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A NONLINEAR WAVE EQUATION WITH
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We study a d-dimensional wave equation model (2 < d < 4) with
quadratic nonlinearity and stochastic forcing given by a space-time fractional
noise. Two different regimes are exhibited, depending on the Hurst parameter
H = (Hy,...,Hy) € (0, 1)4+1 of the noise: If Zld:o Hi >d— % then the
equation can be treated directly, while in the case d — 43_1 < Z?:o H; <d-— %
the model must be interpreted in the Wick sense, through a renormalization
procedure.

Our arguments essentially rely on a fractional extension of the consid-
erations of [Trans. Amer. Math. Soc. 370 (2017) 7335-7359] for the two-
dimensional white-noise situation, and more generally follow a series of in-
vestigations related to stochastic wave models with polynomial perturbation.

1. Introduction and main results. In this paper, we propose to study the
following nonlinear stochastic wave equation:

Bfu—Au—i—pzuz:B, t €0, T],xeRd,
M(O, ) = ¢07 al‘u(o’ ) = ¢1,

where ¢g, ¢1 are (deterministic) initial conditions in an appropriate Sobolev space,
p:R?Y - R is a smooth (deterministic) function with support included in a
bounded domain D C R4, and B £ 070y, - - - Ox, B for some space-time fractional
Brownian motion B = B of Hurst index H = (Hy, Hy, ..., Hy) € (0, )4*!. For
the sake of clarity, let us here recall the specific definition of this process.

€]

DEFINITION 1.1. Fix a dimension parameter d > 1, as well as a complete
filtered probability space (2, F,P). For any H = (Hy, Hi, ..., Hy) € (0, 1)¢*1,
a centered Gaussian process B : Q x ([0, T] x R?) — R is called a space-time
fractional Brownian motion (or a fractional Brownian sheet) of Hurst index H if
its covariance function is given by the formula

d

E[B(s. x1,....Xa)B(t,y1, ..., ya)] = Ruy (s, ) [ | R, (xi. v,
i=1
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where
1 : : :
Ry (x,y) 2 5(|x|2Hl + [y — | — y ),

In particular, a space-time fractional Brownian motion of Hurst index

(5-3)

H=|—-,..., <

2 2

is a Wiener process (and in this case the derivative B is a space-time white noise).

Since the pioneering works of Mandelbrot and Van Ness, fractional noises have
been considered as very natural stochastic perturbation models, that offer more
flexibility than classical white-noise-driven equations. The involvement of frac-
tional inputs first occurred in the setting of standard differential equations and,
even in this simple context, the procedure is known to raise numerous difficul-
ties due to the non-martingale nature of the process. Sophisticated alternatives to
1t6 theory must then come into the picture, whether fractional calculus, Malliavin
calculus or rough paths theory, to mention just the most standard methods.

More recently, fractional (multiparameter) noises have also appeared within
SPDE models. A first widely used example is given by white-in-time colored-
in-space Gaussian noises, that can be treated in the classical framework of Walsh’s
martingale-measure theory [27], or with Da Prato—Zabczyk’s infinite-dimensional
approach to stochastic calculus [7]. Such noise models have thus been applied to
a large class of PDE dynamics, and the properties of the solutions to the resulting
SPDEs are often well understood (see [7] and the numerous references therein).

SPDEs involving a fractional-in-time noise are much more delicate to handle
(Walsh and Da Prato—Zabczyk theories no longer apply in this case), and the re-
lated literature is in fact very scarce:

e In the parabolic setting, one can first mention [26] for the study of a homo-
geneous equation with additive fractional Brownian motion, and the series of
papers [18-20] for the analysis of a linear multiplicative perturbation of the heat
equation. Pathwise approaches to the parabolic fractional problem have also
been considered in [11, 15, 16] using rough-paths ideas, and in [8, 9] with the
formalism of Hairer’s theory of regularity structures.

e For the wave equation, and to the best of our knowledge, the results are so far
limited to the analysis of the specific one-dimensional (d = 1) situation [2, 6, 12,
22], and to the study of affine models when d > 2: the homogeneous equation
with additive fractional noise in [3] and multiplicative linear noise in [1] (when
the time-fractional order satisfies Hy > 1/2 and the space covariance structure
is given by a Riesz kernel of order o > d — 2).

In brief, SPDESs, and especially stochastic hyperbolic equations, driven by a
space-time fractional noise remain a wide-open field at this point. Note in partic-
ular that the wave-equation case cannot be treated within the recently introduced
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framework of regularity structures [17], due to the lack of regularization properties
for the wave kernel with respect to space-time Sobolev topologies.

With this general background in mind, let us now go back to the consideration
of equation (1). Our approach to the model will directly follow a series of investi-
gations [4, 5, 14, 21, 25] devoted to the study of stochastic wave (or Schrédinger)
equations involving a polynomial drift term. Our study can more specifically be
seen as a fractional extension of the results of [14] for the white-noise situation. In
the last five references, and in our study as well, the strategy to handle the equation
relies on a central ingredient that is often referred to as the Da Prato—Debussche’s
trick. Roughly speaking, it consists in regarding the solution u# of (1) as some “per-
turbation” of the solution W to the associated “free” equation

@ {afw—Axp:B, 1€[0,T],x eRY,

v, =0, v (0,-)=0

In fact, staying at a heuristic level, observe that the difference process v £ u — W
satisfies (morally) the equation

3) {831)—Av+,02(v2+2v-\11+\112):0, te[O,T],xe]Rd,
v(0, ) = ¢o, 9v(0, ) = ¢1.

The key of the method then lies in the fact that, once endowed with a good un-
derstanding of the pair (¥, W?), equation (3) turns out to be much more tractable
than the original equation (2), and can be solved with pathwise arguments. The
procedure thus emphasizes the following idea: to some extent, the difficulties be-
hind the analysis of equation (2) reduce to the difficulties in the study of the two
processes W and W2. Note in particular that this general approach offers a clear
splitting between the stochastic part of the analysis [i.e., the study of (¥, W?)],
and the deterministic part of the problem [i.e., the pathwise study of (3)]. This
decomposition is very reminiscent of the spirit of rough paths (or regularity struc-
tures) theory, where the solution of the problem is also built in a deterministic way
around a stochastically constructed object.

The solution W of (2) is therefore expected to play a fundamental role in the
analysis, and a first step consists of course in providing a clear definition of this
process (we recall that the space-time fractional setting is not exactly standard). To
this end, we will appeal to a natural approximation procedure and construct ¥ as
the limit of a sequence of (classical) solutions driven by a smooth approximation
B, of B (or equivalently a smooth approximation B, of B). Just as in [8, 9], the
approximation that we will consider here is derived from the so-called harmoniz-
able representation of the space-time fractional Brownian motion (see, e.g., [24]),
that is the formula [valid for every H = (Hy, ..., Hy) € (0, l)d“]

1itE 1 d eMxini

1 l_[ 1
Hi+1
i |tz

|&|Hot2 ;4

Bt x1, ... xa) =i / W(dt, d)
£eR JneRd
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where ¢y > 0 is a suitable constant and W stands for the Fourier transform of
a space-time white noise in R?*!, defined on some complete filtered probability
space (€2, F, P). The approximation (B;),>1 of B is then defined as

elté -1 d exini

@) B(t,xl,...,xd>écﬂf / W (dt. dn) .
" 12" Jinl=<2 E10+2 i) gy i

It is readily checked that for all fixed H = (Hy, Hy, ..., Hy) € (0, )4 andn > 1,
the so-defined process B, indeed corresponds to a smooth function (almost surely).
Accordingly, the associated equation

) 32V, — AV, =B,, 1e[0,T],xeR’,
lI]ﬂ(ov ) - Ov al‘lpﬂ(oa ) - 07

falls within the class of standard hyperbolic systems, for which a unique (global)
solution W, is known to exist. Our first result now reads as follows.

PROPOSITION 1.2.  Foralld > 1 and (Hy, Hy, ..., Hy) € (0, D, (0,),>1
is a Cauchy sequence in the space LP(2; L*°([0, T1; W—*P(D))), for all p > 2
and

1 d
6 d— - — H;.
©) a > > ;l

In particular, (W,,),>1 converges to a limitin LP (2; L*°([0, T]; W=*?(D))), that
we denote by V.

This approach of a fractional equation via a regularization procedure is of course
a standard strategy, that is also used for instance in rough paths or regularity struc-
ture theory (observe that the interpretation of the equation in [19] leans on an
approximation method as well).

