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We consider the problem of finding anomalies in a d-dimensional field of
independent random variables {Yi}i∈{1,...,n}d , each distributed according to a
one-dimensional natural exponential family F = {Fθ }θ∈�. Given some base-
line parameter θ0 ∈ �, the field is scanned using local likelihood ratio tests to
detect from a (large) given system of regions R those regions R ⊂ {1, . . . , n}d
with θi �= θ0 for some i ∈ R. We provide a unified methodology which con-
trols the overall familywise error (FWER) to make a wrong detection at a
given error rate.

Fundamental to our method is a Gaussian approximation of the distribu-
tion of the underlying multiscale test statistic with explicit rate of conver-
gence. From this, we obtain a weak limit theorem which can be seen as a
generalized weak invariance principle to nonidentically distributed data and
is of independent interest. Furthermore, we give an asymptotic expansion of
the procedures power, which yields minimax optimality in case of Gaussian
observations.

1. Introduction. Suppose we observe an independent, d-dimensional field Y of random
variables

(1) Yi ∼ Fθi
, i ∈ I d

n := {1, . . . , n}d,

where each observation is drawn from the same given one-dimensional natural exponential
family model F = {Fθ }θ∈�, but with potentially different parameters θi . Prominent examples
include Yi with varying normal means μi or a Poisson field with varying intensities λi . Given
some baseline parameter θ0 ∈ � (e.g., all μi = 0 for a Gaussian field), we consider the prob-
lem of finding anomalies (hot spots) in the field Y , that is, we aim to identify those regions
R ⊂ I d

n where θi �= θ0 for some i ∈ R. Here, R runs through a given family of candidate
regions R ∈ Rn ⊂ P(I d

n ) where P(A) denotes the power set of a set A. For simplicity, we
will suppress the subindex n whenever it is clear from the context, that is, write R = Rn in
what follows. Such problems occur in numerous areas of application ranging from astronomy
and biophysics to genetics engineering; specific examples include detection in radiographic
images (Kazantsev et al. (2002)), genome screening (Jiang et al. (2016)) and object detec-
tion in astrophysical image analysis (Friedenberg and Genovese (2013)), to mention a few.
Our setting includes the important special cases of Gaussian (Arias-Castro, Donoho and Huo
(2005), Kou (2017), Sharpnack and Arias-Castro (2016), Cheng and Schwartzman (2017)),
Bernoulli (Walther (2010)) and Poisson random fields (Kulldorff et al. (2005), Rivera and
Walther (2013), Tu (2013), Zhang et al. (2016)). Extensions to models without exponential
family structure as well as replacing the baseline parameter θ0 by a varying field of known
baseline intensities can be treated as well (cf. Remark 2.8 below), but to keep the presentation
simple, we restrict ourselves to the aforementioned setting.
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1.1. Methodology. Inline with the above mentioned references (see also Section 1.4 for
a more comprehensive review), the problem of finding hot spots is regarded as a multiple
testing problem, that is, many “local” tests on the regions R are performed simultaneously,
while keeping the overall error of wrong detections controllable. For a fixed region R ∈ R,
the likelihood ratio test (LRT) for the testing problem

(HR,n) ∀i ∈ R : θi = θ0

versus

(KR,n) ∃i ∈ R s.t. θi �= θ0,

is a powerful test in general, and often known to have certain optimality properties (depend-
ing on the structure of R; see, e.g., Lehmann and Romano (2005)). Therefore, the LRT will
always be considered throughout this paper as the “local” test. We stress, however, that our
methodology could also be used for other systems of local tests, provided they obey a suffi-
ciently well behaving asymptotic expansion (see Remark 2.8). The LRT is based on the test
statistic

(2) TR(Y, θ0) :=
√

2 log
(

supθ∈�

∏
i∈R fθ (Yi)∏

i∈R fθ0(Yi)

)
,

where fθ denotes the density of Fθ , and HR,n is rejected when TR(Y, θ0) is too large. As it
is not known a priori which regions R might contain anomalies, that is, for which R ∈ R the
alternative (KR,n) might hold true, it is required to control the familywise error arising from
the multiple test decisions of the local tests based on TR(Y, θ0), R ∈ R. Obviously, without
any further restriction on the complexity of R this error cannot be controlled. To this end, we
will assume that the regions R can be represented as a sequence of discretized regions in

(3) R = Rn := {
R ⊂ I d

n |R = I d
n ∩ nR∗ for some R∗ ∈ R∗}

for some system of subsets (e.g., all hypercubes) of the unit cube R∗ ⊂ P([0,1]d), to be
specified later. This gives rise to the sequence of multiple testing problems

(4) HR,n versus KR,n simultaneously over Rn, n ∈ N.

The aim of this paper is to provide methodology to control (asymptotically) the familywise
error rate (FWER) α ∈ (0,1) when (4) is considered as a multiple testing problem, that is, to
provide a sequence of multiple tests � := �n (see, e.g., Dickhaus (2014)) for (4) such that

(5) sup
R∈Rn

PHR,n

[
� rejects any HR′,n with R′ ⊂ R

] ≤ α + o(1)

as n → ∞. In words, this ensures that the probability of making any wrong detection is
controlled at level α, as n → ∞.

This task has been the focus of several papers during the last decades; for a detailed discus-
sion, see Section 1.4. We contribute to this field by providing a general theory for a unifying
method in the model (1) including Gaussian, Poisson and Bernoulli observations. In view of
(Arias-Castro, Candès and Durand (2011)), where observations from exponential families as
in (1) are also discussed, but the local tests are always as in the Gaussian case, we emphasize
that our local tests are of type (2), hence exploiting the likelihood in the exponential family.
This will result in improved power and better finite sample accuracy (see Frick, Munk and
Sieling (2014) for d = 1). Our main technical contribution is to prove a weak limit theorem
for the asymptotic distribution of our test statistic for general exponential family models as in
(1) and arbitrary dimension d . This can be viewed as a “multiscale” weak invariance princi-
ple for independent but not necessarily identically distributed r.v.’s. Further, we will provide
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an asymptotic expansion of the test’s power which leads to minimax optimal detection of the
test in specific models.

Throughout the following, we consider tests of scanning-type, controlling the FWER by
the maximum over the local LRT statistics in (2), that is,

Tn ≡ Tn(Y, θ0,Rn, v) := max
R∈Rn

[
TR(Y, θ0) − penv

(|R|)].(6)

Here, |R| denotes the number of points in R. The values

(7) penv(r) :=
√

2v
(
log

(
nd/r

) + 1
)
,

where log denotes the natural logarithm and act as a scale penalization; see also (Dümbgen
and Spokoiny (2001), Dümbgen and Walther (2008), Frick, Munk and Sieling (2014),
Walther (2010)). This penalization with proper choice of v guarantees optimal detection
power on all scales simultaneously as it prevents smaller regions from dominating the overall
test statistic (see Section 2.3). To obtain an a.s. bounded distributional limit for Tn in (6),
the constant v in (6) can be any upper bound of the complexity of R∗ measured in terms of
the packing number (see Assumption 3 below). For example, whenever R∗ has finite VC-
dimension ν(R∗), we can choose v = ν(R∗). However, we will see that the test has better
detection properties if v is as small as possible (see Section 2.3). Hence, from this point of
view it is advantageous to know exactly the complexity of R∗ in terms of the packing num-
ber, a topic which has received less attention than computing VC-dimensions. Therefore, we
compute the packing numbers for three important examples of R∗, namely hyperrectangles,
hypercubes and halfspaces explicitly in Appendix A of the Supplementary Material (König,
Munk and Werner (2020)).

1.2. Overview over the results. To construct a test which controls the FWER (5), we have
to find a sequence of universal global thresholds q1−α,n such that

P0[Tn > q1−α,n] ≤ α + o(1),(8)

where P0 := PH
Id
n ,n

corresponds to the case that no anomaly is present. Such a threshold

suffices, as it can be readily seen from (6) that

sup
R∈Rn

PHR,n

[
� rejects any HR′,n with R′ ⊂ R

] ≤ sup
R∈Rn

PHR,n
[� rejects HR,n]

≤ P0[� rejects HId
n ,n].

Given q1−α,n, the multiple test will reject whenever Tn ≥ q1−α,n, and each local test rejects if
TR(Y, θ0) ≥ q1−α,n +penv(|R|). Due to (5) and (8), this will not be the case with (asymptotic)
probability ≤ α for any R ∈ Rn such that HR,n holds true.

