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DETERMINANTAL SPANNING FORESTS ON PLANAR GRAPHS1

BY RICHARD KENYON

Brown University

We generalize the uniform spanning tree to construct a family of deter-
minantal measures on essential spanning forests on periodic planar graphs in
which every component tree is bi-infinite. Like the uniform spanning tree,
these measures arise naturally from the Laplacian on the graph.

More generally, these results hold for the “massive” Laplacian determi-
nant which counts rooted spanning forests with weight M per finite compo-
nent. These measures typically have a form of conformal invariance, unlike
the usual rooted spanning tree measure. We show that the spectral curve for
these models is always a simple Harnack curve; this fact controls the decay
of edge-edge correlations in these models.

We construct a limit shape theory in these settings, where the limit shapes
are defined by measured foliations of fixed isotopy type.

1. Introduction. The relation between spanning trees and the Laplacian on a
graph was first discovered by Kirchhoff more than 150 years ago Kirchhoff (1847).
In the past 30 years, this relation has played an essential role in the development
of a large part of probability theory and statistical mechanics (Aldous (1990),
Benjamini et al. (2001), Broder (1989), Burton and Pemantle (1993), Kenyon
(2000, 2011), Lawler, Schramm and Werner (2004), Pemantle (1991), Schramm
(2000), Temperley (1976), Wilson (1996)). We define here a very natural general-
ization, for periodic planar graphs, of Kirchhoff’s results and of the uniform span-
ning tree measure, to a 2-parameter family of measures on spanning forests. These
measures enjoy most of the properties of the uniform spanning tree, being deter-
minantal, and in fact also arise from the Laplacian determinant. Taken together as
a family we find additional behavior such as phase transitions and limit shapes.

Figure 1 shows part of a uniform random spanning tree of an infinite square grid
graph on a strip of width 4. Such measures were constructed by Pemantle (1991)
as limits of measures on finite graphs.

Figure 2 shows random samples from three other measures on the same graph;
these are measures on essential spanning forests (ESFs); an essential spanning
forest is a spanning forest each of whose components is an infinite tree (in the
current case, by translation invariance it will be a bi-infinite tree almost surely).
These measures are the locally uniform measures on ESFs with j components, for
j = 2,3,4.
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FIG. 1. Window from a sample of a uniform spanning tree on an infinite strip of width 4.

More generally, let G be a planar graph embedded in R
2, invariant under trans-

lations in Z acting by v �→ v + n, and with finite quotient G1 = G/Z. We call such
a graph a strip graph. Let c be a positive function on its edges, the conductance,
which is also invariant under translations in Z. We show that there is a unique
translation-invariant Gibbs measure (see the definition below) μj on ESFs of G
with j components, for all 1 ≤ j ≤ m, where m is the width of G: the maximal
number of pairwise vertex-disjoint, bi-infinite paths in G.

We further show that μj is a determinantal measure for the edges, that is, the
probability of a given finite set of edges occurring is the determinant of a minor of
a certain infinite matrix Kj (the kernel of the determinantal measure).

THEOREM 1.1. Let G be a strip graph of width m and conductance func-
tion c. For each integer j ∈ [1,m], there is a unique translation-invariant Gibbs
measure μj on essential spanning forests of G with j components. The measure

FIG. 2. Parts of samples of uniform essential spanning forests with 2, 3 and 4 components. These
are samples in a finite window coming from the measures on the infinite strip. The last, with the
maximal number of components, is obviously deterministic for this graph, although may not be de-
terministic for other graphs.
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μj is determinantal for the edges. The growth rate aj (or free energy) of μj is
aj = log |Cm| + ∑m

i=j+1 logλi where 1 < λ2 < · · · < λm are the roots larger than
1 of the polynomial P(z) = det�(z), and Cm is its leading coefficient.

Here �(z) is the action of � on the space of z-periodic functions; see below for
the precise definition. The growth rate aj of μj is defined to be the exponential
growth rate of the weighted sum of configurations one sees in a window of length
n as a function of n.

The kernels of the determinantal measures μj for different j are simply dif-
ferent Laurent expansions of the same finite meromorphic matrix K(z); see (3.5)
below.

The statement holds in the more general case of the “massive” Laplacian deter-
minant, which counts rooted spanning forests with weight M per finite component.
More generally, let M be a (similarly periodic) function which assigns to each ver-
tex v a weight Mv ≥ 0, with at least one weight positive. A M-rooted spanning
forest is a rooted spanning forest whose weight is the product of the conductances,
times the product, over all finite components, of the weight of the root of that
component (infinite components do not have a root and so do not get a weight M).

THEOREM 1.2. Let G be a strip graph of width m and conductance function
c, and fix M as above. For each integer j ∈ [0,m], there is a unique translation-
invariant Gibbs measure μj , supported on forests with exactly j bi-infinite trees,
the remaining components being finite rooted trees. The measure assigns weight
Mv per root v. The measure μj is determinantal for the edges. The growth rate
aj is aj = log |Cm| + ∑m

i=j+1 logλi where 1 < λ1 < · · · < λm are the roots larger
than 1 of the characteristic polynomial

P(z) = det
(
�(z) + DM

)
,

and Cm is its leading coefficient.

Here DM is the diagonal matrix of vertex weights; see below. The number of
finite components is zero or ∞ almost surely, by translation invariance of the mea-
sure. See Figure 3 for examples with 0 to 3 crossings.

The analogs of these measures on doubly-periodic planar graphs are richer. For
a doubly-periodic planar graph G and a periodic function M ≥ 0, we construct,
for any “realizable” (s, t) ∈ R

2 (see definition below), a measure μs,t on essential
spanning forests of G (when M ≡ 0) and M-rooted spanning forests (if M 	≡ 0)
where the infinite component trees contain bi-infinite paths with “average slope”;
(s, t); here (s, t) is defined as follows. First, orient the bi-infinite paths in a consis-
tent, parallel manner; there are two possible such orientations. Then s is the signed
average number of paths per unit length crossing the x-axis (with a + sign if the
path cross from right to left, and − sign otherwise), and t is the signed average
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FIG. 3. Exact samples of uniform rooted spanning forests with weight M = 1 per finite component
and with 0, 1, 2 and 3 crossings, respectively. This is a sample in a finite window coming from the
measure on the infinite strip.

number of paths per unit length crossing the y axis. Note that changing to the
other orientation reverses the sign of both s and t , so (s, t) is defined up to a sign
change, that is, μs,t = μ−s,−t . The measure μ0,0 is the spanning tree measure in
the case M ≡ 0 and the M-rooted spanning forest measure without infinite compo-
nents in the case M 	≡ 0. The realizable slopes (s, t) form a certain convex polygon
N , symmetric about the origin, and not depending on M . N has two descriptions:
as the flow polygon, and as the Newton polygon of the characteristic polynomial
P(z,w). The set of equivalence classes of slopes under sign change is the quotient
of N by the rotation by π . See Figure 4 for an example on the triangular grid. We
prove the following theorem (for definitions of terms in this statement, see below).

THEOREM 1.3. Let G be a Z
2-periodic planar graph in R

2 with Z
2-periodic

conductances and periodic vertex weights M ≥ 0. Let P(z,w) = det(�(z,w) +
DM) be the associated characteristic polynomial. Let N = N(P ) be its Newton
polygon. For each pair (s, t), (−s,−t) ∈ N , there is a unique translation-invariant
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FIG. 4. Sample from the measure μ0,1/2 = μ0,−1/2 for constant conductances on the triangular
grid with M ≡ 4. (We used an MCMC algorithm, based on “grove shuffling” Carroll and Speyer
(2004) of unknown mixing time, so this is only an approximately random sample.) For this graph,
the Newton polygon is the hexagon N = {|s| ≤ 1, |t | ≤ 1, |s − t | ≤ 1}, and the sample has slope
(s, t) = (0,1/2). To see why this is the Newton polygon in this case, note that the maximal density
configurations are as follows: using all the horizontal edges corresponds to (s, t) = (0,±1), using all
the edges of direction eπi/3 corresponds to (s, t) = (±1,0), using all the edges of direction e2πi/3

corresponds to (s, t) = ±(1,1).

Gibbs measure μs,t (= μ−s,−t ) on M-rooted spanning forests of G (with no finite
components if M ≡ 0), with infinite components having average slope (s, t) [for
(s, t) = (0,0) there is no infinite component if M 	≡ 0, and one infinite component
if M ≡ 0]. The free energy of μs,t is the Legendre dual of the Ronkin function
R(x, y) of P . The measures μs,t are determinantal for edges.

See Figure 4 for a sample from the measure μs,t .
A version of Theorem 1.3 for M ≡ 0 was proved independently by W. Sun

in Sun (2016) using Temperley’s bijection (Kenyon, Propp and Wilson (2000))
between dimers and trees. No such bijection is known for M 	≡ 0.

THEOREM 1.4. In both the massive and massless case, the spectral curve
{(z,w) | P(z,w) = 0} is a simple Harnack curve, symmetric under (z,w) →
(1/z,1/w). The edge correlation decay is quadratic (in the separation distance
between edges) for noninteger points (s, t) ∈ int(N), and exponential at integer
points in N , unless the spectral curve {P = 0} has a real node at a point (z,w)

where ∇R(log |z|, log |w|) = (s, t), R being the Ronkin function of P .
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Further motivation for studying the M 	≡ 0 case comes from the conformal
invariance properties of the (scaling limits of the) measures μs,t . Indeed, the
quadratic decay of edge-edge correlations indicates that these models have a form
of conformal invariance (Lawler, Schramm and Werner (2004)).

An unexpected phenomenon here is that, as indicated in Theorem 1.4 above, for
integer slopes (s, t) ∈ N and generic conductances, the decay of edge correlations
is exponential in the distance between edges [with one exception, the case M ≡ 0
and (s, t) = (0,0)]. For these slopes, we do not expect any form of conformal
invariance or even scale invariance. To be specific, the standard UST measure with
zero mass is known to be conformally invariant, and it is also known that upon
adding a nonzero mass, it loses its conformal invariance. What we find here is that,
for positive mass, we can regain conformal invariance by considering the tilted
measures μs,t with (s, t) 	= (0,0), at least as long as (s, t) /∈ Z

2. The fact that
μs,t is typically not conformally invariant for (s, t) ∈ Z

2 does not have an easy
heuristic explanation; from a physics perspective it resembles a band gap: a gap in
the energy-level spectrum.