REMARK 1.3. In [3], the authors tackle the fractional model (2) using a
Malliavin-calculus approach, which provides an interpretation and a solution of
the equation that may be considered as more intrinsic (since it does not depend on
any approximation of the noise). In fact, we think that this Malliavin-calculus solu-
tion to (2) could be identified with the limit process W exhibited in Proposition 1.2,
but we will not dwell on this identification procedure, since we find it relatively
removed from the purpose of our analysis and also because it would require the in-
troduction of the whole Malliavin-calculus framework. Observe however that the
results of [3] also highlight the threshold szzo H =d — % (with the additional

assumption Hy > %) for W to be either a function or a distribution.
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Based on Proposition 1.2, the limit process W will therefore be considered (al-
most surely) as a function when Z?:o Hi>d— % and as a distribution otherwise.
In the latter situation, and when turning to the study of the auxiliary equation (3),
one must then face the problem of interpreting the product W2 Just as in [14, 21],
we will actually understand this product in the Wick sense which, again, can be
made rigorous through an approximation method, combined with a renormaliza-
tion procedure.

PROPOSITION 1.4. Fixd > 1 and let (Hy, Hy, ..., Hy) € (0, l)d+1 such that
(7) d 3 Xd:H <d !
—_— < . J— _’
4 =TT 2

and consider the Wick-renormalized product \/I\lz(t, V) 2 W, (1, )% — ou(t, y),

with o,(t,y) £ E[W,(t, y)?]. Then (‘/I;f,)nzl is a Cauchy sequence in the space
LP(S; L®([0, T]; W=2%P(D))), for all p >2 and

1 d
8 d—— — H;.
®) a>d-3 ZO ;

In particular, ("I;i)nzl converges to a limit in LP(Q2; L*°([0, T1; W21 (D)),
that we denote by vl

Two distinct treatments of the problem (corresponding to the two regimes
d— % — Z?:o Hi <a<0andd-— % — Zf;o H; > a > 0 in Proposition 1.2)
are thus to occur in our analysis, with a clear transition phenomenon regarding
the interpretation of the product W2 and the need for renormalization. In order to
encompass these two regimes into a single framework, let us slightly extend the
formulation of (3) and consider the more general (deterministic) equation

©) 8,2v—Av+p2(v2+v-l'I1+H2)=0, tel0,T],x e RY,
v(0, -) = ¢o, 0:v(0, ) =1,
where the two “parameters” IT! and IT? will be either functions or distributions in

suitable Sobolev spaces. Our interpretation of the model (1) can now be expressed
as follows.

DEFINITION 1.5. Let ¥ and ¥” be the processes defined in Proposition 1.2
and Proposition 1.4:

(1) A stochastic process (u(#, X)), [0, 7].xerd 18 said to be a solution (on [0, T'])
of the equation
32u — Au + p*u® = B, t€[0,T], x eR?,

(10)
u(0, -) = ¢o, 0u(0, ) = ¢1,
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if, almost surely, W is a function and the auxiliary process v :=u — W is a mild
solution (on [0, T']) of equation (9) with IT! £ 2W and M2 £ W2

(ii) A stochastic process (u(7, x));c0.77.xerd 18 said to be a solution (on [0, T'])
of the Wick-renormalized equation

8t2u—Au—|—,02:u2:=B, te[O,T],xe]Rd,
u(ov ):(p()v 8[14(0, ‘):¢1,

if, almost surely, the auxiliary process v :=u — W is a mild solution (on [0, T']) of

equation (9) with TT' 2 2@ and T2 2 W2,

(11

The results of Section 3 will, in fact, allow us to give a clear sense to the notion
of a mild solution to (9) (with values in a specific space), thus completing the above
definition. With this setting in mind, we can finally state the main results of our
study.

THEOREM 1.6. Let (¢, b1) € W22(RY) x W22(RY). For any 2 < d <
4, there exists a (d, %)-admissible pair (q,r) (see Definition 3.4) such that the
following (nonexhaustive) picture holds true:

G If Z;l:o H;>d- % then, almost surely, there exists a time Ty > 0 such that
the equation (10) admits a unique solution u in the set

(12) St AW+ X2 (Tp),
where
X2(Ty) 2 L%([0, Tol; W22(RY)) N LI([0, To]; L' (RY)).

(i) Ifd — % < Z,d:o H; <d-— % then, almost surely, there exists a time Ty > 0

such that the Wick-renormalized equation (11) admits a unique solution u in the
(above-defined) set St,,.

Using the continuity properties of the solution v of (9) with respect to (IT!, T1?),
we will also be able to “lift” the convergence statements for W and W? (i.e., the
results of Propositions 1.2 and 1.4) at the level of the equation, which will offer
the following alternative interpretation of the model.

THEOREM 1.7. Let (¢, d1) € W22(RY) x W2 2(RY). For any 2 <d <
4, there exists a (d, %)-admissible pair (q,r) (see Definition 3.4) such that the
following (nonexhaustive) picture holds true:

G If Z?:O H; >d— %, consider the sequence (u,),>1 of (classical) solutions
to the equation
0y — Aup + p*u> =B,,  t€[0,Tol,x eRY,

(13)
u(O’ ):¢07 8[“(0’ ):¢1
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Then, almost surely, there exists a time Ty > 0 and a subsequence of (u,) that con-
verges in the space L*° ([0, To]; L2(D)) to the solution u exhibited in Theorem 1.6
[item (1)].

(i) If d — % < Z?:O H; <d-— %, set 0,(1) £ E[W, (¢, x)*] and consider the
sequence (u,),>1 of (classical) solutions to the renormalized equation

O un(t, x) — Auy(t, x) + p*(X) (un (t, X)* — 0,(2)) = By (t, x),
un(0,) =¢o,  un(0,-) = ;.

fort €0, Tol, x € R4, Then

(14) :

d
1 d 1
C}itzzn(d*Q*Zioni) if E H <d— -,
n—>00 i =0

15) on(t) ~

’

2
d

chin ifZH‘zd—1

H .:0 l 2

for some constants c}q, c%], and, almost surely, there exists a time Ty > 0 and a
subsequence of (u,) that converges in the space L ([0, Tyl; W=%2(D)) to the
solution u exhibited in Theorem 1.6 [item (ii)], for every o > d — % — Zfizo H;.

As far as we know, Theorems 1.6 and 1.7 are the first well-posedness results for
a nonlinear wave model involving a space-time fractional noise (at least beyond the
very specific one-dimensional situation). Observe that the above change-of-regime
phenomenon is especially relevant in the fractional setting, where the roughness
parameter H can be “continuously” modified in (0, 1)4*! (contrary to the space
parameter d € {2, 3, ...}).

The rest of the paper is devoted to the proof of these successive statements.
Let us just conclude this Introduction with a few additional remarks about Theo-
rems 1.6 and 1.7.

REMARK 1.8. The consideration of the linear combination Z?:o H; in the
above splitting must be compared with the role of the linear combination 2 Hy +
sz:l H; in the study of the fractional heat equation (see, e.g., [8], Theorem 1.2).
These combinations naturally echo the hyperbolic and parabolic settings, with
scaling coefficient s = (1,1,..., 1) and s = (2, 1, ..., 1), respectively.

REMARK 1.9. The “nonexhaustive” notification in Theorem 1.6 and Theo-
rem 1.7 refers of course to the fact that the two situations (i) and (ii) do not cover
the whole range of possibilities for the Hurst index H = (Hy, ..., Hy) € (0, 1)a+1
of the noise.

The restricting condition Z?:o H; >d - % is first inherited from our compu-
tations toward Proposition 1.4 [as reported in (7)], where we lean on the possi-

bility to pick o < zlt [see (29)], and, due to (8), this can indeed be done only if
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Z?:o H; >d— %. We suspect that, at the price of a sophisticated refinement of the
estimations of Section 2.2 [starting from a refinement of the transition from (26)
to (27)], the renormalization result of Proposition 1.4 should in fact remain true up
to the critical value Zf’l:o H; =d — 1. This conjecture is essentially based on the
results of [10] for the particular dimension d = 2, where the Wick-renormalization
of W2 is shown to be possible up to the critical situation Hy + Hy + Hy =1 (see
[10], Propositions 1.3 and 1.4).

On the other hand, and in light of the assumptions in the subsequent Proposi-
tion 3.8, it is clear that the deterministic part of our analysis can only be applied
if @ < % Keeping condition (8) in mind, this would here lead to the restriction

Z?:o H; >d — g, and so, in brief, we think that the “second-order” results of
Theorems 1.6 and 1.7 should remain valid if d — g < Z?:o H; <d— %. To our
opinion, extending such properties to the case d — 1 < Z?:o H; <d-— % can only
be done through the consideration of higher-order expansions of the equation, as
performed in [10] for the particular dimension d = 2.

