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Abstract

We obtain a stochastic differential equation (SDE) satisfied by the first n coordinates of
a Brownian motion on the unit sphere in Rn+`. The SDE has non-Lipschitz coefficients
but we are able to provide an analysis of existence and pathwise uniqueness and show
that they always hold. The square of the radial component is a Wright-Fisher diffusion
with mutation and it features in a skew-product decomposition of the projected
spherical Brownian motion. A more general SDE on the unit ball in Rn+` allows
us to geometrically realize the Wright-Fisher diffusion with general non-negative
parameters as the radial component of its solution.
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1 Introduction and main results

The Theorem of Archimedes [2] states that the projection π1 from the unit sphere
S2 ⊂ R3 to any coordinate (inR3) preserves the uniform distribution; see [1] and the refer-
ences therein for a very modern account or [11] for one with more probabilistic insight. In
probabilistic language, if U (2) is a uniform random vector on S2, then π1(U (2)) is uniform
on [−1, 1]. In fact, this holds in any dimension d ≥ 3: for a uniform random vector U (d−1)

on the Euclidean unit sphere Sd−1 :=
{
z ∈ Rd ; |z| = 1

}
, its projection πd−2(U

(d−1)) onto
any d− 2 coordinates is uniform on the unit ball Bd−2 :=

{
z ∈ Rd−2 ; |z| ≤ 1

}
. A more

general version of this result for spheres in the p-norm can be found in [4].
Since the uniform distribution on Sd−1 is the invariant measure for Brownian motion

on the sphere, it is natural to investigate the process obtained by projecting it to the
ball Bd−2. Such a process ought to have a uniform distribution on Bd−2 as its invariant
measure. The aim of this paper is to give a complete characterization of such processes
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Projections of spherical Brownian motion

in terms of SDEs they satisfy and to deduce certain structural consequences of this
characterisation.

Let Z be Brownian motion on the sphere Sn+`−1 (n, ` ∈ N); although this is an
instance of a Brownian motion on a Riemannian manifold, we will just use the Stroock
representation (in Itô form) and consider it as the solution of an equation

dZt = (I − ZtZ
>
t )dB̃t −

n+ `− 1

2
Ztdt, Z0 ∈ Sn+`−1, (1.1)

where B̃ a Brownian motion on Rn+` and I denotes the identity matrix of appropriate
dimension (cf. [9, Ch.3§3, p. 83]).

Proposition 1.1. Let X denote the first n coordinates of Z. Then, there exists a
Brownian motion B on Rn such that the pair (X,B) satisfies the SDE

dXt = σ(Xt)dBt −
n+ `− 1

2
Xtdt, X0 ∈ Bn,

where the volatility matrix σ(x) takes the form

σ(x) = I −
(
1−

√
1− |x|2

)
xx>

|x|2
1(|x| > 0), x ∈ Bn.

Pathwise uniqueness holds for this SDE and X is a strong Markov process with a unique
invariant measure which admits the density

h(x) =
Γ((n+ `)/2)

πn/2Γ(`/2)

(
1− |x|2

)(`−2)/2

1(|x| ≤ 1).

Furthermore, U = |X|2 is a Wright-Fisher diffusion, i.e. there exists a scalar Brownian
motion β such that the pair (U, β) satisfies the SDE

dUt = 2
√
Ut(1− Ut)d βt + [n(1− Ut)− `Ut] dt.

Remark 1.2. In the case ` = 2, the invariant measure of X in Proposition 1.1 is uniform
on the unit ball Bn, as expected from the theorem of Archimedes.

Remark 1.3. The process X enjoys a skew-product decomposition analogous to the one
of Brownian motion in Rn; it is a particular case of Theorem 1.5 below.

Remark 1.4. Since σ(x) is the unique non-negative definite square root of the matrix
I − xx> for x ∈ Bn, the SDE for the projected process X implies that its infinitesimal
generator equals

1

2

n∑
i,j=1

(δij − xixj)
∂2

∂xi∂xj
−

n∑
i=1

n− 1 + `

2

∂

∂xi
.

This operator equals the generator 1
2∆n−1+`,n of a process considered in [3]. Our results

show that the martingale problem arising from this generator is well-posed.

More generally, and in order to state the skew-product decomposition, we will
consider the SDE on the unit ball Bn given by

dXt = γ(|Xt|)σ(Xt)dBt − g(|Xt|)Xtdt, (1.2)

with starting point X0 = x0 ∈ Bn. Assume that γ : [0, 1] → (0,∞) and g : [0, 1] → R are
Lipschitz continuous1 and satisfy g(1)

γ2(1) ≥
n−1
2 . In particular, the above SDE extends the

projected process X of Proposition 1.1 to non-integer dimensions. The coefficients of

1Note that by Lipschitz continuity of the euclidean norm |·|, functions γ(|·|) and g(|·|) are also Lipschitz.
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Projections of spherical Brownian motion

SDE (1.2) are bounded and continuous implying that weak existence holds (see e.g. [10,
Ch. IV, Thm 2.2]). The function σ is locally Lipschitz only on the interior of the ball Bn,
making it impossible to apply the classical theory for the uniqueness of solutions of SDEs
(note that we do not exclude the cases when either X0 ∈ Sn−1 or the boundary sphere
is reached in finite time). The condition g(1)

