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CENTRAL LIMIT THEOREMS FOR EMPIRICAL
TRANSPORTATION COST IN GENERAL DIMENSION1

BY EUSTASIO DEL BARRIO AND JEAN-MICHEL LOUBES

Universidad de Valladolid and Université de Toulouse

We consider the problem of optimal transportation with quadratic cost
between a empirical measure and a general target probability on R

d , with
d ≥ 1. We provide new results on the uniqueness and stability of the associ-
ated optimal transportation potentials, namely, the minimizers in the dual for-
mulation of the optimal transportation problem. As a consequence, we show
that a CLT holds for the empirical transportation cost under mild moment and
smoothness requirements. The limiting distributions are Gaussian and admit
a simple description in terms of the optimal transportation potentials.

1. Introduction. The analysis of the minimal transportation cost between two
sets of random points or of the transportation cost between an empirical and a ref-
erence measure is by now a classical problem in probability, to which a significant
amount of literature has been devoted.

In the case of two sets of n random points, say X1, . . . ,Xn and Y1, . . . , Yn in
R

d , the object of interest is

Tc,n = min
σ

1

n

n∑
i=1

c(Xi, Yσ(i)),

where σ ranges is the set of permutations of {1, . . . , n} and c(·, ·) is some cost
function. Tc,n is usually referred to as the cost of optimal matching. This opti-
mal matching problem is closely related to the Kantorovich optimal transportation
problem, which, in the Euclidean setting amounts to the minimization of

I [π ] =
∫
Rd×Rd

c(x, y) dπ(x, y),

with π ranging in the set of joint probabilities on R
d × R

d with marginals P,Q.
Here, P and Q are two probability measures on R

d and the minimal value of I [π ]
is known as the optimal transportation cost between P and Q. The cost functions
c(x, y) = ‖x − y‖p have received special attention and we will write Wp

p (P,Q)

for the optimal transportation cost in that case. It is well known that with this
choice of cost function Tc,n = Wp

p (Pn,Qn), with Pn and Qn denoting the empir-
ical measures on Pn and Qn. A related functional of interest is Wp

p (Pn,Q), the
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transportation cost between the empirical measure on the sample X1, . . . ,Xn and
a given probability Q.

How large is the cost of optimal matching, Wp
p (Pn,Qn)? Under the assump-

tion that X1, . . . ,Xn are i.i.d. with distribution P , Y1, . . . , Yn are i.i.d. with dis-
tribution Q and P and Q have finite pth moment is is easy to conclude that
Wp

p (Pn,Qn) → Wp
p (P,Q) almost surely. One might then wonder about the rate

of approximation, that is, how far is the empirical transportation cost from its
theoretical counterpart. Much effort has been devoted to the case when P = Q,
namely, when the two random samples come from the same random generator.
In this case, Wp

p (P,Q) = 0 and the goal is to determine how fast does the em-
pirical optimal matching cost vanish. From the early work [1], followed by the
important contributions [19–21] and [9], it is known that the answer depends on
the dimension d . In the case when P = Q is the uniform distribution on the unit
hypercube Wp(Pn,Qn) = O(n−1/d), if d ≥ 3, with a slightly worse rate if d = 2.
The results for d ≥ 3 were later extended to a more general setup covering the
case when P = Q has bounded support and a density satisfying some smoothness
requirements. The one-dimensional case is different. If p = 1 then, under some in-
tegrability assumptions W1(Pn,P ) = OP (n−1/2), with

√
nW1(Pn,P ) converging

weakly to a non-Gaussian limit; see [6]. If p > 1, then it is still possible to get a
limiting distribution for

√
nWp(Pn,P ), but now integrability assumptions are not

enough and the available results require some smoothness conditions on P (and
on its density); see [7] for the case p = 2. In fact (see [3]), the condition that P

has a positive density in an interval is necessary for boundedness of the sequence√
nE(Wp(Pn,P )) if p > 1. In a different setting using PDE, rates in dimension 2

are also given [2].
This paper provides CLTs and variance bounds for the quadratic transportation

cost between an empirical measure based on i.i.d. observations and a probabil-
ity on R

d or between two sets of d-dimensional i.i.d. observations. More pre-
cisely, we will consider i.i.d. Rd valued random variables (r.v.’s in the sequel)
X1, . . . ,Xn with common distribution P and an additional probability Q on R

d .
We will write Pn for the empirical measure on X1, . . . ,Xn and will give CLTs
for W2(Pn,Q) (see our Theorem 4.1). We also extend this result to CLTs for
W2(Pn,Qm) when Qm is the empirical measure on a further independent sam-
ple of i.i.d. r.v.’s, Y1, . . . , Ym, with law Q.

Beyond the theoretical interest of the problem, we would like to emphasize the
potential impact on statistical applications of our results. Quoting from [18], the
transportation cost distance “is an attractive tool for data analysis but statistical
inference is hindered by the lack of distributional limits”. This has led to some
attempts to provide some distributional limits in different setups. In [15], a related
(but different) problem is considered. There the sample X1, . . . ,Xn consists of
i.i.d. Gaussian r.v.’s (this is extended to cover elliptical models as well) and CLTs
are given for the transportation between the underlying Gaussian law and a Gaus-
sian law with estimated parameters (see Theorems 2.1 and 2.2 there). To our best
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knowledge, the only work that deals with the issue of distributional limit laws for
the transportation cost between empirical measures is [18] (see Theorem 1 there).
However, the problem considered there is of a different nature. Both generating
probabilities P and Q are assumed to have finite support. This allows to deal with
the transportation cost as a functional of the multinomial vector of empirical fre-
quencies, and the result follows from the directional Hadamard differentiability of
this functional. On the other hand, we focus on the case when the probabilities P

and Q are smooth (or at least one of them) and this requires the exploration of
alternative methods of proof.

Our approach to the transportation cost between empirical measures comes from
a closer analysis of the Kantorovich duality. We give a self-contained description
of this in Section 2 below. For the moment, we limit ourselves to note that the
transportation cost W2

2 (P,Q) can be expressed as

W2
2 (P,Q) =

∫
Rd

‖x‖2 dP (x) +
∫
Rd

‖y‖2 dQ(y) + 2 min
(ϕ,ψ)∈�

J(ϕ,ψ),

where � denotes the set of pairs of functions (ϕ,ψ) ∈ L1(P ) × L1(Q) such that
ϕ(x) + ψ(y) ≥ x · y and J is the linear functional

J (ϕ,ψ) =
∫
Rd

ϕ dP +
∫
Rd

ψ dQ.

