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Nonparametric discrimination of areal functional data

Ahmad Younso
Damascus University

Abstract. We consider a new nonparametric rule of classification, inspired
from the classical moving window rule, that allows for the classification
of spatially dependent functional data containing some completely missing
curves. We investigate the consistency of this classifier under mild condi-
tions. The practical use of the classifier will be illustrated through simulation
studies.

1 Introduction

The standard statistical techniques for modeling functional data are focused on indepen-
dent functions, see for key references: Cardot and Sarda (2005), Biau, Bunea and Wegkamp
(2005), Abraham, Biau and Cadre (2006), Cérou and Guyader (2006), Berlinet, Biau and
Rouvière (2008), Chang, Chen and Ogden (2014) and Górecki, Krzysko and Wolynski
(2015). However, in several disciplines of applied sciences there exists an increasing interest
in modeling correlated functional data where the independence assumption does not hold:
this is the case when samples of functions are observed over a discrete set of time points
(temporally correlated functional data, see Younso (2017b)) or when these functions are ob-
served in different sites of a region (spatially correlated functional data, see Nerini, Monestiez
and Manté (2010), Delicado et al. (2010) and the references therein). The classical models
based on the independence assumption are not appropriated for spatial functional data since
they fail to capture locational information. For example, in the task of hyperspectral remote
sensing labeling, a classifier could classify a pixel as vegetation, even if all adjacent pix-
els were classified as non-vegetation. It is then natural to assume that curves show certain
spatial dependence. The spatial statistical literature distinguishes three types of spatial de-
pendence that will be discussed in Section 3. In this paper, we focus on the model where,
on the one hand, curves are indexed in the regular N -dimensional lattice Z

N and on the
other hand, curves in nearby sites are more dependent than curves in sites far apart which
motivates using the mixing condition that will be defined later. The need to classify spatial
functional data occurs in many scientific problems. For example, in hyperspectral remote
sensing, each pixel in the resulting image has its own spectral reflectance curve which is ob-
tained by measuring the energy percentage emitted from the target pixel over a variety of
different wavelengths. Since the spectral reflectance curves are obtained by physical mea-
surements, they include different type of noise or errors. An important classification problem
is how to use a set of identified spectral reflectance curves to classify a spectral reflectance
curve (see, e.g., water or green vegetation) emitted from a new pixel’s area captured on the
Earth’s surface. Many existing classification algorithms assume either certain parametric dis-
tributions for the data or certain forms of separating curves or surfaces, see Saltyte-Benth
and Ducinskas (2005). These parametric classifiers become suboptimal and of limited use
in practical applications when little or no information about the underlying distributions is
available a priori. In comparison, nonparametric classifiers are usually more flexible in ac-
commodating different data structures, and are hence more desirable, see Younso (2018). The
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major problem of the classification approach is the incomplete data when the curves in the
set of sites to classify are corrupted or missing. For example, in sensing applications, miss-
ing observations occur when a subset of sensors may be absent or fail to operate at certain
regions. In a parametric context, Saltyte-Benth and Ducinskas (2005) consider classification
of the realization of a multivariate spatial–temporal Gaussian random field and Ruiz-Medina,
Espejo and Romano (2014) propose a spatial functional normal mixed effect approach to clas-
sify of spatially dependent Gaussian curves. Romano, Balzanella and Verde (2010) deal with
unsupervised classification problem and present a strategy for clustering spatio-functional
data. Moughal (2013) compares the (SVM) classifier to the other two well known classifiers
that is, Maximum likelihood (ML) and Spectral Angle Mapper (SAM). The results obtained
from the sensor dataset of Moughal (2013) show that (SVM) classifier is much more effec-
tive than other conventional classifiers in term of classification accuracy. Lin and Yan (2016)
construct a hyperspectral remote sensing imagery classifier by combining a polynomial ker-
nel function with a radial basis kernel function to form a new kernel function model, and
then a genetic algorithm is used to optimize the Support Vector Machine (SVM) parame-
ters with ignoring the spatial dependence among observations. More recently, Carlo, Paolo
and Roberto (2017) incorporate the spatial component as a non-stationary Markov random
field conditioned to the k-nearest neighbourhood structure and propose a model based ap-
proach to the functional clustering when time-varying curves are spatially dependent. In the
present paper, we propose and study a nonparametric kernel-based (supervised) classifier in-
spired by Younso (2017a) in the finite-dimensional case together with the classifier defined
in Younso (2018) in the functional case. The proposed classifier, on the one hand, takes into
account the spatial structure of data and on the other hand, it does not require any strict
assumption about the statistical distribution of the data. Furthermore, the proposed method
allows classification of unsampled site using information in its nearby sites. To the best of our
knowledge, Younso (2018) is the first work dealing with the classification of spatial curves
by kernel-based method. The literature dealing with the kernel-based rules and the nearest
neighbor rule when data are independent is extensive in finite or infinite-dimensional spaces,
for example Devroye, Györfi and Lugosi (1996) investigates the universal consistency of the
kernel rule and the k-nearest neighbors rule in the finite-dimensional case (see also Devroye
and Krzyżak (2013)). In the infinite-dimensional case, Abraham, Biau and Cadre (2006) and
Ferraty, Van Keilegom and Vieu (2012) study the consistency of kernel rule and Cérou and
Guyader (2006) study the consistency of the k-nearest neighbors rule. Abraham, Biau and
Cadre (2006) show that the classical kernel rule is consistent and not universally consis-
tent. They give sufficient conditions to extend the consistency result established by Devroye,
Györfi and Lugosi (1996) to a function space. Younso (2017b) extends the result of Abraham,
Biau and Cadre (2006) to temporally dependent case. The result of Younso (2017b) is ex-
tended to the functional random field by Younso (2018). Unfortunately, the classifier pro-
posed by Younso (2018) can not be applicable to classify missing data. In this paper, we
construct a kerne-based classifier that allows the classification of spatial observations even
if they are completely missing. We study the consistency of this classifier under mild con-
ditions. These results generalize the results of Younso (2017a) to the infinite-dimensional
space.