γ2(1) ≥ n−1
2 turns out to be necessary for a

solution to stay in the unit ball. In fact, if g(1)
γ2(1) =

n−1
2 and X0 ∈ Sn−1, the solution X is a

Brownian motion on Sn−1 time-changed by t 7→ γ2(1)t.
The radial component R := |X| of a solution X of SDE (1.2) and its square U := |X|2

are the unique strong solutions of the respective SDEs in (2.3) and (2.1) below; the
latter reduces to the SDEs of Wright-Fisher diffusion with mutation in the setting of
Proposition 1.1. In particular, both processes are strong Markov. After a time-change,
a pathwise comparison of U with a Wright-Fisher diffusion implies that for n ≥ 2 the
process X never hits 0 (see Lemma 2.1 in Section 2 below). This enables us to define

a time-change process Ss(t) :=
∫ t

s
γ2(Ru)

R2
u

du, satisfying lim
t→∞

Ss(t) = ∞, and its inverse

Ts : [0,∞) → [s,∞) (see Lemma 2.3 below). Moreover, it turns out that X possesses a
skew-product decomposition analogous to the one of Brownian motion on Rn.

Theorem 1.5 (Skew-product decomposition). Let n ≥ 2 and X be a solution of SDE (1.2).
Pick s ∈ R+ := [0,∞) and assume that either s > 0 or s = 0 and X0 6= 0. Then the
process V̂ = (V̂t)t∈R+

, given by V̂t := XTs(t)/RTs(t), is a Brownian motion on Sn−1 (started

at V̂0 = Xs/Rs) independent of R. Hence we obtain the skew-product decomposition
Xt = RtV̂Ss(t) for t ≥ s. Furthermore, if X0 = 0, then V̂t is uniformly distributed on Sn−1

for any t > 0 and subsequently evolves as a stationary Brownian motion on the sphere.

Since the skew-product decomposition expresses X as a measurable functional of a
pair of independent processes (R, V̂ ) with given distributions, the following result holds.

Corollary 1.6. Uniqueness in law holds for SDE (1.2).

The pathwise uniqueness of SDE (1.2) is more delicate because σ is not Lipschitz
at the boundary of the ball Bn. Since σ is locally Lipschitz, pathwise uniqueness holds
up to the first hitting time of the boundary by well established arguments. Hence,
if g(u)

γ2(u) ≥ n−1
2 + 1 holds for u sufficiently close to one, |X0| < 1, and X never visits

the boundary of Bn, then pathwise uniqueness holds. If g(1)
γ2(1) = n−1

2 , X behaves as

time-changed Brownian motion on Sn−1 after the first time it hits the boundary and
hence pathwise uniqueness also holds in this case. If n = 1, the SDE (1.2) simplifies
to dX1

t = γ(
∣∣X1

t

∣∣)√1− (X1
t )

2dBt − g(
∣∣X1

t

∣∣)X1
t dt and pathwise uniqueness holds by a

theorem of Yamada and Watanabe [12, IX.3.5]. Pathwise uniqueness of the similar
looking equation dXt = γ(|Xt|)(1− |Xt|2)1/2dBt − g(|Xt|)Xtdt on Bn, where γ and g are
positive Lipschitz function and g(1)

γ2(1) is sufficiently large, was established by DeBlassie [7]
by a clever generalisation of the idea in [13]. Note that the diffusion coefficient in the
SDE (1.2) depends on x and not just on its length |x|, making it impossible to apply the
result of [7]. However, it is possible to adapt the method of [7] to our setting and obtain:

Theorem 1.7. If g(1)
γ2(1) −

n−1
2 >

√
2− 1

.
= 0.4142, then pathwise uniqueness holds for the

SDE (1.2).

The remaining cases, when n ≥ 2 and g(1)
γ2(1) −

n−1
2 ∈ (0,

√
2− 1], are left open.

2 Characterization of the projected process

We are interested in the process consisting of the first n coordinates of Brownian
motion on the sphere Sn−1+`. One way of constructing such a Brownian motion is via
the Stroock representation, i.e. a solution to the SDE (1.1). Note that coefficients of
SDE (1.1) are locally Lipschitz continuous, so pathwise uniqueness holds.
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Projections of spherical Brownian motion

In the following proof as well as in the rest of the paper superscripts will denote
components of vectors, e.g. Xi means i-th component of process X. When we wish to
express powers we will enclose variables in additional sets of parentheses.

Proof of Proposition 1.1. Let X ′ denote last ` coordinates of Z and similarly split B̃ =

(B̃1, B̃2). We claim that the process B given by the equation

Bt =

∫ t

0

σ(Xs)dB̃
1
s +

∫ t

0

(
−XsX

′
s
>
(1− |Xs|2)−1/21(|Xs| < 1) +Xsz

>1(|Xs| = 1)
)
dB̃2

t ,

where z ∈ S`−1 is an arbitrary (fixed) unit vector, is an n-dimensional Brownian motion.

Note that |X ′
t|
2
= |Zt|2−|Xt|2 = 1−|Xt|2. Furthermore, let us consider the n× (n+ `)

matrix

At :=
[
σ(Xt),−XtX

′
t
>
(1− |Xt|2)−1/21(|Xt| < 1) +Xtz

>1(|Xt| = 1)
]
=:
[
σ(Xt), Dt

]
.