To obtain the thresholds q1−α,n, we provide a Gaussian approximation of the scan statistic
(6) under P0 given by

(9) Mn ≡ Mn(Rn, v) := max
R∈Rn

[
|R|−1/2

∣∣∣∣∑
i∈R

Xi

∣∣∣∣ − penv

(|R|)]

with i.i.d. standard normal r.v.’s Xi , i ∈ I d
n . We also give a rate of convergence of this ap-

proximation (Theorem 2.5), which is determined by the smallest scale in Rn. Based on these
results, we obtain the P0-limiting distribution of Tn as that of

(10) M ≡ M
(
R∗, v

) := sup
R∗∈R∗

[ |W(R∗)|√|R∗| − penv

(
nd

∣∣R∗∣∣)] < ∞ a.s.,
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where W is white noise on [0,1]d and (with a slight abuse of notation) |R∗| denotes the
Lebesgue measure of R∗ ∈ R∗. This holds true as soon as R∗ and Rn have a finite complex-
ity, R∗ consists of sets with a sufficiently regular boundary (see Assumption 2(b) below),
and the smallest scales |Rn| of the system Rn are restricted suitably; see (12) below and the
discussion there.

In case of R∗ being the subset of all hypercubes, we will also give an asymptotic expan-
sion of the above test’s power, which allows to determine the necessary average strength of
an anomaly such that it will be detected with asymptotic probability 1. This is only possible
due to the penalization in (6), as otherwise the asymptotic distribution is not a.s. finite. If
the anomaly is sufficiently small, we show that the anomalies which can be detected with
asymptotic power one by the described multiscale testing procedure are the same as those
of the oracle single scale test, which knows the size (scale) of the anomaly in advance. This
generalizes findings of Sharpnack and Arias-Castro (2016) to situations where not only the
mean of the signal is allowed to change, but its whole distribution. Furthermore, if the obser-
vations are Gaussian, and R∗ is the system of squares, our test with the proper choice v = 1
(see Example 2.3) achieves the asymptotic optimal detection boundary, that is, no test can
have larger power in a minimax sense, asymptotically.

1.3. Computation. Note that the weak limit M of Tn in (10) does not depend on any
unknown quantity, and hence can be, for example, simulated generically in advance for any
given system R as soon as a bound for the complexity of R∗ can be determined. If the system
R has special convolution-type structure, we discuss an efficient implementation using fast
Fourier transforms in Section 3.1 with computational complexity O(d# scales nd logn) for
a single evaluation of Tn or Mn. Once the quantiles are precomputed, this allows for fast
processing of incoming data sets.

1.4. Literature review and connections to existing work. Scan statistics and scanning-
type procedures based on the maximum over an ensemble of local tests have received much
attention in the literature over the past decades.

To determine the quantile, a common option is to approximate the tails of the asymptotic
distribution suitably, as done, for example, by Fang and Siegmund (2016), Naus and Wallen-
stein (2004), Pozdnyakov et al. (2005), Siegmund and Venkatraman (1995), Siegmund and
Yakir (2000) for d = 1, by Haiman and Preda (2006) for d = 2 and by Jiang (2002) in arbi-
trary dimensions. If the random field is sufficiently smooth (in contrast to the setting here),
the Gaussian kinematic formula or similar tools can be employed; see, for example, Adler
(2000), Taylor and Worsley (2007), Schwartzman, Gavrilov and Adler (2011), Cheng and
Schwartzman (2017). We also mention Alm (1998), who considers the situation of a fixed
rectangular scanning set in two and three dimensions. In all of these papers, no penalization
has been used, which automatically leads to a preference for small scales of order log(n)

(see, e.g., Kabluchko and Munk (2009)) and to an extreme value limit, in contrast to the
weak invariance principle type limit (10). Arias-Castro et al. (2018) study the case of an un-
known null distribution and propose a permutation based approximation, which is shown to
perform well in the natural exponential family setting (1), however, only for d = 1. Techni-
cally, mostly related to our work are weak limit theorems for scale penalized scan statistics,
which have, for example, been obtained by Frick, Munk and Sieling (2014) and Sharpnack
and Arias-Castro (2016). However, these results are either limited to special situations such as
Gaussian observations, or to d = 1. If a limit exists, the quantiles of the finite sample statistic
can be used to bound the quantiles of the limiting ones as, for example, done by Datta and
Sen (2018), Dümbgen and Spokoiny (2001), Rivera and Walther (2013).

Our results can be interpreted in both ways as we provide a Gaussian approximation of the
scan statistic in (6) by (9) and that we obtain (10) as a weak limit.
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Weak limits for Tn as in (10) are immediately connected to those for partial sum processes.
Classical KMT-like approximations (see, e.g., Komlós, Major and Tusnády (1976), Massart
(1989), Rio (1993)) provide in fact a strong coupling of the whole process (TR(Y, θ0))R∈Rn

to a Gaussian version. Results of this form have been employed for d = 1 previously in Frick,
Munk and Sieling (2014), Schmidt-Hieber, Munk and Dümbgen (2013). Proceeding like this
for general d will restrict the system Rn to scales rn s.t. |R| ≥ rn where

nd−1 log(n) = o(rn)(11)

as n → ∞, which is unfeasibly large for d ≥ 2. Therefore, we take a different route and em-
ploy a coupling of the maxima in (6) and (9), which relies on recent results by Chernozhukov,
Chetverikov and Kato (2014); see also Proksch, Werner and Munk (2018). However, in
contrast to the present paper, they do not consider the local LR statistic and require that
|R| = o(nd) for all R. This excludes large scales and leads to an extreme value type limit in
contrast to (10) which incorporates all (larger) scales. To make use of Chernozhukov et al.’s
(2014) coupling results in our general setting, we provide a symmetrization-like upper bound
for the expectation of the maximum of a partial sum process by a corresponding Gaussian
version; cf. Lemma 4.2. Doing so we are able to approximate the distribution of Tn in (6) by
(9) as soon as we restrict ourselves to R ∈ Rn with |R| ≥ rn where the smallest scales only
need to satisfy the lower scale bound (LSB)

(12) log12(n) = o(rn) as n → ∞,

which compared to (11) allows for considerably smaller scales whenever d ≥ 2. Note that
(12) does not to depend on d . However, as we consider the discretized sets in I d

n here, the
corresponding lower bound an for sets in R∗ ⊂ P([0,1]d) is n−d log12(n) = o(an), which
in fact depends on d as now the volume of the largest possible set has been standardized
to one (see (3) and Theorem 2.9 below) and coincides with the sampling rate n−d up to a
poly-log-factor. In contrast, (11) gives n−1 log(n) = o(an), independent of d , which only for
d = 1 achieves the sampling rate n−d . Under (12), we also obtain OP((log12(n)/rn)

1/10) as
rate of convergence of this approximation (see (16) below).

Also the asymptotic power of scanning-type procedures has been discussed in the liter-
ature. An early reference is Arias-Castro, Donoho and Huo (2005), who provide a test for
d = 1 achieving optimal detection power on the smallest scale. However, to obtain optimal
power on all scales, a scale dependent penalization is necessary. We mention Walther (2010),
who achieves this for the detection of spatial clusters in a two-dimensional Bernoulli field
by scale adaptive thresholding of local test statistics. Butucea and Ingster (2013) for d = 2
and Kou (2017) for general d provide optimality of scanning procedures for Gaussian fields.
Based on Kabluchko (2011), Sharpnack and Arias-Castro (2016) provide asymptotic power
expansions for the multiscale statistic in (6) with a slightly different penalization, yielding
minimax optimality in case of d-dimensional Gaussian fields. Inspired by their, however in-
complete proof, we are able to generalize these results in case of R∗ being the set of all
hypercubes to the exponential family model, (1), despite the fact that under the alternative
the whole distribution in (1) might change, whereas for Gaussian fields typically only the
mean changes. Doing so we obtain sharp detection boundaries, which are known to be mini-
max in the Gaussian situation, if the parameter v in the penalization (7) is chosen to be equal
to the packing number of the system of hypercubes. In contrast, if v is chosen to be the VC-
dimension, the detection power turns out to be suboptimal. This emphasizes the importance
of knowledge of the packing number explicitly; for an illustration, cf. Example 2.7.

