Abstract

We establish a uniform Hausdorff dimension result for the inverse image sets of
real-valued strictly α-stable Lévy processes with 1 < α ≤ 2. This extends a theorem
of Kaufman [11] for Brownian motion. Our method is different from that of [11] and
depends on covering principles for Markov processes.
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1 Introduction

LetX = {X(t), t ≥ 0,Px} be a real-valued strictly α-stable Lévy process with α ∈ (0, 2].
Its characteristic exponent is given by, for ξ ∈ R,

− logE0[eiξX(1)] =

{
σα|ξ|α

(
1− iβ tan πα

2 sgnξ
)
, if α 6= 1;

σ|ξ|, if α = 1

with some constants σ > 0 and β ∈ [−1, 1] which are respectively the scale parameter
and the skewness parameter. Throughout log = loge denotes the natural logarithm.
Notice that, in the case of α = 1, X is a symmetric Cauchy process. When α = 2, X is
a (scaled) Brownian motion. For 0 < α < 2, X shares the properties of self-similarity,
independence and stationarity of increments, with Brownian motion, but it has heavy-
tailed distributions and its sample functions are discontinuous. As such, stable Lévy
processes form an important class of Markov processes. Many authors have studied the
asymptotic and sample path properties of Lévy processes. We refer to the monographs
[2] and [21] for systematic accounts on Lévy processes, and to [24, 26] for information
on their fractal properties.

This note is concerned with a uniform Hausdorff dimension result, Theorem 1.1, for
the inverse images of real-valued strictly α-stable Lévy processes and is motivated by
the following results of Hawkes [8] and Kaufman [11].
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Inverse images of stable Lévy processes

Hawkes [8] considered the Hausdorff dimension of the inverse image X−1(F ) = {t ≥
0 : X(t) ∈ F} and proved that if 1 ≤ α ≤ 2 and F ⊆ R is a fixed Borel set, then for every
x ∈ R,

dimH X−1(F ) = 1− 1

α
+

dimH F

α
, Px-a.s. (1.1)

Here dimH denotes Hausdorff dimension; see Falconer [6], or [24, 26] for the definitions
and properties of Hausdorff measure and Hausdorff dimension.

Note that the null event on which (1.1) does not hold depends on F . It is natural to
ask if the following uniform Hausdorff dimension result holds: For every x ∈ R,

Px

(
dimH X−1(F ) = 1− 1

α
+

dimH F

α
for all Borel sets F ⊆ R

)
= 1. (1.2)

Such a result, when it is valid, is more useful than (1.1) because, outside of a single null
event, the dimension formula holds not only for all deterministic Borel sets F ⊂ R but
also for random sets F that depend on the sample path of X.

We claim that, in the case 0 < α < 1, there is no uniform result like (1.2). This is
because X−1(F ) = ∅ Px-a.s. if dimH F < 1− α. The referee has asked us the following
question that complements the aforementioned claim:1 For every x ∈ R, does

Px

(
dimH X−1(F ) = 1− 1

α
+

dimH F

α
for all F ∈ C

)
< 1? (1.3)

Here C is the family of all deterministic Borel sets F ⊂ R with dimH F ≥ 1−α. To answer
this question, we first recall Theorem 2 of Hawkes [8] : If 0 < α < 1 and F ⊂ R is
deterministic and satisfies dimH F ≥ 1− α, then

(i) For every x ∈ R,

sup
{
θ : Px

(
dimH X−1(F ) ≥ θ

)
> 0

}
= 1− 1

α
+

dimH F

α
. (1.4)

(ii) If x ∈ F ∗ (see [8, p.93] for the notation), then

Px

(
dimH X−1(F ) = 1− 1

α
+

dimH F

α

)
= 1. (1.5)

(iii) If F\F ∗ is polar, then for every x ∈ R,

Px

(
dimH X−1(F ) = 1− 1

α
+

dimH F

α

∣∣∣X−1(F ) 6= ∅
)

= 1. (1.6)

The answer to the referee’s question is “yes" because we can choose a Borel set F ∈ C
such that F\F ∗ is polar for X (cf. [8, p.96]), then it follows from Hawkes’ result (iii) that
for any x ∈ R the probability in (1.3) is not more than

Px

(
dimH X−1(F ) = 1− 1

α
+

dimH F

α

)
= Px

(
X−1(F ) 6= ∅

)
< 1.