REMARK 1.10. The forthcoming proofs (and accordingly the above results)
could certainly be extended to more general covariance structures, such as the ones
considered for instance in [3]. Our arguments are indeed based on a Fourier-type
analysis, which suggests that a suitable control on the Fourier transform of the
covariance function might be sufficient for the computations to remain valid. Be-
sides, we think that, just as in rough paths or regularity structures results, the above
properties are in fact relatively independent of the choice of the approximation B;,.
For instance, using an appropriate Fourier transformation, the results should be the
same when starting from an approximation of the form B, £ ¢, * B, for a given
mollifying sequence (¢,),>1 [the only possible difference may be the value of the

constants c}l, clzq in (15), as classically observed in regularity structures theory].

REMARK 1.11. For d = 2, our results cover the white-noise situation Hy =
H =H, = %, and so we can consider Theorem 1.6 as a fractional extension of
[14], Theorem 1.1, in the quadratic case (as far as the non-linearity). Our study thus
offers an additional illustration of the flexibility of the general two-step procedure
described above [i.e., we first study the free equation (2) and then the auxiliary
equation (9)]. Observe that the white-noise situation for d = 2 corresponds here to
a “border case,” that is, a case for which Zld:o H =d— %, with specific rate of
divergence in (15).

REMARK 1.12. As the reader may have guessed it, the involvement of the
smooth function p in (1) is only meant to bring the computations back to a compact
space-time domain (which will be often essential in the sequel). Thus, our results
should morally be read as local results, both in time and in space, for the real “tar-
get” equation, that is the equation with p = 1. What refrained us to formulate the
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problem on a torus (just as in [14, 21]) is the consideration of the fractional noise,
which is more convenient to define and handle on the whole Euclidean space.

As we already pointed it out, our analysis will be clearly divided into a stochas-
tic and a deterministic part. The organization of the paper will follow this splitting.
Section 2 is first devoted to the stochastic analysis, that is, the study of W, and
the proof of Propositions 1.2 and 1.4. The estimation (15) of the renormalization
constant (which is directly related to W, ) will also be carried out in this section.
In Section 3, we will focus on the deterministic study of the auxiliary equation
(9), first in the “regular” case where ! and M are functions (Proposition 3.6),
and then in the distributional situation (Proposition 3.8). We will finally combine
these successive results in Section 4 in order to derive the proof of Theorem 1.6
and Theorem 1.7.

Throughout the paper, and for any normed space E, the notation N[v; E] will
refer to the norm of v € E.

2. Study of the (stochastic) linear equation. We here propose to tackle the
issues related to the solution W, of the regularized equation (5).

For a fixed dimension d > 1, let us denote by G the Green function associated
with the standard d-dimensional wave equation and recall that the (space) Fourier
transform of G is explicitly given for all 7 > 0 and x € R? by the formula

R |x|
Now the solution W,, of (5) can be written as
t .
Wat.0) = [ ds (Grs % Bu(9) )
(16) = [ Wagan—— .
|£1<2" Jn|<2" |g|Hota iy |y | Hit2

t
X/ ds/ dy G_s(x — y)e's5e! )
0 R4

d “71x1
(17) =cf | Was.dn yi(&. I
%‘|<2" 17|<2" |§|HO+2 lI;I |Hl+é g )
where for all t > 0, £ € R and r > 0, we define the quantity y;(§,r) as
(1) per) 28 [[as o D,
-

Let us also set ys (€, 7) = 1 (§,7) — v5 (&, 7).
With this notation in hand, our computations toward Proposition 1.2 and Propo-

sition 1.4 will extensively rely on the two following elementary estimates.
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LEMMA 2.1. Forall0<s <t,&EeR,r >0andk, €0, 1], it holds that
}VY,I(§7r)|

[t —s| |t —s|*t

e

) 5min(|s|“|t SR e — sl

0= sl + |$|K}r“‘—“)

rllgl = r1=H1=0
PROOF. First one has obviously

/’ du ot sin(ur)
0 r

< JEI€)E — |82 + |t — st

(€, 1) S lets —etts
¥, | S|

+|f 'y emreu SO
N

r

Then observe that

v, r)= elst_/ dse smisr) Snll;ir) e / ds e cos(sr),
which readily entails |ys (&, 7)] < ltgfl + lltg s Finally, it can be checked that
1 et — elEt e Ut etét
0) nen =5 S = |

which easily leads to

[t — s|“(r* + 5y
<
|ys,l‘($’r)}~ r||§|_r|1—)n(1—l() ’ 0

COROLLARY 2.2. Forall0<s<t<1, He(0,1),r >0,e€(0,1) and
k € [0, min(H, 15%)), it holds that

5. (€, )2 ) | .
s T epr1 Sl 'Kmlr‘(l’ xS +r1+z<H_K>_s)‘
PROOF. The two bounds follow from (19). First,
Y5, (€, 1)1
S |§|2H1

d& d
<l‘—s2’(|:/ +/ 7]<t_S2K
ST e igpr=T  Jor o [ S0

Then consider the decomposition

5.0, 1) ? V5.0 (1) [Vs.0 (E,7)]?
d = dgE ———=— — 1 dg ——=— -~
/ S lEpET |§[2H -1 /Ilé‘l —r|= Kl ; |§[2H -1 /Ha —r|< : |§|2H 1
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On the one hand, it holds that

Vs (€, 7)|?
d e A
/IISI—rIz% 5 |g|2H 1

< |t—S|2K/ r 4 g
~oorr o Ngsnoerzay  IEPETIE - r)?

II—SIZ"/ 1+ &]% < |t — 5|2
NrA2H= Jug<hoggizzy 0 1EPATNIE] - 12 Y 220"

On the other hand, for any A € [0, 1], one has

5. (&, 1) 7
/||5|—r|s'5 4% |g12H -1

2

<
~ r2

|Z—S|2K r2K+|§_~|2K
: EPAT][g] — r =200

5r=|§1=<2r

|t — s> / dg
~ r2+2(H—K)—2A(1—K) %S|§\52 |€;|2H—1 ||€;| _ 1|2—2A(1—x)’

and we get the conclusion by taking A = z(lltg,() e[0,1]. O

2.1. Proof of Proposition 1.2. For the sake of clarity, we shall assume that
T <1andset, forallm,n > 1, ¥, , Ly, —W,.

Step 1: Let us show that forallm >n>1,x e R4, 0<s<r<1lande >0
small enough, one has

@D E[|F {141 P F Wt = W (s, ) 0)F] S 272 — 5%,

where the proportional constant does not depend on m, n, s, t and x.
To this end, let us first write

E[|F {1+ P} 2F (Wt ) — W5, ) 0]
_ 5 S 1{x,A) 21—%
= Rddk Rddy‘/Rdd)\/Rddye {1+ 27}

x et Al ] 4321 E

X el@&)E[{\pn’m(l" ) — W m (s, Y)}{lpn,m(t7 y) — W m (s, 9)}]
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Then, with expression (17) in mind, note that

E[{Wam (@, ¥) = W m (s, VI HWnm @, ) = Wnm (s, $)}]

1
(22) /(S.n)eDm,n |§|2Ho=1

d
1 _ ~
<I1 W}VH(&, In))| et et 0.,
i=1 L

where D, , = (B’;1 X B,’;ﬂ) \ (B,i X B,‘f), B'g £ (% e R, |A| < 2%}, and accordingly

E[F ({141 ) 2F (Wt ) — W (s, ) (0) ]

1
=c dédn —+——
/@,n)epm,n |&[2Ho=1
d

1 —o
<1 i+ P a6 )

i=1

~Y n —
meigl<om  Jppi<om |E|2HO~]

d

1 —
<11 W{l + 1012}y (6. 10D

i=1

(23)

1

+ dt / dy—
lgl<am  Jan<qyi<om T |E]2Ho—]

x]‘[ |2H AT PR

S Im,n(S, 1) +Hm,n(S, 1).