Finally, we also mention weaker error measures such as the false discovery rate (FDR) as a
potential alternative to FWER control, and hence more sensitive tests are to be expected (see,
e.g., Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001), Li, Munk and Sieling
(2016)). However, this is a different task and beyond the scope of our paper.
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2. Theory. In this section, we will summarize our theoretical findings. In Section 2.1,
we give an overview and details on our precise setting and present our assumptions on the
set of candidate regions R∗. Section 2.2 provides the validity of the Gaussian approximation
in (9) and determines the P0-limiting distribution of Tn. In Section 2.3, we derive an asymp-
totic expansion of the detection power. Throughout this paper, the constants appearing might
depend on d .

2.1. Setting and assumptions. In the following, we assume that F = {Fθ }θ∈� in (1) is a
one-dimensional exponential family, which is regular and minimal, that is, the ν-densities of
Fθ are of the form fθ (x) = exp(θx − ψ(θ)), the natural parameter space

N =
{
θ ∈ R

d :
∫
Rd

exp(θx)dν(x) < ∞
}

is open and the cumulant transform ψ is strictly convex on N . Then the moment generating
function exists and the random variables Yi have subexponential tails; see Casella and Berger
(1990) and Brown (1986) for details. We further assume that VarYi > 0.

EXAMPLE 2.1. Let us discuss three important examples of the model (1).

1. Gaussian fields: Let Yi ∼ N (θ, σ 2) where the variance σ 2 > 0 is fixed. In this case,
ψ(θ) = 1

2θ2, and

TR(Y, θ0) = √|R| |YR − θ0|
σ

.

2. Bernoulli fields: Let Yi ∼ Bin(1,p) with p ∈ (0,1). Note, that w.l.o.g. the cases p = 0
and p = 1 are excluded as in these cases one would screen the field correctly, anyway. The
natural parameter is θ = log(p/(1 − p)), and using ψ(θ) = log(1 + exp(θ)) we compute

TR(Y, θ0) =
√√√√2|R|

[
YR log

(
YR

exp(θ0)
1+exp(θ0)

)
+ (1 − YR) log

(
1 − YR

1
exp(θ0)+1

)]
.

3. Poisson fields: Let Yi ∼ Poi(λ) with λ ∈ R. Again, λ = 0 has to be excluded, but
this case is again trivial. The natural parameter is θ = log(λ), and using ψ(θ) = exp(θ) we
compute

TR(Y, θ0) =
√√√√2|R|

[
YR log

(
YR

exp(θ0)

)
− (

YR − exp(θ0)
)]

.

To derive the Gaussian approximation (9) of Tn in (6), we need to restrict the cardinality
of Rn.

ASSUMPTION 1 (Cardinality of Rn). There exist constants c1, c2 > 0 such that

(13) #(Rn) ≤ c1n
c2 .

To furthermore control the supremum in (10), we have to restrict the system of regions R∗
suitably. To this end, we introduce some notation.

For a set R∗ ∈ R∗ and x ∈ [0,1]d , we define d(x, ∂R∗) := infy∈∂R∗ ‖x − y‖2 where ∂R∗
denotes the topological boundary of R∗, that is, ∂R∗ = R∗ \ (R∗)◦. Furthermore, we define
the ε-annulus R∗(ε) around the boundary of R∗ for some ε > 0 as

R∗(ε) := {
x ∈ [0,1]d |d(

x, ∂R∗)
< ε

}
.
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In the following, we will consider the symmetric difference

R∗
1 � R∗

2 := (
R∗

1 ∪ R∗
2
) \ (

R∗
1 ∩ R∗

2
)
, R∗

1 ,R∗
2 ∈R∗

and the corresponding metric

(14) ρ∗(
R∗

1 ,R∗
2
) :=

√∣∣R∗
1 � R∗

2

∣∣, for R∗
1 ,R∗

2 ∈ R∗.

To derive the weak limit of Tn, we need to restrict the system R∗ further. Recall the VC-
dimension (see, e.g., van der Vaart and Wellner (1996)).

ASSUMPTION 2 (Complexity and regularity of R∗).

(a) The VC-Dimension ν(R∗) of the set R∗ is finite.
(b) There exists some constant C > 0 such that |R∗(ε)| ≤ Cε for all ε > 0 and all R∗ ∈ R∗

with the Lebesgue measure | · |.

Finally, to ensure a.s. boundedness of the limit in (10), we will furthermore require that v

in (6) is chosen appropriately. To this end, we introduce the packing number K(ε, ρ,W) of
a subset W of R∗ w.r.t. a metric ρ, which is given by the maximum number m of elements
W1, . . . ,Wm ∈ W s.t. ρ(Wi,Wj ) > ε for all i �= j , that is, by the largest number of ε-balls
w.r.t. ρ which can be packed inside W ; see, for example, van der Vaart and Wellner ((1996),
Definition 2.2.3).

ASSUMPTION 3 (Choice of v). The constant v in (6) and (7) is chosen such that there
exist constants k1, k2 > 0 such that

(15) K
(
(δu)1/2, ρ∗,

{
R ∈ R∗ : |R| ≤ δ

}) ≤ k1u
−k2δ−v

for all u, δ ∈ (0,1] with ρ∗ as in (14).

Let us briefly comment on the above assumptions.

REMARK 2.2.

• Assumption 1 will allow us to apply recent results by Chernozhukov, Chetverikov and Kato
(2014) to couple the process in (6) with a Gaussian version as in (9). Note that Assumption
2(a) immediately implies Assumption 1.

• We stress that the Assumption 2(b) is satisfied whenever R∗ consists of regular Borel sets
R∗ only, that ism each R∗ ∈ R∗ is a Borel set and |∂R∗| = 0 for all R∗ ∈ R∗.

• Note that Assumption 2(a) also implies that v = ν(R∗) is a valid choice in the sense of
Assumption 3. This basically follows from the relationship between capacity and covering
numbers and a bound on covering numbers from van der Vaart and Wellner ((1996), Theo-
rem 2.6.4). However, (15) might also be satisfied for considerably smaller numbers v (see
the examples below).

EXAMPLE 2.3.

1. Consider the set S∗ of all hyperrectangles in [0,1]d , that is, each S∗ ∈ S∗ is of the
form S∗ = [s, t] := {x ∈ [0,1]d |si ≤ xi ≤ ti for 1 ≤ i ≤ d}. Obviously, the corresponding
discretization Sn consists of hyperrectangles in I d

n , which are determined by their upper left
and lower right corners, that is, #(Sn) ≤ n2d , which proves Assumption 1. According to van
der Vaart and Wellner ((1996), Example 2.6.1), we have ν(S∗) = 2d , and as S∗ consists only
of regular Borel sets; also Assumption 2 is satisfied. In Appendix A of the Supplementary
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Material, we give a simple argument that Assumption 3 holds true whenever v > 2d − 1.
Employing more refined computations, it can even be shown that v = 1 is a valid choice if
we allow for additional powers of (− log(δ)) on the right-hand side of (15); see Theorem 1
in Walther (2010) or Lemma 2.1 in Datta and Sen (2018).

2. We may also consider the (smaller) set Q∗ of all hypercubes in [0,1]d , that is, each
Q∗ ∈ Q∗ is of the form [t, t + h] with t ∈ [0,1]d and 0 < h ≤ 1 − max1≤i≤d ti . As Q∗ ⊂ S∗,
Assumptions 1 and 2 are satisfied. Refined computations in Appendix A of the Supplementary
Material show that v = 1 is a valid choice in the sense of Assumption 3, independent of d (as
opposed to the VC-dimension ν(Q∗) = �3d+1

2 � according to Despres (2014)).
3. Let H∗ be the set of all half-spaces in [0,1]d , that is,

H∗ := {
Ha,α|α ∈ R, a ∈ S

d−1}
, Ha,α := {

x ∈ [0,1]d |〈x, a〉 ≥ α
}
.

The VC-dimension of H∗ is ≤ d + 1 (see, e.g., Devroye and Lugosi (2001), Corollary 4.2),
which proves that Assumptions 1 and 2 are satisfied. On the other hand, we prove in Appendix
A of the Supplementary Material that v = 2 satisfies Assumption 3.

REMARK 2.4. As discussed in the Introduction, we will show in the case of hypercubes
that a smaller value of v in Assumption 3, and hence in (7) will lead to a better detection
power. More precisely, only for v = 1 we will obtain minimax optimality in a certain sense
(see Section 2.3 below). In the case of hyperrectangles, this is more involved, but it can,
however, be argued along Walther (2010) that for d = 2 the choice v = 1 yields minimax
optimality also in this situation for specific sequences of rectangles.