Motivated by the referee’s question and Hawkes’ result (1.5), one may further ask
to characterize the family G of deterministic Borel sets F such that for some x ∈ R

(depending on G),

Px

(
dimH X−1(F ) = 1− 1

α
+

dimH F

α
for all F ∈ G

)
= 1. (1.7)

1We thank the anonymous referee for this interesting question. SinceX−1(F ) = ∅Px-a.s. if dimH F < 1−α,
we have modified slightly the referee’s question.
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Inverse images of stable Lévy processes

This question seems to be rather nontrivial. We can imagine that (1.7) may hold for
certain family of self-similar sets on R, but this goes beyond the scope of the present
paper.

Our objective of this paper is to study the uniform dimension problem (1.2) for
1 ≤ α ≤ 2. The validity of (1.2) in the case α = 2 (X is a Brownian motion) is due
to Kaufman [11]. His proof relies on the uniform modulus of continuity of Brownian
motion as well as the Hölder continuity of the Brownian local time in the time variable.
For 1 ≤ α < 2, the sample paths of an α-stable Lévy process are discontinuous, hence
Kaufman’s method is not applicable.

In the special case of F = {z}, it follows from Barlow et al [1, (8.7)] that if 1 < α ≤ 2

then

Px
(
dimH X−1(z) = 1− 1

α
for all z ∈ R

)
= 1. (1.8)

This gives a uniform Hausdorff dimension result for the level sets of X. However, for
1 ≤ α < 2, it had been an open problem to prove (1.2) for all Borel sets F ⊆ R; see [26,
Sec. 8.2] for a discussion.

In this note, we verify (1.2) by proving the following theorem.

Theorem 1.1. Let X be a real-valued strictly α-stable Lévy process with 1 < α ≤ 2. For
every x ∈ R, (1.2) holds.

As mentioned above, the case of α = 2 has already been proved by Kaufman [11]
whose proof relies on special properties of Brownian motion. Our proof of Theorem 1.1
provides an alternative proof of his theorem.

The proof is split naturally into the upper bound part and lower bound part. To show
the upper bound, we design a new covering principle (see Lemma 2.2 below) for the
inverse images of recurrent processes (thus it is applicable to α = 1). This covering
lemma constitutes the key technical contribution of the present paper, and we expect
it to be useful for other discontinuous Markov processes. Note that Lemma 2.2 in this
paper is different from the covering lemma of [22, Lemma 2.2], which is only applicable
to transient Markov processes (see Remark 2.3 in Section 2 of this paper). To prove the
lower bound in (1.2), we make use of the uniform modulus of continuity (in time) of the
maximum local time of X due to Perkins [18], together with a covering principle for the
range of X in [10, 26, 22]. Since X has no local time when α = 1, the proof of the lower
bound in Theorem 1.1 is valid only for 1 < α ≤ 2. We think that (1.2) holds for α = 1 as
well, but have not been able to give a complete proof.

2 Proof of the upper bound

In this section we assume that 1 ≤ α ≤ 2. We will show that

Px

(
dimH X−1(F ) ≤ 1− 1

α
+

dimH F

α
for all Borel sets F ⊆ R

)
= 1. (2.1)

For any Borel set B, we denote by TB the first hitting time of B by the process X. We
state an asymptotic result due to Port [19, Thm. 2 and Thm. 4] on the first hitting time
of compact sets by recurrent strictly stable processes, see [20, Thm. 22.1] for similar
results in a more general setting. Note that when 1 ≤ α ≤ 2, X is recurrent by the
Chung-Fuchs criterion ([20, Thm. 16.2]), and any nonempty set has positive capacity, so
the condition in [20, Thm. 22.1] is satisfied.