Finally, we consider scaling limits of the essential spanning forest measures on
εG when ε → 0. In particular with fixed boundary connections, we consider the
following limit shape problem (see Figures 5 and 6). Let U be a simply connected
planar domain with piecewise smooth boundary and let F be a singular measured
foliation on U with a finite number of singularities S, where the measure has trans-
verse derivative in N and leaves transverse to the boundary. Assume furthermore
that all leaves of F begin and end on the boundary. We approximate U with a se-
quence of subgraphs Uε ⊂ εG for ε > 0. On Uε , take a random ESF with compo-
nent trees isotopic to F in an appropriate sense: the “trunk” of each the component

FIG. 5. The initial grove and a random configuration with the same boundary connections (the
parts of the boundary with no connections have wired boundary conditions).
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FIG. 6. The “trunks” of the random grove of the previous figure. This set of curves approximates
the “grove limit shape,” which is a measured foliation.

tree is isotopic (fixing S) to a nonsingular leaf of F with fixed endpoints on the
boundary, and the number of components per unit boundary length approximates
the transverse measure of F . The singularities S correspond to “branch points”
where three or more components come close to each other; see Figure 7 and Sec-
tion 6.1 below.

Then we prove (see Theorem 6.1 for the exact statement) the following.

THEOREM 1.5. There is a unique (nonrandom) singular measured foliation
F0 of U with the property that as ε → 0 a random ESF isotopic to F converges to
F0: component trees converge to leaves of F0. The foliation F0 satisfies a varia-

FIG. 7. A singular point (here a triple point) of a measured foliation.
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tional principle: it minimizes the surface tension subject to the constraints of being
isotopic to F .

This theorem only discusses the limit shape, not the fluctuations away from the
limit shape. The limit shape itself is not a conformally invariant object; however,
it is natural to conjecture that the fluctuations, appropriately defined, will be.

Inspiration for Theorem 1.5 comes from the work of Petersen and Speyer (2005)
who proved a limit shape theorem for “cube groves.” Their result is in fact a special
case of Theorem 6.1, appearing long before the definitions of the measures μs,t .

The underlying variational problem of Theorem 1.5 is algebraically identical to
that occurring for certain bipartite dimer models; as a consequence, the minimiza-
tion equation can be reduced to the complex Burgers’ equation, and can therefore
be solved in principle by the method of complex characteristics as in Kenyon and
Okounkov (2007). However, only for special graphs and special boundary condi-
tions has this been worked out explicitly; see Kenyon and Okounkov (2007).

2. Background. For background (beyond what is below) on spanning trees,
determinantal measures and their relation to the Laplacian, see the modern treat-
ment in Lyons and Peres (2016).

2.1. Trees and measures. A spanning forest of a connected finite graph G is
a collection of edges which has no cycles. A rooted spanning forest is a spanning
forest in which each component has a marked vertex called the root. A spanning
tree is a connected spanning forest (connecting all vertices). If G has a boundary,
by which we mean there is a specified subset B of vertices called boundary vertices
(in this paper, usually a subset of the vertices on the outer face of an embedded pla-
nar graph), then a grove of G (sometimes also called essential spanning forest) is a
spanning forest each of whose components contains at least one boundary vertex.
In the case M > 0, a massive grove is a spanning forest of G, each of whose com-
ponents either has a root (has a marked vertex) or contains at least one boundary
vertex, or both. Components without roots are called special components. Note
that a grove is a massive grove in which each component is special. For conve-
nience, we unify the terminology and refer to both (massless) groves and massive
groves as simply “groves” with the massive modifier being understood from the
context.

If G is infinite, without boundary, by an essential spanning forest (ESF) we
mean a subset of edges each of whose components is an infinite tree. An essential
rooted spanning forest (ERSF) is a subset of edges each of whose components is
either a finite and rooted tree, or an infinite and unrooted tree.

For finite G, if c : E → R>0 is a positive function on the edges (called con-
ductance), we define a probability measure ν = νc on the set of spanning trees by
giving a tree a probability proportional to the product of its edge conductances:
ν(T ) = 1

Z

∏
e∈T ce, where Z is a normalizing constant and ce is the conductance
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of edge e. We call ν the spanning tree measure. Likewise c defines a probability
measure on massless groves by giving a grove a probability proportional to the
product of its edge conductances. For M ≥ 0 a weight function on vertices, we de-
fine a probability measure on massive groves of G where a grove T has probability
μ(T ) = 1

Z

∏
roots v Mv

∏
edges e ce for a constant Z.

For an infinite graph G, a Gibbs measure on ESFs is a probability measure on
ESFs of G with the property that ratios of probabilities of cylinder sets are equal
to the ratios of their products of edge conductances, in the following sense (see
Sheffield (2006)). Take any finite induced subgraph H of G, and a spanning tree
T of G. Erase the edges of T in H and consider all possible completions of T

in H which have the same connections (within H) between boundary vertices as
in T . The Gibbs property is that, conditional on T outside of H, the probability of
any of these completing configurations is proportional to the product of its edge
conductances.

Such Gibbs measures occur as limits of the spanning tree measures or grove
measures on a growing sequence of finite subgraphs of G exhausting G. For some
graphs, a limit of spanning tree measures may be supported on spanning trees on
G; for other graphs, it is supported on ESFs with possibly many components. For
the graphs we consider here (strip graphs and bi-periodic planar graphs) the limit
of a tree measure is supported on trees (the limit of a grove measure may not be,
however).

For M ≥ 0, there is an analogous notion of Gibbs measure on M-rooted es-
sential spanning forests: with the same setup as in the above definition of Gibbs
measure on ESFs, erase the edges of T in H, but keep track of any root vertices in
T , which are considered boundary vertices of H for the sake of this definition. The
weight of any completing configuration of T in H (having the same connections
within H between boundary vertices as in T ) is then proportional to the product
of its edge conductances times

∏
v Mv , the product of weights of the roots (the

completing configuration may have additional roots not present in T ).

2.2. Determinantal measures. A probability measure μ on � = {0,1}n is de-
terminantal if there is an n × n matrix K , the kernel, with the following property.
Let S = {i1, . . . , ik} be any subset of [1,2, . . . , n]; the event that for a random point
of �, all indices in S are 1 is μ(S) = det(KS

S ), that is, the determinant of the sub-
matrix of K consisting of rows and columns in S. The paradigmatic example is the
case when [n] indexes the edges of a connected graph, and μ is the spanning tree
measure; see Theorem 2.2 below.

For a determinantal measure, the single point probabilities can also be computed
with a similar determinant.

LEMMA 2.1. A measure μ on {0,1}n is determinantal with kernel K if and
only if for every point x = (x1, . . . , xn) ∈ {0,1}n,

μ(x) = (−1)n−|x| det(X − K),
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where X is the diagonal matrix with diagonal entries (1 − x1,1 − x2, . . . ,1 − xn)

and |x| = ∑
xi .

PROOF. A standard inclusion-exclusion argument, using multilinearity of the
determinant. �

2.3. Laplacian. For each edge of a finite graph G, choose arbitrarily one of
its two orientations. Let d : CV → C

E be the corresponding incidence operator:
df ( �uv) = f (v) − f (u). Let d∗ be the transpose of d for the standard basis. The
Laplacian is defined to be � = d∗Cd where C is the diagonal matrix of conduc-
tances. Concretely,

�f (v) = ∑
w∼v

cvw

(
f (v) − f (w)

)
,

where the sum is over neighbors w of v.
Define the transfer current K to be the operator K = Cd�−1d∗. This is well

defined even though � is not in general invertible, since � can be inverted on the
image of d∗ and its inverse is unique up to elements in the kernel of d . Note that
K is a projection: K2 = K . It is sometimes useful to use instead the symmetric
version K = C1/2d�−1d∗C1/2.

Burton and Pemantle (1993) proved that the spanning tree measure ν is deter-
minantal for the edges with kernel K .

THEOREM 2.2 (Burton and Pemantle (1993)). For a ν-random spanning
tree T , for any k ≥ 1 and edges e1, . . . , ek we have Pr(e1, . . . , ek ∈ T ) =
det(K(ei, ej )1≤i,j≤k).

2.4. Bundle Laplacian. For background on material in this section, see
Kenyon (2011).

Let G be a graph with conductance function c : E → R>0. A connection on a
line bundle (also called C

∗ local system) is the data consisting of a 1-dimensional
C-vector space Cv for each vertex v and, for each edge e = xy, an isomorphism
between the corresponding vector spaces φuv :Cu →Cv , such that φvu ◦φuv = Id.
Two connections are gauge equivalent if they are related by base change in one or
more of the vector spaces Cv .

It is natural to extend the connection to a line bundle over the edges: for each
edge e, we define a one dimensional C-vector space Ce and isomorphisms φve :
Cv →Ce whenever v is an endpoint of e, with φev = φ−1

ve and φue ◦ φev = φuv .
Given a closed path γ in G and a vertex v on γ , the monodromy m(γ ) ∈ C

∗ of
the connection around γ is the isomorphism from Cv to itself obtained by compos-
ing the isomorphisms around γ : we identify this isomorphism with (multiplication
by) an element of C∗; as such it is independent of the starting point v ∈ γ and only
depends on the gauge equivalence class of the connection.
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The Laplacian for a graph with connection on a line bundle is an operator de-
fined on sections (elements of the total space

⊕
v∈V Cv) by

�f (v) = ∑
w∼v

cvw

(
f (v) − φwvf (w)

)
.

A cycle-rooted spanning forest (CRSF) of G is a collection of edges of G each
of whose components has as many vertices as edges, that is, is a tree with one extra
edge, or cycle-rooted tree. The weight of a CRSF γ is wt(γ ) = ∏

e∈γ ce.

THEOREM 2.3 (Kenyon (2011)). On a finite graph G with connection on a
line bundle,

(1) det� = ∑
CRSFs γ

wt(γ )
∏
η

(
2 − m(η) − 1/m(η)

)
,

where the sum is over CRSFs γ of G, the product is over cycles η of γ , and m(η)

is the monodromy of the connection around η.

Note that the cycles in a CRSF are not oriented; in the above expression we
need an orientation to compute m(η) but the weight 2 − m(η) − 1/m(η) does not
depend on this choice of orientation.

In this paper, we consider graphs embedded on surfaces, and we only consider
connections which are flat, that is, have trivial monodromy m = 1 on homologi-
cally trivial cycles. Any CRSF on such a graph with nonzero weight will have only
homologically nontrivial cycles.