The rest of the paper is organized as follows: Section 2 provides notations and definitions.
In Section 3, some preliminaries are introduced and the main result on the consistency is
stated. Section 4 gives insights on how to present numerical results or applications. Proofs of
Lemma 3.4 and Theorem 3.1 are established in Section 5.
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2 Moving window rule for discrimination of areal functional data

In this section, we introduce some notations and definitions. Classical supervised classifica-
tion deals with predicting the unknown nature Y , called a label, of of an observation X with
values in R

p . Both X and Y are assumed to be random, and the distribution of (X,Y ) just de-
scribes the frequency of encountering particular pairs in practice. In this paper, we deal with
the case when X takes values in a function space instead of Rp . Let (E, d) be a metric space
where E is a function space and d is the metric on E . Consider a strictly stationary functional
random field {(Xi, Yi)}i∈ZN defined on some probability space (�,F,P) and taking values
in E × {0,1}. In such context, the observed values of the functional random field are called
areal (lattice) functional data. In the problem of classification in infinite-dimensional space,
Xi is a curve and Yi is the label (class) of Xi, for each i ∈ Z

N . A point i = (i1, . . . , iN) ∈ Z
N

will be referred to as a site. For n = (n1, . . . , nN) ∈ (N∗)N , we define the rectangular region
In by

In = {
i ∈ Z

N : 1 ≤ ik ≤ nk,∀k = 1, . . . ,N
}
.

We will write n → ∞ if

min
k=1,...,N

nk → ∞.

Define n̂ = n1 ×· · ·×nN = card(In) and assume that the functional random field is observed
on a subset Sn ⊂ In with In −Sn is a bounded set for n̂ large enough. We propose a nonpara-
metric discrimination technique consisting in predicting the label Yj of a new observation Xj
based on observations in a vicinity of j, say νj ⊂ Sn, not containing j. Obviously, the tempo-
ral context (N = 1) corresponds to the Markovian case. The strong mixing condition that we
will define later permits to assume that observations in nearby sites are more dependent than
observations in distant sites. Thus, we wish to predict the label Yj of a new observation Xj
based on observations in the vicinity νj ⊂ Sn defined above. This technique is used by Younso
(2017a) for classification and by Biau and Cadre (2004) and Carbon, Francq and Tran (2007)
for estimating the regression function based on finite-dimensional areal (lattice) data. Let
νj = j + ν, where ν ⊂ Z