If (ϕ,ψ) is a minimizing pair in � for J , we will refer to ψ as an optimal trans-
portation potential for the transportation of Q to P . The motivation for the name
comes from the fact that, provided Q has a density, the optimal transportation
problem is equivalent to the Monge transportation problem, that is,

W2
2 (P,Q) = min

T :Q◦T −1=P

∫
Rd

∥∥x − T (x)
∥∥2

dQ(x)

(here and in the sequel Q◦T −1 denotes the law induced from Q by the measurable
map T ). A minimizing T in the Monge problem is called an optimal transportation
map from Q to P . It is well known (see, e.g., Theorem 2.12 in [22]) that the
optimal transportation map is unique if Q has a density and, in fact, it is the unique
map of the form ∇ψ with ψ a proper, lower semicontinuous, convex function, that
maps Q to P (see details below). It is also true that ∇ψ is an optimal transportation
map if and only if ψ is an optimal transportation potential. Beyond uniqueness, it
is also known that optimal transportation maps enjoy some stability: if Pn → P

in W2
2 distance then the optimal transportation map from Q to Pn converges Q-

almost surely to the optimal transportation map from Q to P ; see, for instance,
Corollary 5.23 in [23]. Optimal transportation potentials do not enjoy uniqueness
or stability in general. However, we show in this paper that they are essentially
unique (up to the addition of a constant) and that suitable versions can be chosen
for which stability does hold.
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Once we have proved these stability results, our approach to the CLTs for the
empirical transportation cost relies on a rather simple application of the Efron–
Stein variance inequality (see Section 3). Related techniques had been used to pro-
vide exponential concentration bounds for the empirical transportation cost (see
[8]). Here, we give only variance bounds, but get two main advantages. First, these
variance bounds hold in great generality, requiring only finite fourth moments (in
[8] a bounded support is assumed for the exponential bounds). Second, they can be
adapted to prove a linearization result that yields as a direct consequence our CLTs
that are presented in Section 4. The Efron–Stein method for variance inequalities
boils down to bounding the moments of the increase that results in replacing a
member of a sample by an independent copy. This is particularly convenient in
optimal transportation, where a solution which is optimal for a sample results in
or can be transformed into a different solution which is not optimal for the trans-
formed sample, but yields a workable bound for the increase in transportation cost.
We would like to mention that we use this observation both for the primal and the
dual formulation of the transportation problem and that both uses are needed to
prove our linearization result.

Finally, to end this Introduction, we would like to explain the particularities
that made ourselves constrain our approach to the quadratic cost. While it was this
quadratic case that historically received first a closer attention, the theory has then
broadened and much of the key results have been extended to more general costs.
Of course, the Kantorovich duality holds in much greater generality. Equivalence
to the Monge version of optimal transportation requires, however, some additional
assumptions, related to strict convexity of the cost function. It does hold for the
cost ‖x − y‖p with p > 1 and there are uniqueness and stability results for the
optimal transportation maps in this more general setup (see [12]). However, our
approach to prove uniqueness and stability of optimal transportation potentials
relies on tools from the theory of graphical convergence of multivalued maps (a
particular case of set convergence in the Painlevé–Kuratowski sense, see details in
Section 2 below) which are particularly suited for the analysis of convex functions
and their subgradients. We expect that similar results will be developed to enable
to handle version related to generalized concavity, which would allow to extend
the approach in this paper to costs ‖x − y‖p with p > 1. This will be covered in a
future work.

2. Uniqueness and stability of optimal transportation potentials. An es-
sential component in our approach is the Kantorovich duality, which we succinctly
describe next and refer to the excellent monographs [14, 22] or [23] for further de-
tails. Given Borel probabilities P and Q on R

d with finite second moment, the
optimal transportation problem (with quadratic cost) is the problem of minimiza-
tion of I [π ] = ∫

Rd×Rd ‖x − y‖2 dπ(x, y) in π ∈ �(P,Q), the set of Borel proba-
bility measures on R

d ×R
d with marginals P and Q. It is convenient to consider
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the equivalent problem of maximization of Ĩ [π ] = ∫
Rd×Rd x ·y dπ(x, y) (note that

I [π ] = ∫ ‖x‖2 dP (x) + ∫ ‖y‖2 dQ(y) − 2Ĩ [π ]). We denote by � the set of pairs
of functions (ϕ,ψ) ∈ L1(P ) × L1(Q) such that

ϕ(x) + ψ(y) ≥ x · y
for every x and y. We write also

(1) J (ϕ,ψ) =
∫
Rd

ϕ dP +
∫
Rd

ψ dQ.

Then

(2) min
(ϕ,ψ)∈�

J(ϕ,ψ) = max
π∈�(P,Q)

Ĩ [π ].
With this result, to which we will refer as the Kantorovich duality, we are summa-
rizing a number of different facts. First, the functional Ĩ [π ] admits a maximizer
in �(P,Q); second, the functional J (ϕ,ψ) admits a minimizer in �; finally, the
optimal values are equal (see, for instance, Theorems 1.3 and 2.9 in [22]). Fur-
thermore, the maximizing pair for J , (ϕ,ψ), can be taken to be a pair of lower
semicontinuous, proper convex conjugate functions, that is, ϕ(x) = ψ∗(x), where

h∗(x) = sup
y∈Rd

(
x · y − h(y)

)

denotes the convex conjugate of h (note that
∫

ϕ dP + ∫
ψ dQ ≥ ∫

ψ∗ dP +∫
ψ̃ dQ since ϕ ≥ ψ∗ if (ϕ,ψ) ∈ �). This results in a more precise description

of the maximizers of Ĩ [π ], as follows.
For any π ∈ �(P,Q) and any (ψ∗,ψ) in �, we clearly have

J
(
ψ∗,ψ

) =
∫
Rd×Rd

(
ψ∗(x) + ψ(y)

)
dπ(x, y) ≥

∫
Rd×Rd

x · y dπ(x, y) = Ĩ [π ].
The Kantorovich duality (2) entails that (ψ∗,ψ) is a minimizer of J and π is a
maximizer of Ĩ if and only if∫

Rd×Rd

(
ψ∗(x) + ψ(y) − x · y)

dπ(x, y) = 0,

that is, if and only if the nonnegative function ψ∗(x) + ψ(y) − x · y vanishes
π -almost surely. The condition ψ∗(x) + ψ(y) − x · y = 0 holds if and only if
x ∈ ∂ψ(y) (if and only if y ∈ ∂ψ∗(x)). Here, ∂ψ(y) denotes the subgradient of ψ

at y, that can be written as

∂ψ(y) = {
z ∈ R

d : ψ(
y′) − ψ(y) ≥ z · (

y′ − y
)

for all y′ ∈ R
d}

,

which is a nonempty set if ψ is a proper convex function and y belongs to the
interior of its domain (see [16] for further details). If ψ is differentiable at y then
∂ψ(y) = {∇ψ(y)}, where ∇ denotes the usual gradient. We note that convex func-
tions are locally Lipschitz, hence, by Rademacher’s theorem (see, e.g., page 81 in
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[10]) they are differentiable at almost every point in the interior of their domain.
These facts can be used to prove that if Q does not give mass to sets of Hausdorff
dimension d − 1 (in particular if Q is absolutely continuous with respect to 	d , the
Lebesgue measure on R

d ), then (see Theorem 2.12 in [22]) (ψ∗,ψ) is a minimiz-
ing pair for J if and only if Q ◦ (∇ψ)−1 = P and then π = Q ◦ (∇ψ, Id)−1

maximizes Ĩ . The map T = ∇ψ is known as the optimal transportation map
from Q to P and is Q-a.s. unique: if ψ1 were a further convex function such
that Q ◦ (∇ψ1)

−1 = P then ∇ψ = ∇ψ1 Q-almost surely.
Unlike the optimal transportation map, the optimal transportation potential, that

is a convex, lower semicontinuous ψ such that (ψ∗,ψ) minimizes J (equivalently,
a convex, lower semicontinuous ψ such that Q ◦ (∇ψ)−1 = P ), is not unique,
since, obviously J (ψ∗ −C,ψ +C) = J (ψ∗,ψ) for every C ∈ R. However, under
some additional regularity on Q we can ensure that this is the only way to produce
a different optimal transportation potential. Our next result would be trivial if we
were imposing further smoothness assumptions on the convex potentials: two dif-
ferentiable functions on a convex domain that have the same gradient are equal up
to addition of a constant. What we show next is that, for convex functions, having
a common gradient at almost every point is enough to reach the same conclusion.