Let us focus on the estimation of I, ,(s,t) [the treatment of II,, , (s, ¢) can be
done along similar arguments]. Using an elementary spherical change-of-variable
for the n;-coordinates, we get that for any 0 < & < Hy,

Im,n(s» 1)

- dg o0 {1+ 2
2ne
<2 '/R|S|2Ho—2s—1f0 dr r2(H1+~~+Hd)—2d+1|VSJ(‘§”’)|

1
X/[O,Zn]d O o ‘H | cos(6;) 2] sin(6) PP+ + A =202
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and since max(2H; — 1,2(Hjy1 4+ ---+ Hj) —2d +2i + 1) < 1 for every i €
{1,...,d — 1}, this yields

o0 1 {1+r3
—2ne 2
Lnn(s, 1) S2 /Rdé‘/o dr £ o35 3t Tt Hy) 20 lys.e(E,r)|.

Now, by applying Corollary 2.2, we can assert that for all 0 < ¢ < min(Hp, %) and
0<«k <min(H0—s,%—s),

{1+r2)™ )
/déf |$I2H0 —2e—1 2 2(H++Hg)— zd+1h’s,t(§,i’)\

1
(24) <r— s dr
~ o r2(Hi+-+H)—2d+1

1
+/1 dr r2a+2(H0+~-~+Hd)—2d+2—2x—4g}'

The conclusion is straightforward: the two integrals involved in (24) are indeed
finite as soon as

1 d
28—|—K<Ot—|:d—§— H,~:|.
i=0

Step 2: The rest of the proof follows a standard procedure. First we can use
the fact that the variable involved in (21) is (obviously) Gaussian to turn the latter
estimate into an L?(£2)-control, that is we have immediately for every p > 1

B[ F (141 P F (1) = U (s, 9)) ] S 2721t — 57,

where the proportional constant only depends on p. As the domain D is assumed
to be bounded, this readily entails

E[”an,m(t, ) I’l m(s )”W a2p(D)] < 2_2”517“ _slzep’

and we can now conclude by applying the classical Garsia—Rodemich—Rumsey
estimate: for any g9 > 0,

E[NW,m: C([0, T1; W27 (D))]*"]

dsdt
(0,172 |t _ s|280p+2

< -2nep // ds dt
~ (0.12 |l‘ _ S|—2(8—80)p+2 )

noting that the latter integral is finite for all 0 < g9 < € and p large enough.

< /‘ E[”\Ijn,m(t’ ')_ nm(s )” a2p(D)




1788 A.DEYA

2.2. Proof of Proposmon 1.4. Due to condition (7), we can (and will) assume
in the sequel that o < 4, which will be of importance in our estimates [see (29)].
Also, for the sake of clarity, we shall again assume that 7 < 1. Finally, let us

set, forall m,n >1and 0 <s,t <1, W, £y, — U, \’I\lim £ \Tli — \Tli and

FG. 102 £t = f(s,0) for f € (W, Wy, Wy Wy ).

Just as in [14], the success of the renormalization procedure essentially lies in
the following elementary property, which can be readily derived from the classical
Wick formula.

LEMMA 2.3. Forallm,n>1,s,t>0and y,y € R, it holds that
=2 =2 ~ =, =
E[W,, (t, Y)W, (s, )] = 2E[ W, (£, ) ¥ (5, )]

We can now turn to the proof of Proposition 1.4, that we present as a two-step
procedure (just as the proof of Proposition 1.2).

Step 1: Let us show that forall m >n>1,x e R, 0<s<tr<lande>0
small enough, one has

25 E[F {11 PR ) @] S 27— s

where the proportional constant does not depend on m, n, s, ¢ and x.
One has

— —Q ~2
E[F ({141 1P} F (@, 6. 19) @]
= dxr dy/ dk/ dy e &M {1+|)L|2}_“e_’<)‘v”e_’(xj~)
R4 R4
X {1+ (A2} e BB 5.1 )W), (.10 5)]
and, using Lemma 2.3, we can check that
1 =2 =2
EE[‘I’n,m(s’ L y)‘Iln,m(s’ I y)]
[ nm(t Y)"I’n m (S, t; y)]E[\Ijm(tay){\pm+\Ijn}(t,j;)]

+ E[ W () )W (5, D) [E[Won (0, ) { W + Wi} (s, 15 5)]
+ E[Wn(t, )W (s, 15 DIE[Wm (8, ) (W + U} (2, )]
+E[
+E[W
+E[W
+E[

Wi (1, )W (8. D JE[ W (0, V) (Wi + W) (5, 15 5)]
non (S, )W m (£, 55 5 E[ W (5, ){ W + Wp}(s, 7))
0 (S V)W (0, ) B[ Wi (5, ) (W + W} (2, 55 3)]
W (5, Y)W m (£, 55 D) B[ Wi m (5, Y){Wm + Wp}(s, 3)]
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+E[\pm(59 WWo,m(t, y)]E[\I}n,m(sv YWy + W, ) (2, s y)]
Z Al (s, 19, 9).

.....

It turns out that the eight terms derived from Ainvn(s, t;y,y) (i efl,...,8}) can
be handled with the same arguments and, therefore, we will only focus on the
treatment of A,ln,n (s,t; y,y). In fact, just as in (22), one has

E[Wn (6, )Ty G5, )]

=c d&
/(is;n)elpm,n |§|2H0 ! l_[ |’7 |2H
e e 3y (&, |nl)ys.i (8, Inl)

and

E[Wo (2, y){Wm + Un}(1, 5)]
d
1

~ 1 - 2 s .
=c dédn — - AN [Fet ) gt )
/Rde s |§[2Ho~] ,:l_ll |77i|2H"_1|yl(s il

* g iesyxss, T 1 mesxned
where D,, , = (Bl X Bd) \ (B1 X Bd) and Blg £ (1 e R¥, || < 2%). Therefore,

f dx dy/ dk/ dy ’X)‘{1+|)\| )¢ e A Y) gt A)
R4 R4

14 G2} BTAL (5,10, i)’

1 d 1 _—
d§ dn A &, Inl)ys,e (&, Inl
f@,n)epm,n £ 2T E[l oAt 7 e & Il

=c

- [N | . P
dédn — — , |1
X/RXW £ n|$|2H0_1i1:[1|m|2Hi_1|yt(s jil)|

~ 2 —2a
X ¢ iesy st T 1@ mesrxpH+ =717}

| |
< d / d ) s >
Nflszzn 5 ). 77|§|2H0_1i1;[1|m|2Hi_1|Vt(§ )| vs.c (€. Inl)]

- 1 d 1 - 2 -2
x d& dij — - AN+ 1 — 712
,/]Rde § n|§|2H0_1i]:[1 At E DT+ I =)
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1 & 1
+/Rd§ /W 4 e 1;[1 a6 s € o))

d 1

~ 1 =~ 2 ~ 1212«
X dé dn— —~ , 14+1|n—
[ g L e e P+ 1= )

2 1,(s, 1) + L, (s, 1).

As in the proof of Proposition 1.2, we will restrict our attention to I, (s, ¢). For
0 < & < Hp, one has

In(s,t)§2_2n£/ d& dn den{l—i—Ir}—nI }
RxRd RxR

1 1
X RO [1 AT v (€. InD)||vs.e (8. 1nl)]
i=1""

I .
(26) = 1]‘[“7 s Il

52—2"8/ dédn/ dE diif1+ |In] — 177}
RxR4 RxR4

|§|2(H0 5= 11"[ le_lms 1)1 5. )|

1 A 1 5 )
(27) X —= — ’|~| .
|E [2Ho—1 11:[1 |7 |2Hi—1 ve (&, 171)]

Now let us split the integration domain as (R x RY )2 D U D5, with

Il 3Inl
<Inl<—

D2 En i) .

and

[l . 3n
{@nsn) 0<lil <2 or |n|>7}.

For (£, 1, &, 1) € D, one has ||n] — ||| > max(!ZL, 111), and so

/ d& dn dé dij 1
D, {1 + lIn] = [7]12)? |& |2(Ho=e)=1

xl_[ |2H i (& nDllys.(&, )]
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| -
X = > &, Inl
gt L e e 1)

</‘ d&dn 1
~ \URxRd {1+ |2} |§[2Ho—e)—]

N
< T v (& Dl 8. |n|)!)

i i

(28)

dE dij 1 d 1 .
x <\/]RXR‘1 {1+ |ﬁ|2}0‘ |§|2H0—1 l_[ |ﬁi|2Hi_1 |)/t(§, |77|)| )

i=1

d 1/2
(/ = : v )P
RxRe {1 + |n|2}a |§|2(Ho—s)—1 bl |nl,|2Hi—1

1/2
% / d$d772 2(H1— )—1 ﬁ 21H-—1|VSJ(§’|’7|)|2 /
RxRd {1+ |} |E[2H0==0 20 [ [“H

dédii 1 L .
X (foRd {1+ |72} |§|2H0—1 1_[ |7 [2Hi =1 |Vt(‘é§’ |77|)| )

i=1

At this point, observe that we are exactly in the same position as in the proof of
Proposition 1.2 [see (23)], and so we can rely on the same arguments to assert
that for ¢ > 0 small enough, the above integral (over D») is indeed bounded by
c|t — 5|, for some finite constant c.