The choice of the constant vector z in the definition of At will turn out not to be relevant
as we will see that the time spent by X at the boundary of the ball has Lebesgue measure
zero. We can compute σ(Xt)

2 = σ(Xt)σ(Xt)
> = I − XtX

>
t and DtD

>
t = XtX

>
t , so it

follows that AtA
>
t = σ(Xt)σ(Xt)

> +DtD
>
t = I. Since B is defined by Bt =

∫ t

0
AsdB̃s and

it is a continuous local martingale with quadratic variation 〈Bi, Bj〉t =
∫ t

0
(AsA

>
s )ijds =

δijt, it is n-dimensional Brownian motion by Levy’s characterization theorem. Further

calculations show that σ(Xt)Dt = −XtX
′
t
> and finally, the facts and the definition of Z,

imply the SDE satisfied by X:

dXt = (I −XtX
>
t )dB̃1

t −XtX
′
t
>
dB̃2

t − n− 1 + `

2
Xtdt

= σ(Xt)
2dB̃1

t + σ(Xt)DtdB̃
2
t − n− 1 + `

2
Xtdt

= σ(Xt)AtdB̃t −
n− 1 + `

2
Xtdt = σ(Xt)dBt −

n− 1 + `

2
Xtdt.

The above SDE is just a special case of SDE (1.2) with γ ≡ 1 and g ≡ n−1+`
2 , therefore

pathwise uniqueness holds immediately by Theorem 1.7 since g(1)
γ2(1) −

n−1
2 = `

2 >
√
2− 1

for ` ∈ N. Consequently X is a strong Markov process. Furthermore, Lemma 2.1 shows
that U = |X|2 is Wright-Fisher diffusion with mutation rates n and `. When n ≥ 2

this also helps us find invariant measure for process X since we can use skew-product
decomposition in Theorem 1.5. The invariant measure for Wright-Fisher diffusion U is
given by Beta(n/2, `/2) distribution. Hence g(r) = Bn,`r

n−1(1− r2)(`−2)/21(r ∈ [0, 1]) is
the density of the invariant measure of R. The invariant measure for Brownian motion on
a sphere is a normalised uniform measure. This continues to hold for the time-changed
Brownian motion on a sphere as long as the time change is independent of Brownian
motion. So let us suppose that the initial distribution of the process X has the density h
from Proposition 1.1. Then, using polar coordinates and the skew-product decomposition,
the density of R0 is g. Since this density is invariant for R, Rt has density g for all t ≥ 0.
The time changed Brownian motion on a sphere also remains uniformly distributed and
reversing polar coordinates we get that Xt has density h for any t.

In the case n = 1we see that the processX1 satisfies the SDE dX1
t =

√
1− (X1

t )
2dBt−

`
2X

1
t dt, and by the forward Kolmogorov equation the invariant density can easily be seen

to be equal to

h(x) =
Γ((1 + `)/2)

π1/2Γ(`/2)

(
1− x2

)(`−2)/2
1(|x| ≤ 1).
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Projections of spherical Brownian motion

2.1 Skew-product decomposition for SDE (1.2)

The solution of (1.2) naturally lives on the closed unit ball Bn. To better understand
such a process it is crucial to understand its radial component (or its square) and in
particular if and when it hits the boundary (or zero). Since the square of the radial
component will be shown to be closely related to Wright-Fisher diffusion let us first
collect some known fact about the latter. Fix non-negative parameters α and β. The SDE
dZt = 2

√
Zt(1−Zt)dBt+(α(1−Zt)−βZt)dt has a unique strong solution which is called

the Wright-Fisher diffusion; denote it by WF(α, β). It is possible to define WF(α, β) for
negative α (resp. β), but then the solution has a finite lifetime equal to the first hitting
time of 0 (resp. 1). Pathwise uniqueness is a consequence of 1/2-Hölder continuity of
diffusion coefficient and then applying theorem of Yamada and Watanabe [12, IX.3.5].
Furthermore, it is well-known2 that WF(α, β) never hits 0 for α ≥ 2 and never hits 1 for
β ≥ 2.

Some of the facts about square of radial component of solution to SDE (1.2) are
summarized in the following lemma.

Lemma 2.1. Let X be a solution of (1.2) where g(1)
γ2(1) ≥

n−1
2 . Then the process U = |X|2

satisfies the SDE

dUt = 2γ̃(Ut)
√
Ut(1− Ut)dθt + γ̃2(Ut)

(
n(1− Ut)−

(
2g̃(Ut)

γ̃2(Ut)
− (n− 1)

)
Ut

)
dt, (2.1)

where g̃(u) := g(
√
u), γ̃(u) := γ(

√
u), and the Ft-Brownian motion θ is defined by

θt =

n∑
i=1

∫ t

0

Xi
s√
Us

1(Us > 0)dBi
s +

∫ t

0

1(Us = 0)dχs,

where the scalar Brownian motion χ is independent of B.
For n ≥ 2, the process U never hits 0 and if g(u)

γ2(u) ≥ n−1
2 + 1 holds near 1, then U

never hits 1.