There is a version of Theorem 2.3 for the massive determinant. It follows from
Theorem 7 of Kenyon (2011) by adding a vertex to G connected to every other
vertex v by an edge of conductance Mv . Let us define a multitype spanning forest
(MTSF) to be a collection of edges in which each component is either a rooted tree
(tree with a distinguished vertex) or a cycle-rooted tree (tree plus one edge, but no
root). The statement of Theorem 7 in Kenyon (2011) in this situation is as follows.

THEOREM 2.4 (Kenyon (2011)). On a finite graph G with connection on a
line bundle,

det(� + DM) = ∑
MTSFs γ

wt(γ )
∏
v

Mv

∏
η

(
2 − m(η) − 1/m(η)

)
,

where the first product is over the roots of γ , the second product is over cycles η

of γ , and m(η) is the monodromy of the connection around η.

2.5. A linear mapping.

LEMMA 2.5. For a variable X and constants Ck , we have
m∑

k=1

Ck

(
2 − X − X−1)k =

m∑
j=0

Dj

(
Xj + X−j )

,
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where

(2) Dj = (−1)j
m∑

k=j

Ck

(
2k

k − j

)
.

PROOF. A short induction on m. �

3. Strip graphs and the Laplacian.

3.1. Characteristic polynomial. Let G be a strip graph. Let G1 = G/Z be the
finite quotient; it is a finite graph on a cylinder. On G1 there is a unique (up to
gauge equivalence) flat connection φ on a line bundle with monodromy z on a
cycle running once around the cylinder in the positive direction. Let �0(z) be the
vector space of sections of the bundle. It has dimension |G1|, the number of vertices
of G1.

Note that �0(z) can be identified with the vector space of z-periodic functions
on G, that is, functions f : G → C satisfying f (v + 1) = zf (v) for all vertices
v ∈ G.

Similarly, we define �1(z) to be the vector space of 1-forms with values in
the line bundle over the edges of G; a 1-form is a function ω on directed edges
satisfying ω(−e) = −ω(e). These 1-forms can be identified with the vector space
of z-periodic 1-forms on G, that is, 1-forms ω on G which satisfy ω(e+1) = zω(e)

where e + 1 represents the edge e translated by +1.
Following Kenyon (2011), define d = d(z) the differential d : �0(z) → �1(z)

by df ( �xy) = φyef (y) − φxef (x). Then the connection Laplacian is

�(z) = �|�0(z) = d(1/z)∗Cd(z),

where d∗ is the transpose of d for the standard basis and C is the diagonal matrix
of conductances. All these operators are finite-dimensional. Given a fundamental
domain for G1 in G one can represent d(z) in the standard basis as a matrix with
entries 0, ±1, ±z, ±1/z, so entries in �(z) are Laurent polynomials in z.

Let P(z) = det�(z). We call P(z) the characteristic polynomial of the Lapla-
cian on G. It is a Laurent polynomial in z, of degree m by Theorem 2.4 (the coeffi-
cient of zm is the weighted sum of MTSFs with the maximal number m of cycles).
P(z) is reciprocal: P(z) = P(1/z), because �(1/z) = �(z)∗. In Theorem 3.1 be-
low, we prove that roots of P are real, positive and distinct except for a double
root at z = 1; this result first appeared in Kenyon (2012) with an incomplete proof.
There are thus exactly m−1 roots strictly larger than 1, where m is the width of G.
We let

λ−m < λ−m+1 < · · · < λ−1 = 1 = λ1 < λ2 < · · · < λm

be the roots of P(z); because P is reciprocal we have λjλ−j = 1. Note that 1 is a
double root and we do not define λ0.
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Let

(3) K(z) = Cd(z)�(z)−1d(1/z)∗

be the transfer current operator acting on �1(z). It is a matrix indexed by the edges
in G1, with entries which are rational functions of z.

By way of example, let G be the strip graph of Figure 1 with conductances 1.
Then G1 has four vertices; indexing these in order of y-coordinate, we find

�(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 − z − 1

z
−1 0 0

−1 4 − z − 1

z
−1 0

0 −1 4 − z − 1

z
−1

0 0 −1 3 − z − 1

z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

P(z) = z4 + 1

z4 − 14z3 − 14

z3 + 74z2 + 74

z2 − 190z − 190

z
+ 258,

with roots

{λ1, λ2, λ3, λ4} = {1,2.11239 . . . ,3.73205 . . . ,5.22274 . . .}
and their inverses. The kernel K(z) is an asymmetric 7 × 7 matrix, the first few
entries of which are

K(z) =

⎛
⎜⎜⎜⎜⎝

− z(2 − 5z + 2z2)(1 − 5z + 2z2)

(1 − 4z + z2)(1 − 8z + 16z2 − 8z3 + z4)

(1 − z)2z

1 − 8z + 16z2 − 8z3 + z4 . . .

(1 − z)2z

1 − 8z + 16z2 − 8z3 + z4
−(1 − z)(1 − 7z + 13z2 − 7z3 + z4)

(1 − 4z + z2)(1 − 8z + 16z2 − 8z3 + z4)
.
.
.

. . .

⎞
⎟⎟⎟⎟⎠.

3.2. Roots of P(z).

THEOREM 3.1. Roots of P(z) are real, positive and distinct, except for a dou-
ble root at 1.

There is a version of this theorem with an incorrect proof in Kenyon (2012). We
thank David Jekel for pointing out this error.

PROOF OF THEOREM 3.1. Since P(z) = P(1/z) and 1 is a root, it is neces-
sarily a root of even order.

First, let G be the grid graph Gm,n of width m and length n, that is, obtained from
the square grid Z × Lm (where Lm is the line graph with m vertices) by scaling
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the x-axis by 1/n. Put all conductances equal to 1. In this case, the roots of Pm,n

are the nth powers of roots of Pm,1 (see (5) below), and roots zj of Pm,1 satisfy
2 − zj − 1/zj = −Xj where the Xj are the eigenvalues of the Laplacian on Lm

(see Kenyon (2011)), that is,

Xj = 2 + 2 cos
πj

m
, j = 1, . . . ,m.

Associated to each j is a zj -periodic nullvector fj of �(zj ).
Any strip graph of width m is a graph minor of Gm′,n for some m′, n with

m′ ≥ m, that is, can be obtained from Gm′,n by letting some conductances go to
zero (deleting edges) and others to ∞ (contracting edges). We need to show that
as we vary the conductances in [0,∞] the roots of P remain real and distinct, with
m′ − m of them tending to ∞.

For an arbitrary strip graph, let z be a root of P(z) = det�(z) and let f be a
nullvector of �(z); f defines a z-periodic harmonic function on G. We claim that
f cannot have a zero on the boundary of G; otherwise, let v be a boundary vertex
with f (v) = 0. If f is zero on all neighbors of v, take a path of vertices on which
f ≡ 0 from v to another vertex v′ [with f (v′) = 0] such that v′ has a neighbor
on which f is nonzero. Replace v with v′. By harmonicity, v has a neighbor with
positive f value and a neighbor with negative f value; by harmonicity there is an
infinite path starting from v on which f is positive, and an infinite path on which
f is negative. The Z translates of these paths must be all disjoint from each other
by the Jordan curve theorem, contradicting the fact that G has finite width. This
completes the proof of the claim that f is nonzero on the boundary. A similar
proof shows that f cannot have saddle points (on the boundary or in the interior),
that is, points v with four neighbors v1, v2, v3, v4 where in cyclic order where f

is respectively larger, smaller, larger, smaller than v.
Since f has no saddle points, on each boundary f is monotone (weakly in-

creasing or weakly decreasing). Changing sign if necessary, we can assume f is
monotone increasing on the lower boundary. With this normalization, note that on
Gm,n (for which we have an explicit expression for the nullvectors fj ) the signs of
dfj on the upper boundary for different roots depend on the index j of the root, al-
ternating from one root to the next, that is, f2 is decreasing on the upper boundary,
f3 is increasing, f4 decreasing, and so on.2 As we vary the conductances of Gm,n,
this orientation cannot change; otherwise, there would be a set of conductances
where the function was constant on the boundary (and if z 	= 1 this constant must
be zero, which is a contradiction).

Suppose that as we vary the conductances two adjacent roots λi and λi+1 merge
into a double root, and consider what happens to fi and fi+1. If fi and fi+1 con-
verge to independent elements of the null space, then a linear combination of them

2In fact, the current dfi has i − 1 sign changes on a shortest dual path from one side of G to the
other; our proof shows that this holds for arbitrary strip graphs as well.
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will be zero at a boundary vertex, a contradiction. If they converge to linearly de-
pendent elements of the null space, both multiples of a function f , then on the
upper boundary f is both increasing and decreasing, that is, must be constant,
again a contradiction. Finally, suppose λ2 converges to 1. Rescale f2 to equal 1 at
some vertex v on the lower boundary. Then values of f2 on the upper boundary
are negative (as they are for Gm,n), and thus converge to nonpositive values. On
the lower boundary the values converge to 1, by z-periodicity. This descends to a
nonconstant harmonic function on G1, a contradiction. This proves that 1 is in fact
only a double root.

If m′ > m then as the conductances tend to ∞ or 0, the only way to lose m′ −m

roots is for the largest roots λj to move off to infinity: this also follows from the
fact that the leading m′ − m and trailing m′ − m terms in P tend to zero; see
Theorem 2.4. �

3.3. Growth rate.

THEOREM 3.2. Let Cm be the leading coefficient of P(z). The growth rate
of the weighted sum of ESFs on G with j components is ai = log |Cm| +∑m

i=j+1 logλi .

PROOF. We compute the characteristic polynomial Pn for Gn = G/nZ. (Gn

is again a strip graph invariant under z → z + 1 once we rescale the horizontal
direction by 1/n.) By Theorem 2.3,

(4)

Pn(z) = ∑
CRSFs γ

wt(γ )(2 − z − 1/z)j

=
m∑

j=1

Nj

(
2 − z − z−1)j (γ )

,

where j (γ ) is the number of components of γ , and Nj is the sum of weights of
CRSFs with j components (each winding once around the cylinder). We choose
z < 0; then all the terms in the above sums are positive.

Using the translational symmetry of Gn we can relate Pn with P = P1. We have

(5)

Pn(z) = ∏
ζ n=z

P1(ζ ) = ∏
ζ n=z

[
Cmζ−m

m∏
j=−m
j 	=0

(ζ − λj )

]

= (Cm)nz−m
m∏

j=−m
j 	=0

z − λn
j .