N is a fixed bounded set of sites not containing 0 with Card(ν) = l

(l is also the cardinal of each νj). We assume that X(j) = {Xi : i ∈ νj} is a random element of
E l represented by a vector of l random curves. We assume also that the components of X(j)
are ordered according to an arbitrary order on indices, for example the lexicographic order.
The pair (X(j), Yj) may be completely described by μ, the probability measure for X(j), and
η(x), the regression of Yj on X(j) = x. We create a classifier g : E l → {0,1} mapping X(j)
into the predicted label of Xj. Observe that a path of Xj is represent by a single curve while
a path of X(j) is represented by a set of l curves. One finds in Ramsay and Silverman (2005)
a brief example of bivariate functional data. For a more general case, we refer to Jacques and
Preda (2014) and Górecki, Krzysko and Wolynski (2015). The error rate, or risk, of a rule g
is L(g) = P{g(X(j)) 	= Yj}. This is minimized by the rule

g∗(x) =
{

0 if P{Yj = 0|X(j) = x} ≥ P{Yj = 1|X(j) = x},
1 otherwise,

whose error rate L∗ = L(g∗) is called the Bayes-optimal risk and g∗ is called the Bayes
rule. This optimal rule depends on the distribution of (X(j), Yj) which is generally unknown.
We take Jn = {i ∈ Sn : νi ⊂ Sn} and we use the data Dn = {(Xi, Yi) : i ∈ Jn} to construct a
classifier gn(x). A classifier could be constructed by combining the principle of kernel rule
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defined in Younso (2017a) in the finite-dimensional case and the functional kernel-based rule
defined in Younso (2018) as follows:

gn(x) =
⎧⎪⎨⎪⎩

0 if
∑
i∈Jn

1{Yi=0,X(i)∈Bx,b} ≥ ∑
i∈Jn

1{Yi=1,X(i)∈Bx,b},

1 otherwise,
(2.1)

where 1A denotes the indicator function of the set A, b = b(n) the smoothing factor, is
a strictly positive number tending to 0 when n → ∞ and Bx,b = {z = (z1, . . . , zl) ∈ E l ,
ρ(z,x) ≤ b} denotes the closed ball centered at x = (x1, . . . , xl) ∈ E l with radius b and ρ

is the metric (product metric) on E l . The formula (2.1) is easy to apply, but in order to prove
the theoretical results, we will use the following formula

gn(x) =
⎧⎪⎨⎪⎩0 if ηn(x) ≤

∑
i∈Jn

(1 − Yi)1{X(i)∈Bx,b}
n̂μ(Bx,b)

,

1 otherwise,
(2.2)

where

ηn(x) =
∑

i∈Jn
Yi1{X(i)∈Bx,b}

n̂μ(Bx,b)
.

The best we can expect from gn(x) is to achieve the Bayes risk. Let

Ln = L(gn) = P
{
gn(X(j)) 	= Yj

}
be the error probability of gn(x). The classifier gn(x) is said to be consistent if

ELn −→ L∗ as n → ∞.

Since In − Sn is a bounded for n̂ large enough, gn has the same asymptotic behavior on Jn
as on In.

With the same arguments as in (Abraham, Biau and Cadre (2006), Section 2), the classifier
gn(x) is not universally consistent in general metric spaces. In this paper, we investigate the
consistency of this classifier under mild conditions.

3 General assumptions and main results

In this section, we propose a measure of spatial dependence. Then, we introduce some as-
sumptions and preliminaries needed to prove the main result. Finally, we state the main result
on consistency of the classifier.

The three classic types of spatial data structures (geostatistical data, point patterns, and
areal data) can be combined with functional data as it is shown in the examples of each situ-
ation provided in Delicado et al. (2010). In the present paper, we focus on the case of areal
(lattice) data when functional random fields are observed on a regular grid containing a finite
number of sites whose whole constitutes the entire study region. There are many ways to
model spatial dependence. For example, it may be modeled through the covariance function
(geostatistical models, see Romano, Balzanella and Verde (2010)), through the set of con-
ditional distributions of each spatial observation given all others (spatial Markovian models,
see Carlo, Paolo and Roberto (2017)) or through mixing conditions (weak dependence mod-
els, see Younso (2018)). For spatial processes in a regular lattice, mixing conditions (like α,
β and φ-mixing) have become usual structures for modelling spatial dependence in nonpara-
metric estimation due to their ease of use to obtain asymptotic results, see for example Dabo-
Niang and Yao (2007, 2013), Ternynck (2014) and Biau and Cadre (2004) for the multivariate
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case. We focus on the α-mixing (or strong mixing) notion, which is one of the most general
among the different mixing structures introduced in the literature, see Rosenblatt (1956) and
Ibragimov (1962). Thus, in order to obtain asymptotic results, we will assume throughout
the paper, the functional random field {(Xi, Yi)}i∈ZN satisfies the following mixing condition:
there exists a function ϕ : R→R