Proof. Since U = |X|2 and 〈Xi〉t = γ2(|Xt|)(1− (Xi
t)

2)dt we can apply Itô’s formula and
get

dUt = 2γ(|Xt|)
n∑

j=1

Xj
t

√
1− UtdB

j
t − 2g(|Xt|)

n∑
i=1

(Xi
t)

2dt+ γ2(|Xt|)
n∑

i=1

(1− (Xi
t)

2)dt

which in turn yields (2.1). Moreover, since 〈θ〉t = t, the continuous local martingale θ is
a Brownian motion by Levy’s characterization theorem.

We can slightly simplify the equation (2.1) by time-change without affecting the
boundary hitting properties. Define q by

qt :=

∫ t

0

γ2(|Xu|)du and its inverse q̃t := inf {u ≥ 0 ; q(u) = t} .

Then Ût := Uq̃t satisfies the SDE

dÛt = 2

√
Ût(1− Ût)dθ̃t +

(
n(1− Ût)−

(
2g̃(Ût)

γ̃2(Ût)
− (n− 1)

)
Ût

)
dt (2.2)

where θ̃t =
∫ q̃t
0
γ(|Xu|)dθu is also a Brownian motion. This is almost the same equation

as that of a Wright-Fisher diffusion. The volatility term is exactly the same so that

2It can for example be seen from Lemma 2.2 and well-known facts about hitting of 0 of Bessel processes.
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Projections of spherical Brownian motion

the difference appears only in the drift term, which is, nevertheless, still Lipschitz
continuous3. Again we can use the Yamada-Watanabe Theorem [12, Theorem 3.5 in Ch.
IX] and conclude that pathwise uniqueness holds for the SDE (2.2). Since g(1)

γ2(1) ≥ n−1
2

we can consider SDE (2.2) with the increased drift

n(1− u)−
(
2g̃(u)

γ̃2(u)
− 2g̃(1)

γ̃2(1)

)
u

and for Û0 = 1 such an equation has the unique solution Ût ≡ 1. By using the comparison
theorem for SDEs, as in [12, Ch. IX, (3.7)], we deduce that the inequality Ût ≤ 1 holds
for the solution of (2.2) as long as Û0 ≤ 1 a.s. By denoting

M := max
u∈[0,1]

(
2g̃(u)

γ̃2(u)
− (n− 1)

)
≥ 0,

another application of the comparison theorem shows that the solution of (2.2) is always
larger than WF(n,M) started at the same point, so it is always non-negative and there-
fore Ut ∈ [0, 1] for U0 ∈ [0, 1] a.s. which also means it has infinite lifetime. This second
use of comparison theorem also shows, that for n ≥ 2, the processes Û and U never hit
0 unless they start there. Similarly, if g(u)

γ2(u) ≥ n−1
2 + 1 holds near 1, we could at least

locally (near 1) use comparison theorem to show that Û is smaller than WF(n, 2) started
at the same point and therefore under such conditions Û (and U ) never hits 1.

Before we can prove Theorem 1.5 we need two additional lemmas. The first one
expresses the Wright-Fisher diffusion as a certain skew-product of two independent
squared Bessel processes. For notation and basic facts about (squared) Bessel processes
see [12, Chapter XI].

Lemma 2.2. Let α ≥ 0, β ∈ R and let X be BESQα process started at x0 ≥ 0 and Y
be independent BESQβ process started at y0 ≥ 0 such that x0 + y0 > 0. Let T0(Y) :=

inf {t ≥ 0 ; Yt = 0}. Define the continuous additive functional ρ as

ρt =

∫ t

0

1

Xu + Yu
du and its inverse ζt = inf {u ≥ 0 ; ρu = t} .

Let Ut := Xt

Xt+Yt
for t < T0(Y). Then Ût := Uζt for t < ρT0(Y) is a WF(α, β) started at

x0

x0+y0
and Û is independent of X + Y.

Proof. The lemma is proved in [14, Propositon 8] for non-negative coefficients α, β and
the larger stopping time T0(X + Y) = inf {t ≥ 0 ; Xt + Yt = 0}, where they use the term
Jacobi diffusion for particular Wright-Fisher diffusions. The same proof works for β < 0,
since T0(Y) < T0(X +Y) and hence on the stochastic interval [0, T0(Y)) all the processes
in the proof of [14, Propositon 8] are well defined and all calculations stay exactly the
same.

Our next lemma summarizes facts about the time-change used in Theorem 1.5.

Lemma 2.3. Let n ≥ 2 and either s > 0 or s = 0 and X0 6= 0. Define

Ss(t) :=

∫ t

s

γ2(Ru)

R2
u

du.

Then Ss : [s,∞) → R+ is continuous, strictly increasing, and lim
t→∞

Ss(t) = ∞. Its right

continuous inverse Ts : R+ → [s,∞) is also continuous and strictly increasing with
Ts(0) = s. Furthermore, if X0 = 0, then lim

s↓0
Ss(t) = ∞ holds for any t > 0.