In particular, the roots of Pn are the nth powers of the roots of P1. Now for i ≥ 1
fix u satisfying λi < u < λi+1 (independent of n) and take z = −un. For large n,
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the terms in the product z − λn
j are well approximated by z if j ≤ i and by −λn if

j > i. Thus, taking logs of (5) and dividing by n, as n → ∞ we have

(6)
1

n
log

∣∣Pn(z)
∣∣ = log |Cm| + i logu + ∑

j>i

logλj + o(1).

In the limit n → ∞, the RHS of this expression is a convex piecewise linear in-
creasing function of logu, with breakpoints at u = λi .

From (4), when λi < u < λi+1, that is, when λn
i < −z < λn

i+1 we have

(7) Pn(z) =
m∑

j=1

Nj |z|j eo(1) =
m∑

j=1

Nju
nj eo(1).

From (6) we see that when λi < u < λi+1 the leading contribution to 1
n

log |Pn|
is the one coming from the ith term in (7); the other terms are exponentially
smaller. Thus the measure concentrates on CRSFs with i components. Moreover,
for u in this range the sum of weights of CRSFs with j components is equal to
Nj = Pn/(2 − z − 1/z)j up to small errors, that is, |Cm|n ∏

i>j λn
i . Taking logs

and dividing by n gives the result. �

3.4. The kernel K(z).

THEOREM 3.3. For any z < 0 or |z| = 1, K(z) is the kernel of a determinantal
measure μ(z) on the CRSFs of G1 all of whose components wind once around the
cylinder.

PROOF. This proof is essentially taken from Kenyon (2011) with minor
changes. Note that 2 − z − 1/z > 0 precisely when z < 0 or |z| = 1.

Let μ(z) be the probability measure assigning a CRSF γ with j components
(all winding once around the cylinder) a probability 1

Z
wt(γ )(2 − z− 1/z)j , where

Z is the normalizing constant

(8) Z = det�(z) = ∑
CRSFs γ

wt(γ )(2 − z − 1/z)j .

Let e1, . . . , en be the edges of γ . Order the rows of the matrix for d so that the
first n edges are e1, . . . , en. Then d = ( d1

d2

)
where d1 is n × n and d2 consists of

the remaining rows of d . Similarly, let the diagonal matrix of conductances be
C = ( C1 0

0 C2

)
where C1 is n × n.

Note that det(d∗
1 C1d1) is precisely wt(γ )(2 − z− 1/z)j ; this follows from The-

orem 2.3 by removing from G all edges except those of γ .
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Then

Pr(γ ) = det(d∗
1 C1d1)

det�

= (−1)|E|−n

(
0 0 C1d1
0 I|E|−n C2d2

d∗
1 d∗

2 �

)

det�
(9)

= (−1)|E|−n det
[(

0 0
0 I|E|−n

)
− Cd�−1d∗

]
,

where in the last equality we used the algebraic identity (where P , Q, R, S are
submatrices, with S invertible)

det
(
P Q

R S

)
= detS det

(
P − QS−1R

)
.

A similar computation holds for all other CRSFs γ , where the matrix
( 0 0

0 I|E|−n

)
is replaced by a diagonal matrix with diagonal entries 1 and 0, with 0s in the
locations of the edges of γ . Now apply Lemma 2.1 to complete the proof. �

3.5. Infinite graph. Now let us consider the infinite strip graph G.

PROPOSITION 3.4. There is a unique translation invariant Gibbs measure μj

on j -component ESFs of G. It is the limit as n → ∞ of Gibbs measures on CRSFs
on Gn with j cycles winding around the cylinder.

PROOF. The existence of μj follows from the limit of the corresponding mea-
sures on Gn by compactness (or use the construction below of μj as a determinan-
tal measure).

For the uniqueness, we use the fact that any allowed local configuration has
positive probability for μj . Let H1 be a fundamental domain for the translation
action on G, and whose removal disconnects G. If μ′ is another Gibbs measure on
ESFs with j components almost surely, with positive probability a random sample
from μj will agree with μ′ on H1. In particular, given a sample from μ′ and a
sample from μj , we can find two integers n− < 0 < n+ with |n+|, |n−| arbitrarily
large, so that the samples agree on the translated fundamental domains H1 + n+
and H1 −n−. The Gibbs property of μj and μ′ implies that on the region between
these fundamental domains, μj and μ′ can be coupled so they agree. Thus μj and
μ′ can be coupled to agree on an arbitrarily large neighborhood of the origin, and
so must be equal. �

For two edges e1, e2 in G, let [e1], [e2] denote their images in H1, the fun-
damental domain for G1, and x1, x2 ∈ Z the translation from e1, e2 to [e1], [e2],
respectively. Then we have the following transfer current formula which defines
μj . Recall the definition of the matrix K(z) from (3).
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THEOREM 3.5. For j ∈ [1,m], define the infinite matrix K(j) by the formula

(10) K(j)
e1,e2

=
∫
ξj

K[e1],[e2](u)ux1−x2
du

2πiu
,

where ξj is a circle of radius r for which λj < r < λj+1 (or λm < r if j = m).
Then K(j) is the kernel of the determinantal measure μj .

Note that the RHS depends on j only through the contour of integration, so the
K(j) are simply the different Laurent expansions of K(z).

PROOF. Let Pn be the characteristic polynomial of Gn, and z < 0. By Theo-
rem 3.3 above replacing G1 by Gn, Kn(z) is the kernel of a determinantal measure
μ(z) constructed from Gn. This μ(z) is a probability measure on CRSFs of Gn

giving a CRSF γ with j components a probability

μ(γ ) = 1

Pn(z)
(2 − z − 1/z)jwt(γ ).

By Theorem 3.2, as n → ∞ for z < 0 in the range λn
j−1 < |z| < λn

j , the term

Nj(2 − z − 1/z)j in the sum (4) has larger exponential growth rate than any of the
other terms, and so the measure μ(z) concentrates as n → ∞ on CRSFs with j

components.
We can compute Kn(z) for the graph Gn in terms of K for the graph G1 as

follows. Let e1, e2 be edges of Gn. Let [e1], [e2] be their images in a fundamental
domain for G1, and xi the translation from ei to [ei]. Then

(11)
[
Kn(z)

]
ei ,ej

= 1

n

∑
ζ n=z

[
K(ζ)

]
[e1],[e2]ζ

x1−x2 .

In the limit n → ∞, this expression tends to (10); in particular, (10) defines a limit-
ing measure μj which is determinantal and supported on ESFs with j components.

�

Note that while the measures for finite n depend on |z|, in the limit they do not
depend on |z| in the range λj < |z| < λj+1.

3.6. Massive case. Let G be a strip graph as before. Let PM = det(�(z) +
DM). It is reciprocal: PM(1/z) = PM(z), since �(1/z)∗ = �(z).

LEMMA 3.6. For M ≥ 0, all roots of PM are real, distinct and positive.

PROOF. This is proved in the same manner as Theorem 3.1. On Gm,n with
conductances 1, for a constant mass M ≡ M0 > 0 the roots of �(z)+DM are real,
positive and distinct; see the proof of Theorem 3.1. Moreover, the corresponding
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fj , when multiplied by an appropriate sign so that they are increasing on the lower
boundary, have the property of being alternately increasing and decreasing on the
upper boundary as before (in fact, the fj are independent of M0).

As in the proof of Theorem 3.1, on G the fj cannot be zero on the boundary and
cannot have critical points. As we vary, the Mv away from the constant M0, the
roots λj and λj+1 cannot merge, since that would lead to a function fj with a zero
boundary value. Moreover, no root can tend to 1 unless M ≡ 0 since this would
give a function on G1 in the kernel of the matrix �(1) + DM which is nonsingular
when at least one Mv is positive. �

PROOF OF THEOREM 1.2. The uniqueness of μj follows the same proof as
in Proposition 3.4 for the massless case. Take G1 and add a new boundary vertex
connected to all vertices of G1 with an edge of conductance Mv . We keep the old
operator d (ignoring the new edges) and define

K(z) = Cd(1/z)∗(� + DM)−1d(z).

Theorem 3.3 applies with this K , although (8) is a sum over MTSFs instead of
CRSFs, but the rest of the proof follows without change. This shows that K(z) is
a determinantal measure on MTSFs on Gn.

Let 1 < λ1 < · · · < λm be the roots of P(z) = det(�(z)+DM) which are larger
than 1. The proof for the growth rates is nearly identical to the proof of Theo-
rem 1.1, except that in (4) we are summing over the larger set of MTSFs rather
than CRSFs (see Theorem 2.4), and the range of j values (for the number of in-
finite components) is [0,m] rather than [1,m]. The proof of Theorem 3.5 now
extends to this massive case without modification. �

4. Z
2-Periodic graphs. Let G be a planar graph embedded in R

2, invariant
under translations in Z

2 and with finite quotient. Let G1 = G/Z2; this is a graph on
a torus. More generally, let Gn = G/nZ2.

4.1. Unit flow polygon. A flow on a graph is a function ω on oriented edges,
satisfying ω(−e) = −ω(e) (where −e is the edge in the reverse orientation), and
0 = ∑

u∼v ω(vu). Thus the inflow at v [the sum of the ω(uv) which are positive]
equals the outflow at v [the sum of the ω(vu) which are positive] at every vertex.

Let F be the set of flows on G1 of capacity 1 at each vertex, that is, such that
the inflow to each vertex is at most 1. Each such flow ω defines an element [ω] ∈
H1(G,R) and the image of F in H1(G,R) is a polytope X = X(G1), the unit flow
polytope. It is symmetric about the origin in H1(G,R): X = −X, because reversing
a capacity-1 flow again gives a capacity-1 flow. It is not hard to see that the vertices
of X are integer-valued flows (with value 0, ±1 on each edge).

Since G1 is embedded in T
2 there is an induced linear map H1(G1,R) →

H1(T
2,R) ∼= R

2, and the image of X under this map is a convex polygon N =
N(G1) ⊂ R

2 with integer vertices, the unit flow polygon.
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LEMMA 4.1. To every integer point in the unit flow polygon N , there is a
corresponding flow in F taking integer values (0, 1 or −1) on the edges, and the
nonzero edges form a collection of vertex-disjoint oriented closed loops on G1.