+ with ϕ(t) ↘ 0 as t → ∞, such that whenever E,E′ ⊂ Z
N

with finite cardinals,

α
(
B(E),B

(
E′)) := sup

{∣∣P(A ∩ C) − P(A)P(C)
∣∣,A ∈ B(E),C ∈ B

(
E′)}

≤ ψ
(
card(E), card

(
E′))ϕ(

dist
(
E,E′)),

where B(E) (resp. B(E′)) denotes the Borel σ -field generated by (Xi, Yi)i∈E (resp.
(Xi, Yi)i∈E′), card(E) (resp. card(E′)) the cardinality of E (resp. E′), dist(E,E′) the Eu-
clidean distance between E and E′, and ψ : N2 → R+ is a symmetric positive function
which is nondecreasing in each variable. Throughout the paper, it will be also assumed for
simplicity that ψ satisfies

ψ(n,m) ≤ min{n,m}, ∀n,m ∈ N. (3.1)

If h ≡ 1, the random field is called strongly mixing. They are satisfied by many spatial mod-
els. The above mixing condition is used for example by Ternynck (2014) to estimate the
regression function for functional data.

Now, for convenience, we introduce the notion of covering numbers (see Kolmogorov and
Tihomirov (1961)). For a given subset G of the metric space (E l , ρ), the ε-covering number
is defined by

N (ε,G, ρ) = inf

{
k ≥ 1 : ∃x1, . . . ,xk ∈ E l with G ⊂

k⋃
i=1

Sxi ,ε

}
,

where Sx,ε = {z ∈ E l , ρ(z,x) < ε} is the open ball centered at x = (x1, . . . , xl) ∈ E l with
radius ε > 0. Note that as a function of ε, N (ε,G, ρ) is nonincreasing, piecewise-constant
and right-continuous. The set G is called totally bounded if N (ε,G, ρ) < ∞ for all ε > 0.
In particular, every relatively compact set is totally bounded and all totally bounded sets are
bounded, see Biau, Cérou and Guyader (2010) for further details. Now, we introduce the
following assumptions.

Assumption 1. There exists a sequence (Fk)k≥1 of totally bounded subsets of E l such that
Fk ⊂ Fk+1 for all k ≥ 1 and μ(

⋃
k≥1 Fk) = 1.

Assumption 2. For all ε1 ∈]0,1] and i 	= j with νi ∩ νj = φ, P((X(i),X(j)) ∈ Bx,b × Bx,b) ≤
C[μ(Bx,b)]1+ε1 , for all x ∈ E l and some C > 0.

Assumption 3. The Lebesgue differentiation theorem holds, that is, for every ε > 0,

lim
b→0+μ

{
x ∈ E l :

∣∣∣∣ 1

μ(Bx,b)

∫
Bx,b

ημ(dx) − η(x)

∣∣∣∣ > ε

}
= 0,

where dx = dx1 · · ·dxl .

Remark 3.1. Note that Assumption 1 is always true whenever the space (E, d) is separa-
ble (since the finite product of separable spaces is separable), see Abraham, Biau and Cadre
(2006) and Kulkarni and Posner (1995) for various examples in the univariate case. Assump-
tion 2, used by Ternynck (2014), can be linked with the classical local dependence condition



Nonparametric discrimination of areal functional data 117

met in the literature of the finite-dimensional case when X(i) and (X(i),X(j)) admit, respec-
tively, the densities f and fi,j (see Carbon, Francq and Tran (2007)). Assumption 3 automat-
ically holds for any integrable function η in finite-dimensional spaces. In a general setting,
it holds if, for instance, η is μ-continuous (see Cérou and Guyader (2006) for the univariate
functional case).

Suppose that the training data Dn is drawn from an arithmetically α-mixing functional
random field in the sense that there exist C > 0 and θ > 0 such that

ϕ(t) ≤ Ct−θ for all t ∈ R
∗+. (3.2)

The notion Gc stands for the complement of any subset G of E l . For simplicity of notation,
we write Nk(ε) instead of N (ε,Ek, ρ). Before we state the main result, we introduce the
following useful lemmas.