3The function u 7→ uf(
√
u) is Lipschitz if f is. Hence, u 7→ u

g̃(u)

γ̃2(u)
is Lipschitz continuous.
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Projections of spherical Brownian motion

Proof. Since a.s. R2
t ∈ (0, 1] for any t ≥ s, Rt is continuous in t, and also γ(Rt)

is continuous in t and bounded away from 0, everything but the last claim follows
from classical results on inverses of strictly increasing continuous functions. Since

lim
s↓0

∫ t

s
γ2(Ru)

R2
u

du =
∫ t

0
γ2(Ru)

R2
u

du, in order to prove the last claim it is enough to prove

that
∫ t

0
γ2(Ru)

R2
u

du = ∞ for any t > 0. Changing variables with the time change qt from
Lemma 2.1 we get ∫ t

0

γ2(Ru)

R2
u

du =

∫ t

0

Û−1
qu dqu =

∫ qt

0

Û−1
u du.

By the comparison theorem for SDEs and strict positivity of qt it is therefore enough to

prove that
∫ t∧T1(U)

0
U−1
u du = ∞ for any t > 0, where U is Wright-Fisher(n,m) diffusion

started at 0,

m := min
u∈[0,1]

(
2g̃(u)

γ̃2(u)
− (n− 1)

)
is a possibly negative constant, and T1(U) = inf {t ≥ 0 ; Ut = 1} is strictly positive. By
Lemma 2.2 we can find a BESQn process X started at 0 and a BESQm process Y not
started at 0 such that Ut =

Xζt

Xζt+Yζt
holds for t < T1(U) = ρT0(Y) with the time changes ζ

and ρ defined as in Lemma 2.2. Using the time change formula for the Lebesgue-Stieltjes
integral we get∫ t∧T1(U)

0

U−1
t du =

∫ t∧T1(U)

0

Xζu + Yζu

Xζu

du =

∫ t∧T1(U)

0

X−1
ζu

dζu =

∫ ζt∧ζT1(U)

0

X−1
u du.

This corresponds to the integral
∫ ζt∧ζT1(U)

0
h(
√
Xu)du where h(x) = x−2 and

√
X is Bessel

process started at 0 with parameter n ≥ 2. Since ζT1(U) = T0(Y) > 0, ζt > 0 for any t > 0

and −2 ≤ −(2 ∧ n), Corollary 2.4 in [5] implies that the integral S0(t) diverges.

Proof of Theorem 1.5. Let us define function κ(x1, . . . , xn) :=
(∑n

i=1(x
i)2
)1/2

. Then Rt =

κ(Xt), V
i
t = ∂κ

∂xi (Xt) and a straightforward computation shows that

∂2κ

∂xi∂xj
(x) =

δijr
2 − xixj

r3
and

∂3κ

∂xi∂xj∂xk
(x) = 3r−5xixjxk − r−3

(
xiδjk + xjδik + xkδij

)
,

where r := κ(x). Note that also d〈Xi, Xj〉t = γ2(|Xt|)(δij − Xi
tX

j
t )dt. Now we can use

the Itô formula to get equations for Rt and Vt. First,

dRt = γ(|Xt|)
n∑

j=1

Xj
t

Rt

√
1−R2

tdB
j
t − g(|Xt|)Rtdt+

1

2

n∑
i,j=1

δijR
2
t −Xi

tX
j
t

R3
t

d〈Xi, Xj〉t

= γ(Rt)

n∑
j=1

V j
t

√
1−R2

tdB
j
t +

(n− 1)γ2(Rt)− 2g(Rt)R
2
t

2Rt
dt.

Since dθt =
∑n

j=1 V
j
t dB

j
t is also 1-dimensional Brownian motion (actually, it is the same

process as in Lemma 2.1) we write the above equation in a more compact way as

dRt = γ(Rt)
√
1−R2

tdθt + ((n− 1)γ2(Rt)− 2g(Rt)R
2
t )/(2Rt)dt. (2.3)

We can also write an equation for V i
t .

dV i
t =

n∑
j=1

δijR
2
t −Xi

tX
j
t

R3
t

dXj
t +

1

2

n∑
j,k=1

(
∂3κ

∂xi∂xj∂xk
(Xt)

)
d〈Xj , Xk〉t
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Similar calculations as above show that first sum is equal to γ(Rt)
∑n

j=1
δij−V i

t V
j
t

Rt
dBj

t

where the drift part vanishes and we compute the second sum as

γ2(Rt)

2
R−5

t

n∑
j,k=1

(
3Xi

tX
j
tX

k
t − (Xi

tδjk +Xj
t δik +Xk

t δij)R
2
t )(δjk −Xj

tX
k
t

)
dt =

=
γ2(Rt)

2
R−5

t

(
3Xi

tR
2
t − (nXi

t +Xi
t +Xi

t)R
2
t − 3Xi

tR
4
t + (Xi

t +Xi
t +Xi

t)R
4
t

)
dt

= −γ(Rt)
n− 1

2

Xi
t

R3
t

dt = −γ(Rt)

R2
t

n− 1

2
V i
t dt.

Altogether, in vector form, we get dVt =
γ(Rt)
Rt

(I−VtV >
t )dBt− γ2(Rt)