PROOF. Start with a flow ω ∈ X(G1) with integer homology class (i, j) 	=
(0,0). Lift ω to a flow ω̃ on the universal cover G on R

2. Such a flow can be
represented as ω̃ = ∂h (by definition, ∂h(e) := h(a) − h(b) where a, b are the
faces left and right of oriented edge e) where h is a real-valued function on the
faces of G. The fact that ω has homology class (i, j) implies that for any face
f , h(f + (0,1)) = h(f ) + i and h(f + (1,0)) = h(f ) + j . We can change ω

by adding a boundary (so as to not change its homology class) so that h has no
extrema: if h has a local minimum at a face or connected union of faces (connected
across edges), increase the value of h on this set of faces to be the minimum of the
value on the neighboring faces. This changes h to h′ = h + h1, where ∂h1 has
homology (0,0), and thus does not change the homology class of ω. Moreover,
this changes the flow ∂h by decreasing its magnitude at all of the edges bounding
the union, and so the new flow remains in X. The same operation applies even to
infinite collections of faces on which h has a local minimum.

Thus we may assume (up to changing ω to a different flow in the same homol-
ogy class) that h has no extrema. Thus the flow ∂h has no saddle points, that is, at
a vertex there are no four edges which in cyclic order have flow in,out,in,out; such
a saddle point, along with periodicity of ∂h, would necessarily lead to an oriented
cycle in ∂h, which would necessarily encircle an extremum for h.

If ∂h is saddlepoint-free, the inflowing edges at a vertex v form a contiguous
interval in cyclic order around v (ignoring the edges of flow zero) and similarly for
the outflowing edges. The values of h on the faces neighboring v in cyclic order are
thus decreasing then increasing; that is, they have at most one local minimum and
one local maximum. Since the flow has capacity, one all these values are contained
in an interval of length 1.

Now let g(f ) = �h(f )�, that is, h rounded down to the nearest integer. Then g

still satisfies g(f + (0,1)) = g(f ) + i and g(f + (1,0)) = g(f ) + j , so ∂g gives
an integer flow on G1 with homology class (i, j). Moreover, g is a unit-capacity
flow: this follows from the fact that the values of h on faces neighboring any vertex
are contained in an interval of length 1.

The support of ∂g, mapped back to G1 is the desired collection of vertex-disjoint
oriented closed loops in homology class (i, j). �

Each such collection as in the lemma can be extended to a CRSF or MTSF on
G1, by removing homologically trivial loops, ignoring the orientation and taking a
spanning tree or rooted spanning forest of the complement, wired to the loops.

Conversely, we can assign a homology class to a CSRF or MTSF (whose cycles
are noncontractible) by orienting each loop in a consistent manner. That is, if one
loop has homology class (i, j) 	= (0,0) for one orientation (and thus, since we are
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on a torus, all other loops have homology class ±(i, j)), then we orient all loops
so that they have the same homology class (i, j), giving a total homology class of
(ki, kj) if there are k loops. Thus to every integer point in N there is an oriented
CRSF or MTSF with that homology class, and conversely.

4.2. Measures. Let N be the flow polygon of G1. More generally, Nn = nN

is the flow polygon of Gn: simply scale up N by the factor n. For each integer
homology class (p, q) ∈ Nn, with (p, q) 	= (0,0), write (p, q) = (ki, kj) where i,
j are relatively prime and k = GCD(p,q). Let �

(n)
p,q be the set of MTSFs on Gn

of total homology class (p, q), that is, with k cycles each having homology class
(i, j). We let μ

(n)
p,q be the associated probability measure on �

(n)
p,q giving a MTSF a

probability proportional to the product of its edge conductances and root weights.
We say (p/n, q/n) is the slope of μ

(n)
p,q ; here p/n is the density of cycles per unit

length in the vertical direction, and q/n is the density of cycles per unit length
horizontally.

THEOREM 4.2. For a point (s, t) ∈ N , the weak-* limit

μs,t = lim
n→∞μ

(n)
[sn],[tn]

exists and defines a determinantal measure on ERSFs on G with slope (s, t), that
is, with infinite components of average direction sx̂ + t ŷ and average density s per
unit vertical length and t per unit horizontal length.

PROOF. We can view μ
(n)
i,j as a (determinantal) measure on ERSFs of G which

are periodic with period n. For existence of the limit, it suffices to show that the
kernel of the determinantal measure μ

(n)
[sn],[tn] converges. This is accomplished in

Theorem 4.5 below. It remains to show that the limit is supported on ERSFs of
slope (s, t). For this, it suffices to show that the cycles for μ

(n)
[sn],[tn] do not wander

far from their “average location,” that is, when measured from the origin one sees
the correct density and direction of cycle components. This follows from the tail
triviality of the limit measure, which is a fact about any determinantal process (see
Lyons (2003)): the horizontal and vertical densities of infinite components are tail
properties (i.e., independent of the configuration inside any fixed neighborhood of
the origin) and so, by tail triviality, must have well-defined limits. �

4.3. Kernels. For z,w ∈ C
∗ take a flat line bundle with connection on G1 hav-

ing monodromy z on a path with homology (1,0) and monodromy w on a path
with homology (0,1). Let �0(z,w) be the space of sections; as before we can
identify �0(z,w) with the space of (z,w)-periodic functions on G, that is, func-
tions f : G → C satisfying f (v + (x, y)) = zxwyf (v) for all vertices v ∈ G and
(x, y) ∈ Z

2. Similarly define �1(z,w) to be the space of 1-forms with values in



DETERMINANTAL SPANNING FORESTS ON PLANAR GRAPHS 973

the line bundle over the edges of G1, or equivalently, functions ω on directed edges
of G satisfying ω(−e) = −ω(e) and ω(e + (x, y)) = zxwyω(e) for translations
(x, y) ∈ Z

2.
Define d : �0(z,w) → �1(z,w) as before and

�(z,w) = �|�0(z,w) = d∗Cd
∣∣
�0(z,w).

Let P(z,w) = det(�(z,w) + DM . We call P(z,w) the characteristic poly-
nomial. P(z,w) is reciprocal: P(z,w) = P(1/z,1/w), because �(1/z,1/w) =
�(z,w)t . In Theorem 1.4 (see proof below in Section 5), it is proved that {P = 0}
is a simple Harnack curve.3 Let N(P ) be the Newton polygon of P .

LEMMA 4.3. N(P ) = N where N is the unit flow polygon of G1.

PROOF. From Theorem 2.3 we have

(12) P(z,w) = ∑
MTSFs γ

(
2 − ziwj − z−iw−j )k

wt (γ ),

where the sum is over MTSFs γ on the torus graph G1, k is the number of cy-
cle components of γ and (i, j) is the homology class of any such component.
The boundary points of N(P ) are then precisely the points zkiwkj = zpwq where
(p, q) are the homology classes of MTSFs on G1 which are maximal in some di-
rection in homology. By Lemma 4.1, these are exactly the boundary points of N .

�

Let us fix a primitive homology class (i, j) (one with i, j relatively prime).
Starting from (12) and expanding, let

(13) Pi,j

(
ziwj ) = ∑

k>0

Cki,kj z
kiwkj

consist of the monomials of P with terms which are powers of ziwj . Setting U =
2 − ziwi − z−iw−j , we can rewrite Pi,j (z

iwj ) as a polynomial in U :

Pi,j

(
ziwj ) + ci,j = Qi,j (U) = ∑

k≥1

DkU
k,

where ci,j is a constant (not depending on z or w) and Dk is the weighted sum
of MTSFs with total homology class (ki, kj). Note that the coefficients Dk are
obtained from the Cki,kj via a linear map (Lemma 2.5 above).

3Among the different definitions/characterizations of simple Harnack curves, the simplest is per-
haps that a simple Harnack curve is the zero set of a real polynomial P with the property that the
intersection of {P = 0} with any torus {(z,w) ∈C

2 : |z| = r1, |w| = r2} consists in at most two points
(and if two points they are complex conjugate points); see Passare and Rullgård (2004).
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4.4. Kernel of μs,t . The Ronkin function R(x, y) of a bivariate polynomial P

is defined as

R(x, y) =
∫
|z|=ex

∫
|w|=ey

log
∣∣P(z,w)

∣∣ dz

2πiz

dw

2πiw
.

In Mikhalkin (2004), Passare and Rullgård (2004), the following properties of the
Ronkin function R are shown. R is a convex C1 function whose gradient takes
values in N = N(P ). The map ∇R is surjective onto the interior of N , and constant
on the components of the complement of the amoeba [the amoeba is the set of
points (log |z|, log |w|) ∈ R

2 for which P(z,w) = 0]. For simple Harnack curves,
∇R is nonsingular on the interior of the amoeba of P and maps the interior of the
amoeba of P bijectively to the interior of N \ S, where S is a subset of the integer
points in N .

We define the surface tension σ : N →R to be the Legendre dual to R:

(14) −σ(s, t) = min
(x,y)∈R2

R(x, y) − sx − ty.

The surface tension is strictly convex: see Kenyon, Okounkov and Sheffield
(2006), Corollary 3.7.

Now let K = K(z,w) = Cd(�(z,w) + DM)−1d∗ be the transfer current op-
erator acting on �1(z,w). It is a matrix indexed by the edges in G1, with entries
which are rational functions of z and w. For two edges e1, e2 in G, let [e1], [e2]
denote their images in the fundamental domain for G1, and (x1, y1), (x2, y2) ∈ Z

2

the translations from e1, e2 to [e1], [e2], respectively. Then we have the following
transfer current formula for μ0,0, essentially due to Burton and Pemantle.

THEOREM 4.4 (Burton and Pemantle (1993)). For the standard weighted
spanning tree measure, the kernel of the determinantal process on edges is

Ke1,e2 =
∫∫

S1×S1
K[e1],[e2](z,w)zx1−x2wy1−y2

dz

2πiz

dw

2πiw
.

We extend this statement in a very simple way, by changing the contour of
integration.

THEOREM 4.5. Let (s, t) be a point in the interior of N . Let (x, y) ∈ R
2 be a

point which satisfies ∇R(x, y) = (s, t), where R is the Ronkin function of P . Then
the kernel Ks,t defined by

(15)
(
Ks,t )

e1,e2
=

∫∫
|z|=ex,|w|=ey

K[e1],[e2](z,w)zx1−x2wy1−y2
dz

2πiz

dw

2πiw

is the determinantal kernel for μs,t (the limit of the kernels of the μ
(n)
[ns],[nt]).
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PROOF. We first discuss the probabilistic meaning of K(z,w). On G1, let

(16) Z = ∑
MTSFs γ

wt(γ )
(
2 − ziwj − z−iw−j )k

and for any finite set of edges S = {e1, . . . , em}, let

Z(e1, . . . , em) = ∑
MTSFs γ containing S

wt(γ )
(
2 − ziwj − z−iw−j )k

.