LEMMA 2.1. Assume ψ1 and ψ2 are finite convex functions on a nonempty
convex, open set A ⊂ R

d such that

∇ψ1(x) = ∇ψ2(x) for almost every x ∈ A.

Then there exists C ∈R such that ψ1(x) = ψ2(x) + C for all x ∈ A.

PROOF. For i = 1,2, we write ∂ϕi(x) for the subgradient of ϕi at x ∈ A,
namely, the set of z ∈ R

d such that ϕi(y) − ϕi(x) ≥ z · (y − x) for all y ∈ R
d .

We also write Si(x) for the set of points z ∈ R
d such that z = limn→∞ ∇ϕi(xn) for

some sequence xn which satisfies limn→∞ xi = x. Then ∂ϕi(x) is the closure of
the convex hull of Si(x) (see Theorem 25.6, page 246 in [16]; note that the normal
cone to a point in the interior of the domain of a convex function is simply {0}).
Now, assume that z ∈ S1(x), with z = limn→∞ ∇ϕ1(xn) and xn is some sequence
converging to x ∈ A. Denote by B ⊂ A the set such that A − B has null Lebesgue
measure while for x ∈ B ϕi , i = 1,2 are differentiable at x with ∇ϕ1(x) = ∇ϕ2(x).
We note that ∇ϕ1 is continuous in the set of points of differentiability of ϕ1 (The-
orem 25.5 in [16]). Hence, for each n we can find x̃n ∈ B such that ‖xn − x̃n‖ ≤ 1

n

and ‖∇ϕ1(xn) − ∇ϕ1(x̃n)‖ ≤ 1
n

. But then x̃n → x and ∇ϕ1(x̃n) = ∇ϕ2(x̃n) → z,
which shows that z ∈ S2(x) and implies that S1(x) ⊂ S2(x). By symmetry, we also
have S2(x) ⊂ S1(x). Now, two convex functions with equal subgradient at every
point are equal up to the addition of a constant (see Theorem 24.9 in [16]; we note
that although the statement of this theorem considers convex functions on R

d the
proof can be reproduced verbatim for convex functions on a smaller convex, open
domain in R

d ). This completes the proof. �
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As a consequence of Lemma 2.1, we obtain uniqueness of optimal transporta-
tion potentials (up to the addition of a constant) under suitable regularity assump-
tions.

COROLLARY 2.2. Assume that P and Q are Borel probabilities on R
d with

finite second moments and

(3) Q has a positive density in the interior of its convex support.

Then, if ψ1, ψ2 are convex, lower semicontinuous convex functions such that
J (ψ∗

1 ,ψ1) = J (ψ∗
2 ,ψ2) = min(ϕ,ψ)∈� J(ϕ,ψ), with J (ϕ,ψ) as in (1), there ex-

ists C ∈ R such that ψ2 = ψ1 +C in the interior of the support of Q. In particular,
ψ2 = ψ1 + C Q-a.s.

PROOF. Uniqueness of the optimal transportation map and (3) ensure that
∇ψ1(x) = ∇ψ2(x) for almost every x ∈ A, the interior of the support of Q.
Lemma 2.1 allows to conclude that ψ2(x) = ψ1(x) + C for some constant C and
every x in the interior of A. The conclusion follows from the fact that the boundary
of a convex set has zero Lebesgue measure. �

REMARK 2.3. Uniqueness of the optimal transportation potential fails with-
out assumption (3). As a counterexample, consider the probability P giving
mass 1

2 to the points −1, 1 and assume that Qε is the uniform law on the set
(−ε − 1,−ε) ∪ (ε,1 + ε), ε > 0. Nondecreasing maps are optimal. Hence, the op-
timal transportation map from Qε to P is Tε(x) = −1, x < 0, Tε(x) = 1, x > 0.
The maps ψε,L(x) = −x, x ≤ −L

2 , ψε,L(x) = x + L, x ≥ −L
2 , 0 < L < ε, are

continuous, convex and satisfy ψ ′
ε,L = Tε Qε a.s. Hence, they are optimal trans-

portation potentials. However, if L1 �= L2, then there is no choice of a constant C

such that ψε,L2 = ψε,L1 +C Qε a.s. This example can be easily adapted to general
dimension.

We turn now to stability in optimal transportation problems. We will assume
that Q is a regular probability measure on R

d (in the sense of (3)) and Pn,P are
probabilities satisfying W2(Pn,P ) → 0. It is well known (see Theorem 3.4 in [5])
that the optimal transportation maps from Q to Pn, say Tn, converge Q-a.s. to T ,
the optimal transportation map from Q to P . Here, we will provide stability results
for the optimal transportation potentials.

A main tool in our approach will be the concept of graphical convergence of
multivalued maps, which is a particular case of set convergence in the Painlevé–
Kuratowski sense. We include next a brief summary of some related key facts and
refer to [17] for a detailed account of the main results on the topic.

Given a sequence of subsets {Cn}n≥0 of R
d , its outer limit, to be denoted

lim supn→∞ Cn is the set of points x ∈ R
d such that x = limj→∞ xnj

for some
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subsequence nj and some choice of points xnj
∈ Cnj

, while the inner limit (de-
noted lim infn→∞ Cn) is the set of points x ∈ R

d such that x = limn→∞ xn for
some sequence xn such that x ∈ Cn for all n ≥ n0 (for some n0). Obviously,
lim infn→∞ Cn ⊂ lim supn→∞ Cn. When these two sets are equal (to C, say) then
the sequence Cn is said to converge to C in the Painlevé–Kuratowski sense. The
limiting sets are necessarily closed and, in fact, it makes no difference to replace
Cn by its closure in all these definitions (see Proposition 4.4 in [17]).

A multivalued map, T , from R
d to R

d is a map that assigns to each x ∈ R
d , a

set T (x) ⊂ R
d . The domain of T is the set of x ∈ R

d such that T (x) �= ∅, while
the graph is the subset

gph(T ) = {
(x, t) ∈ R

d ×R
d : t ∈ T (x)

}
.

Multivalued maps can be identified with subsets of R
d × R

d . Given a set T ⊂
R

d × R
d we can define the map T̃ by the rule T̃ (x) = {t ∈ R

d : (x, t) ∈ T } and
then the graph of T̃ equals T . This identification allows to define convergence
of multivalued maps in terms of set convergence of their graphs in the Painlevé–
Kuratowski sense. More precisely, the sequence of multivalued maps {Tn}n≥1 from
R

d to R
d is said to converge graphically to T if the graphs gph(Tn) converge to

gph(T ) in the Painlevé–Kuratowski sense; see Chapter 5 in [17] for details. For
convenience, we include next two results about convergence of sets and multi-
valued maps. The first one is a characterization of graphical convergence, which is
just a rewriting of Proposition 5.33 in [17]. The second is a key result on sequential
compactness in the Painlevé–Kuratowski sense.

PROPOSITION 2.4. The sequence of multivalued maps {Tn}n≥1 converges
graphically to T if and only if for every x ∈R

d the following two conditions hold:

(a) if xn → x, yn ∈ Tn(xn) for large n and there is a subsequence ynj
→ y,

then y ∈ T (x),
(b) if y ∈ T (x) then there exist sequences {xn}, {yn} with xn → x, yn ∈ Tn(xn)

for large n and such that yn → y.