Lemma 2.1. (1). If 1 < α ≤ 2, then for any bounded interval B and any x ∈ R,

Px(TB > t) ∼ LB(x)t
−1+ 1

α , as t → ∞,
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Inverse images of stable Lévy processes

where LB(x) is bounded from above on compact sets and is positive for x 6∈ B, the
closure of the set B. Here, f(t) ∼ g(t) means limt→∞ f(t)/g(t) = 1.

(2). If α = 1, then for any bounded interval B and any x ∈ R,

Px(TB > t) ∼ LB(x)

log t
, as t → ∞,

where LB(x) is bounded from above on compact sets and is positive for x 6∈ B.

The main tool to obtain our upper bound is the following covering lemma. Before
stating this lemma, we introduce some notation. Let Un be any partition of R with
intervals of length 2−n and Dn be any partition of R+ with intervals of length 2−nα. The
choices of partitions have no effect on the result.

Lemma 2.2. Let 1 ≤ α ≤ 2. Let δ > α− 1 and T > 0. Px-a.s., for all n large enough and
every U ∈ Un, X−1(U) ∩ [0, T ] can be covered by 2 · 2nδ intervals from Dn.

Proof. (1) Suppose first 1 < α ≤ 2. For a fixed interval U ∈ Un, write U = (z− 2−n

2 , z+ 2−n

2 )

for some z ∈ R. Let τ0 = 0 and, for all k ≥ 1, define

τk = inf

{
s > τk−1 + 2−nα : |X(s)− z| < 2−n

2

}
,

with the convention that inf ∅ = ∞. It is clear that X−1(U) ⊂
⋃∞

i=0[τi, τi + 2−nα], which
implies that

{τk ≥ T} ⊂
{
X−1(U) ∩ [0, T ] can be covered by k intervals of length 2−nα

}
.

Therefore,{
X−1(U) ∩ [0, T ] cannot be covered by k intervals of length 2−nα

}
⊂ {τk < T} .

Note by spatial homogeneity and scaling, we have that

Px

(
inf

2−nα≤s≤T
|X(s)− x| ≤ 2−n

)
= P0

(
inf

1≤s≤T2nα
|X(s)| ≤ 1

)
:= pn.

Due to the right continuity of the sample paths, we have X(τk−1) ∈ U as τk−1 < T . By
the strong Markov property, we obtain

Px(τk < T ) = Px(τk < T |τk−1 < T )Px(τk−1 ≤ T )

≤ sup
y∈U

Py

(
inf

2−nα≤s≤T
|X(s)− z| ≤ 2−n/2

)
Px(τk−1 ≤ T )

≤ sup
y∈U

Py

(
inf

2−nα≤s≤T
|X(s)− y| − |y − z| ≤ 2−n/2

)
Px(τk−1 ≤ T )

≤ sup
y∈U

Py

(
inf

2−nα≤s≤T
|X(s)− y| ≤ 2−n

)
Px(τk−1 ≤ T )

= pn · Px(τk−1 ≤ T ).

By induction, we obtain
Px(τk < T ) ≤ pkn.

Next we show that there exists a constant cT such that pn ≤ 1− cT 2
−nα(1− 1

α ). By the
independence of increments and the fact that X(1) is supported on R ([23, Thm. 1]),

1− pn ≥ P0(2 ≤ X(1) ≤ 3, inf{t ≥ 1 : X(t)−X(1) ∈ [−4,−1]} ≥ T2nα)

≥ cP0(T[−4,−1] ≥ T2nα).