We claim that, taking the submatrix of K(z,w) with rows and columns indexed
by S,

(17) det
[
K(z,w)SS

] = Z(e1, . . . , em)

Z
.

When |z| = 1 = |w|, and (z,w) 	= (1,1), K(z,w) is the determinantal kernel for
a probability measure on MTSFs of G1, where a MTSF γ has probability pro-
portional to its weight wt(γ )(2 − ziwj − z−iw−j )k ≥ 0. Thus (17) holds when
|z| = 1 = |w|. By analytic continuation, the identity of rational functions (17) holds
for all z, w, even though these expressions are not necessarily probabilities. This
completes the proof of (17).

Now we enlarge the fundamental domain, letting Gn = G/nZ2. Then the analog
of (11) holds here as well: the kernel Kn(z,w) can be obtained from K(z,w) =
K1(z,w) by the formula

[
Kn(z,w)

]
ei ,ej

= 1

n2

∑
ζ n=z,ξn=w

[
K(ζ, ξ)

]
[ei ],[ej ]ζ

xi−xj ξyi−yj ,

where (xi − xj , yi − yj ) ∈ Z
2 is the translation from the fundamental domain of

G1 containing ei to that of ej . In the limit n → ∞, this converges to the expression
(15), except for the appropriate scaling z �→ exz, w �→ eyw which we now discuss.

We can rewrite Z from (16) as

(18) Z = ∑
(p,q)

Dp,q

(
2 − ziwj − z−iw−j )k

,

where the sum is over nonzero homology classes (with one term for each pair
(p, q), (−p,−q)) and where (p, q) = (ki, kj) and i, j are relatively prime. Note
Dp,q ≥ 0, since it is a sum of weights of MTSFs. A similar expression holds for
Z(e1, . . . , en), and Dp,q(e1, . . . , em) is the sum of weights of MTSFs containing
edges e1, . . . , em.

Fix (s, t) in the interior of N and choose x, y as in the statement. Assume that
x, y > 0; the other cases are similar. For each n, let p0 = [ns] and q0 = [nt]; let
(p0, q0) = (k0i0, k0j0) where k0 = GCD(p0, q0). By adjusting s and t by o(1), we
may assume for convenience that |i0|, |j0| are of order n, that is, k0 is of constant
order. Choose z, w so that |z| = ex , |w| = ey and zi0wj0 < 0 where both z and
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w have small arguments arg(z), arg(w) = O(1/n). Now consider the expressions
(16), (17) and (18) for the graph Gn rather than G1. We claim that as n → ∞, Z

concentrates on ERSFs of slope s, t in the following sense. For any ε > 0, in the
sum (18) the terms (p, q) with |p − p0| < εn, |q − q0| < εn all have approxi-
mately the same argument and dominate all the remaining terms: the sum of the
remaining terms is negligible compared to the sum of these. The same holds for
Z(e1, . . . , em). Thus the limit of the ratio (17) defines the correct determinantal
measure, and the conclusion will follow once we prove this claim.

From the fact that {P = 0} is a simple Harnack curve (Theorem 1.4), we know
from Kenyon and Okounkov (2006) that P is the spectral curve of some dimer
model; therefore by Kenyon, Okounkov and Sheffield ((2006) Section 3.2) the
coefficients of Pn [which is Z above in (18)] satisfy[

zp0wq0
]
Pn(z,w) = ±en2(−σ(s,t)+o(1))

as n → ∞, where σ is the surface tension defined in (14).
Consider those terms in Pn which are powers of ziwj (with i, j relatively

prime), that is, the polynomial Pij of (13). These correspond to CRSFs with com-

ponents of slope j/i. Lemma 2.5 above implies that Dp0,q0 = en2(−σ(s,t)+o(1)):
because the coefficients in Lemma 2.5 are exponential in only linear functions of
n, the sum (2) in this setting is dominated by the first term.

Since σ is the Legendre dual of R, and is strictly convex, the sum of the terms∣∣Dp,q

(
2 − ziwj − z−iw−j )k∣∣ = ∣∣Dp,qzpwq

∣∣(1 + o(1)
)

with ‖(p, q) − (p0, q0)‖ < εn has larger exponential growth rate than any of the
other terms in (18). So for n sufficiently large they dominate the sum (18). More-
over, these terms have all approximately the same argument:

arg
(
zpwq) = arg

(
zp0wq0zO(εn)wO(εn)) = arg

(
zp0wq0

) + O(ε)

by our condition on arg z, argw. So we can remove the absolute values and
conclude that the sum of the terms Dp,q(2 − ziwj − z−iw−j )k with ‖(p, q) −
(p0, q0)‖ < εn dominates the sum (18).

Thus with probability tending to one the configuration concentrates on ERSFs
of slope (s, t). �

5. Harnack property and edge correlations. In this section, we prove The-
orem 1.4.

5.1. Minimal graphs and Y − � transformations. Two planar graphs G, G′
with edge conductances and vertex weights are electrically equivalent if they are
related by a sequence of electrical transformations, which are local rearrange-
ments of the graph; see Figure 8 and Kenyon and Wilson (2011). For example in
the first transformation, one can remove a vertex of degree two, replacing it with
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FIG. 8. Massive electrical transformations: series move, parallel move, removal of dead branch
and star-triangle transformation. Here the a, b, c, A, B , C are conductances and the mi are the
vertex weights. For the first transformation, we have m′

1 = m1 + am0
a+b+m0

and m′
2 = m2 + bm0

a+b+m0
.

For the third transformation, we have m′
1 = m1 + am2

a+m2
. For the fourth transformation, we have

A = bc
a+b+c+m0

, m′
1 = m1 + am0

a+b+c+m0
and symmetrically for B , C, m2, m3.

an edge between its neighbors and update the weights and conductances as shown.
All these transformations preserve the measure on rooted spanning forests, in the
sense that there is a local weight-preserving mapping from rooted spanning forests
of the “before” graph with those on the “after” graph.

A graph on a torus is said to be minimal if it has the fewest edges in its electrical
equivalence class. Minimal graphs on a torus were characterized in Goncharov and
Kenyon (2013) as those having the property that, on the cover G̃ in R

2, the zig-
zag paths of G̃ are not closed loops, do not self-intersect and two zig-zag paths
intersect at most once. (A zig-zag path is a path which turns maximally left at
each white vertex and maximally right at each black vertex, that is, when arriving
at a white vertex exits by the first subsequent edge in clockwise order out of that
vertex, and when arriving at a black vertex exits by the first subsequent edge in
counterclockwise order out of that vertex.) Even though in Goncharov and Kenyon
(2013) we considered only the case M ≡ 0, the definition and characterization of
minimal graphs is topological and so extends to the current case as well.

Electrically equivalent graphs on the torus have the same characteristic poly-
nomial P(z,w) = det(�(z,w) + DM), up to a multiplicative constant, hence the
same spectral curve {P = 0}. In particular, when studying spectral curves of graphs
on a torus, it suffices to consider minimal graphs.
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LEMMA 5.1. For a minimal graph G on a torus, the coefficients of P(z,w) of
monomials whose exponents are on the boundary ∂N do not depend on M .

PROOF. In Goncharov and Kenyon (2013), which dealt with the case M ≡ 0,
it was shown that for minimal graphs, for every boundary point on N , all corre-
sponding CRSFs have a cycle passing through every vertex. Thus no MTSF which
has roots can have a homology class on ∂N . By (12), the boundary coefficients of
P only arise from CRSFs, not MTSFs, and thus do not depend on M . �

5.2. Proof of Harnack property. We prove Theorem 1.4. This proof strategy
parallels the proof in Kenyon and Okounkov (2006) for spectral curves in the dimer
model.

We need a few facts about simple Harnack curves, which can be found in
Mikhalkin (2004). First, simple Harnack curves {P = 0} with given Newton poly-
gon N are characterized by having the maximal number, g +1, of real components
(one for each of the g interior integer points of N , plus one), and the condition
that these components have a certain topological arrangement in RP 2: none is sur-
rounded by any other except for the one corresponding to the boundary of N which
surrounds all others. Simple Harnack curves with given Newton polygon N are the
closure of an open set in the space of all real affine curves (defined by real poly-
nomials with Newton polygon N ), whose boundary consists only in the following
two types of degenerations: when an oval (a real component) shrinks to a point, or
two points at ∞ meet, that is, one of the single-variable polynomials correspond-
ing to an edge of N has a double root. The space of all simple Harnack curves
with all possible Newton polygons is also connected: one can degenerate a sim-
ple Harnack curve by (after scaling so that the largest coefficient stays bounded)
sending certain boundary coefficients of P to zero, as a result of which certain real
components will move off to ∞, merging with the outer real component. The limit
will be a simple Harnack curve with smaller N .

Let G be a Z
2-periodic planar graph with Z

2-periodic conductances. Let
P(z,w) = PM(z,w) = det(�(z,w)+DM) be the characteristic polynomial. Note
that P is reciprocal since �(z,w)t = �(1/z,1/w). When M ≡ 0, the polynomial
P(z,w) was shown to define a simple Harnack curve {P = 0} in Goncharov and
Kenyon (2013), with a real node at (z,w) = (1,1). We show that as we increase
each Mv , the curve remains simple Harnack. Since the boundary points of {P = 0}
only depend on the coefficients of P on the boundary of N , and these do not de-
pend on M by Lemma 5.1, the curve cannot cease to be Harnack due to collisions
of points at infinity. Therefore, it suffices to show that the ovals do not disappear
(as we vary among Harnack curves the ovals never meet each other).

See Figure 9 for an illustration of the amoebas of Harnack curves coming from
a graph with M ≡ 0 and one with M > 0.