2.2. Limit theory. Now we are in position to show that the quantiles of the multiscale
statistic in (6) can be approximated uniformly by those of the Gaussian version in (9), and
furthermore that Mn(Rn, v) in (9) converges to a nondegenerate limit whenever v satisfies
Assumption 3. For the former, we require a lower bound on the smallest scale as given in
(12). Given a discretized set of candidate regions Rn ⊂ P(I d

n ) and c > 0 we introduce

Rn|c := {
R ∈Rn||R| ≥ c

}
.

With this notation, we can formulate our main theorems.

THEOREM 2.5 (Gaussian approximation). Let Yi , i ∈ I d
n be a field of random variables

as in (1), let R∗ be a set of candidate regions satisfying Assumption 1 and let (rn)n ⊂ (0,∞)

be a sequence such that the LSB (12) holds true. Let v ∈R be fixed.

(a) Then under P0

(16) Tn(Y, θ0,Rn|rn, v) − Mn(Rn|rn, v) = OP

((
log12(n)

rn

)1/10)
as n → ∞ with Mn as in (9).

(b) For all q ∈ R, we have

(17) lim
n→∞

∣∣P0
[
Tn(Y, θ0,Rn|rn, v) > q

] − P
[
Mn(Rn|rn, v) > q

]∣∣ = 0.

Note that Mn does not depend on any unknown quantities and can, for example, be simu-
lated for fixed n; see Section 3 for details. Beyond this, we can now also derive a weak limit
of Tn.
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THEOREM 2.6 (Weak P0 limit). Under the Assumptions of Theorem 2.5, suppose that
also Assumption 2 is satisfied. Then it holds for any fixed v ∈R under P0 that

(18) Tn(Y, θ0,Rn|rn, v)
D→ M

(
R∗, v

)
as n → ∞,

with M(R∗, v) as in (10). If v furthermore satisfies Assumption 3, then M(R∗, v) is almost
surely finite and nondegenerate.

Note that our proof of Theorem 2.6 explicitly requires the VC-dimension ν(R∗) to be
finite, and it is not clear if this assumption could be dropped.

EXAMPLE 2.7 (Gaussian approximation in the hyperrectangle/hypercube case). Recall
Example 2.3 and let S∗ be the set of all hyperrectangles and Q∗ be the set of all hyper-
cubes in [0,1]d . Then for any sequence rn satisfying the LSB (12) the approximation (16)
holds under P0 for Sn|rn and Qn|rn , respectively. Monte Carlo simulations (by means of (9)
with n = 128 and d = 2) of the densities of Mn with different values of v are shown in Fig-
ure 1. The smallest possible values of v which we may choose according to Example 2.3
are v = 3 + ε and v = 1, respectively. The corresponding results are depicted in the first
picture of Figure 1 with ε = 0 for simplicity. Alternatively, we may use the VC-dimensions
ν(S∗) = 4 and ν(Q∗) = 3 respectively, which lead to the simulated densities of Mn shown in
the second picture of Figure 1. Note that the distributions of Mn(Sn,4) and Mn(Qn,3) are
extremely close, which somewhat contradicts the intuition that detection in the less complex
system of squares should be notably easier than detection in the system of all rectangles. The
explanation for this is that v = 3 clearly overpenalizes the system Qn of squares. In contrast,
if the penalization is chosen according to the smallest possible values satisfying Assumption
3 (which allows for minimax detection in the system of squares; cf. Corollary 2.11 below),
then the densities differ substantially.

REMARK 2.8 (Beyond exponential families).

(a) Obviously, θ0 ∈ � can be replaced by a field (θi)i∈Id
n

of known baseline parameters.
(b) The proofs of Theorem 2.5 and Theorem 2.6 rely on a third-order Taylor expansion of

TR and on the subexponential tails of the random variables Yi , but not explicitly on the expo-
nential family structure. Therefore, if in more general models corresponding assumptions are
posed (see also Arias-Castro et al. (2018), Section 2.2), our results do immediately generalize
to the case that the observations are not drawn from an exponential family as in (1). As an

FIG. 1. Simulated densities of the Gaussian approximations, displayed by a standard kernel estimator obtained
from 104 runs of the test statistic (9) (Mn(Sn, v) ( ), Mn(Qn, v) ( )). Left: optimal calibration with the
covering number v = 3 and v = 1, respectively. Right: alternative calibration using the VC-dimension ν(S∗) = 4
and ν(Q∗) = 3.
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example, suppose our observations are drawn from the Weibull distribution with fixed scale
parameter λ > 0 and variable shape parameter θ > 0, that is,

(19) fθ (x) =
(

θ

λ

)(
x

λ

)θ−1
exp

(
−

(
x

λ

)θ)
, x ≥ 0.

It is well known that {fθ }θ>0 is not an exponential family. However, it is clear from (19)
that the likelihood-ratio test statistics TR are arbitrary smooth, that is, a third-order Taylor
expansion is valid. If we restrict to θ ≥ 1 (nondecreasing failure rate), we immediately obtain
subexponential tails, the MLE is unique and for θ ≥ 2 one also has asymptotic normality (see,
e.g., Farnum and Booth (1997), Smith (1985)). As a consequence, a similar coupling result
as in Theorem 4.3 below is possible, which would yield analogs to Theorems 2.5 and 2.6 also
in this nonexponential family situation. We emphasize that also Theorem 2.9 below can be
generalized accordingly.

2.3. Asymptotic power. In this section, we will analyze the power of our multiscale test-
ing approach in the hypercube case. The detection power clearly depends on the size and
strength of the anomaly. To describe the latter, we will frequently employ the functions

m(θ) := ψ ′(θ) = E[Y ], v(θ) := ψ ′′(θ) = V[Y ]
for Y ∼ Fθ .

Heuristics. The key point for the following power considerations is that the observations
in (1) can be approximated as

(20)
Yi − m(θ0)√

v(θ0)
= m(θi) − m(θ0)√

v(θ0)
+

√
v(θi)√
v(θ0)

Yi − m(θi)√
v(θi)

,

that is, as “signal” v(θ0)
−1/2(m(θi) − m(θ0)), which is nonzero on the anomaly only, plus

a standardized noise component (Yi − m(θi))/
√

v(θi) which is scaled by a factor vi :=√
v(θi)/v(θ0). In case of Gaussian observations with variance 1, one has vi ≡ 1 and recovers

the situation considered by Sharpnack and Arias-Castro (2016). Whenever the “signal” part
in (20) is strong enough, the anomaly should be detected. In the following, we will make
this statement mathematically precise and also give a comparison of the multiscale testing
procedure with an oracle procedure.

Considered alternatives. Consider a given family (Q∗
n)n∈N of hypercube anomalies

Q∗
n ⊂ [0,1]d with Lebesgue measure |Q∗

n| = an ∈ (0,1). The corresponding discretized
anomalies Qn := I d

n ∩ nQ∗
n ⊂ I d

n have size |Qn| ∼ ndan. We will consider alternatives Ki,n

in (4) where θn ∈ �nd
s.t.

(21) θn
i = θn

1 IQn + θ0IQc
n
.

The parameters θn
1 determine the total strength of the anomaly, which is given by

μn(Qn) := √|Qn|m(θn
1 ) − m(θ0)√

v(θ0)
.

Clearly, any anomaly with fixed size or strength can be detected with asymptotic probability
1. Therefore, we will consider vanishing anomalies in the sense that

(22) an ↘ 0, μn(Qn) ↗ ∞, as n → ∞.
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Furthermore, we will restrict to parameters θn
1 in (21) which yield uniformly bounded vari-

ances and uniform subexponential tails for the standardized version, this is

Eθ

[
exp

(
s
Y − m(θ)√

v(θ)

)]
≤ C for all 0 ≤ s ≤ t and θ ∈ {θ0} ∪ ⋃

n∈N

{
θn

1
}
,(23)

v ≤
√

v(θn
1 )

v(θ0)
≤ v̄ for all n ∈ N(24)

for Y ∼ Fθ with constants t > 0, C > 0 and 0 < v < v̄ < ∞.
In case of Gaussian observations with variance σ 2, (23) and (24) are obviously satisfied,

for a Poisson field this means that the intensities are bounded away from zero and infinity.

Oracle and multiscale procedure. Recall that Q∗ is the set of all hypercubes in [0,1]d
(cf. Example 2.3), and Qn its discretization (cf. (3)).