ECP 23 (2018), paper 75.
Page 4/10

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/18-ECP180
http://www.imstat.org/ecp/


Inverse images of stable Lévy processes

Lemma 2.1 implies that

1− pn ≥ cT 2
−nα(1− 1

α ),

as desired. For n,K ≥ 1, define the event Aδ
n by{

∃U ∈ Un ∩ [−K,K], s.t. X−1(U) ∩ [0, T ]}
cannot be covered by 2nδ intervals of length 2−nα

}
.

Here U ∈ Un ∩ [−K,K] means that U ∈ Un and U ⊂ [−K,K]. We have for δ > α− 1,

∞∑
n=1

Px(Aδ
n) ≤

∞∑
n=1

]{U ∈ Un : U ∩ [−K,K] 6= ∅}(pn)2
nδ

≤ 2K

∞∑
n=1

2n(1− cT 2
−nα(1− 1

α ))2
nδ

≤ 2K

∞∑
n=1

exp
(
n(log 2)− cT 2

n(δ−α+1)
)
< ∞.

Since any interval of length 2−nα is covered by two intervals from Dn, the conclusion for
all U ⊂ [−K,K] follows from the Borel-Cantelli Lemma. Letting K → ∞ completes the
proof.

(2) Now consider α = 1. The proof of this case is basically the same as that of Part
(1), except that 1− pn ≥ cT /n by Lemma 2.1.(2), and

∞∑
n=1

Px(Aδ
n) ≤ 2K

∞∑
n=1

exp(n(log 2)− cT 2
nδ/n) < ∞.

We omit the details.

Remark 2.3. As is said in the Introduction, the covering principle in [22, Lemma 2.2] is
not applicable here. Intuitively, a recurrent process visits a fixed interval infinitely often,
hence we could not expect that the inverse images could be covered by finite number of
intervals. Mathematically, the condition in [22] is

Px

(
inf

tn≤t<T
|X(s)− x| ≤ rn

)
≤ Krδn

for some δ, p > 0 and
∑∞

n=1 r
p
n < ∞, which is not satisfied for recurrent Markov processes.

Let us prove the upper bound (2.1).

Proof of Theorem 1.1: upper bound. We first consider the case 1 < α ≤ 2. For any Borel
set F , let θ > dimH F and δ > α − 1. Then there exists a sequence of intervals {Ui} of
length 2−ni such that

F ⊂
∞⋃
i=1

Ui and
∞∑
i=1

2−niθ < 1.

Fix a T > 0 for now. By Lemma 2.2, each X−1(Ui) ∩ [0, T ] can be covered by 2 · 2niδ

intervals {Ii,k} (of length 2−niα) in Dni
, thus we see that

X−1(F ) ∩ [0, T ] ⊂
∞⋃
i=1

2·2niδ⋃
k=1

Ii,k.
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Inverse images of stable Lévy processes

Moreover, let d = (θ + δ)/α,

∞∑
i=1

2·2niδ∑
k=1

[diam(Ii,k)]
d = 2 ·

∞∑
i=1

2niδ2−niαd = 2 ·
∞∑
i=1

2−niθ < 2.

This proves dimH X−1(F ) ∩ [0, T ] ≤ d. Letting θ ↓ dimH F , δ ↓ (α − 1) and T ↑ ∞ yields
the desired upper bound.

Now we consider the case of α = 1. One could repeat the argument above and use
Lemma 2.2 to get the desired conclusion. Here we present an alternative argument. It
follows from Hawkes and Pruitt [10] (see also [22]) that the following uniform dimension
result holds:

Px (dimH X(E) = dimH E for all Borel E ⊂ R+) = 1. (2.2)

For any Borel set F ⊂ R, let E = X−1(F ). Then X(E) ⊆ F . On the event in (2.2),
we have dimH E = dimH X(E) ≤ dimH F . Hence, Px(dimH X−1(F ) ≤ dimH F for all
F ⊂ R) = 1.