R2
t

·n−1
2 Vtdt. To show that

the process V̂t = VTt is Brownian motion on a sphere it is sufficient to show that it satisfies
SDE (1.1). Change of time formula for the Itô and the Lebesgue-Stieltjes integrals imme-

diately shows that V̂t− V̂0 =
∫ t

0
(I− V̂uV̂ >

u )dW̃u−
∫ t

0
n−1
2 V̂udu, where W̃t =

∫ Ts(t)

s
γ(Ru)
Ru

dBu

is Brownian motion. This immediately implies that V̂ is Brownian motion on Sn−1 but
does not allow us to conclude that R and V̂ are independent. With this in mind we modify
the Brownian motion driving the SDE for V̂ . Let us enlarge the probability space to
accommodate another scalar Brownian motion ξ which is independent of B and define a

continuous local martingaleWt =
∫ Ts(t)

s
γ(Ru)
Ru

(I−VuV >
u )dBu+

∫ Ts(t)

s
γ(Ru)
Ru

Vudξu. Then we

can compute 〈W i,W j〉t =
∫ Ts(t)

s
δij

γ2(Ru)
R2

u
du = δijt, so W is Gt-Brownian motion, where

Gt := FTs(t). Since (I − VuV
>
u ) ·

[
γ(Ru)
Ru

(I − VuV
>
u ), γ(Ru)

Ru
Vu

]
=
[
γ(Ru)
Ru

(I − VuV
>
u ), 0

]
we can use change of time formula for stochastic and Lebesgue-Stieltjes integral [12,
Chapter V, §1] and we get V̂t − V̂0 =

∫ t

0
(I − V̂uV̂

>
u )dWu −

∫ t

0
n−1
2 V̂udu so that V̂ is a

Brownian motion on Sn−1.
To prove independence of V̂ and R it is enough to prove independence of Brownian

motions W and θ which are driving the respective SDEs. Then V̂ and R are strong
solutions to their corresponding SDEs which are driven by independent Brownian
motions, so they are also independent. This holds since we note that for a strong
solution X of some SDE there exists a measurable map Φ, such that X = Φ(B̃), where
B̃ is Brownian motion driving the SDE c.f. [6, 15]. Therefore we can find measurable
maps Φ1,Φ2, such that V̂ = Φ1(W ), R = Φ2(θ) and independence does indeed follow
from the independence of θ and W . The Markov property implies that W depends on
G0 = Fs only through W0 = 0, so W is independent of Fs. Hence W is independent of
(θt)t∈[0,s]. Therefore, it is enough to prove that W is independent of (θt − θs)t≥s. Define

ηt := θTs(t) − θs =
∫ Ts(t)

s
V >
u dBu so that η is a Gt-local martingale. Simple calculation

shows that 〈Wi, η〉t = 0 and 〈η〉t = Ts(t)− s with inverse Ss(t+ s). We then use Knight’s
Theorem (also known as the multidimensional Dambis-Dubins-Schwarz Theorem found
in [12, Chapter V, Theorem 1.9]) to show that W and (ηSs(t+s))s≥t = (θs+t − θs)s≥t are
independent Brownian motions.

To address the last statement we need to consider the situation when the solution is
started from 0. The evolution of such a process is given by (RtφSs(t), t ≥ s) where R is a
square root of a solution to SDE (2.1) and φ is an independent Brownian motion on the
sphere started at φ0 = Xs/Rs. Due to rapid spinning (i.e. lim

s↓0
Ss(t) = ∞), the initial point

φ0 = Xs/Rs will be forced to be uniformly distributed on the sphere. This follows from
the properties of the skew-product decomposition established in this proof, Lemma 2.3
above and [8, Lemma 3.12].

Proof of Corollary 1.6 . For n = 1, pathwise uniqueness holds so uniqueness in law
follows trivially. Now let n ≥ 2. When x0 6= 0, by Theorem 1.5, the solution X is a
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measurable functional of two indpendent processes R and V̂ with given laws. Hence the
law of X is unique.

Finally, we consider the case of X0 = 0. What follows is almost direct application of
the proof of Theorem 1.1 in [8]. For any k ∈ N and open set U ⊆ Rk, define a measurable
function FU : (0,∞)k → [0, 1], FU (t1, . . . , tk) := PΨ[(ψt1 , . . . , ψtk) ∈ U ], where law PΨ[·]
is defined in [8, Lemma 3.7]. Letting FR

∞ := σ(Ru, u ∈ R+), we apply Lemma 2.3 and
Theorem 1.5 above and [8, Lemma 3.12] to get P

[
(Xt1/Rt1 , . . . , Xtk/Rtk) ∈ U

∣∣FR
∞
]
=

FU (Ss(t1), . . . , Ss(tk)) a.s. for 0 < s < t1 < · · · < tk. So P [(Xt1/Rt1 , . . . , Xtk/Rtk) ∈ U ] =

E[FU (Ss(t1), . . . , Ss(tk))] and therefore the finite-dimensional distributions of (Xt/Rt, t >

0) are determined uniquely by PΨ[·] and law of R. Moreover, law of X is determined
uniquely by the law of (R,X/R), therefore uniquely by PΨ[·] and law of process R solving
SDE (2.3) started at 0.