THEOREM 2.5. (a) Assume that {Cn}n≥1 ⊂ R
d satisfies that for some ε > 0

and some subsequence {nj } Cnj
∩ B(0, ε) �= ∅ for every j ≥ 1, where B(0, ε)

denotes the open ball of radius ε centered at the origin. Then there exists a subse-
quence {njk

} and a nonempty subset C ⊂ R
d such that Cnjk

converges to C in the
Painlevé–Kuratowski sense.

(b) Assume that {Tn}n≥1 is a sequence of multivalued maps from R
d to R

d such
that for some bounded sets C,D ⊂ R

d and some subsequence {nj } there exist
xnj

∈ C with Tnj
(xnj

) ∩ D �= ∅ for all j ≥ 1. Then there exists a subsequence
{njk

} and a multivalued map, T , from R
d to R

d , with nonempty domain such that
Tnjk

converges graphically to T .
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PROOF. We note that the assumption in (a) is simply a rewriting of the as-
sumption in Theorem 4.18 in [17] (the condition that the sequence of sets does not
escape to the horizon). Similarly, (b) follows from Theorem 5.36 in [17]. �

The link between optimal transportation and the theory of multivalued maps
comes from the fact that a transportation plan π is optimal (a minimizer for Ĩ )
if and only its support is contained in the graph of the multivalued map ∂ψ for
some proper, lower semicontinuous, convex ψ (recall the discussion above; see
also Theorem 2.12 in [22]). It is well known that subgradients of convex maps can
be characterized in terms of monotonicity or cyclical monotonicity. A multivalued
map T from R

d to R
d is monotone if (t1 − t0) · (x1 − x0) ≥ 0 whenever ti ∈ T (xi),

i = 0,1. It is cyclically monotone if for every choice of m ≥ 1, points x0, . . . , xm

and elements ti ∈ T (xi), i = 0, . . . ,m, we have

t0 · (x1 − x0) + t1 · (x2 − x1) + · · · + tm · (x0 − xm) ≤ 0.

A monotone multivalued map is maximal monotone if its graph cannot be enlarged
without losing the monotonicity property and similarly for maximal cyclically
monotone maps. It is easy to see that every cyclically monotone map is also mono-
tone. It is also true that a maximal cyclically monotone map is maximal monotone
and, in fact, a multivalued map T has the form T = ∂ψ for some proper, lower
semicontinuous, convex ψ if and only if T is maximal cyclically monotone (see
Theorems 12.17 and 12.25 in [17]; Theorem 12.25 is often referred to as “Rock-
afellar’s theorem”).

In our stability result for optimal transportation potential, we will make use of
the following result on convergence of cyclically monotone maps. While it follows
easily from related known results, we have not been able to find it in the literature
and, therefore, states its result in the following theorem.

THEOREM 2.6. If a sequence of cyclically monotone maps {Tn} from R
d to R

d

converges graphically then the limit map, T , must be cyclically monotone. If the
Tn are maximal cyclically monotone, then T is also maximal cyclically monotone.

Assume {ψn} is a sequence of proper, lower semicontinuous, convex maps from
R

d to R such that for some bounded sets C,D ⊂ R
d and some subsequence {nj }

there exist xnj
∈ C with ∂ψnj

(xnj
) ∩ D �= ∅ for all j ≥ 1. Then there exists a

subsequence {njk
} and a proper, lower semicontinuous, convex map, ψ , from R

d to
R, with subgradient with nonempty domain such that ∂ψnjk

converges graphically
to ∂ψ .

PROOF. Take ti ∈ T (xi), i = 0, . . . ,m. The points (xi, ti) belong to the graph
of T , hence they belong to lim infn→∞ gph(Tn) and, consequently, there are se-
quences (xn,i , tn,i) ∈ gph(Tn) (for large enough n) such that (xn,i , tn,i) → (xi, ti),
i = 0,1, . . . ,m. By cyclical monotonicity, we have

tn,0 · (xn,1 − xn,0) + tn,1 · (xn,2 − xn,1) + · · · + tn,m · (xn,0 − xn,m) ≤ 0.
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Taking limits, we conclude that

t0 · (x1 − x0) + t1 · (x2 − x1) + · · · + tm · (x0 − xm) ≤ 0.

Therefore, T is cyclically monotone. If Tn are maximal cyclically monotone, then
they are maximal monotone. By Theorem 12.32 in [17], T must be maximal mono-
tone. Hence, it is also maximal cyclically monotone (if we could enlarge the graph
of T preserving cyclical monotonicity, then the enlarged graph would also be
monotone, contradicting maximal monotonicity).

For the second part, we use Rockafellar’s theorem and part (b) of Theorem 2.5.
�

Finally, we quote a technical result relating graphical convergence of subgradi-
ents of convex functions to pointwise convergence of the convex functions them-
selves. A proof follows easily from Theorem 12.35 and Exercise 12.36 in [17].

PROPOSITION 2.7. Assume ψ , {ψn} are proper, lower semicontinuous, convex
maps from R

d to R such that ∂ψn converges to ∂ψ graphically and there is a
sequence (xn, tn) with tn ∈ ∂ψn(xn) and a pair (x0, t0) with t0 ∈ ∂ψ(x0) satisfying
(xn, tn) → (x0, t0) and ψn(xn) → ψ(x0). Then, if ψ is finite at x, x̃n → x and
lim infn→∞ ∂ψn(x̃n) �=∅ we have

lim
n→∞ψn(x̃n) = ψ(x).

We are now ready for the announced result on stability of optimal transportation
potentials.

THEOREM 2.8. Assume Q satisfies (3) and Qn, Pn, P are probabilities such
that W2(Pn,P ) → 0 and W2(Qn,Q) → 0. If ψn (resp., ψ) are optimal trans-
portation potentials from Qn to Pn (resp., from Q to P ) then there exist constants
an such that if ψ̃n = ψn − an then ψ̃n(x) → ψ(x) for every x in the interior of the
support of Q, hence, for Q-almost every x.

PROOF. We write πn for an optimal transportation plan for Qn,Pn and π

for the optimal transportation plan for Q,P . We recall that π is unique and
π = Q◦(Id,∇ψ)−1. π is concentrated in the graph of ∂ψ , that is, in the closed set
{(x, y) ∈ R

d ×R
d : ψ(x)+ψ∗(y) = x · y} = {(x, y) ∈ R

d ×R
d : y ∈ ∂ψ(x)}. It is

easy to see that πn → π weakly. As before, we denote by A the interior of the sup-
port of Q. We write Ã for the set of x ∈ A such that ψ is differentiable at a. Then
Q(Ã) = Q(A) = 1. Furthermore (see Theorem 25.5 in [16]) ∇ψ is continuous at
every differentiability point x ∈ A. Fix x0 ∈ Ã and set y0 = ∇ψ(x0). Now, for ev-
ery ε > 0 there exists δ > 0 such that ‖∇ψ(x)−y0‖ ≤ ε if x ∈ Ã and ‖x−x0‖ ≤ δ.
Hence, π(B(x0, δ) × B(y0, ε)) ≥ Q(B(x0, δ)) = η > 0 by Assumption (3), and
weak convergence implies that πn(B(x0, δ) × B(y0, ε)) ≥ η