3 Proof of the lower bound

We assume that 1 < α ≤ 2. It follows from Kesten [12] and Hawkes [9] that X hits
points and has local times {Lx

t , t ≥ 0, x ∈ R}. The local times characterize the sojourn
properties of X via the occupation density formula: For all t ≥ 0 and all Borel measurable
function f : R→ R, ∫ t

0

f(X(s))ds =

∫
R

f(x)Lx
t dx.

Moreover, there is a version of the local times, still denoted by {Lx
t , t ≥ 0, x ∈ R}, which

is jointly continuous in (t, x); see e.g., [2, 16].
We use the Hölder continuity of the local times of X to prove the uniform lower bound

for the inverse image sets. This approach has been previously used by Kaufman [11],
which was extended by Monrad and Pitt [17] in their study of inverse images of recurrent
Gaussian fields. In both articles, the uniform modulus of continuity of the sample paths
were used. Since the sample paths of the α-stable Lévy process X are discontinuous, we
will apply a covering principle in [26, 22] for the range of X. Denote Cn any partition
of R+ of intervals of length 2−n. We recall here the covering principle, tailored to our
situation.

Lemma 3.1. Let 0 < γ < 1
α . There exists a finite positive integer K, such that Px-a.s.,

for all n large enough, X(I) can be covered by K intervals of diameter 2 · 2−nγ , for all
I ∈ Cn.

Proof. It suffices to verify condition (2.1) in the statement of [22, Lem. 2.1], namely,
there exist δ > 0 and K0 < ∞ such that

Px
(

sup
0≤s≤2−n

|X(s)− x| ≥ 2−nγ
)
≤ K02

−nδ.

By spatial homogeneity and scaling, the probability above is equal to

P0
(

sup
0≤s≤1

|X(s)| ≥ 2n(
1
α−γ)

)
,

which, by [4, Thm. 5.1], is bounded from above by 2−nδ with δ = 1− γα, as desired.
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Inverse images of stable Lévy processes

Let L∗([s, t]) = supx∈R(L
x
t − Lx

s ) be the maximum local time of X on [s, t]. We recall
now the following result due to Perkins [18] on the uniform modulus of continuity (in
time) of the maximum local time of a strictly α-stable Lévy processX with index α ∈ (1, 2].

Lemma 3.2. There exists a finite positive constant c1 such that

lim sup
r→0

sup
|s−t|<r
0≤s<t≤1

L∗([s, t])

r1−
1
α (log 1/r)

1
α

= c1, Px-a.s. (3.1)

We refer to Ehm [5, Thm. 2.1] or Khoshnevisan, Zhong and Xiao [13, Thm. 4.3] for
related results; and to Marcus and Rosen [14, 15, 16] for more sample path properties
(in the space variable) of the local times of symmetric Markov processes.

We are ready to give the proof of the lower bound in Theorem 1.1.

Proof of Theorem 1.1: lower bound. It suffices to consider compact set F . For any com-
pact F ⊂ R and ε > 0, by Frostman’s lemma (cf. [6]) there exists a probability measure µ

supported on F such that µ(B) ≤ |diam(B)|dimH F−ε for any interval B ⊂ R with |B| ≤ 1.
Define the random measure λ by

λ([a, b]) =

∫
R

(Lx
b − Lx

a)µ(dx) for 0 ≤ a ≤ b. (3.2)

It is clear that λ(dt) is supported on X−1(F ) ⊂ R+, λ(R+) > 0, and

λ([a, b]) ≤ L∗([a, b])µ(X([a, b])).