Lemma 3.1. Let Z1 and Z2 be two R-valued bounded random variables. Then, we have
| cov(Z1,Z2)| ≤ 4‖Z1‖∞‖Z2‖∞α(σ(Z1), σ (Z2)), where ‖.‖∞ denotes the supremum norm
and σ(Zi) denotes the Borel σ -field generated by Zi for i = 1,2.

The proof of Lemma 3.1 is given in Rio (2000). The following lemma is a consequence of
Assumption 3 and the Lebesgue dominated convergence theorem.

Lemma 3.2. Assume that Assumption 3 holds. If b → 0 as n → ∞, then,∫
E l

∣∣η(x) −Eηn(x)
∣∣μ(dx) =

∫
E l

∣∣∣∣η(x) −
∫
Bx,b

η(t)μ(dt)

μ(Bx,b)

∣∣∣∣μ(dx) −→ 0.

For the proof of the following lemma, we refer to Abraham, Biau and Cadre (2006).

Lemma 3.3. Assume that (Fk)k≥1 is a sequence of totally bounded subsets of E l . Let k be a
fixed positive integer. Then, for every b > 0,∫

Fk

1

μ(Bx,b)
μ(dx) ≤ Nk(b/2).

Lemma 3.4. Assume that Assumption 3 holds and Dn is drawn from an α-mixing functional
random field such that (3.1) and (3.2) with θ > 2N . Let k be a fixed positive integer. Then,
for all n ∈ (N∗)N ,

E

∫
Fk

∣∣ηn(x) −Eηn(x)
∣∣μ(dx) ≤ C

(
1

n̂
Nk

(
b

2

))1/2
for some C > 0.

As mentioned in Section 2, a desirable property for classifiers is consistency because it
shows the performance of the classifier comparing to the optimal Bayes classifier. The main
result on the consistency is stated in the following theorem. This theorem is an extension to
functional data of the result of Younso (2017a) in finite-dimensional setting.

Theorem 3.1 (Consistency). Assume that Dn is is drawn from an α-mixing functional ran-
dom field such that (3.1) and (3.2), and (Fk)k≥1 is a sequence of totally bounded subsets
of E l . If Assumptions 1–3 are satisfied, and b → 0 and for every k ≥ 1, Nk(b/2)

n̂ −→ 0 as
n → ∞, then, for θ > 2N ,

ELn −→ L∗ as n → ∞.

Observe that, for N = 1, similar assumptions on the smoothing factor b are used by
Abraham, Biau and Cadre (2006) in the classical independent case.
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4 Simulation studies

In this section, we make two empirical comparisons. In order to make the required compar-
isons, we will conduct two simulation studies.

Comparison with classifier of Younso (2018)

The moving window classifier either in the classical spatial case studied by Younso (2018)
or in the new version (2.1) can be extended without difficulty from the binary case to the
multiclass case when Yj takes values in the set of labels {0, . . . ,M} where M ≥ 1. In the
classical multiclass case, the Bayes rule can be computed by

g∗(x) = arg max
0≤k≤M

P(Yj = k|Xj = x)

and the moving window rule is given by

gn(x) = arg max
0≤k≤M

∑
i∈In

1{Yi=k,Xi∈Bx,h} (4.1)

where x ∈ E and Bx,h is the closed ball in E centered at x with radius h > 0. In the new
multiclass case, the Bayes rule can be computed by

g∗(x) = arg max
0≤k≤M

P(Yj = k|X(j) = x)

and the moving window rule is given by

gn(x) = arg max
0≤k≤M

∑
i∈Jn

1{Yi=k,X(i)∈Bx,b}. (4.2)

Our aim in this section is to compare the performance of the two classifiers (4.1) and (4.2)
based on simulated samples. We use the R statistical programming environment to run a
simulation studies for N = 2. The simulated data are located on the area I(n,n) = {i = (i, j) ∈
Z

2 : 1 ≤ i, j ≤ n} and let {(X(i,j), Y(i,j))} the field of interest. We propose to investigate the
performance of the two methods in the following simulated scenario. For each i ∈ In and
t ∈ [0,1], we generate pairs (Xi(t), Yi) via the following model inspired by Jiang and Serban
(2012):

class(Yi = 0) : Xi(t) = f0(t) + εi,

class(Yi = 1) : Xi(t) = f1(t) + εi,

class(Yi = 2) : Xi(t) = f2(t) + εi,

where εi’s are standard Gaussian and spatially correlated according to the covariance structure
c(‖u‖) ∼ ‖u‖−5 for all u ∈ Z

2 with u 	= 0, and ‖.‖ is the Euclidean norm on Z
2, and f0(t) =

et cos(t), f1(t) = cos(5πt/2) and f2(t) = −(f0(t) + f1(t))/2. Figure 1 shows the plots of
the functions f0, f1 and f2. It is important to mention that {εi}i∈In are observations of an
α-mixing random field since any Gaussian random field with covariance function c(‖u‖)
converges to zero as ‖u‖ → ∞ is α-mixing. We suppose that the function space E on the
interval [0,1] is endowed with the metric d (between z1 and z2) defined by

d(z1, z2) =
∫ 1

0

∣∣z1(t) − z2(t)
∣∣dt.