In order to deal with the integral over the domain D, observe first that

dn . 1
= vi(§, 17l —h T
'/l%<lﬁl<% {1-i-||77|—|77||2}2"‘| '( ) ,l;[l |7; |2Hi—1

— |,7|—2(H1+~-~+Hd)+2d

d L, 1
X = ve(&, Inlin] —E T
/%<|ﬁ|<3 {1+ In12(1 - |77I)2}2°f| 4 11 |7 |2Hi =1

2 i=1

2

2

’

3
< |n|—2(H1+---+Hd)+2df2 dr
{1+ —r)?

}M!yt(é, nlr)

and so

/ dé dn dE di 1
Dy {1+ [In] — |7]12)2« |&|>(Ho—e)=1

d
1
mweettd DI LD
i=1 """
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1 d 1 .
x |$|2H0 1 l_[ |77 12H;—1 |Vt(§, |77|)|

< dn 1_[ dr
~ Jrd |n|2(H1+..-+Hd)72d i |m|2H1~71 % {1+ |77|2(1 —r)2}2°‘

2
x/dg Iyt(é,lnl)llys,t(é,lnl)l/ SI%(S Inlr)l

|§|2(H0—8)—1 |$|2H0 1

< dn 1—[ / dr
™ R || HE =2 S g 2HEL {1 4 21— )22

v, InDI? \ /2 V. €, InDIP\ /2 =y, Inlr)|?
(/ as |€|2(Ho—e)— 1) (f d§ |€|2(Ho—e)— 1) /Rdg |E|2Ho—1
< dp dr
N/O p4(H1+ +Hy)—4d+1 1 {1+p2(1_,,)2}2a
Iy (&, p)I> \1/? Vs G PN\Y? [ I, pr)]?
(/ él%lz(""0 —&)- 1) (/ §|~’E|2(H0 &)= 1> Adéw

5|t_s|K[/ 1 “ 4d+1
o0 pHHIFFHp)—4d+

3

+/°° dp /7 dr ]
1 p4(H0+---+Hd)—4d+3—88—K % {1 + p2(1 _ r)2}2°‘

for all 0 < ¢ < min(Hy, 2) and 0 < k < min(Hy — ¢, 8) where we have used
Corollary 2.2 to derive the last inequality. Finally, since o < 4, it is readily checked
that for all 0 < £ < min(Ho, 1) and 0 < k¥ <min(Hy — e, % —e¢) suchthat 8¢+« <

4(a —[d — Z

0 dp dr
/1 p4(H()+"'+Hd)—4d+3—88—K % {1 + ,02(1 _ r)2}2a
(29)

- R dp dr
—‘/; p4a+4(H0+..-+Hd)—4d+3—88—l{ % (1 _r)4a <

Going back to (27), we have thus shown (25).

Step 2: Once endowed with estimate (25), we can of course use the same ar-
guments as in Step 2 of the proof of Proposition 1.2 (together with the hypercon-
tractivity property of Wiener chaoses) to obtain that, for 0 < g9 < € and p large



A NONLINEAR WAVE EQUATION WITH FRACTIONAL PERTURBATION 1793
enough,
B[NE2,: C(10, T W22 (D) F] £ 27,

which completes the proof of our assertion.

2.3. Estimation of the renormalization constant. Let us conclude this section
with the asymptotic analysis of the renormalization constant o, (¢) L E[W, (1, x)?]
at the core of the above renormalization procedure. In other words, our aim here is
to show (15). To this end, fix d > 2 and (Hy, ..., Hy) € (0, )4*! such that

1
d——< H<d——
2

i=0

and, with expression (17) in mind, write the renormalization constant as

on (1) :E[‘Ijn(t,x)z]
:Cfg|<2n 1€ [2Ho—T /,7|<2,1 1_[ L |2H_1 (€. Inl)?

/2” dr /‘ | (&, )|
=c
0 p2(Hi++Hg)—2d+1 |&|<2n |S|2H° 1 Vi

The asymptotic estimate (15) is now a straightforward consequence of the follow-
ing technical result [take & 2 2Hp € (0,2) and « 22(d — 5 — Y H;) € [0, )].

PROPOSITION 2.4. There exists a constant ¢ > 0 such that for all o € (0, 2)
and k €10, 1), one has, as n tends to infinity,

2 dr dg ) 2" dr
Y Y S -
( ) 0 r—Cl—K |S|§2n |§|0l—1 |yt(€ r)| ¢ 1 rl—l{

PROOF. First observe that using (19) we have

[ =]
0 r—o K lE|< 2n

L dr d& L dr d§
vy / = =
{ | 0 r2Ho=c Jig <y |Ele] 0 rYe Tk Jig=1 ||

and accordingly it suffices to focus on the estimation of the integral

2 dr d& 5
/1 e« /|sszn EpTmEnl
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To this end, we will rely on the following expansion, which can be readily derived
from (20):

|Vz(§, r){z _ %{ 1 —cos(t(& —r)) B cos(tr){cos(tr) — cos(té)}}
r (6 —r)? E—-nrE+r
n i{ 1 —cos(t(€ +r)) B cos(tr){cos(tr) — cos(té)}}
r? (¢ +r)? E—r)E+r)
= Ty(§, ) + T ).

For obvious symmetry reasons, we have in fact

flzn ”f‘l"r’“ /|s|52" Ié;ll‘fl ne.nf
- 2/12” rir‘“ /asz" I%‘CII%FT@’”
31 = 2/12n r_cir_K /0 l;f_l Ly(€.r)
2 /fn —— | P

[

Y gr P de
w2 L= e TrEn)

.7l 2 3
=- jn,t + jn,t + jn,t'

Study of J,},. Let us introduce the additional notation

F}(S, r) = 1 —cos(t(& —r))

(tr){cos(t§) — cos(rr)}
2 th(é,r) — cos(tr){cos(t&) — cos(tr

r2( =) +r)

so that
(32) Ti(&,r)=c|T &, r) +THE, M)

Now, on the one hand, for any 0 < ¢ < 1,

> dr rode
/1‘ r—()l—l('/(; |§-|a—lrt &.7)

_‘/2" dr fl d& cos(tr)(cos(tr&) — cos(tr))
IR E-DE+D

<t8f°° dr /‘1 dé
~o e o JEle L —EE L 4 E|
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and the latter integrals are finite for any ¢ > 0 such that ¥k + & < 1, which shows

that
2" dr rodgE 5 B
/; r‘“"‘/o |§|a_1Ft(§,r)_0(1).
On the other hand,
2 dr rodg
/; r—cx—K/(; |€|a—lrt (f,}’)
_/2" dr /1 dé 1 —cos(tr(1 —§&))
N o gt (1-§)?
_/2" dr /é dé 1 —cos(tr§)
- 1 2K 0 |1_§|a71 ‘;3:2
2 dr v dE 1 —cos(tré)
+_/; rZ—Ké |1_E|a—1 %-2 ’
with

2 dr ! dE L —cos(tr§) | _ [ dr L gg
/ 2—,(/1 1 —£la—] 2 N/ 2—K/1 [ —goe—1 =
o P 18] § Lo 1 =§]
and

/2” dr f% dé 11— cos(tr)
1 r2—K 0 |1—§|a_1 %-2

:t/IZ” dr /0’2—’| d& 1 —cos(&)

rl—l{ 1 _ f_t|a_l 52
o 1 —cos(§) 2" dr
=t/ dg 2 / 1—«
0 & 1 r

2 dr [ % dE 1 —cos(§) % 1—cos(&)
+t'/1 VI_K|:~/O |1_r§_t|a—1 %’2 _./O d%- 52 :|

By applying the below technical Lemma 2.5, we can easily conclude that

] 2" dr

(33) Tns= ctf — T O().