If the size an of the anomaly is known, but its position is still unknown, then one would nat-
urally restrict the set of candidate regions to R∗

O := {Q∗ ∈ Q∗||S∗| = an}, and consequently
scan only over (cf. (3))

RO
n := {

Q ⊂ I d
n |Q = I d

n ∩ nQ∗ for some Q∗ ∈R∗
O
}
.

As for the true anomaly Q∗ ∈ R∗
O, its discretized version Qn also satisfies Qn ∈ RO

n . This
gives rise to an oracle test, which rejects whenever Tn(Y, θ0,RO

n , v) > qO
1−α,n where qO

1−α,n is
the (1−α)-quantile of Mn(R

O
n , v) as in (9). Similar as in Theorem 2.5, one can show that this

quantile sequence ensures the oracle test to have asymptotic level α. The asymptotic power
of this oracle test can be seen as a benchmark for any multiscale test.

To obtain a competitive multiscale procedure, let us choose some rn satisfying the LSB
(12), and furthermore assume that rn = o(ndan), as otherwise the multiscale procedure will
never be able to detect the true anomaly (as it is not contained in the set of candidate regions
which we scan over). As now position and size of the anomaly are unknown, we consider all
such sets in R∗

MS =Q∗ as candidate regions, and consequently scan over

RMS
n|rn := {

Q ⊂ I d
n |Q = I d

n ∩ nQ∗ for some Q∗ ∈ Q∗ and |Q| ≥ rn
}
.

Clearly, the true anomaly Q∗ satisfies Q∗ ∈ R∗
MS, and by rn = o(ndan) its discretized ver-

sion Qn also satisfies Qn ∈ RMS
n|rn . This gives rise to a multiscale test, which rejects when-

ever Tn(Y, θ0,RMS
n|rn, v) > qMS

1−α,n where qMS
1−α,n := q

Mn(RMS
n|rn ,v)

1−α is the (1 − α)-quantile of

Mn(RMS
n|rn, v) as in (9). Theorem 2.5 ensures that the multiscale test has asymptotic level

α.
Now, due to Theorem 2.6 q∗

1−α := q
M(Q∗,v)
1−α < ∞ whenever v satisfies Assumption 3

(which corresponds to v ≥ 1 here), it holds that

qO
1−α,n ≤ qMS

1−α,n ≤ q∗
1−α < ∞

for all n ∈ N.

Asymptotic power. We will now show that the multiscale procedure described above
(which requires no a priori knowledge on the scale of the anomaly) asymptotically detects the
same anomalies with power 1 as the oracle benchmark procedure for a known scale. Hence,
the penalty choice to calibrate all scales as in (6) (where R∗ = Q∗), renders the adaptation
to all scales for free, at least asymptotically. This can be seen as a structural generaliza-
tion of (Sharpnack and Arias-Castro (2016), Theorems 2 and 4), as under the alternative the
whole distribution in (1) and not just its mean might change. Also the power considerations
in Proksch, Werner and Munk (2018) restrict to this simpler case.
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THEOREM 2.9. In the setting described above, let an ↘ 0 be a sequence of scales such
that (logn)12/nd = o(an) as n → ∞. Denote by

F
(
x,μ,σ 2) := �

(
−x + μ

σ

)
+ �

(
μ − x

σ

)
, x ≥ 0

the survival function of a folded normal distribution with parameters μ ∈ R and σ 2 > 0,
where � is the cumulative distribution function of N (0,1). Let furthermore v ≥ 1. If (22) is
satisfied, then the following holds true:

(a) The single scale procedure has asymptotic power

Pθn

[
Tn

(
Y, θ0,RO

n , v
)
> qO

1−α,n

]
= α + (1 − α)F

(
qO

1−α,n +
√

2v log
(

1

an

)
,

nd/2√an

m(θn
1 ) − m(θ0)√

v(θ0)
,
v(θn

1 )

v(θ0)

)
+ o(1).

(b) If an = o(nβ−d) with β > 0 sufficiently small, then the multiscale procedure has
asymptotic power

Pθn

[
Tn

(
Y, θ0,RMS

n|rn, v
)
> qMS

1−α,n

]
≥ α + (1 − α)F

(
qMS

1−α,n +
√

2v log
(

1

an

)
,

nd/2√an

m(θn
1 ) − m(θ0)√

v(θ0)
,
v(θn

1 )

v(θ0)

)
+ o(1).

REMARK 2.10. In Sharpnack and Arias-Castro (2016), a similar result in case of Gaus-
sian observations is shown. However, the proof of (Sharpnack and Arias-Castro (2016), The-
orem 4) is incomplete and we require the additional condition that an = o(nβ−d) with β > 0
sufficiently small for our proof. In Proksch, Werner and Munk (2018), it suffices to assume
an ↘ 0, as large scales have been excluded s.t. the maximum tends to a Gumbel limit.

The above theorem allows us to explicitly describe those anomalies which will be detected
with asymptotic power 1.

COROLLARY 2.11. Under the setting in this section, the assumptions of Theorem 2.9
and if v satisfies Assumption 3, any such anomaly is detected with asymptotic power 1 either
by the single scale or the multiscale testing procedure if and only if√

2v log( 1
an

)v(θ0) − nd/2√an|m(θn
1 ) − m(θ0)|√

v(θn
1 )

→ −∞(25)

as n → ∞.

REMARK 2.12. Equation (25) implies that a smaller value of v makes more anomalies
detectable. However, this is limited by Assumption 3, which requires v to be an upper bound
of the complexity of Q∗ in terms of the packing number. As we compute in Appendix A of
the Supplementary Material, this yields v = 1 as the optimal choice.
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EXAMPLE 2.13.

1. In case of Gaussian observations Yi ∼ N (�nIQn,σ
2) with variance σ 2, where the baseline

mean is 0 and �n the size of the anomaly, this yields detection if and only if

|�n|nd/2√an � σ

√
2v log

(
1

an

)
as n → ∞.

If we calibrate the statistic with v = 1 (cf. Example 2.3), then this coincides with the well-
known asymptotic detection boundary for hypercubes; see, for example, Arias-Castro,
Donoho and Huo (2005), Frick, Munk and Sieling (2014) for d = 1, Butucea and Ingster
(2013) for d = 2 or Kou (2017) for general d .

2. For Bernoulli r.v.’s Yi ∼ Ber(p0IQc
n
+ pnIQn) with p0,pn ∈ (0,1) s.t. p0 + pn ≤ 1, the

condition (25) reads as follows:√
2vp0(1 − p0) log( 1

an
) − nd/2√an|pn − p0|√

pn(1 − pn)
→ −∞.

Note that the minimax detection rate is unknown in this case to best of our knowledge.
3. For a Poisson field Yi ∼ Poi(λ0IQc

n
+ λnIQn) with λ0, λn > 0, Theorem 2.9 and Corollary

2.11 can only be applied if λn is a bounded sequence. In this case, (25) reduces to√
2vλ0 log( 1

an
) − nd/2√an|λn − λ0|√

λn

→ −∞.

Again, the minimax detection rate is unknown in this case to best of our knowledge.

3. Numerical simulations. In this section, we provide an implementation of the sug-
gested multiscale testing procedure and discuss its computational complexity. Furthermore,
we explore the influence of the penalization parameter v in (6) on the finite sample power,
the speed of convergence in (18) and the influence of the LSB rn on the distribution of Tn in
(6).

3.1. Implementation and computational complexity. To evaluate the statistic Tn in (6) in
general, all local statistics TR have to be computed separately. Therefore, the computational
complexity will in general be of the order O(#Rn ·nd). Note that for the situations mentioned
in Example 2.1, each TR is given by a function of the local mean ȲR , which already reduces
the computational effort.

However, if the system of candidate regions R∗ has a special convolution-type structure,
a more efficient evaluation is possible. Therefore, assume that there is a global shape B ⊂ I d

n

such that for every R ∈ Rn there exist t, h ∈ I d
n with ti +hi ≤ n for all 1 ≤ i ≤ d and 1R(x) =

1B((x − t)/h). This is, for example, the case for the system of hyperrectangles or the system
of hypercubes. In this special situation, we may use the fast Fourier transform (FFT). If we
denote by ∗ a discrete convolution, then it holds that

ȲR = Y ∗ 1B

( · − t

h

)
= F−1

(
F(Y ) ·F

(
1B

( · − t

h

)))
.