2 for large enough n.
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But πn is concentrated in the graph of ∂ψn, hence, there exists (xn, yn) with
yn ∈ ∂ψn(xn), ‖xn − x0‖ < δ, ‖yn − y0‖ < ε. We take now a sequence εk ↘ 0. For
every k ≥ 1, we choose δk ∈ (0, 1

k
) such that ‖∇ψ(x) − y0‖ < εk if ‖x − x0‖ < δk

and x ∈ Ã. As before, π(B(x0, δk) × B(y0, εk)) ≥ Q(B(x0, δk)) = ηk > 0. Fix
n0 = 0 and, for k ≥ 1, nk > nk−1 such that πn(B(x0, δk) × B(y0, εk)) ≥ ηk

2 if
n ≥ nk . Recall that πn is concentrated in the graph of ∂ψn. For n = 1, . . . , n1 − 1,
we take any pair (xn, yn) with yn ∈ ∂ψn(xn). For k ≥ 2 and n = nk−1, . . . , nk , we
take (xn, yn) ∈ B(x0, δk−1) × B(y0, εk−1) such that yn ∈ ∂ψn(xn). This construc-
tion yields a sequence (xn, yn) such that xn → x0, yn → y0 and yn ∈ ∂ψn(xn).
We note that (x0, y0) ∈ lim sup gph ∂ψn. We set now an = ψn(xn) − ψ(x0) and
define ψ̃n(x) = ψn(x) − an. Obviously, ∂ψ̃n(x) = ∂ψn(x) for every x. By Theo-
rem 2.6, there exists a proper, lower semicontinuous convex function ρ such that
∂ψ̃n converges graphically to ∂ρ along a subsequence. We keep the same nota-
tion for the subsequence. We see that y0 ∈ ∂ρ(x0). We can consider now x ∈ A,
y = ∇ψ(x) and apply the same argument to conclude that y ∈ ∂ρ(x). This implies
that dom(ρ) ⊃ A. Hence ρ must be differentiable and ∇ρ(x) = ∇ψ(x) at almost
every point in A. We conclude, using Lemma 2.1, that ρ = ψ + C in A, hence,
subtracting a constant, if necessary, ρ = ψ in A. Since ψ̃n(xn) = ψ(x0) = ρ(x0),
applying Proposition 2.7 we obtain that ψ̃n(x) → ρ(x) = ψ(x) for all x ∈ Ã,
hence (see Theorem 7.17 in [17]) ψ̃n(x) → ρ(x) = ψ(x) for all x ∈ A. Note that
from this argument we see, in fact, that for any x ∈ A and any subsequence n′ we
can extract a further subsequence n′′ such that ψ̃n′′ → ψ(x). But this proves that
ψ̃n → ψ(x) as n → ∞ for every x ∈ A. This completes the proof. �

REMARK 2.9. Theorem 2.8 extends known results about stability of opti-
mal transportation maps. In fact, it covers the case Qn = Q. In this case, ψn is
differentiable at almost every x ∈ A. From the proof of Theorem 2.8, we have
graphical convergence of ∂ψn to ∂ρ with ρ = ψ in A. This implies (see, e.g.,
Exercise 12.40(a) in [17]) that ∇ψn(x) → ∇ψ(x) at almost every x ∈ A, that is,
∇ψn → ∇ψ Q-a.s. This stability result for optimal transportation maps is con-
tained in Theorem 3.4 in [5] or in [13]. Our result applies to a nonsmooth setup in
that the Qn’s are not assumed to have a density (on the other hand, we need to im-
pose additional regularity assumptions on Q to ensure convergence of the convex
potentials).

Under some moment assumptions, the stability result in Theorem 2.8 can
be complemented with L2 convergence. As in the Introduction, in our next re-
sult W4 denotes the transportation cost metric associated to the cost function
c(x, y) = ‖x −y‖4. We note that the condition W4(Pn,P ) → 0 implies the weaker
assumption W2(Pn,P ) → 0 and also that the conclusions in Theorem 2.10 do not
depend on the particular choice of the potential ψ since all the possible choices
are Q-a.s. equal up to the addition of a constant.



CLTS FOR EMPIRICAL TRANSPORTATION COSTS 937

THEOREM 2.10. Assume that Q,P, {Pn}n≥1 are probabilities on R
d with fi-

nite fourth moment with Q satisfying (3) and write ψ (resp., ψn) for a proper,
lower semicontinuous function such that ∇ψ (resp., ∇ψn) is the optimal trans-
portation map from Q to P (resp., from Q to Pn). Then ψ,ψn ∈ L2(Q). Further-
more, if W4(Pn,P ) → 0, then taking ψ̃n as in Theorem 2.8 we have that ψ̃n → ψ

in L2(Q).

PROOF. We keep the notation for A and Ã as in the proof of Theorem 2.8 and
the choice of x0 ∈ U and write z0 = ∇ψ(x0). Then

(4) ψ(x) ≥ ψ(x0) + z0 · (x − x0), x ∈ R
d .

On the other hand, since z0 ∈ ∂ψ(x0) we have ψ(x0) + ψ∗(z0) = x0 · z0, hence,
x0 ∈ ∂ψ∗(z0) and

(5) ψ∗(z) ≥ ψ∗(z0) + x0 · (z − z0), z ∈ R
d .

But optimality implies that ψ(x) + ψ∗(∇ψ(x)) = x · ∇ψ(x) Q-a.s. Therefore,
using (5) we conclude that, Q-a.s.,

(6) ψ(x) ≤ x ·∇ψ(x)−ψ∗(z0)−x0 · (∇ψ(x)−z0
) = ψ(x0)+ (x −x0) ·∇ψ(x).

Combining (4) and (6), we see that

∣∣ψ(x) − ψ(x0)
∣∣ ≤ ∣∣(x − x0) · ∇ψ(x0)

∣∣ + ∣∣(x − x0) · ∇ψ(x)
∣∣

≤ ‖x − x0‖2 + 1

2

∥∥∇ψ(x0)
∥∥2 + 1

2

∥∥∇ψ(x)
∥∥2

, Q-a.s.

By assumption ‖x − x0‖2 is in L2(Q). Also, since, ∇ψ transports Q to P ,∫ ‖∇ψ(x)‖4 dQ(x) = ∫ ‖z‖4 dP (z). This shows that ψ ∈ L2(Q). The same ar-
gument works for ψn or ψ̃n, in fact,

∣∣ψ̃n(x) − ψ̃n(x0)
∣∣ ≤ ‖x − x0‖2 + 1

2

∥∥∇ψn(x0)
∥∥2 + 1

2

∥∥∇ψn(x)
∥∥2

, Q-a.s.

Now, ‖∇ψn(x)‖4 → ‖∇ψ(x)‖4 Q-a.s. and∫ ∥∥∇ψn(x)
∥∥4

dQ(x) →
∫ ∥∥∇ψ(x)

∥∥4
dQ(x).

Hence, the sequence ‖∇ψn‖4 converges to ‖∇ψ‖4 in L1(Q) according to the
Scheffé lemma. So it is Q-uniformly integrable, and the same applies to ψ̃2

n , which
combined with Theorem 2.8 proves that ψ̃n → ψ in L2(Q). �
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3. Variance bounds. We turn now to concentration bounds and central limit
theorems for the empirical L2-Wasserstein distance on d-dimensional data. From
this point, we assume that Pn denotes the empirical measure on X1, . . . ,Xn,
i.i.d. r.v.’s with distribution P and P and Q are Borel probabilities on R

d with
finite second moments. A main tool in our proofs is the Efron–Stein inequal-
ity for variances, namely, that if Z = f (X1, . . . ,Xn) with X1, . . . ,Xn indepen-
dent random variables, (X′

1, . . . ,X
′
n) is an independent copy of (X1, . . . ,Xn) and

Zi = f (X1, . . . ,X
′
i , . . . ,Xn) then

Var(Z) ≤ 1

2

n∑
i=1

E(Z − Zi)
2 =

n∑
i=1

E(Z − Zi)
2+.