1 r

Study of J,Et. We will here use the (readily checked) decomposition

(34) i, r) =c[2T7 (&, r) +T}HE )
with

1 —cos(t(¢§ —r))

I r) =

r(§ =r2E +r)
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and
1 —cos(t(§ —r)) —cos(tr)(cos(tr) — cos(té))
r2E —r)E+r)

Now observe on the one hand that for every ¢ € (0, 1),

[ e
ﬁﬁz Z“szlﬂwﬂéjﬁ“ﬂé+ﬂ

[ dr de
t/ 2 K— s/ oe—ll_ 1—81
1 g =811 4§

and the latter integrals are finite provided 0 < ¢ < min(1 — «, «). On the other

THE,r) =

N

N

hand,
2 dr 2 ds
/] Fa—K /r |%—|a—1 Ff &, r)
/2" /2”—r d& 1 —cos(t§)
Thorely e 8
°° 1 — cos(§) 2" dr
59 2/ rl= "/ §—2+/1 pl-a—«

y [/2"’ d& 1 — cos(t€)
o lE+rieTlE+2r &2

[t

Using Lemma 2.6, we can then assert that for ¢ € (0, min(e, 1 — «)),

/2" dr |:/2"—’ dg 1 — cos(t&)
O N B

1 / l—cos(téj)}
2r¢
. 2 dr
t - @
f 2 K—¢ /; 1—K|2n_r|1—8
dr
te/ £~ n(l—k— e)f ]
+ 0 rl= Kll rll—s

Going back to (35), we have thus shown that

) 2 dr
(36) Tns = Ct,/l %



A NONLINEAR WAVE EQUATION WITH FRACTIONAL PERTURBATION 1797

Study of J,Z ;- Using decomposition (32), it is readily checked that for ¢ € (0, 1)
and for all &, r > 0,

1 1 1
T (— <
e A e =1

2” d’/‘ 2”! ds
| == e e
on on &
</ dr / d& [ Lo, t ]
~hovme s el R e rliE -

© dr [ dE 1 16
5/ 2—k— / —1[ 7t - ]
1 or=%Jo [E|*TLIE+ 1] 1§ + 111§ —1['~¢

The latter integrals being finite as soon as 0 < & < min(1 — «, o), this shows that
‘7,137 , = O(1). Injecting this result, together with (33) and (36), into (31) yields the
expected decomposition (30). [

and so

LEMMA 2.5. Given a € (0,2) and € € (0, 1), one has, for all r > 0,
1 —cos(§) © 1 —cos(§) 1 1
‘/ élot N 52 _‘/0 dS g__2 ‘fca,g[;‘f’rl_s}.

PROOF. Write the difference as

[ogdé[u _1§|a—1 B 1}1_?2)8(&) +/de$$.

Then observe that

/roodfl_g(;S(E)‘S 1 Ood 1 —cos(§)

|§|l+s

and

’f [|1—5|a 1_1]1_;728(5)‘

=t = |r —&|%71 1 — cos(&)
<f) et &2
f 5 cos(&) 1+|10gr|1{r>1}
~ Ir—E|lEl ™ r ’

hence the conclusion.
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LEMMA 2.6. Given o € (0,2) and 0 < ¢ < min(w, 1), one has, for all t > 0,
n>0and1 <r <2",

/2zz_r d& 1 —cos(t&) 1 /“X’ds 1 —cos(t§)
0 & +r|e=1]E + 2] g2 2r* Jo g2
t¢ t¢ T
= Ca’€|:r1+01—8 + re|2n — rll—s_'

PROOF. Let us decompose the difference as

/2n_r de [ 1 B I 71 —cos(t&)
0 & +rje=t el ] |E 4-2r (82

1 2t —r 1 1 71— cos(t€)
ra—I/o dé [|§+2r| _Z] £2

1 o0 1 —cos(§)
_ %_Q/Zn_rdg —

+

Then observe that

2 —r 1 1 71 —cos(t§)
I e e
. 1/00 d& 1 —cos(z§)
~rdoo [E4reTlE +2r &1
1 > d& 1—cos(t§) 1 % 1 —cos(t§)
< — < I
b oErrm S, g

b a8

<i ©  dE 1—cos(t&)

“reJo o 1§ +2r] €]
1 1 —cos(t§)
/0 d§ ————.

~ r1+a—s |§|1+s

~r
and
1

ra—l

Finally, one has, of course,
o0 1 —cos(t§) ‘ 1 /00 1 —cos(t&)
d < ds ————=.
‘/— e P b ¢ T O

3. Study of the (deterministic) auxiliary equation. Let us now turn to the
analysis of the deterministic equation associated with our quadratic model (1), that
is the equation

- [8,21)—Av+p2(v2+v-l'[1+l'[2)=0, t€[0,T],x R,

U(Ov ) = ¢0’ 3;1)(0, ) = d)l’
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where I, T2 are two (fixed) elements living in appropriate Sobolev spaces. We
are actually interested in the exhibition of a unique (local) mild solution to (37),
which will be achieved by means of a standard fixed-point argument. In other
words, for fixed IT £ (1'[1, l'[2) and T > 0, we will focus on the study of the map
I'7 n defined as

Lz m(v)(#, x)
(38) £0(G(t, ) o) (x) + (G, ) * p1) (%)
+ (G * [p*? + pI - pv + p?I2]) (2, x),

where G stands for the Green function of the standard d-dimensional wave equa-
tion. Putting the fixed components aside, this map is thus essentially built upon two
successive operations: multiplication of v with itself or with II!, and convolution
with G. Accordingly, before we specify the space in which we will study I'r 1,
let us recall a few general results on pointwise multiplication and convolution with
the wave kernel.

3.1. Pointwise multiplication. Recall that, with the results of Section 2 in
mind, one of our purposes is to handle situations where the elements IT!, IT? in-
volved in (38) are not functions but only distributions. Thus, even if we expect
the solution v itself to be a function, we will need to rely on specific results about
the (nonstandard) multiplication of a function with a distribution. In fact, we will
actually use the following general statement, borrowed from [23], Section 4.5.1.

PROPOSITION 3.1. Fixd > 1. () Forall a,8 > 0 and 0 < p, p1, p2 < 0
such that

1 1 1

—<—+4—, O<a<p<—,

p pr1 P2 P2

. (d d
mm(— +a,d> > (— —i—a) + <— —,8),
p P1 p2

one has
(39 If- 8||Wfa,p(1[{d) S ||f||W_°‘~Pl(Rd)”gllwﬁsM(Rd)'

(i1) For all B > %, O<a < pBandp > 2, one has
(40) If- g”wfvup(Rd) N ||f||wfa¢p(Rd)||g||wﬂ.2(Rd)-

3.2. Generalized Strichartz inequalities and admissible pairs. The wave ker-
nel is known to satisfy specific regularization properties, the so-called Strichartz
inequalities, a central ingredient for the analysis of (37). Let us sum up these fun-
damental properties through the two following statements, both taken from [13],
Proposition 3.1.
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PROPOSITION 3.2. Fixd > 2 and let w be the solution of the equation
Pw—3>w=0, rel0,T],xeR

w(0, -) = ¢o, % w(0, ) =¢1.

Then foralls e R,2 <q < 00,2 <r < oo such that

2pdzt 4=l (— (d—l)(———));é(l D),
q r 2

(41)

one has, by setting = s + % - (é + %),
Nw; LI([0, TT; WS (RD))] + N[8,w; LI ([0, T]; W1 (RD))]

S lgollyyuz + ld1 llypu-1.2.

PROPOSITION 3.3. Fixd > 2 and let w be the solution of the equation

@) :afw—a,%w:f, t€[0,T],x R,

w(0, -) = 9;w(0,-)=0.
Then forall s1,50 e R, 1 <g<2<g<00,1 <F <2<r < oo suchthat
2 d-1 d—l 2 d-—1 d—1
+ +

—’ ~>2—’
r_2 r_+2

q g
<§Jd—D< ))¢<1n ( u—lm———>)¢al)
and

1 d 1 d
(43) ﬂ—(—+—)=2—n—(t+t)
q r q r

one has
Nw; LI([0, TT; W (R)] + N8,w; L9([0, T1; W~ (RY))]

(44) i -
SNLF5L1(0, T W=7 (RY)) .
As classically reported in both the deterministic and the stochastic wave litera-
ture, the above condition (43) leads us to the consideration of a natural admissibil-
ity condition for the (future) regularity coefficients.

DEFINITION 3.4. Fixd>2and0<s <4 A pair (g, r) is said to be (d, 5)-
admissible if

2<q <o0, 2<r <oo,
(45) 2 d—1 d-1 1 d d

- <— and —+-—=——y.
q—i_r_ZEln q+r2s
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A pair (g, r) is said to be (d, s)-dual-admissible if

1<g<2, 1<F<2,

(46) 2 d-1 d—1 1 d d
-+ —>2+—— and -+ -=2+—-—s.
q r 2 q r 2

We are now in a position to introduce the class of spaces at the core of our
analysis [here again we just take up the standard setting used in the classical wave
literature and derived from inequality (44)]. Namely, for a given 0 < s < % and a
given (d, s)-admissible pair (g, r), we set

@47 XN(T) =X (T) & L0, T]; WS (RY)) N LI([0, T1; L" (RY)).