2.2 Pathwise uniqueness for SDE (1.2)

Let X and X̃ be solutions to the SDE (1.2) driven by the same Brownian motion B and
started at the same point x0 ∈ Bn. Pathwise uniqueness clearly holds up to the hitting
time of boundary, so by restarting argument it is enough to prove pathwise uniqueness
for starting points x0 on the boundary. Furthermore, it is enough to prove that Xt = X̃t

for t ≤ τε where τε = inf
{
t ≥ 0 ; |Xt|2 ∧ |X̃t|2 ≤ 1− ε

}
for some ε > 0 and without loss

of generality we can clearly assume that ε < 1
2 . To prove equality of the processes we

will apply method of DeBlassie [7]. Namely, we wish to use Gronwall’s lemma, but due
to non-Lipschitzness we cannot apply it directly to E[|Xt − X̃t|2]. The idea of DeBlassie
(and Swart before with p = 1

2 ) is to denote Y := 1− |X|2 , Ỹ := 1− |X̃|2 and look at the

process W := |X − X̃|2 + (Y p − Ỹ p)2 for some p ∈ ( 12 , 1). We then have

dYt = −2γ(|Xt|)Y 1/2
t

n∑
i=1

Xi
tdB

i
t − nγ2(|Xt|)Ytdt+

(
2g(|Xt|)− (n− 1)γ2(|Xt|)

)
|Xt|2 dt.

A slight modification of [7, Lemma 2.1] implies that for p > 1 + n−1
2 − g(1)

γ2(1) a formal
application of Itô’s formula for the mapping x 7→ xp is justified. Defining

G(u) := g(u)− n− 1

2
γ2(u) + (p− 1)γ2(u),

we get

dY p
t = −2pγ(|Xt|)Y p−1/2

t

n∑
i=1

Xi
tdB

i
t + 2pY p−1

t |Xt|2 1(Y > 0)G(|Xt|)dt− npγ2(|Xt|)Y p
t dt,

where t ≤ τε, |X0|2 > 1− ε, and ε = ε(p) is chosen in such a way that p > 1 + n−1
2 − g(u)

γ2(u)

for u ∈ (1− ε(p), 1]. The latter condition is necessary to keep second term on the right
hand side negative to allow use of Fatou’s lemma. Furthermore,

∫ t

0
1(Ys = 0)ds = 0 holds.

Note that essentially all necessary calculations and results are the same as in [7] if we
change their g for g − n−1

2 γ2. Subtracting the equations for Y p and Ỹ p we get

d(Y p − Ỹ p)t = −2p

n∑
i=1

(
γ(|Xt|)Y p−1/2

t Xi
t − γ(|X̃t|)Ỹ p−1/2

t X̃i
t

)
dBi

t

+ 2p
(
Y p−1
t |Xt|2 1(Y > 0)G(|Xt|)− Ỹ p−1

t |X̃t|21(Ỹ > 0)G(|X̃t|)
)
dt

− np
(
γ2(|Xt|)Y p

t − γ2(|X̃t|)Ỹ p
t

)
dt

=: dMt + I1dt+ I2dt
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and Itô’s formula yields

d(Y p − Ỹ p)2t = 2(Y p
t − Ỹ p

t )(dMt + I1dt+ I2dt)

+ 4p2
n∑

i=1

(
γ(|Xt|)Y p−1/2

t Xi
t − γ(|X̃t|)Ỹ p−1/2

t X̃i
t

)
dt

=: dM̃t + 2(Y p
t − Ỹ p

t )(I1dt+ I2dt) + I3dt.

We can also compute

d|Xt − X̃t|2 = 2

n∑
i=1

(Xi
t − X̃i

t)

n∑
j=1

(
γ(|Xt|)σij(Xt)− γ(|X̃t|)σij(X̃t)

)
dBj

t

− 2

n∑
i=1

(Xi
t − X̃i

t)
(
g(|Xt|)Xi

j − g(|X̃t|)X̃i
t

)
dt

+

n∑
i,j=1

(γ(|Xt|)σij(Xt)− γ(|X̃t|)σij(X̃t))
2dt

=: dNt + I4dt+ I5dt.

The term I5 is the one which disallows direct use of Gronwall’s lemma. It is singular
in a sense that I5

W can be arbitrarily large. Another singular term is I3, but fortunately

we also have negative singular term 2(Y p
t − Ỹ p

t )I1, which will ensure that altogether we
stay non-singular. We will bound all the terms Ik and since I1, I2, I3 and I4 are exactly
the same4 as in [7] in Lemmas 3.1, 3.2, 3.4, and 3.5, respectively, we will not do the
calculations but only summarize final results. Let us introduce non-negative process
Z := (Y p − Ỹ p)(Ỹ p−1 − Y p−1). To make sense of Zt we implicitly multiply everything by
1(Yt > 0, Ỹt > 0). We will use this convention until the end of the proof. Then we have

(Y p
t − Ỹ p

t )I1 ≤ −2pZt |Xt|2G(|Xt|) + C1εZt,

|I2| ≤ C2

(
|Y p

t − Ỹ p
t |+ |Xt − X̃t|

)
,

I3 ≤ p(2p− 1)2

1− p
γ2(|Xt|) |Xt|2 Zt + C3|Xt − X̃t|2 + C3εZt,

I4 ≤ C4|Xt − X̃t|2,

where constants C1, C2, C3, and C4 are independent of ε. Bound for I5 has to be done
differently due to non-diagonal nature of our SDE. By straightforward computation e.g.
by computing Frobenius norm of the matrix γ(|Xt|)σ(Xt)− γ(|X̃t|)σ(X̃t), we see that