We refer, for instance, to [4] for a proof. In the particular case when X1, . . . ,Xn

are i.i.d. and f is a symmetric function of x1, . . . , xn all the values E(Z − Zi)
2+

are equal and the bound simplifies to

(7) Var(Z) ≤ nE
(
Z − Z′)2

+
with Z′ = f (X′

1,X2, . . . ,Xn).
We show first a variance bound for W2

2 (Pn,Q).

THEOREM 3.1. If Q has a density and P and Q have finite fourth moments,
then

Var
(
W2

2 (Pn,Q)
) ≤ C(P,Q)

n
,

where

C(P,Q) = 8
(
E

(‖X1−X2‖2‖X1‖2)+(
E‖X1−X2‖4)1/2

(∫
Rd

‖y‖4 dQ(y)

)1/2)
.

PROOF. We write Z = W2
2 (Pn,Q). The assumption that Q has a density en-

sures the existence of an optimal transportation map, T , from Q to Pn. Hence,
denoting Ci = {y ∈ R

d : T (y) = Xi} we have Q(Ci) = 1
n

and

Z =
n∑

i=1

∫
Ci

‖y − Xi‖2 dQ(y).

Let us consider an additional random variable X′
1 with law P , independent of

X1, . . . ,Xn, write P ′
n for the empirical measure on X′

1,X2, . . . ,Xn and Z′ =
W2

2 (P ′
n,Q). Let us also denote by T ′ the o.t.m. from Q to P ′

n and C′
1 = {y ∈

R
d : T ′(y) = X′

1}, C ′
i = {y ∈ R

d : T ′(y) = Xi}, i = 2, . . . , n. Then

Z′ =
∫
C′

1

∥∥y − X′
1
∥∥2

dQ(y) +
n∑

i=2

∫
C′

i

‖y − Xi‖2 dQ(y),
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while

Z ≤
∫
C′

1

‖y − X1‖2 dQ(y) +
n∑

i=2

∫
C′

i

‖y − Xi‖2 dQ(y).

This implies that

Z − Z′ ≤
∫
C′

1

(‖y − X1‖2 − ∥∥y − X′
1
∥∥2)

dQ(y)

≤ ∥∥X1 − X′
1
∥∥(

1

n

(‖X1‖ + ∥∥X′
1
∥∥) + 2

∫
C′

1

‖y‖dQ(y)

)
,

from which we conclude that

E
(
Z − Z′)2

+ ≤ 8

n2 E
(∥∥X1 − X′

1
∥∥2‖X1‖2)

+ 8E

(∥∥X1 − X′
1
∥∥2

(∫
C′

1

‖y‖dQ(y)

)2)
.

(8)

We note now that∫
C′

1

‖y‖dQ(y) ≤
(∫

C′
1

1dQ(y)

)3/4(∫
C′

1

‖y‖4 dQ(y)

)1/4

= 1

n3/4

(∫
C′

1

‖y‖4 dQ(y)

)1/4
.

By exchangeability, we have∫
C′

1

‖y‖4 dQ(y)
d=

∫
C1

‖y‖4 dQ(y)
d=

∫
Cj

‖y‖4 dQ(y),

for all j = 2, . . . , n. This shows that

E

(∫
C′

1

‖y‖4 dQ(y)

)
= 1

n
E

(
n∑

j=1

∫
Cj

‖y‖4 dQ(y)

)
= 1

n

∫
Rd

‖y‖4 dQ(y),

which, combined with the above estimate yields

E

(∫
C′

1

‖y‖dQ(y)

)4
≤ 1

n4

∫
Rd

‖y‖4 dQ(y).

From this bound, (8) and Schwarz’s inequality we obtain

E
(
Z − Z′)2

+ ≤ 8

n2

(
E

(∥∥X1 − X′
1
∥∥2‖X1‖2)

+ (
E

∥∥X1 − X′
1
∥∥4)1/2

(∫
Rd

‖y‖4 dQ(y)

)1/2)
.

This and the Efron–Stein inequality for variances complete the proof. �
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Theorem 3.1 provides a simple bound with explicit constants for the variance of
W2

2 (Pn,Q) and implies tightness of
√

n(W2
2 (Pn,Q) − E(W2

2 (Pn,Q))) with the
only requirement of finite fourth moments and a density for Q. Next, we present
a different application of the Efron–Stein inequality that will result in an approxi-
mation bound from which a CLT can be concluded.

THEOREM 3.2. Assume that P and Q satisfy (3) and have finite moments of
order 4 + δ for some δ > 0. Write ϕ0 for the optimal transportation potential from
P to Q. If

Rn = W2
2 (Pn,Q) −

∫
Rd

(‖x‖2 − 2ϕ0(x)
)
dPn(x),

then

nVar(Rn) → 0

as n → ∞.

PROOF. We will argue as in the proof of Theorem 3.1. We write ψ0 = ϕ∗
0

for the optimal transportation potential from Q to P . Without loss of gener-
ality, we can assume that Xi = ∇ψ0(Ui), i = 1, . . . , n, X′

1 = ∇ψ0(U
′
1), with

U1, . . . ,Un,U
′
1 i.i.d. r.v.’s with law Q. We note that, with probability one,

W2(Pn,P ) → 0 and we can apply Theorem 2.8. Hence, if write ψn for the suit-
able centered optimal transportation potentials from Q to Pn that satisfy ψn → ψ0
Q-a.s., and ϕn = ψ∗

n , then

(9) ϕn

(∇ψ0(x)
) → ϕ0

(∇ψ0(x)
)

for Q almost every x.
Next, we write P ′

n for the empirical measure on X′
1,X2, . . . ,Xn and

R′
n = W2

2
(
P ′

n,Q
) −

∫
Rd

(‖x‖2 − 2ϕ0(x)
)
dP ′

n(x).

Now, the Efron–Stein inequality (7) implies that it suffices to show that

(10) n2E
(
Rn − R′

n

)2
+ → 0 as n → ∞.

We show first that n(Rn − R′
n)+ → 0 a.s. We write ψ ′

n for the optimal trans-
portation potential from Q to Pn and ϕ′

n = (ψ ′
n)

∗.
We note that

W2
2 (Pn,Q) =

∫
Rd

(‖x‖2 − 2ϕn(x)
)
dPn(x) +

∫
Rd

(‖y‖2 − 2ψn(y)
)
dQ(y)

and similarly for W2
2 (P ′

n,Q) replacing (ϕn,ψn) with (ϕ′
n,ψ

′
n). Also, by optimal-

ity,

W2
2
(
P ′

n,Q
) ≥

∫
Rd

(‖x‖2 − 2ϕn(x)
)
dP ′

n(x) +
∫
Rd

(‖y‖2 − 2ψn(y)
)
dQ(y).
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Hence,

Rn − R′
n ≤ 2

∫
Rd

(
ϕ0(x) − ϕn(x)

)
dPn(x) − 2

∫
Rd

(
ϕ0(x) − ϕn(x)

)
dP ′

n(x)

= 2

n

[(
ϕ0(X1) − ϕn(X1)

) − (
ϕ0

(
X′

1
) − ϕn

(
X′

1
))]

= 2

n

[(
ϕ0

(∇ψ0(U1)
) − ϕn

(∇ψ0(U1)
))

− (
ϕ0

(∇ψ0
(
U ′

1
)) − ϕn

(∇ψ0
(
U ′

1
)))]

.