The aim of the next two sections is thus to show that, for 7 > 0 small enough and
', 112 in given Sobolev spaces, the map I'7 m defined by (38) is a contraction
on X*(T), for a suitable coefficient s and a suitable (d, s)-admissible pair (g, r).
Due to the quadratic term G * (pzvz) involved in I'7 11, we will actually be forced
to consider additional constraints on these coefficients, beyond admissibility. In
brief, since p”v? is expected to be controlled in Li([0, T]; L™ (R?)) with (§,7) a
(d, s)-dual-admissible pair (take s» = 0 in (44)), we need to ensure that

LY([0, T1; L"(D)) € L¥([0, T1; L* (D).
In view of this constraint, let us highlight the following existence result, which will
determine the range of application of our study (see Section 4.3 for more details).
PROPOSITION 3.5. Forall2<d <4 and s € (%, %], one can find a (d, s)-
admissible pair (q,r) and a (d, s)-dual-admissible pair (g, r) such that
(48) qg>2q and r>72r.

PROOF. We can check that the pairs (¢, r) and (g, 7) given by the explicit
formulas

p d+] s 21

1= Sa—1y d+1_ds

o d+] s 2@+1)
2+sd—1) S+d—ds’

meet the required conditions. [

3.3. First situation. Let us first consider the situation where the pair IT =
(1'[1, l'[2) involved in (37) [or in (38)] belongs to the space

£2 L0, T]; L®(D))*.
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Thus, for the moment, IT! and IT? are merely (bounded) functions. When going
back to the stochastic model (1) and with the result of Proposition 1.2 in mind, this
situation will later correspond to the “regular” case Z?:o Hi >d— % (along the
splitting of Theorem 1.6 or Theorem 1.7).

PROPOSITION 3.6. Given d > 2 and 0 < s < 1, assume that there exists a
(d, s)-admissible pair (q,r) and a (d, s)-dual-admissible pair (q,7) such that
(48) is satisfied, and define the space X*(T) along (47). Then, for all T > 0,
(¢0, $1) € WHERY) x WL2RY), T = (M}, M}) € &, My = (M}, M) € €
and v, vy, vy € X*(T), the following bounds hold true:

N[Trm, (v); X*(T)]

(49) < Mollys2 + I1llys-12 + T4 N s X3 (D)
+ T |No; X*(T)] + Ty |
and
N([T7.m (1) = T m, (v2); X5(T)]

(50) < Té‘fj\/[vl —v; X (D) [{Nv1; X°(T)] + Nva; X°(T)]}

+ Ty — I N vr; X¥5(T))]

+ TN o1 — v2; X5(T)] + T — My,
where the proportional constants only depend on s and the norm || - || is naturally
defined as

I = || TT|lg 2 N[IY; L°([0, T1; L®(D))] + N3 L°°([0, T1; L¥(D))].

By combining the two bounds (49) and (50), it is now easy to see that for any
fixed IT € £ and any time Tp > 0 small enough, the map I'r, i : X*(Tp) — X*(To)
is a contraction on a appropriate stable ball of X*(7p), which immediately yields
the expected (local) well-posedness result.

COROLLARY 3.7. Under the assumptions of Proposition 3.6, and for all
(fixed) (¢, 1) € WH2(RD) x W—LZ(RY), IT = (ITY, I1?) € &, there exists a time
To > 0 such that equation (37) admits a unique solution in X*(Tp).

PROOF OF PROPOSITION 3.6. The procedure is standard: We bound each
term in the expression of I'7 1 separately.
Initial conditions: using Proposition 3.2, we immediately obtain

NI3:(G (2, ) * do) + (G(t, ) x ¢1); X*(T)] < lldollyysa + @1 1lys-1.2.
Bound on G x (p*v?): By Proposition 3.3, it holds that
NG * (p*v?); X5(T)] S Np*% LI([0, T1; LT (R))].
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Then, as p is supported by some fixed compact domain D, we can use condition
(48) to assert that

Np*v?: Li([0, T); L7 (RY))] = N[ pv; L¥ ([0, T1; L7 (D))]?
< TN L0, TT: L (RY))]2
< Té‘ﬁ/\/[u; x5 ()]~

Bound on G * (p H} - pv): Let us introduce the additional parameter 1 < 7 <2
such that
1—s

+d.

|
N =

First, by Proposition 3.3, it holds that
NG * (o1} - pv); X*(T)] SN[pT} - pu; L1([0, T1; L™ (RY))].
Then one has of course, for every ¢ > 0,
[oOM @ PO )| ey S T | ooy [0 D | L2
< i, ‘)”LOO(D) Ju, ')HWM(R‘Z)
and so
Npmt- pu; L([0, T1; L™ (RY))]
SN[ L2°([0, T1; L®(D)) N v; L1([0, TT; W52 (R?))]
< TN L°°([0, T1; L=(D)) [N v; L ([0, T1; WH2(RY))]
S T N v; X¥(T)].

Bound on G % (,021'[%): Using the same parameter 1 < 7; < 2 as above, one has,
by Proposition 3.3,

NG * (0*113); X(T)] SN[p*0%; L1([0, T1; LTV (RY))] < T .

Combining the above estimates provides us with (49). It is then clear that (50)
can be derived from similar arguments: for instance,

NG = (p*(vf — v3)): X*(T)]
SN[vi —v3: LA([0, T); L7 (D))]
< NTvr — va; L¥([0, T1; L¥ (D)) N v1 4 v2; L24([0, T1; L¥(D))]

ST TN vr — va: XS (DN or + 2 X (7). =
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3.4. Second situation. 'We now turn to the “irregular” case of our analysis, that
will later correspond to item (ii) in Theorem 1.6 or Theorem 1.7. With the result
of Proposition 1.4 in mind, we are thus led to consider the situation where the pair
I = (11!, I1?) in (38) belongs to the space

Ea.p 2 L([0, T; W™P(D)) x L*([0, T]; W™2*P (D)),

for some positive coefficient o and some integer p > 2. In particular, IT' and IT>
are now both regarded as distributions. Our main result in this setting reads as
follows.

PROPOSITION 3.8. Givend >2and 0 <a < s < 1 such that 2a + s < 1, as-
sume that there exists a (d, s)-admissible pair (q,r) and a (d, s)-dual-admissible
pair (q, 1) such that (48) is satisfied, and define the space X*(T) along (47). Be-
sides, let p > d be defined by the relation

I T—(ax+s)

p d

Then, for all T > 0, (¢o, ¢1) € WH2(RY) x W—L2(RY), T} = (T}, T3) € &, p,
M, = (I}, H%) € &y, p and v, vy, v2 € X*(T), the two bounds (49) and (50) hold
true, with proportional constants depending only on «, s, and with norm | - ||
understood as

ITT]| = (||,
2 NI L2°([0, TT; WP (D))] + N2 L ([0, TT; W™2*P(D))].

REMARK 3.9. Let us briefly compare this result with the situation treated in
[14], Proposition 3.5. At the level of the process W (and so at the level of II in the
above formulation), the situation in [14], Proposition 3.5, corresponds to taking
o = ¢, for € > 0 as small as one wishes. The latter possibility allows the authors
of [14] to consider a general nonlinearity of order k in the model [instead of the
quadratic nonlinearity in (1)]: morally, the condition 2« + s < 1 in Proposition 3.8
turns into ke +s < 1 which, by taking & small enough, can indeed be satisfied. Our
aim here, with the result of Proposition 1.4 in mind, is to handle situations where
o may be close to }1, which accounts for our restriction to a nonlinearity of low
order.

Just as in the previous section, we easily deduce from Proposition 3.8 the fol-
lowing.

COROLLARY 3.10. Under the assumptions of Proposition 3.8, and for all
(fixed) (¢o, ¢1) € WH2(RY) x WL2RY), Il = (ML, M%) € &, p, there exists a
time Ty > 0 such that equation (37) admits a unique solution in X*(Ty).
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PROOF OF PROPOSITION 3.8. It is readily checked that the only differences
with the situation treated in the previous section lie in the fourth and fifth terms
composing I'r 1 and, therefore, will only focus on these terms.