Consequently, for a fixed scale h, all corresponding values TR can be computed by means of
3 FFTs. Note that no zero-padding is necessary here as for an inverse problem (see Proksch,
Werner and Munk (2018)). This gives a computational complexity of O(d#scales nd logn)

for a single evaluation of the test statistic Tn in (6). In the hyperrectangle and hypercube
case, using all possible scales, this yields O(dn2d logn) and O(dnd+1 logn) respectively.
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Compared the naive implementation described at the beginning, which yield complexities
O(n3d) and O(n2d+1), respectively, this is a significant improvement.

We also briefly mention a possible implementation using cumulative sums, which is
also possible for hyperrectangles and hypercubes. Once the cumulative sum of all obser-
vations has been computed, each local mean ȲR can be computed summing or subtracting
2d values. Hence, this implementation gives in in general a computational complexity of
O(nd + 2d · #Rn), which yields O(2dn2d) and O(2dnd+1) for hyperrectangles and hyper-
cubes, respectively. Compared to the implementation using FFT described above, this differs
by a factor d2−d logn, which reveals the FFT implementation to be more efficient for large d .

Note that in many applications, a priori information is available, which allows to select a
(small) subset of scales instead of using all, which clearly reduces the computational effort
further.

We emphasize that the quantiles q1−α,n of the approximating Gaussian version (9) can be
universally precomputed and stored as long as n and the system Rn do not change, and for
large n the asymptotic values can be used in a universal manner (cf. Section 3.3 below). Even
for small values of α, the above implementation allows to simulate the (1 − α)-quantile of
the Gaussian approximation (9) efficiently. This makes fast computations on incoming data
sets in an “online” fashion possible, which is important in many applications. In contrast,
permutation based methods as considered in (Arias-Castro et al. (2018)) require to simulate
the unknown null distribution separately for every given problem instance.

3.2. Influence of v on the power. To study the influence of the penalization parameter
v on the power of the procedure, we turn to the setting of Section 2.3. Let n = 512 and
d = 2. For simplicity, we consider a Gaussian model, that is, Fμ = N (μ,1) in (1) and choose
μi = μIQ with μ ∈ {1,1.2} and |Q| ∈ {62,72}. Afterwards, we simulate the empirical power
from 1000 repetitions. This procedure is performed for the VC-based choice v = 3 and for
the capacity-based choice v = 1, which is asymptotically minimax optimal (see Corollary
2.11). The results are depicted in Table 1.

We find that the power for v = 1 is substantially larger than the one obtained by using the
VC-dimension for calibration. This is in line with our findings from Example 2.7.

3.3. Speed of convergence in (18). To investigate the speed of convergence in (18), we
consider the system of hypercubes Rn = Qn as in Section 3.2. Figure 2 shows estimated
densities of Mn for different values of n in dimensions d = 1 and d = 2.

We find that the speed of convergence of Mn toward the weak limit M in (10) decreases
with increasing d , but we can however conclude that the distribution of Mn stabilizes already
at moderate values of n. This is especially helpful in situations, where data with significantly
larger sample size n is given, such that the distribution of Tn cannot be simulated anymore.

TABLE 1
Empirical power of the investigated testing procedure for different choices of v in different

Gaussian settings determined by μ (columns) and |Q| (rows)

v = 1 v = 3

|Q| and μ 1 1.2 |Q| and μ 1 1.2

62 0.429 0.817 52 0.104 0.182
72 0.809 0.983 62 0.187 0.577
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FIG. 2. Simulated densities of the Gaussian approximations, displayed by a standard kernel estimator obtained
from 104 runs of the test statistic (9), with different values of n and d . Left: d = 1 and Mn(Qn,1) with n = 210

( ), n = 212 ( ) and n = 214 ( ). Right: d = 2 and Mn(Qn,1) with n = 25 ( ), n = 27 ( ) and
n = 29 ( ).

3.4. Influence of the lower scale bound rn. Let us again consider n = 512, d = 2 and the
system of hypercubes Rn = Qn as in Section 3.2. Let Yi ∼ Bin(1, θ) and θ0 = 0.5. Figure 3
shows the simulated densities of Tn(Y, θ0,Rn|rn, v) for different values of rn.

In conclusion, we find that the distribution of Tn(Y, θ0,Rn|rn, v) is surprisingly robust w.r.t.
the choice of rn even below the LSB (12).

4. Auxiliary results. In this section, we will present the main ingredients needed for
our proofs, which might be of independent interest. The key steps of our proofs will be
sketched in Section 5, and details can be found in Appendix B of Supplement A. One tool is
a coupling result which allows us to replace the maximum over partial sums of standardized
NEF r.v.’s by a maximum over a corresponding Gaussian version. This can be obtained from
recent results by Chernozhukov, Chetverikov and Kato (2014) as soon as certain moments can
be controlled, which is the purpose of the following two lemmas, which generalize known
bounds for sub-Gaussian random variables to subexponential ones. In what follows, the letter
C > 0 denotes some constant, which might change from line to line.

The following lemma gives an upper bound for the maximum of uniformly subexponential
random variables.

LEMMA 4.1. Let Wi , i = 1,2, . . . be independent subexponential random variables s.t.
there exist k1 > 1 and k2 > 0 s.t.

P
[|Wi | > t

] ≤ k1 exp(−k2t)(26)

for all i. Then for all m ∈ N there exists a constant C, s.t. for all N ≥ 2,

E

[
max

1≤i≤N
|Wi |m

]
≤ C(logN)m.

FIG. 3. Simulated densities of the test statistic Tn(Y, θ0,Rn|rn , v) in (6) in case of i.i.d. Bernoulli observations

with p = 1/2 for different values of rn: rn = 23 ( ), rn = 24 ( ), rn = 25 ( ).
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Lemma 4.1 might be of independent interest, as it generalizes the well-known bound

(27) E

[
max

1≤i≤N
|Xi |

]
≤ C

√
logN

for sub-Gaussian random variables to subexponential random variables.
Now we will show that the maximum over the partial sum process of independent ran-

dom variables can be bounded by the maximum over the corresponding Gaussian version.
The latter can be controlled as in (27) by exploiting the fact that a maximum over dependent
Gaussian random variables is always bounded by a maximum over corresponding indepen-
dent Gaussian random variables (see, e.g., Šidák (1967))

(28) E

[
max
I∈I

|XI |√|I |
]

≤ C

√
log

(
#(I)

)
with Xi

i.i.d.∼ N (0,1) and XI := ∑
i∈I Xi . This allows us to prove the following.

LEMMA 4.2. Let (Zi)i=1,...,N be independent random variables with E[Zi] = 0 and
denote ZI := ∑

i∈I Zi . If I is an arbitrary index set of sets {I }I∈I , then there exists a constant
C > 0 independent of I s.t.

E

[
max
I∈I

|ZI |√|I |
]

≤ C

√
log

(
#(I)

)
E

[
max

1≤i≤N
|Zi |

]
.

THEOREM 4.3 (Coupling). Let Zi, i ∈ I d
n independent, E[Zi] = 0, V[Zi] = 1, such that

(26) is satisfied for all i with uniform constants k1 > 1 and k2 > 0. Let furthermore ai, i ∈ I d
n

with 0 < infai ≤ supai < ∞ independent of i and n, and Xi
i.i.d.∼ N (0,1), i = 1, . . . , nd , and

Rn, s.t. inequality (13) holds. Then

max
R∈Rn:
|R|≥rn

|R|−1/2
∑
i∈R

aiZi − max
R∈Rn:
|R|≥rn

|R|−1/2
∑
i∈R

aiXi = OP

((
log10(n)

rn

)1/6)
.

REMARK 4.4. Note that Theorem 4.3 requires only log10(n) = o(rn) for convergence
in probability, whereas we require an exponent of 12 in the LSB (12). The reason is that
Theorem 4.3 yields a coupling for the unpenalized partial sums, whereas Theorems 2.5 and
2.6 work with penalized partial sums. Including the penalty term requires an additional slicing
argument, which results in an additional 2 in the exponent (see the proof of Theorem 5 in the
the Supplementary Material).

5. Proofs. In this section, we sketch most of the proofs. Details and missing proofs are
all given in Appendix B of the Supplementary Material. In the following, we will denote by
pn the cardinality of Rn, that is, pn := #(Rn), which by (13) satisfies log(pn) ∼ logn. Recall
that C denotes a generic constant which might differ from line to line.