Combining this bound with (9) we conclude that n(Rn − R′
n)+ → 0 a.s., as

claimed. To complete the proof, it suffices to show that n2(Rn −R′
n)

2+ is uniformly
integrable. Since

n
(
Rn − R′

n

) = n
(
W2

2 (Pn,Q) −W2
2
(
P ′

n,Q
))

− ((‖X1‖2 − 2ϕ0(X1)
) − (∥∥X′

1
∥∥2 − 2ϕ0

(
X′

1
)))

,

and (‖X1‖2 −2ϕ0(X1)) and (‖X′
1‖2 −2ϕ0(X

′
1)) have finite second moment (recall

Theorem 2.10), this will follow if we prove that n2(W2
2 (Pn,Q) − W2

2 (P ′
n,Q))2+

is uniformly integrable. For this last goal, we write Z = W2
2 (Pn,Q), Z′ =

W2
2 (P ′

n,Q) and recall from the proof of Theorem 3.1 that

n
(
Zn − Z′

n

)
+ ≤ ∥∥X1 − X′

1
∥∥((‖X1‖ + ∥∥X′

1
∥∥) + 2n

∫
C′

1

‖y‖dQ(y)

)
,

keeping the notation there for C′
1. Since X1, X′

1 have finite fourth moment, we
only need to prove that (n‖X1 − X′

1‖
∫
C′

1
‖y‖dQ(y))2 is uniformly integrable. To

check this, we argue as above to see that(∫
C′

1

‖y‖dQ(y)

)4+δ

≤ 1

n3+δ

(∫
C′

1

‖y‖4+δ dQ(y)

)

and, as a consequence,

E

(
n

∫
C′

1

‖y‖dQ(y)

)4+δ

≤ nE

(∫
C′

1

‖y‖4+δ dQ(y)

)

=
∫
Rd

‖y‖4+δ dQ(y) < ∞.

Finally, we use Schwarz’s inequality to see that

E

(
n
∥∥X1 − X′

1
∥∥∫

C′
1

‖y‖dQ(y)

)2+ δ
2

≤ (
E

∥∥X1 − X′
1
∥∥4+δ) 1

2

(∫
Rd

‖y‖4+δ dQ(y)

) 1
2
.
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This entails that (n‖X1 − X′
1‖

∫
C′

1
‖y‖dQ(y))2 is uniformly integrable and com-

pletes the proof. �

We consider next a version of the variance bounds in Theorems 3.1 and 3.2
suited to the two-sample empirical transportation cost. Thus, we assume that
X1, . . . ,Xn are i.i.d. r.v.’s with law P , Y1, . . . , Ym are i.i.d. r.v.’s with law Q, in-
dependent of the Xi ’s, Pn denotes the empirical measure on the Xi ’s and Qm the
empirical measure on the Yj ’s.

THEOREM 3.3. If P and Q have densities and finite fourth moments, then

Var
(
W2

2 (Pn,Qm)
) ≤ C(P,Q)

n
+ C(Q,P )

m
,

where C(P,Q) is defined as in Theorem 3.1.
If P and Q satisfy (3) and have finite moments of order 4 + δ for some δ > 0,

n → ∞, m → ∞, n
n+m

→ λ ∈ (0,1) and set

Rn,m = W2
2 (Pn,Qm) −

∫
Rd

(‖x‖2 − 2ϕ0(x)
)
dPn(x)

−
∫
Rd

(‖y‖2 − 2ψ0(y)
)
dQm(y),

then
nm

n + m
Var(Rn,m) → 0.

PROOF. We note first that, as a function of X1, . . . ,Xn, Y1, . . . , Ym, W2
2 (Pn,

Qm) is symmetric in its first n variables, as well as in its last m. Hence, using the
Efron–Stein inequality we see that

Var
(
W2

2 (Pn,Qm)
) ≤ nE

(
Z − Z′)2

+ + mE
(
Z − Z′′)2

+,

where Z = W2
2 (Pn,Qm), Z′ = W2

2 (P ′
n,Qm), Z′′ =W2

2 (Pn,Q
′
m), P ′

n is the empir-
ical measure on X′

1,X2, . . . ,Xn, Q′
m is the empirical measure on Y ′

1, Y2, . . . , Ym

and X′
1, Y ′

1 are independent r.v.’s, independent of the Xi’s and Yj ’s, with X′
1 hav-

ing law P and Y ′
1 with law Q. To bound E(Z − Z′)2+, we write π (resp., π ′) for

the optimal transportation plan from Pn to Qm (resp., from P ′
n to Qm). We write

also πi,j for the probability that π assigns to the pair (Xi, Yj ), and similarly for
π ′

i,j , ci,j = ‖Xi −Yj‖2 and c′
i,j for the costs associated to the data X′

1,X2, . . . ,Xn,
Y1, . . . , Ym. Then Z′ = ∑n

i=1
∑m

j=1 c′
i,jπ

′
i,j and Z ≤ ∑n

i=1
∑m

j=1 ci,jπ
′
i,j . Hence,

noting that ci,j = c′
i,j for i ≥ 2 we see that

Z − Z′ ≤
m∑

j=1

π ′
1,j

(
c1,j − c′

1,j

) ≤ ∥∥X1 − X′
1
∥∥ m∑

j=1

π ′
1,j

(‖X1‖ + ‖X1‖′ + 2‖Yj‖)
.
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Since
∑m

j=1 π ′
1,j = 1

n
, we obtain that

Z − Z′ ≤ ∥∥X1 − X′
1
∥∥(

1

n

(‖X1‖ + ‖X1‖′) + 2
m∑

j=1

π ′
1,j‖Yj‖

)
.

From this point, we can argue as in the proof of Theorem 3.1 to conclude that
E(Z − Z′)2+ ≤ C(P,Q)

n2 . We note that, again in this setup, we have by exchange-
ability

E

(
m∑

j=1

π ′
1,j‖Yj‖4

)
= 1

n
E

(
n∑

i=1

m∑
j=1

π ′
i,j‖Yj‖4

)

= 1

n
E

(
1

m

m∑
j=1

‖Yj‖4

)
= 1

n
E‖Y1‖4.

Similarly, we see that E(Z − Z′′)2+ ≤ C(Q,P )

m2 and this proves the first claim.
For the second claim, we argue as in the proof of Theorem 3.2. We keep the

notation P ′
n, Q′

m as above and set

R′
n,m = W2

2
(
P ′

n,Qm

) −
∫
Rd

(‖x‖2 − 2ϕ0(x)
)
dP ′

n(x)

−
∫
Rd

(‖y‖2 − 2ψ0(y)
)
dQm(y),

R′′
n,m = W2

2
(
Pn,Q

′
m

) −
∫
Rd

(‖x‖2 − 2ϕ0(x)
)
dPn(x)

−
∫
Rd

(‖y‖2 − 2ψ0(y)
)
dQ′

m(y).