Bound on G * (pII' - pv): Let us introduce the additional parameter 1 <7; <2
such that

1 1 1-@+s)
o2 d
First, by Proposition 3.3, it holds that
NG  (pTI! - pv); X5 (T)] SN[pT* - puv; L1([0, T, W™1(R?))].
Then, using Proposition 3.1, it can be checked that for every ¢ > 0,
oI @, o v, ) y-ai gay
SoOT @)y @y [0 OVE ) s ay
S Hl‘[l(t, ')HW*‘M’(D) |, ‘)HWM(Rd)’
so that
N[pnt. pv; L1([0, T]; W1 (RY))]
SN[ L2°([0, T1; WP (D)) N v; L' ([0, T1; W2 (RY))]
S TN L2°([0, T1; WP (D)) [N v; L=([0, T1; W2(RY))]
STIOIN[v; X*(T)].
Bound on G * (p*I1%): Consider the additional parameter 1 < 7 < 2 such that
1 1 n 1 — Qo+ s)‘

P2 d
By Proposition 3.3, one has just as above
NG * (0*112); X5 (T)] SN p*1%; LY([0, T); W242(RY))],
and then
NI L'([0, T;; W2 (RY))]

= N[p*I%; L'([0, T; W2*"2(D))]

SN[ LY([0, T WP (D))]

SN[ LY([0, T1; W™2*P(D))]

STN[IE L([0, T]; W2P(D))] S T,

where we have used the basic Sobolev embedding W™2%? (D) C W—2¢72( DY and
the bound (40). [
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4. Proof of the main results. It remains us to combine the (stochastic) results
of Section 2 with the (deterministic) results of Section 3 in order to derive the proof
of our main theorems.

4.1. Proof of Theorem 1.6. Fix 2 <d <4. Let (¢,r) and (g,7) be a (d, %)—
admissible pair and a (d, %)—dual admissible pair that satisfy condition (48) (let us
recall that the existence of such pairs is ensured by Proposition 3.5). Now consider
the two situations of the statement:

(i) Since Zfl=0 Hi>d— %, we can pick 0 < A < Zf]:() Hi —d+ % and then
p large enough so that the continuous embedding WW* 7 (D) C L*°(D) holds true.

By Proposition 1.2, this puts us in a position to apply Corollary 3.7 (almost surely)
with ' 22w, M2 2 W2 and s = % The result immediately follows.

(i) Pick @ > 0 such that d — % — Zf'l:o H <a< }t, so that, using Proposi-
tion 1.2 and Proposition 1.4, one has, forevery p > 2, W € L*([0, T]; W~*? (D))
and W2 € L% ([0, T]; W™2*P (D)) a.s. It now suffices to observe that 2« + % <1,
which allows us to get the result by applying Corollary 3.10 with TT! £ 2w,
n? 2 g’ and s = 7.

4.2. Proof of Theorem 1.7. Fix 2 <d <4, s = %, and let (¢,r), (¢g,7) be
defined as in Section 4.1.

(i) Let (uy,) be the sequence of classical solutions of (13) and set v, Ly —Yn,
so that for each fixed n > 1, v, clearly satisfies equation (37) with n!= l'[,ll 22y,
and 2 = 1'[% = lIJ,%. We can thus apply (49) and assert that for every T > 0,

Nvn; X5(T)]

1_2
(1) < Nollyysz + 1 llyps—12 + T7 4 N v, X5 ()]
+ T, N op; X5(T)] + T,

where the proportional constant only depends on s. Besides using a standard
Sobolev embedding, we know that for all A > 0 and p large enough (depending on
1),

(I, — II|| = || T1,, — II||¢
(52) S Wn = Wl oo, 73w (D))

+ |y - \IIZHLOO([O,T];W'\,P(D))’
and so, using Proposition 1.2, we get that for a subsequence of (V) [that we still
denote by (W,)], [|[II, — II|| — O almost surely. In particular, sup,, ||[II,| < oo
a.s. Going back to (51) and setting f,,(T) 2 Nv,; X*(T)], we deduce that for all
O0<Ty<landO<T <Ty,

fn(T) < CL{A+ T £,(T)?),
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for some coefficient ¢ > 0, some (random) constant C; > 1, and where we have

set A= 1+ [|gollyys2 + ll@1llyys-12. At this point, let us fix the (random) time

T1 > 0O satisfying 1 — 4C12AT18 = %, in such a way that for every 0 < Ty < 71,

the equation ClT(fx2 —x + C1A =0 admits two solutions xi 7, x2, 7, satisfy-
ing 0 < x1,7, < x2,7,- As a result, for all 0 < Tp < inf(1,77) and 0 < T < Tp,
one has either f,(T) < x1,1, or fu(T) > x2 1;,. In fact, due to the continuity of
T — f,(T) (a straightforward consequence of the regularity of v, ), one has ei-
ther supy (o, 77 fu(T) < x1,1, Or infrefo,75) fu(T) = x2,1;,- Moreover, if we define
T > 0 as the largest time such that (Supy<7 <7, 2Ci T |lpol) <1, it can be explic-
itly checked that for every 0 < Ty < inf(1, T1, T2), f(0) = [|¢oll < x1,7,, and we
are therefore in a position to assert that for such a time 7 (that we fix from now
on),

sup N [va; X*(To)] =sup sup  f(T) < x1,75.
n>1 n>1Te[0,Tp]

By injecting this uniform bound into (50), we easily derive that, for some time
0 < Ty < Tp (uniform in n),

Nvn —v; X (T0)] S ¥ — W, I,
where the proportional constant is also uniform in n. Finally,
NTun —u; L([0, Tol; L*(D))]
SN[, —W; L2([0, Tol: L2(D))] + N v, — v; X* (Tp)]

and the convergence immediately follows.

(i) We can of course use the very same arguments as above, by noting that if
(u,) satisfies (14) and v, £ v, — ¥,, then v, satisfies (37) with IT! =TT} £ 2y,
and M2 =M% £ \Tli. The bound (52) must then be replaced with

ITL, — || = [T, — Ilg, ,
= N[2W, —2W; L®([0, T]; W*P(D))]
F N2 — W% 1[0, T WP (D))],

which allows us to apply Proposition 1.2 and Proposition 1.4 in the procedure.
Observe finally that

NTup —u; L¥([0, TT; W™2(D))]
SN[W, —¥; L2([0, T; W™%2(D))] + N v, — v; X5(T)],

which yields the expected convergence.
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4.3. Optimality. Keeping in mind the results of Proposition 1.2, Proposi-
tion 1.4 and Proposition 3.8, let us conclude the study with a brief comment on
the limits of our approach with respect to the dimension parameter d (in other
words, let us here briefly discuss about the restriction on d in Theorem 1.6 or The-
orem 1.7). To do so, we only focus on the “irregular” situation described in item
(ii) of these theorems, and which essentially relies on the application of Proposi-
tion 3.8.

First note that the latter application can only be considered for 2 < d < 6. In-
deed, it can be checked that the admissibility conditions (45) and (46) entail that
F < Fmax = ;J(rdlta)v and 7 > Fyip = %. Thus, for the condition % > 2 to be
satisfied, one must have d — 3 <4s < 4 and accordingly d < 7.

Besides taking the constraints (7) and (8) into account, observe that we are
specifically interested in the possibility to cover the whole domain « € (0, }1) in
Proposition 3.8, which, due to 0 < o < s < 1 and 2« + s < 1, yields the additional
condition }1 <s< % Inthiscase,d —3<4s <2andso2<d <S5.

Finally, in the specific case d = 5, one must have both }‘ <s< % and 45 > 2, so
s = % Then it can be checked that ’;r“ﬁ = 2 and, therefore, the only possible choice

for the pair (r, 7) satisfying r > 27 is (r,7) = (rmax, 'min), With associated pair
(g,9) = (@3, %). But now % =2, which contradicts the required condition g > 24.
This observation rules out the case d = 5 from our analysis, and to this extent, we
can consider the statement of item (ii) in Theorem 1.6 (or Theorem 1.7) as optimal
with respect to the dimension parameter d (at least along our strategy, based on the
constraints of Proposition 3.8).

REMARK 4.1. The above arguments also point out the fact that in the “regu-
lar” situation treated in item (i) of Theorem 1.6 (or Theorem 1.7), our result could
perhaps be extended to any dimension 2 < d < 6 [with a sharper choice of s, (g, r)
and (g, 7)]. We refrain from exploring this possibility though, since our main ob-
jective in this study is to offer a clear view on the transition phenomenon occurring
when both the “regular” and the “irregular” situations can be considered.
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