5.1. Proof of the auxiliary results. We start with proving the auxiliary statements from
Section 3. The proof of Lemma 4.1 is straightforward and can be obtained by using integra-
tion by parts; see Appendix B of the Supplementary Material for details.

PROOF OF LEMMA 4.2 (SKETCH). Let Xi
i.i.d.∼ N (0,1) and ri be i.i.d. Rademacher ran-

dom variables, that is, they take the values ±1 with probability 1/2. It follows from Lemma
4.5 of Ledoux and Talagrand (1991) that

Er

[
max

I

1√|I |
∣∣∣∣∑
i∈I

ri

∣∣∣∣] ≤
√

π

2
E

[
max

I

1√|I |
∣∣∣∣∑
i∈I

Xi

∣∣∣∣].(29)
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With independent copies (Z′
i)1≤i≤N and Z̃i := Zi − Z′

i , Z̃I := ∑
i∈I (Zi − Z′

i), we derive

E

[
max

I

1√|I | |ZI |
]

≤ 2E
[
Er

[
max

I

1√|I |
∣∣∣∣∑
i∈I

|Z̃i |ri
∣∣∣∣]]

.

The contraction principle (see, e.g., Ledoux and Talagrand (1991), Theorem 4.4) implies

E

[
max

I

1√|I | |ZI |
]

≤ √
8πE

[
max

1≤i≤N
|Zi |

]
E

[
max

I

|XI |√|I |
]

which yields the claim. �

PROOF OF THEOREM 4.3 (SKETCH). Enumerate each region in Rn by j,1 ≤ j ≤ pn

and define

Xij := ai√|Rj |ZiI{i∈Rj }I{|Rj |≥rn},

Xi := (Xij )j=1,...,pn, i = 1, . . . ,N = nd,

(30)

for some sequence rn. Then Z := max1≤j≤pn

∑N
i=1 Xij satisfies

Z
D= max

R∈Rn:
|R|≥rn

1√|R|
∑
i∈R

aiZi.

Recall that log(pn) � log(n). According to Chernozhukov, Chetverikov and Kato ((2014),
Corollary 4.1), we find that for every δ > 0 there exists a Gaussian version Z̃ :=
max1≤j≤pn

∑N
i=1 aiNij with independent random vectors N1, . . . ,Nn in R

pn , Ni ∼ N(0,

E[XiX
t
i ]), 1 ≤ i ≤ N , such that

P
[|Z − Z̃| > 16δ

]
� δ−2{

B1 + δ−1(B2 + B4) log(n)
}

log(n) + log(n)

nd
,

where

B1 := E

[
max

1≤j,k≤pn

∣∣∣∣∣
N∑

i=1

(
XijXik −E[XijXik])

∣∣∣∣∣
]
,

B2 := E

[
max

1≤j≤pn

N∑
i=1

|Xij |3
]
,

B4 :=
N∑

i=1

E

[
max

1≤j≤pn

|Xij |3I{max1≤j≤pn |Xij |>δ/ log(pn∨n)}
]
.

Using Lemma 4.2 and 4.1, we derive

B1 �
√

log(n)√
rn

(
a2C log(N)2 + a2)

�
(

log5(n)

rn

)1/2
,

where a := supai . For B2 it follows again from Lemma 4.1 that

B2 �
(

log6(n)

rn

)1/2
.

Finally, we can bound B4 by

B4 ≤ 3k1a
3

k3
2

nd

(rn)3/2 n−d = 3k1a
3

k3
2

1

(rn)3/2 ,

which yields the claim. �
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5.2. Proofs of Section 2.2. Exploiting a Taylor expansion of TR and Theorem 4.3 (see
Appendix B of the Supplementary Material for a detailed proof), the following can be shown.

LEMMA 5.1. Let Rn be a collection of sets s.t. (13) holds, ε > 0 and (rn)n ⊂ (0,∞) be a
sequence, s.t. (logn)10+ε/rn → 0. Suppose Yi ∼ Fθ0 ∈F , i ∈ I d

n , are i.i.d. random variables,
and recall that for R ∈ Rn we denote YR := |R|−1 ∑

i∈R Yi . Then it holds that

max
R∈Rn:
|R|≥rn

∣∣∣∣TR(Y, θ0) − |R| 1
2
|YR − m(θ0)|√

v(θ0)

∣∣∣∣ = OP

((
log3(n)

rn

)1/4)
as n → ∞.

Now we are in position to prove Theorem 2.5. So far, we have only shown that the maxi-
mum over the local likelihood ratio statistics can be approximated by Gaussian versions, but
we did not include the scale penalization penv(|R|) in (7). To include this in the approxima-
tion result, we will slice the maximum into scales, where the penalty term is almost constant.
Then we show that we may bound the maximum over all scales by the sum of the maximum
over these families. The price to pay is an additional log(n) factor on the smallest scale.

PROOF OF THEOREM 2.5. (a) Lemma 5.1 implies that∣∣∣∣ max
R∈Rn:
|R|≥rn

(
TR(Y, θ0) − penv

(|R|)) − max
R∈Rn:
|R|≥rn

(
|R|1/2

∣∣∣∣YR − m(θ0)√
v(θ0)

∣∣∣∣ − penv

(|R|))∣∣∣∣
= OP

((
log3(n)

rn

)1/4)
.

Define

YR := |R|−1/2
∑
i∈R

(
Yi − m(θ0)√

v(θ0)

)
,

XR := |R|−1/2
∑
i∈R

Xi, Xi
i.i.d.∼ N (0,1).

With this notation and a symmetry argument, we find from the proof of Theorem 4.3 with
ai ≡ 1 that

P

[∣∣∣ max
R∈Rn:
|R|≥rn

∣∣YR
∣∣ − max

R∈Rn:
|R|≥rn

∣∣XR
∣∣∣∣∣ > δ

]
� δ−3

(
log10(n)

rn

)1/2
.

Let δn := ((log12(n)/rn)
1/10 ↘ 0. Now define εj := jδn, j ∈ N and

Rn,j := {
R ∈ Rn| exp(εj ) < |R| < exp(εj+1)

}
.

Then the set of candidate regions Rn can be written as

Rn|rn = ⊔
j∈J

Rn,j , J :=
{

1

δn

log
(
log12(n)

)
, . . . ,

1

δn

log
(
nd)}

with |J | ≤ log(nd)
δn

. If we abbreviate

penj := penv

(
exp(εj )

) =
√√√√2v

(
log

(
nd

exp(εj )

)
+ 1

)
,
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then the slicing above implies

penj+1 ≤ penv

(|R|) ≤ penj , for all R ∈ Rn,j .

Using
√

a − √
b = (a − b)/(

√
a + √

b), we get

0 ≤ penj − penj+1

= 2v(εj+1 − εj )√
2v[log(nd) + 1 − εj ] +

√
2v[log(nd) + 1 − εj+1]

.

The largest index in J is 1
δn

log(nd) and, therefore, the maximal value of εi is given by ε̄ =
log(nd) and log(nd) + 1 − ε̄ = 1. Therefore,

0 ≤ penj − penj+1 ≤ 2v(εj+1 − εj )

2
√

2v
= δn

√
v

2
.

This means that for n → ∞ the penalty terms penv(|R|), R ∈ Rn,j can be considered as
constant. Therefore, by straightforward computations, |J | ≤ δ−1

n log(nd) and choosing δn ≤ ε
2

we derive

P

[∣∣∣ max
R∈Rn:
|R|≥rn

(∣∣YR
∣∣ − penv

(|R|)) − max
R∈Rn:
|R|≥rn

(∣∣XR
∣∣ − penv

(|R|))∣∣∣ ≥ ε
]

≤ P

[
max
j∈J

∣∣∣ max
R∈Rn,j

∣∣YR
∣∣ − max

R∈Rn,j

∣∣XR
∣∣∣∣∣ ≥ ε

2

]

≤ ∑
j∈J

P

[∣∣∣ max
R∈Rn,j

∣∣YR
∣∣ − max

R∈Rn,j

∣∣XR
∣∣∣∣∣ ≥ ε

2

]

≤ |J | δ2
n

log(nd)
= δn ↘ 0, n → ∞.

(b) This is a direct consequence of (a). �

We will now continue with the proof of Theorem 2.6. Taking into account the result of
Theorem 2.5, the main statement can be proven by exploiting an invariance principle and the
continuous mapping theorem. The a.s. boundedness and nondegenerateness of M(R∗, v) fol-
lows from Dümbgen and Spokoiny ((2001), Theorem 6.1). For details, we refer to Appendix
B of the Supplementary Material.