The oval at the center plays a different role than the other ovals; we deal with
this oval first. Suppose, starting from the simple Harnack curve when M ≡ 0, we
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FIG. 9. Amoebas of simple Harnack curves arising from a planar periodic graph with Newton
polygon N = cvx{(2,0), (2,1), (0,1), (−2,0), (−2,−1), (0,−1)}. In the first M ≡ 0, the central
oval has degenerated. The points indicated on the other ovals are the special divisor.

increase at least one Mv . Then we claim the real node at (1,1) becomes an oval,
that is, {P = 0} no longer intersects the unit torus {|z| = |w| = 1}. Suppose on
the contrary we have a zero (z,w) = (eiθ , eiφ). We then have a quasiperiodic real
function f on G in the kernel of �(z,w) + DM . If both z, w are roots of unity,
say pth and qth roots of unity respectively, then on the pq-fold torus cover Gpq ,
the function f descends to a function f̃ in the kernel of � + D̃M , the standard
Laplacian on Gpq . This is impossible since this Laplacian is invertible as long as
some Mv > 0. So we may suppose that at least one of z, w is not a root of unity.
From each vertex v ∈ G for which f (v) > 0, there is a path to ∞ on which f is
increasing (i.e., nondecreasing and not eventually constant). This is impossible by
quasiperiodicity of f , that is, by the fact that f (v + (j, k)) = zjwkf (v) for integer
(j, k). This shows that for M 	≡ 0, the oval at the origin of N does not degenerate
to a point.

Now let us deal with the other ovals. On {P = 0}, the matrix �(z,w) + DM is
singular; generically it has corank 1, and thus its cofactor matrix Q = (�(z,w) +
DM)∗ has rank 1. Consider the first column of Q; its entries Q1i are Laurent poly-
nomials in z, w. At any common zero of P and Q1i , either the entire first column
of Q vanishes or the ith row of Q vanishes (due to the fact that Q has rank 1). The
points (z,w) where the first column vanishes is a set of points on {P = 0} called a
special divisor in Kenyon and Okounkov (2006). We claim that the special divisor
consists of g − 1 real points, one point on each oval of P , except for the central
oval. To see this, check first in the case G is the square grid with unit conductances,
and M ≡ 0: see Lemma 5.2 below. Our desired graph is a graph minor of the square
grid: it can be obtained from the grid by deletions and contractions of edges. We
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can thus deform the square grid to our desired G by changing the conductances
in [0,∞], with conductance 0 corresponding to deleting an edge and conductance
∞ corresponding to contracting an edge. As we change conductances in (0,∞),
the number of solutions to Q11 = · · · = Q1n = 0 does not change, and since for
simple Harnack curves the ovals never meet, there remains one solution on each
oval: as a consequence the curve is still simple Harnack. Now let certain conduc-
tances degenerate to 0 or ∞; in this case, the curve {P = 0} can degenerate: some
of its exterior coefficients can tend to zero, and the Newton polygon will change.
Certain real components will move off to infinity and merge with the exterior com-
ponent. But the remaining bounded real components will still not touch each other
(by the Harnack property), and thus will still contain one real divisor point each.
Once we have deformed the initial square grid to our desired graph G with desired
conductances, we increase M away from M ≡ 0. Again there remains one divisor
point on each oval, so the number of real components to {P = 0} cannot decrease.
Therefore, the curve {P = 0} remains simple Harnack.

As a consequence of the fact that P is simple Harnack, {P = 0} intersects the
torus T = {(z,w) : |z| = ex, |w| = ey} either transversely at two conjugate points
(z0,w0), (z̄0, w̄0), or at a real node, or at a real point on the boundary of the amoeba
of P , or not at all. In the first two cases, the Fourier coefficients Cx,y of 1/P ,
defined by

(19) Cx,y = 1

4π2

∫
(z,w)∈T

zxwy

P

dz

iz

dw

iw

for (x, y) ∈ Z, decay linearly as |x|+|y| → ∞, and in the last two cases they decay
geometrically; see Kenyon, Okounkov and Sheffield (2006). For edges e1, e2 ∈ G1,
by Theorem 4.5 above the kernel Ke1,e2+(x,y) for (x, y) ∈ Z

2 is a linear combina-
tion of the Fourier coefficients C(x,y)+(j,k) for a finite set (j, k), with coefficients
independent of (x, y). Thus Ke1,e2+(x,y) decays correspondingly as |x|+|y| → ∞.
This implies that the edge-edge covariances decay quadratically in the first two
cases and exponentially fast in the last two cases. This completes the proof of
Theorem 1.4.

LEMMA 5.2. For the square graph Z
2/nZ2 with unit conductances, the spe-

cial divisor has one point on each real component of {P = 0} except for the central
component.

PROOF. The characteristic polynomial is

(20) Pn(z,w) = ∏
ξn=z

∏
ηn=w

4 − ξ − 1

ξ
− η − 1

η
.

Points on Pn = 0 correspond to (z,w)-periodic harmonic functions on Z
2, that is,

harmonic functions f with the property f (x +n,y) = zf (x, y) and f (x, y +n) =
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wf (x, y). Such a function has the form f (x, y) = Re(Cξxηy) where 4 − ξ −
1/ξ − η − 1/η = 0, (ξn, ηn) = (z,w), z, w are real and C is a constant. There is
a two-dimensional space of such functions, obtained by varying C. By choosing
the argument of C appropriately, we can make f zero at any desired vertex, for
example, vertex 1, as long as ξ , η are not both real (if they are both real then f is
identically zero). Making f zero at the first vertex corresponds to making the first
column of Q vanish. Note that if (z,w) = (1,1), then 4 − ξ − 1/ξ − η − 1/η = 0
only when (ξ, η) = (1,1) are both real, so this case is disallowed.

So it suffices to find the remaining number g − 1 = 2n2 − 2n of real points
(z,w) 	= (1,1) on Pn = 0. From equation (20) we must thus find (ξ, η), roots of
4 − ξ − 1/ξ − η − 1/η = 0, with arguments which are multiples of π/n.

Note that 4 − ξ − 1/ξ − η − 1/η = 0 has the rational parametrization

ξ = (u + a)(u + b)

(u − a)(u − b)
, η = (u + a)(u − b)

(u − a)(u + b)
,

where u ∈C, a = eπi/4 and b = e3πi/4. In order to find (ξ, η) with arguments θ , φ

respectively, we need to find u such that

arg(ξη) = arg
(u + a)2

(u − a)2 = θ + φ,(21)

arg(ξ/η) = arg
(u + b)2

(u − b)2 = θ − φ.(22)

The set of points u ∈ C for which (u + a)/(u − a) has fixed argument is a
circle going through a and −a and with center on the line x + y = 0. Similarly,
the set of points u for which (u + b)/(u − b) has fixed argument is a circle going
through b, −b and with center on the line x − y = 0. For u in the open unit disk,
arg(u+a

u−a
), arg(u+b

u−b
) ∈ (π

2 , 3π
2 ). Taking u on the boundary of the unit disk leads to

ξ , η both real, so we can ignore this case. Thus given θ , φ, there is a unique point
u in the disk satisfying (21), (22). As θ+φ

2 , θ−φ
2 run over the 2n − 1 multiples of

π/2n in (π
2 , 3π

2 ), θ and φ take (2n − 1)2 possible values, of which 2n2 − 2n + 1
are multiples of π/n. Removing the solution u = 0 when both angles are zero, we
have 2n2 − 2n solutions; see Figure 10. �

These solutions form an interesting set of inscribed quadrilaterals: those which
are harmonic (i.e., are Möbius images of a square) and have angles which are
multiples of π/n. Indeed, the complex numbers 1, i u+a

u−a
, − (u+a)(u+b)

(u−a)(u−b)
, −i u+b

u−b
,

sum to zero and form the sides of such a harmonic quadrilateral.

6. Limit shapes. The dimer limit shape theory of Cohn, Kenyon and Propp
(2001) is fairly robust, in the sense that it can be extended to more general settings
where the discrete model in question is described by a one-dimensional height
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FIG. 10. Points u in the unit disk for which ξ , η have arguments which are multiples of π/n (and
are not both real). Here n = 3.

function, for example, the 6-vertex model (although the strict convexity of the
surface tension function, which is important for uniqueness of the limit shape, has
not been established for this model).

In the current setting, however, we cannot generally describe a configuration by
a height function, so we need to extend the limit shape theory to this case. In the
case of zero mass, it is possible to use Temperley’s bijection between spanning
trees and dimers to give the limit shape theory directly (using the height func-
tion), but this method does not work when there are k-pronged singularities for k

odd, as is the case of Figure 5, for example. More importantly, no such bijection
is known in the case M > 0 of the massive Laplacian determinant. Furthermore,
there are a number of other models, for example, the Fortuin–Kasteleyn random
cluster models, in which we again have a two-parameter family of Gibbs measures
(defined similarly using infinite parallel components) but again no height function.
The methods discussed here extend the limit shape theory of Cohn, Kenyon and
Propp (2001) to apply to these “banded” models.

6.1. Measured foliations. See Thurston (1988) for background on measured
foliations; here are the definitions relevant for us. Let U be a simply connected
domain in C with smooth boundary, and S ⊂ U a finite set which serves as a
set of singular points. A singular measured foliation (we say measured foliation
for short) F on U is an atlas of coordinate charts for U in R

2 for which the co-
ordinate change maps near a nonsingular point (a point not in S) are diffeomor-
phisms preserving dy (here x, y are coordinates of R2). Thus at a nonsingular point
(u, v) ∈ U there is a locally defined notion of “vertical coordinate” y. In other lan-
guage a measured foliation is a decomposition of U \S into disjoint simple curves,
where locally the decomposition is a diffeomorphic image of the decomposition of
R

2 into horizontal lines, where the diffeomorphism preserves the spacing between
lines.
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At a singular point, the foliation is locally k-pronged, that is, has a singular
leaf4 consisting of k ≥ 3 rays emanating from the singularity. Allowing k-prong
singularities for k odd means that the sign of “dy” changes around such a sin-
gularity. A measured foliation can thus be described globally by an unsigned
closed 1-form on U \ S, that is, an equivalence class of (locally defined) 1-forms
under the equivalence ω ∼ −ω. In local coordinates, it is thus an expression
|ω| = |f (u, v) du + g(u, v) dv|. Notationally, we identify a measured foliation F
with its unsigned one-form |ω|.

It is convenient to generalize this notion of measured foliation to consider mea-
sured foliations supported only on subsets of U ; equivalently, we allow |ω| to not
have full support. Our smoothness assumptions guarantee that the support is the
closure of an open set.

Two measured foliations |ω|, |ω′| with the same singular set S are isotopic if
there is a diffeomorphism of U fixing pointwise ∂U ∪ S, isotopic to the identity
fixing the boundary and S, and sending |ω| to |ω′|.

For simplicity, we consider in this paper only measured foliations without
closed leaves and in which the leaves are transverse to the boundary. [Both these
conditions can be relaxed, for example, as in the CRSF model on a cylinder as
discussed in Kenyon (2011), and we get a slightly more general statement of The-
orem 6.1 below.]