Let

ρ
(
z, z′) = max

1≤i≤l
d
(
zi, z

′
i

)
,
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Figure 1 Plots of the function f0(t) (black line), the function f1(t) (red line) and the function f2(t) (green line).

Figure 2 Three typical curves with label 0 (black), label 1 (red) and label 2 (green).

for any z = (z1, . . . , zl), z′ = (z′
1, . . . , z

′
l) ∈ E l . The curve Xi(t) will be colored by black if

Yi = 0, by red if Yi = 1 and by green if Yi = 2. We generate simulations of the random
field {Xi(t)}i∈Z2 on the rectangular region In where n = (n,n) for n ≥ 1. Figure 2 displays
three typical realizations of the Xi’s and Figure 3 displays a sample of size 625 simulated on
I(25,25) = {(i, j),1 ≤ i, j ≤ 25}. Since the theoretical results are related to the consistency, it
is natural to consider training samples with increasing sizes. For this aim, we generate, for
each sample size n2 (n = 50,80,100), 100 training samples on Jn and 100 corresponding
test samples of size 100 on

M = {
(4k,4l),1 ≤ k, l ≤ 10

}
.

In the classical case, the set M contains observed sites being not classified. In the new case,
we suppose that M contains non observed sites. Thus,

Jn = In − {{
νj ∪ {j}, j ∈ M

} ∪ {
(1, j), (k,1), (n, l), (m,n) : 1 ≤ j, k, l,m ≤ n

}}
,

where νj is the vicinity of j including only the eight sites surrounding j. Figure 4 shows the
results of one replication for n = 100. In order for the classifier (4.1) to be usable in our case,
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Figure 3 Sample of 625 simulated curves on the region I(25,25).

Figure 4 The non-observed sites are blank and the observed sites are colored black, red or green.

we have to adjust it slightly where it becomes

gn(x) = arg max
0≤k≤M

∑
i∈In−M

1{Yi=k,Xi∈Bx,b}. (4.3)

Since M is a bounded, gn has the same asymptotic behavior on In as on In − M. We use
the classifiers (4.2) and (4.3), independently of each other, to predict the label of each Xj for
j ∈ M. In the classical case, we use the observation Xj itself to predict its class while in the
new case, we use observations in nearby sites. In each replication, the proposed classifiers
are determined on the basis of the training sample at hand. For each classifier, the optimal
bandwidth ĥopt (b̂opt) is chosen by minimizing the cross-validation criterion. The misclassi-
fication error rate (ER) is evaluated based on the associated test sample for each classifier.
Table 1 and Table 2 report the average error rate (AER), obtained by averaging the error rates
associated with the corresponding 100 test samples for the classifier (4.2) and (4.3). Table 1
shows that the estimated optimal bandwidth and the average error rate decrease when the
training sample size increases. This means that the practical results in the simulation study
are in line with the theoretical results. In comparing the above two tables, we observe that the
corresponding error values in the two tables begin to be close as n increases. This supports
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Table 1 Estimated optimal bandwidths and average error rates cor-
responding to the classifier (4.2) with samples of different sizes

n 50 80 100
b̂opt 2.9 2.77 2.15
AER 29.4% 18.5% 10.6%

Table 2 Estimated optimal bandwidths and average error rates cor-
responding to the classifier (4.3) with samples of different sizes

n 50 80 100
ĥopt 2.2 1.44 1.42
AER 18.22% 13.23% 6.13%

Figure 5 Sample of 400 simulated curves on the region I(20,20) with label 0 (black) and label 1 (red).

the possibility of using the classifier (4.2) as an alternative to the classifier (4.3) when there
are missing observations.