Let n be sufficiently large, we have by Lemma 3.2 that

L∗([a, a+ 2−n]) ≤ 2−n(1− 1
α−ε)

uniformly for a ∈ [0, 1−2−n]. On the other hand, by Lemma 3.1, there exist a sequence of
intervals {Ii}1≤i≤K of length 2−nγ with γ < 1/α such that the closure of X([a, a+ 2−n])

is covered by the union of Ii, therefore,

µ(X([a, a+ 2−n])) ≤
K∑
i=1

µ(Ii) ≤ K2−nγ(dimH F−ε). (3.3)

We thus obtain

λ([a, a+ 2−n]) ≤ K2−n(1− 1
α+γ dimH F−2ε).

It follows that λ(B) ≤ diam(B)1−
1
α+γ dimH F−2ε for all Borel sets B with sufficiently small

diameter. This and Frostman’s lemma imply that

Px

(
dimH X−1(F ) ≥ 1− 1

α
+ γ dimH F − 2ε for all compact Borel F

)
= 1.

Letting γ ↑ 1
α , then ε ↓ 0 yields the desired lower bound for dimH X−1(F ). This finishes

the proof of Theorem 1.1.

4 Concluding remarks

This note raises several interesting questions for further investigation. In the follow-
ing, we list three of them and discuss briefly the main difficulties. Solutions of these
questions will require developing new techniques for Lévy processes.
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Inverse images of stable Lévy processes

(i). As having mentioned in the Introduction, we think that Theorem 1.1 holds for α = 1.
However, without a local time, it is not clear to us how to construct a random Borel
measure supported on X−1(F ) such that Frostman’s lemma is applicable.

(ii). In [20, Thm. 22.1], the asymptotic result for the hitting times was obtained for
recurrent Lévy processes with regularly varying λ-potential densities, see also
the recent development by Grzywny and Ryznar [7]. Our method for proving the
upper bound of dimH X−1(F ) is still applicable if the characteristic exponent of X
is regularly varying at zero with index α ∈ (1, 2]. On the other hand, by modifying
the methods in Ehm [5], Khoshnevisan, Zhong and Xiao [13, Thm. 4.3], we can
prove an upper bound for the uniform modulus of continuity in the time variable for
the maximum local time as the one in Lemma 3.2 for Lévy processes with regularly
varying exponent α ∈ (1, 2]. Hence, Theorem 1.1 is valid for Lévy processes with
regularly varying exponent α ∈ (1, 2]. We believe that a similar result also holds for
a large class of more general Markov processes including stable jump diffusions,
stable like processes and Lévy-type processes as considered in [22]. However,
proving such a result would require establishing first the asymptotic results for the
hitting times and local times of these Markov processes. This is pretty challenging
and goes well beyond the scope of the present paper. We will try to tackle this in a
subsequent paper.

(iii). It is natural to expect that the packing dimension analogue of Theorem 1.1 also
holds. Namely, if X is a real-valued strictly α-stable Lévy process with 1 ≤ α ≤ 2,
then for any x ∈ R one has

Px

(
dimP X−1(F ) = 1− 1

α
+

dimP F

α
for all Borel sets F ⊆ R

)
= 1. (4.1)

Here dimP denotes packing dimension; see Falconer [6, Chapter 3] for its definition
and properties, and [24, 26] for examples of its applications in studying sample
path properties of Markov processes.

By using the connection between packing dimension and the upper box-counting
(Minkowski) dimension (cf. [6]), one can see that the proof of the upper bound of
Theorem 1.1 also implies that Px-a.s.,

dimP X−1(F ) ≤ 1− 1

α
+

dimP F

α
for all Borel sets F ⊆ R.

In order to prove the reverse inequality, one may apply the lower density theorem
for packing measure in [25, Theorem 5.4] and prove that for any γ < 1/α and ε > 0,

sup
a∈X−1(F )

lim inf
r→0

λ([a, a+ r])

r1−α−1+γ dimP F−2ε
≤ c2 < ∞,

where λ is the random measure defined in (3.2) and c2 is a finite constant. We are
not able to prove this because (unlike the Hausdorff dimension case) the terms
µ(Ii) in (3.3) can not be controlled for all i by the same n.
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