5.3. Proofs of Section 2.3. Let us introduce some abbreviations to ease notation. We set
q∗ := qO

1−α,n, q := qMS
1−α,n and denote the total signal on Q ∈Qn by

(31) μn(Q) := |Q|−1/2
∑
i∈Q

m(θn
i ) − m(θ0)√

v(θ0)
= |Q ∩ Qn|√|Q|

m(θn
1 ) − m(θ0)√

v(θ0)
.

For brevity, introduce the Gaussian process

γ (Q) :=
∣∣∣∣μn(Q) + |Q|− 1

2
∑
i∈Q

viXi

∣∣∣∣ − penv

(|Q|), Q ∈ Qn

with Xi
i.i.d.∼ N (0,1) and vi = √

v(θi)/v(θ0).
Let us now start with the analysis of the oracle procedure. As a preparation, we require to

leave out a suitable subset of hypercubes close to the true anomaly Qn. Therefore, choose a
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FIG. 4. Exemplary elements of the sets Un, U and T in d = 2: The anomaly is shown in red, the hatched cubes
belong to Un, the dotted cubes to U and all black cubes belong to T . By definition, for all Q ∈ Un and Q′ ∈ T it
holds Q ∩ Q′ =∅, which implies independence of {γ (Q)}Q∈T and {γ (Q)}Q∈Un

.

sequence εn such that εn ↘ 0 but εnμ
n(Qn) → ∞ and denote the set of all hypercubes which

are close to the anomaly by

Un := {
Q ∈ Qn(an)|μn(Q) ≥ μn(Qn)(1 − εn)

}
.

Furthermore, define the extended neighborhood of the anomaly by

U := {
Q ∈ Qn(an)|Q ∩ Q′ �= ∅ for some Q′ ∈ Un

}
,

its complement by T := Qn(an) \ U . By definition, {γ (Q)}Q∈T and {γ (Q)}Q∈Un are inde-
pendent, which will allow us to compute the asymptotic power of the single-scale procedure.
For a sketch of Un and U , see Figure 4.

The following lemma can be proven by bounding the covering number of U (see Appendix
B of the Supplementary Material for details).

LEMMA 5.2. Consider the setting from Section 2.3 and recall that q∗ is the (1 − α)-
quantile of Mn(Qn(an)) as in (9). Then:

(a) maxQ∈U |Q|− 1
2 |∑i∈Q viXi | = OP(1) as n → ∞;

(b) limn→∞ P[maxQ∈T γ (Q) ≤ q∗] = 1 − α.

With this lemma at hand, we are now in position to derive the asymptotic power of the
oracle procedure.

PROOF OF THEOREM 2.9(A) (SKETCH). To analyze Pθn[Tn(Y, θ0,Qn(an)) > q∗], we
start with showing a ≥ in the statement of Theorem 2.9(a). By Lemma 5.1 and Theorem 4.3,
we find

Pθn

[
Tn

(
Y, θ0,Qn(an)

)
> q∗] = P

[
max

Q∈Qn(an)
γ (Q) > q∗]

+ o(1).

Now we derive

P

[
max

Q∈Qn(an)
γ (Q) > q∗]

= P

[
max
Q∈T γ (Q) ≤ q∗]

P
[
γ (Qn) > q∗]

+ P

[
max
Q∈T γ (Q) > q∗]

,
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where we exploited Qn ∈ U and independence of {γ (Q)}Q∈T and γ (Qn). Lemma 5.2(b)
states that P[maxQ∈T γ (Q) ≤ q∗] = 1 − α + o(1), and hence

Pθn

[
Tn

(
Y, θ0,Qn(an)

)
> q∗] ≥ α + (1 − α)P

[
γ (Qn) > q∗] + o(1).

As γ (Qn) + penv(|Qn|) follows a folded normal distribution with parameters μ = μn(Qn)

and σ 2 = |Qn|−1 ∑
i∈Qn

v2
i , this yields the proposed lower bound. For the upper bound (i.e.,

≤ in the statement of Theorem 2.9(a)), we proceed as before and obtain

Pθn

[
Tn

(
Y, θ0,Qn(an)

)
> q∗]

= α + (1 − α)P
[

max
Q∈Un

γ (Q) > q∗]
+ P

[
max

Q∈U\Un

γ (Q) > q∗]
+ o(1).

If μn(Qn) −
√

2 log(a−1
n ) → C ∈ [−∞,∞), then P[maxQ∈U\Un γ (Q) > q∗] = o(1) by

Lemma 5.2(a), and otherwise nothing has to be shown. Hence

Pθn

[
Tn

(
Y, θ0,Qn(an)

)
> q∗] ≤ α + (1 − α)P

[
max
Q∈Un

γ (Q) > q∗]
+ o(1)

= α + (1 − α)P
[
γ (Qn) + oP(1) > q∗] + o(1),

and hence the claim is proven. �

Now we turn to the multiscale procedure. As here different scales are considered, the set U
is not large enough any more. Especially, we cannot construct a subset V such that {γ (Q)}Vc

and γ (Qn) are independent and maxQ∈V γ (Q) is still negligible. Due to this, the correspond-
ing proof in Sharpnack and Arias-Castro (2016) is incomplete. To overcome this difficulty,
we follow the idea to distinguish if the anomaly Qn has asymptotically an effect on γ (Q)

or not. Whenever Q is sufficiently large compared to Qn, the impact will asymptotically be
negligible.

For some sequence εn ↘ 0 with εn = O(|Qn|−γ ) with some γ > 0, we introduce

δn := εn max
{
μn(Qn), log(n)

√
|Qn|
rn

}−1
,

V := {
Q ∈ QMS

n|rn |μn(Q) ≥ δnμ
n(Qn)

}(32)

and its complement T ′ := QMS
n|rn \ V . For a sketch, see Figure 5.

FIG. 5. Exemplary elements of the sets V and T ′ in d = 2: The anomaly is shown in red, the hatched cubes
belong to V and the dotted cubes to T ′. However, the intersections marked in black are small enough such that
they have asymptotically no influence on γ (Q).
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Opposed to the oracle procedure, we do not have independence of {γ (Q)}Q∈T ′ and γ (Qn).
However, asymptotically a similar property holds true as shown in the following lemma,
which can again be proven by estimating the covering number (see Appendix B of the Sup-
plementary Material for details).

LEMMA 5.3. Consider the setting from Section 2.3 and recall that q is the (1 − α)-
quantile of Mn(QMS

n|rn) as in (9). Then the following statements hold true as n → ∞:

(a) maxQ∈V ||Q|− 1
2
∑

i∈Q viXi | = OP(
√

ln(|Qn|) +
√

ln(− ln(m(θn
1 ) − m(θ0))));

(b) maxQ∈T ′ ||Q|− 1
2
∑

i∈Q∩Qn
viXi | = oP(1);

(c) P[maxQ∈T ′ γ (Q) ≤ q] = 1 − α + o(1).

PROOF OF THEOREM 2.9(B). For the multiscale procedure, we have to compute a lower
bound for Pθn[Tn(Y, θ0,QMS

n|rn) > q]. Similar to the proof of Theorem 2.9(a), we obtain

Pθn

[
Tn

(
Y, θ0,QMS

n|rn
)
> q

]
≥ P

[{
max
Q∈T ′ γ (Q) ≤ q

}
∩ {

γ (Qn) > q
}] + P

[
max
Q∈T ′ γ (Q) > q

]
+ o(1).

By Lemma 5.3(b), we furthermore get

P

[
max
Q∈T ′ γ (Q) ≤ q

]
= P

[
max
Q∈T ′

[∣∣∣∣μn(Q) + 1√|Q|
∑
i∈Q

viXi

∣∣∣∣ − penv

(|Q|)] ≤ q

]

= P

[
max
Q∈T ′

[∣∣∣∣μn(Q) + 1√|Q|
∑

i∈Q\Qn

viXi

∣∣∣∣ − penv

(|Q|)] ≤ q

]
+ o(1),

which shows by independence that

P

[{
max
Q∈T ′ γ (Q) ≤ q

}
∩ {

γ (Qn) > q
}]

= P

[
max
Q∈T ′ γ (Q) ≤ q

]
P

[
γ (Qn) > q

] + o(1).

Now the proof can be concluded as the one of Theorem 2.9(a). �
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and halfspaces, and detailed proofs of all statements.
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