Comparison with (SVM) classifier

We simulate random curves from the model

class(Yi = 0) : Xi(t) = �
(
20(t − 0.2)

) + εi,

class(Yi = 1) : Xi(t) = �
(
20(t − 0.3)

) + εi

with � is the standard normal distribution function and εi’s are standard Gaussian and spa-
tially correlated according to the covariance structure defined above. Figure 5 shows a sample
of size 400 on the region I(20,20). Firstly, for the above set of simulated curves, we use the
classifier (2.1) to re-classify the set of curves located on the region test M = {(4k,4l),1 ≤
k, l ≤ 10} using the remaining data located on I(20,20) − M. Secondly, we use the (SVM)
classifier to re-classify the curves issued from the same region test M using the remaining
data. For Implementing support vector machine in R programming language, we can use the
package e1071. For the classifier (2.1), we have b̂opt = 1.7 with the misclassification error
rate ER = 14%. On the other hand, by implementation of SVM in R programming language,
we have ER = 17%. Finally, it results that the classifier (2.1) proceeds well comparing to the
(SVM) classifier.
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5 Proofs

Proof of Lemma 3.4. By Cauchy–Schwarz inequality, for a fixed x ∈ E l ,

E
∣∣ηn(x) −Eηn(x)

∣∣ ≤ (
var

(
ηn(x)

))1/2

≤
(∑

i∈Jn
E(Yi1{X(i)∈Bx,b})2

(n̂μ(Bx,b))2 + Sn(x)

)1/2
,

where Sn(x) = 1
(n̂μ(Bx,b))

2

∑
i 	=j | cov(�i,�j)| and �i = Yi1{X(i)∈Bx,b} for all i ∈ Jn. Now,

since |Yi| ≤ 1, we obtain

E
∣∣ηn(x) −Eηn(x)

∣∣ ≤
(
E(1{X(1)∈Bx,b})
n̂(μ(Bx,b))2 + Sn(x)

)1/2

≤
(

1

n̂μ(Bx,b)
+ Sn(x)

)1/2
. (5.1)

Let un a sequence of positives such that un → ∞ as n → ∞. We denote

S1 = {
(i, j) ∈ J 2

n : νi ∩ νj 	= φ
}
,

S2 = {
(i, j) ∈ J 2

n : νi ∩ νj = φ and 0 < ‖i − j‖ ≤ un
}},

S3 = {
(i, j) ∈ J 2

n : νi ∩ νj = φ and ‖i − j‖ > un
}}.

Since l = card(νj), we have

card(S1) ≤ ∑
i∈Jn

card{j : νi ∩ νj 	= φ} ≤ n̂
∑
k∈νi

card{j : k ∈ νj 	= φ}

≤ n̂l2. (5.2)

Furthermore, we have

card(S2) ≤ ∑
i∈Jn

card
{
j ∈ Jn : 0 < ‖i − j‖ ≤ un

} ≤ n̂(2un)N . (5.3)

We can write

Sn(x) = Jn,1(x) + Jn,2(x) + Jn,3(x),

where

Jn,k(x) = 1

(n̂μ(Bx,b))2

∑
(i,j)∈Sk

∣∣cov(�i,�j)
∣∣,

for k = 1,2,3. Since |Y1| ≤ 1, using Cauchy–Schwarz inequality together with (5.2), we have

Jn,1(x) ≤ card(S1)E(Y11{X(1)∈Bx,b})2

(n̂μ(Bx,b))2 ≤ l2

n̂μ(Bx,b)
. (5.4)

Now, for 0 < ‖i − j‖ ≤ un with νi ∩ νj = φ, Assumption 2 yields∣∣cov(�i,�j)
∣∣ ≤ E(�i�j) +E(�i)E(�j)

≤ P
(
(X(i),X(j)) ∈ Bx,b × Bx,b

) + {
P(X(1) ∈ Bx,b)

}2

≤ C
{
μ(Bx,b)

}1+ε1 + {
μ(Bx,b)

}2
,
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where C > 0 is a generic constant and 0 < ε1 ≤ 1. Since μ(Bx,b) ≤ 1, then | cov(�i,�j)| ≤
C{μ(Bx,b)}1+ε1 . Thus, by (5.3), we have

Jn,2(x) = 1

(n̂μ(Bx,b))2

∑
(i,j)∈S2

∣∣cov(�i,�j)
∣∣

≤ C
card(S2)

n̂2(μ(Bx,b))1−ε1
≤ CuN

n

n̂(μ(Bx,b))1−ε1
.