6.2. Density of lines. The Euclidean metric on U allows us to identify cotan-
gent vectors with tangent vectors. Given a singular measured foliation |ω| = |dy|
on U , at a nonsingular point p ∈ U there is a vector ∇y, well defined up to sign,
such that ∇y · q = ω(q) for every vector q . This is the gradient field of |ω|. For a
polygon N ∈ R2 (symmetric about the origin), we say |ω| is N -Lipschitz if ∇y ∈ N

at every nonsingular point p ∈ U .
Given a unit tangent vector q ∈ Tp(U) at a nonsingular point p ∈ U , we define

the density of lines in direction q at p to be simply |ω(q)| = |∇y ·q|. The condition
of being N -Lipschitz means that the density of lines of |ω| is not too great in any
direction: small enough that |ω| can be approximated by a grove (see Section 6.4
below). The boundary density of |ω| is the density of lines along the boundary,
that is, in the direction of the boundary tangent. The boundary height function is a
locally defined function whose tangential derivative is the boundary density.

6.3. Orientation cover. If |ω| has any k-prong singularities for k odd, there is a
two-sheeted branched cover Ũ of U , branched exactly over these singularities, and
a lift ˜|ω| on Ũ for which the leaves have a consistent orientation (each singularity
of the lifted foliation is even-pronged). In this case, there is a global coordinate

4At the risk of causing confusion with spanning tree terminology, we call the components of the
foliation leaves.
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ỹ (away from the lift of S) such that ˜|ω| = |dỹ|. The 1-form dỹ changes sign
under the deck transformation exchanging the sheets of the cover. The function ỹ

is called the global height function.

6.4. Approximation. Let Uε ⊂ εG be a connected subgraph of εG approximat-
ing U as ε → 0: we can take Uε = U ∩ εG with some tweaks near the boundary so
that it is connected.

For each singularity s ∈ S, let sε be a face of Uε containing s. Let ∂Uε , the
boundary of Uε , be the set of vertices of Uε with a neighbor in εG outside Uε .

Recall that a (massive) grove of Uε is a spanning forest, every component of
which contains either a root (a marked vertex) or contains at least one boundary
vertex (or both); a component is special if it is unrooted. We consider only groves
F in which each special component contains exactly two boundary vertices. For
each special component C of F , there is a unique path between these boundary
points, the trunk of C.

Given a massive grove F of Uε of the above type, we associate to it a dis-
crete measured foliation |dyε|, which is an unsigned element of the cohomology
H 1(Uε,Z), as follows. For a simple path γ in the dual graph,∫

γ
|dyε| = ε

∑
C

|C ∧ γ |,

where the sum is over the set of trunks C of F , and C ∧ γ is the algebraic number
of crossings of C with γ . Thus |dyε| is the “flow” of F , when we consider the
flow to be concentrated on the trunks. This quantity is invariant under isotopy of γ

fixing its endpoints, as long as the isotopy does not cross any singularities.
We say that a massive grove F of Uε is isotopic to a measured foliation |ω| of U

if the trunk of each special component of F is isotopic in U , fixing the boundary
and fixing the singularities, to a leaf of ω whose boundary points are within O(ε)

of those of the corresponding component of F .
For a sequence εj → 0, let {Fj }j=1,2,... be a sequence of massive groves of Uεj

.
We say Fj approximates |ω| if the corresponding forms |dyj | = |dyεj

| converge
weakly to |ω| in the following sense: for any fixed smooth path γ between two
points in U avoiding singularities,∫

γ
|ω| = lim

j→∞

∫
γ

|dyj |.
This says that both the directions and the density of leaves of Fj converge to those
of |ω|.

Note that if Fj approximates |ω| then almost all (except for a fraction tending
to zero of) its special components are isotopic to leaves of |ω|.

Finally, if F is a massive grove of Uε let �(F) be the set of massive groves F ′
of Uε which connect the same boundary points as F and for which each trunk of
F ′ is isotopic fixing S to the corresponding trunk of F .
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6.5. Surface tension. The surface tension of a measured foliation ω is

(23) S(ω) =
∫∫

U
σ

(|ω|)dudv,

where, writing |ω| = |s dv + t du|, σ(|ω|) = σ(s, t) = σ(−s,−t) is minus the free
energy of μs,t ; see (14).

6.6. Limit shape theorem.

THEOREM 6.1. Let G be a biperiodic weighted planar graph as above with
unit flow polygon N . Fix M ≥ 0. Let U be a piecewise smooth simply connected
domain, and S ⊂ U finite. Let |ω| be an N -Lipschitz singular measured foliation
with singularities S, with leaves transverse to the boundary and in which every
leaf begins and ends on the boundary. For a sequence εj > 0 converging to zero
as j → ∞, let Uj ⊂ εjG be a connected subgraph of εjG approximating U . Let
Fj be a massive grove of Uj with {Fj }j=1,2,... approximating ω. Let μj be the
grove measure on �(Fj ). Then as j → ∞, a μj -random grove approximates the
measured foliation |ω0|, where |ω0| is the unique measured foliation isotopic to
|ω| and minimizing the surface tension S(ξ).

PROOF. The statement and proof are similar to the proof of the limit shape
theorem for domino tilings in Cohn, Kenyon and Propp (2001), with some small
differences.

Let �(|ω|) be the space of N -Lipschitz measured foliations isotopic to |ω|. The
proof is based on three facts, which we establish in turn:

1. �(|ω|) is a compact metric space.
2. There is a unique minimizer |ω0| ∈ �(|ω|) to the surface tension S of (14).
3. For a sequence {Fj }j=1,2,... approximating |ω|, the surface tension S(|ω|) is

minus the exponential growth rate of the weighted sum of configurations in �(Fj ).

Before we prove each of these, let us show how they complete the proof of
the theorem. By compactness, for fixed δ > 0, �(|ω|) can be covered by a finite
number of δ-balls Bδ(|ωk|), with 1 ≤ k ≤ nδ for some nδ . By the growth condition,
for each j and k,

S
(|ωk|) = lim

j→∞ ε2
j logZ

(
�(Fk,j )

)
,

where {Fk,j }j=1,2,... is a sequence approximating |ωk|. By uniqueness of the min-
imum, the ball which contains |ω0| has larger growth rate than any other ball, so
as j → ∞ the measure concentrates on this ball. Thus with probability tending to
1 a random element of �(Fj ) will lie within δ of |ω0|.

Now to prove the above facts. The Lipschitz condition guarantees that �(|ω|)
is compact: it is a closed subset of the compact space of unsigned N -Lipschitz
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one-forms. By passing to the orientation cover Ũ of U , every measured foliation
in �(|ω|) has a global height function ỹ which is antisymmetric under deck trans-
formation, and conversely every antisymmetric global height function ỹ on Ũ sat-
isfying the condition that |dỹ| is N -Lipschitz defines a measured foliation. The set
of such height functions with fixed boundary condition and satisfying a Lipschitz
condition is a metric space (in the uniform metric). This metric restricts to a metric
on the closed subspace of height functions arising from a fixed isotopy class.

Now to prove the uniqueness of the optimizer, fact 2. Let |ω1| be a foliation;
one can triangulate U with triangles whose vertices are in S or on a boundary,
do not contain any singular points in their interior or on their edges (only at their
vertices) and whose edges are transverse to |dy1|. On each triangle, there is a local
coordinate y1 which is monotone on each edge of the triangle. The isotopy class
of |dy1| is determined by the integrals of |dy1| along the edges of the triangles.

Let |dy2| be a nearby isotopic foliation; it will also be transverse to the triangle
edges, and on each triangle will also have a local coordinate y2 monotone on the
edges of the triangle. We can choose these coordinates y1 and y2 so that dy1 and
dy2 have the same sign on each edge. Then for t ∈ [0,1], t dy1 + (1 − t) dy2 is
also nonsingular and has the same sign on each edge. If two triangles share an
edge, the form |t dy1 + (1 − t) dy2| is the same for both triangles, and so these
local forms piece together to give an unsigned 1-form on U . This foliation has the
same isotopy class as |dy1| and |dy2|, since it has the same integrals on edges of
the triangles. This gives a “linear” interpolation between |dy1| and |dy2|; since σ

is a convex function, S is convex on this interpolation.
Now suppose ω1 and ω2 are distinct minimizers of S . On the above interpolation

between them, and on any triangle where they differ, convexity of S implies that
S is smaller at any t ∈ (0,1) than at t = 0 or t = 1, a contradicting minimality of
both ω1 and ω2. So there is a unique surface tension minimizer.

Finally, it remains to show that S(ω) is the growth rate of configurations in
�(Fj ). This follows the proof in Cohn, Kenyon and Propp (2001) exactly, so we
simply sketch the argument. Fix ε > 0 small and triangulate U into small trian-
gles, with sides of order �(

√
ε) but with angles bounded below, and so that any

singularities only occur at vertices of the triangles. By the Lipschitz condition on
|ω| and Rademacher’s theorem, |ω| is close to constant (i.e., |ω| = |s dv + t du|
for s, t nearly constant functions) on almost all triangles (all except for a frac-
tion tending to zero of the triangles). A grove close to |ω| has the property that
on almost all triangles, it lies close to |ω|. On a triangle T where |ω| is close to
a constant |s dv + t du|, the contribution to the weight of groves close to |ω| is
eAσs,t /ε

2(1+o(1)) where A is the area of the triangle. The product of these contribu-
tions over all triangles gives (upon taking logs and multiplying by ε2) the surface
tension S(|ω|). �

7. Open question. The branch of the UST on Z
2 was famously shown to be

described by SLE(2) in Lawler, Schramm and Werner (2004). For a fixed M > 0,
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however, if one takes a crossing of a square grid strip graph of width n (as in Fig-
ure 3, panel 2 for width 4 and M = 1), as n → ∞ the scaling limit of the crossing
branch (dividing both coordinates by n) will be a straight line: heuristically, macro-
scopic deviations from a line will be suppressed by the mass factor (a formal proof
of the fact that it is a line requires a variational argument which we have not writ-
ten down). One can attempt to make interesting limits by sending M → 0 at the
same time as the width n goes to ∞. What are the nontrivial scaling limits for this
random curve, which interpolate between a straight line and SLE(2)? Equivalently,
what is the scaling limit of a LERW with small bias to die but conditioned to cross
a rectangle?
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