I5 = γ2(|Xt|)
(
1−

√
1− |Xt|2

)2

+ γ2(|X̃t|)
(
1−

√
1− |X̃t|2

)2

− 2γ(|Xt|)γ(|X̃t|)
(
1−

√
1− |Xt|2

)(
1−

√
1− |X̃t|2

) (Xt · X̃t

)2
|Xt|2 |X̃t|2

=
(
γ(|Xt|)Y 1/2

t − γ(|X̃t|)Ỹ 1/2
t + γ(|X̃t|)− γ(|Xt|)

)2
+ 2γ(|Xt|)γ(|X̃t|)

(
1−

√
1− |Xt|2

)(
1−

√
1− |X̃t|2

) |Xt|2 |X̃t|2 −
(
Xt · X̃t

)2
|Xt|2 |X̃t|2

.

4Our G is defined slightly differently but it is still Lipschitz, so everything works.
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For the first term we can use Cauchy-Schwartz inequality to bound it from above by

2
(
γ(|Xt|)Y 1/2

t − γ(|X̃t|)Ỹ 1/2
t

)2
+ 2

(
γ(|X̃t|)− γ(|Xt|)

)2
≤ C

(
ε2−pZt + |Xt − X̃t|2

)
,

where the inequality follows from the proof of [7, Lemma 3.6] and the Lipschitz con-
tinuity of γ. The second term can by our assumptions be bounded from above by

8(sup γ)2
(
|Xt|2 |X̃t|2 −

(
Xt · X̃t

)2)
. Using 2Xt · X̃t = |Xt|2 + |X̃t|2 − |Xt − X̃t|2 we get

|Xt|2 |X̃t|2 −
(
Xt · X̃t

)2
≤ |Xt − X̃t|2. Hence we find I5 ≤ C5(ε

2−pZt + |Xt − X̃t|2) with
C5 independent of ε. Using above facts we get

2(Y p
t − Ỹ p

t )I1 + I3 + I5 ≤ −4pZt |Xt|2G(|Xt|) + CεZt

+
p(2p− 1)2

1− p
|Xt|2 Zt + C|Xt − X̃t|2 + CεZt

+ C(ε2−pZt + |Xt − X̃t|2)

= 4pZtγ
2(|Xt|) |Xt|2

(
1− p+

(2p− 1)2

4(1− p)
+
n− 1

2
− g(|Xt|)
γ2(|Xt|)

)
+ C(2ε+ ε2−p)Zt + 2C|Xt − X̃t|2.

Note that expression 1 − p + (2p−1)2

4(1−p) is minimized at p = 1 −
√
2
4 and the value is then

√
2−1. Therefore we use initial assumption that g(1)

γ2(1) −
n−1
2 >

√
2−1 to ensure the whole

bracket is negative. Note also that such choice of p implies p = 1−
√
2
4 > 1− (

√
2− 1) >

1 + n−1
2 − g(1)

γ2(1) so all previous calculations are justifiable since we have necessary

condition our use of Lemma 2.1 from [7]. Fixing p = 1 −
√
2
4 we then let ε possibly be

even smaller to ensure that g(u)
γ2(u) −

n−1
2 >

√
2− 1 + δ holds on (1− ε, 1] for some small

fixed δ > 0. The coefficient in front of Zt equals

4pγ2(|Xt|) |Xt|2
(√

2− 1 +
n− 1

2
− g(|Xt|)
γ2(|Xt|)

)
+ C(2ε+ ε2−p),

which is bounded from above by −4p(inf γ2)(1− ε)δ +C(2ε+ ε2−p). Therefore, by letting
ε be small enough we ensure that this coefficient in front of non-negative Zt is negative
and bound 2(Y p

t − Ỹ p
t )I1 + I3 + I5 ≤ C|Xt − X̃t|2 follows. Recall that

dWt = dM̃t + dNt + 2(Y p
t − Ỹ p

t )I1dt+ 2(Y p
t − Ỹ p

t )I2dt+ I3dt+ I4dt+ I5dt

and let τ̃m be a localizing sequence of stopping times for local martingale M̃ +N . Then
using above bounds and the fact that

∫ t

0
1(Ys = 0 or Ỹs = 0)ds = 0 yields

E[Wt∧τε∧τ̃m ] = E

[∫ t∧τε∧τ̃m

0

(
2(Y p

s − Ỹ p
s )(I1 + I2) + I3 + I4 + I5

)
1(Ys > 0, Ỹs > 0)ds

]

≤ CE

[∫ t∧τε∧τ̃m

0

(
|Xs − X̃s|2 + 2(Y p

s − Ỹ p
s )

2 + 2|Y p
s − Ỹ p

s ||Xs − X̃s|
)
ds

]

≤ 3C

∫ t∧τε∧τ̃m

0

E [Ws] ds

and Gronwall’s lemma implies that E[Wt] = 0 and by non-negativity also Wt = 0 for
t ≤ τε ∧ τ̃m. Letting m → ∞ we get Wt = 0 for t < τε. Therefore Xt = X̃t for t < τε and
pathwise uniqueness in Theorem 1.7 follows.
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