Choosing un = {μ(Bx,b)}−ε1/N , we get

Jn,2(x) ≤ C

n̂μ(Bx,b)
. (5.5)

Let r̃ = max{‖i − j‖, i, j ∈ ν} be the diameter of ν ⊂ Z
N . By Lemma 3.1 in Younso (2017b),

we have for each i, j ∈ Jn,

dist(νi, νj) ≥ max
{‖i − j‖ − r̃ ,0

}
.

As a consequence, if ‖i − j‖ > un with νi ∩ νj = φ, since |Y1| ≤ 1, by Lemmas 3.1 and (3.1),
we get ∣∣cov(�i,�j)

∣∣ ≤ 4α
(
dist(νi, νj)

) ≤ 4 min{l, l}ϕ(
dist(νi, νj)

)
≤ 4lϕ

(
max

{‖i − j‖ − r̃ ,0
})

. (5.6)

Using the convention ϕ(t) = ϕ(0) for t < 0 together with (5.6), we have

Jn,3(x) = 1

(n̂μ(Bx,b))2

∑
(i,j)∈S3

∣∣cov(�i,�j)
∣∣

≤ 4l

(n̂μ(Bx,b))2

∑
‖i−j‖≥un

ϕ
(‖i − j‖ − r̃

) ≤ 4l

n̂(μ(Bx,b))2

∑
i≥un

iN−1ϕ(i − r̃).

Since un − r̃ > un/2 for n̂ large enough, we can write

Jn,3(x) ≤ 4l

n̂(μ(Bx,b))2

∑
i≥un/2

iN−1ϕ(i) ≤ C

∫ ∞
un/2−1

tN−θ−1 dt ≤ CuN−θ
n (5.7)

since by assumption ϕ(i) ≤ Ci−θ for some θ > 2N . If we choose un = {μ(Bx,b)}−ε1/N and
N/(θ − N) < ε1 ≤ 1, the inequality (5.7) yields

Jn,3(x) ≤ CuN−θ
n

n̂(μ(Bx,b))2 ≤ C

n̂μ(Bx,b)
. (5.8)

Using (5.4), (5.5) and (5.8), we get Sn(x) ≤ C
n̂μ(Bx,b)

. Thus, by the inequality (5.1), we obtain

E
∣∣ηn(x) −Eηn(x)

∣∣ ≤ C√
n̂μ(Bx,b)

.
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According to Fubini’s theorem, Jensens’s inequality and Lemma 3.4, we get

E

∫
Fk

∣∣ηn(x) −Eηn(x)
∣∣μ(dx)

≤ C

∫
Fk

1√
n̂μ(Bx,b)

μ(dx)

≤ C

(∫
Fk

1

n̂μ(Bx,b)
μ(dx)

)1/2

≤ C

(
1

n̂
Nk

(
b

2

))1/2
. �

Proof of Theorem 3.1. By Theorem 2.3 in Devroye, Györfi and Lugosi (1996) whose ex-
tension to our infinite dimensional case is straightforward, Theorem 3.1 will be proved if we
show that

E

∫
E l

∣∣η(x) − ηn(x)
∣∣μ(dx) → 0 as n → ∞.

Since η(x) ≤ 1 and Eηn(x) ≤ 1 for every x ∈ E l , we have for every k ≥ 1,

E

∫
E l

∣∣η(x) − ηn(x)
∣∣μ(dx)

= E

∫
Fk

∣∣η(x) − ηn(x)
∣∣μ(dx) +E

∫
Fc

k

∣∣η(x) − ηn(x)
∣∣μ(dx)

≤
∫
Fk

∣∣η(x) −Eηn(x)
∣∣μ(dx) +E

∫
Fk

|ηnx) −Eηn(x)|μ(dx) + 2μ
(
Fc

k

)
.

Consequently, according to Lemma 3.4, we get the following inequality

E

∫
E l

∣∣η(x) − ηn(x)
∣∣μ(dx)

≤
∫
E l

∣∣η(x) −Eηn(x)
∣∣μ(dx) + C

(
1

n̂
Nk

(
b

2

))1/2
+ 2μ

(
Fc

k

)
.

By Lemma 3.2 and the assumptions on b, we obtain for every k ≥ 1,

lim sup
n→∞

E

∫
E l

∣∣η(x) − ηn(x)
∣∣μ(dx) ≤ 2μ

(
Fc

k

)
.

If we let k go to infinity, Assumption 1 yields the proof of the theorem. �
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