Again, the Efron–Stein inequality shows that it suffices to prove that n2E(Rn,m −
R′

n,m)2+ → 0 and m2E(Rn,m −R′′
n,m)2+ → 0. We prove the first of these two claims,

the other following by symmetry. We write ϕn for the optimal transportation po-
tential from Pn to Qm and ψn = ϕ∗

n . We note that Theorem 2.8 ensures that we can
center the φn’s to ensure that ϕn → ϕ0 P -a.s. Also, as above,

W2
2 (Pn,Qm) =

∫
Rd

(‖x‖2 − 2ϕn(x)
)
dPn(x)

+
∫
Rd

(‖y‖2 − 2ψn(y)
)
dQm(y),

while

W2
2
(
P ′

n,Qm

) ≥
∫
Rd

(‖x‖2 − 2ϕn(x)
)
dP ′

n(x)

+
∫
Rd

(‖y‖2 − 2ψn(y)
)
dQm(y).
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From this, we see that

Rn,m − R′
n,m ≤ 2

∫
Rd

(
ϕ0(x) − ϕn(x)

)
dPn(x)

− 2
∫
Rd

(
ϕ0(x) − ϕn(x)

)
dP ′

n(x)

= 2

n

[(
ϕ0(X1) − ϕn(X1)

) − (
ϕ0

(
X′

1
) − ϕn

(
X′

1
))]

and this shows that n(Rn,m − R′
n,m)+ → 0 a.s. Arguing as in the proof of Theo-

rem 3.2, we can check that n2(Rn,m − R′
n,m)+ is uniformly integrable. Hence, we

conclude that n2E(Rn,m − R′
n,m)2+ → 0 and complete the proof. �

4. CLTs for empirical transportation cost. As a direct consequence of the
approximation bounds in Theorems 3.2 and 3.3, we arrive to the main results in
this paper, namely, central limit theorems for the empirical transportation cost and
the optimal matching cost.

THEOREM 4.1 (Central limit theorem for empirical quadratic transportation
cost). Assume P and Q are probabilities on R

d that satisfy (3) and have finite
moments of order 4 + δ for some δ > 0. If X1, . . . ,Xn are i.i.d. r.v.’s with law P

and Pn denotes the empirical measure on X1, . . . ,Xn then

nVar
(
W2

2 (Pn,Q)
)

→ σ 2(P,Q)

:=
∫
Rd

(‖x‖2 − 2ϕ0(x)
)2

dP (x) −
(∫

Rd

(‖x‖2 − 2ϕ0(x)
)
dP (x)

)2

and
√

n
(
W2

2 (Pn,Q) − EW2
2 (Pn,Q)

) →
w

N
(
0, σ 2(P,Q)

)
as n → ∞, where ϕ0 denotes an optimal transportation potential from P to Q.

Furthermore, if Y1, . . . , Ym are i.i.d. r.v.’s with law Q, independent of the Xi ’s,
Qm denotes the empirical measure on Y1, . . . , Ym and n → ∞, m → ∞ with

n
n+m

→ λ ∈ (0,1), then

nm

n + m
Var

(
W2

2 (Pn,Qm)
) → (1 − λ)σ 2(P,Q) + λσ 2(Q,P )

and √
nm

n + m

(
W2

2 (Pn,Qm) − EW2
2 (Pn,Qm)

)
→
w

N
(
0, (1 − λ)σ 2(P,Q) + λσ 2(Q,P )

)
.
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We believe that the assumptions of moments of order 4 + δ is a technical con-
dition that could be weakened to moments of order 4 only. Yet, for the proof, this
condition is mandatory. This could be the

To end this section, we provide an additional CLT for W2
2 (Pn,Q) which does

not require smoothness on P , but only on Q. Now a finite fourth moment for Q

will suffice, but P will be assumed to have finite support. The proof will use the
following special form for the quadratic transportation cost to a finitely supported
probability.

PROPOSITION 4.2. Assume P has finite support, {x1, . . . , xk} ⊂ R
d , with

P {xi} = pi , i = 1, . . . , k and Q is a Borel probability on R
d with finite second

moment then

W2
2 (P,Q) =

∫
Rd

‖x‖2 dP (y) +
∫
Rd

‖y‖2 dQ(y) − 2 min
z∈Rk

V (z),

where V is the convex function

(11) V (z1, . . . , zk) =
k∑

i=1

pizi + E max
1≤j≤k

(xj · Y − zj ),

and Y is a random vector with distribution Q.
If Q � 	d , the d-dimensional Lebesgue measure, then V is differentiable and

∇V (z) = (p1, . . . , pk) − (
Q

(
A1(z)

)
, . . . ,Q

(
Ak(z)

))
,

where

Aj(z) =
{
y ∈R

d : (xj · y − zj ) > max
i �=j

(xi · y − zi)
}
, j = 1, . . . , n.

Finally, if Q satisfies (3) then z minimizes V if and only ∇V (z) = 0 and there is

a unique z such that ∇V (z) = 0, zi + ‖xi‖2

2 ≥ 0, i = 1, . . . , k and
∑k

i=1 pi(zi +
‖xi‖2

2 ) = max1≤i≤k ‖xi‖2 + ∫
Rd ‖y‖2 dQ(y).

PROOF. From duality theory for optimal transportation we know that

W2
2 (P,Q) =

k∑
i=1

pi‖xi‖2 +
∫
Rd

‖y‖2 dQ(y)

− 2 min
(z,ψ)∈�

[
k∑

i=1

pizi +
∫

ψ(y)dQ(y)

]
,

where � is the class of pairs (z,ψ) such that z ∈R
k , ψ ∈ L1(Q) and

xj · y ≤ zj + ψ(y), 1 ≤ j ≤ k, y ∈ R
k.
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Since

ψ(y) ≥ ψ̃(y) := max
1≤j≤k

(xj · y − zj )

and (z, ψ̃) ∈ � we see that

min
(z,ψ)∈�

[
k∑

i=1

pizi +
∫

ψ(y)dQ(y)

]
= min

z∈Rd
V (z)

with V as in the statement (11), which is obviously convex. Let us fix now z ∈ R
k ,

set ψ(y) = max1≤j≤k(xj · y − zj ) and consider z̃j = supy∈Rd (xj · y − ψ(y)).
Since zj ≥ xj · y − u(y) for all y, we have z̃j ≤ zj , j = 1, . . . , n. Let us now
set ψ̃(y) = max1≤j≤n(xj · y − z̃j ). Then we have ψ̃(y) = max1≤j≤n(xj · y −
z̃j ) ≥ max1≤j≤n(xj · y − zj ) = ψ(y). On the other hand, z̃j + ψ(y) ≥ xj · y for
all j and y implies ψ(y) ≥ max1≤j≤n(xj · y − z̃j ) = ψ̃(y). Hence, ψ̃ = ψ and
V (z̃1, . . . , z̃k) ≤ V (z1, . . . , zk). If pi > 0, then the last inequality is strict unless
z̃i = zi .

From this point, we assume that Q has a density. Then a minimizing pair (z,ψ)

in � must satisfy zj = supy∈Rd (xj ·y−ψ(y)) and ∇ψ is the optimal transportation
map from Q to P . Since, on the other hand, ψ(y) = max1≤j≤n(xj · y − zj ) we see
that ∇ψ(y) = xj if y ∈ Aj(z) and the condition Q(Aj(z)) = pj , j = 1, . . . , k is
necessary and sufficient for z to be a minimizer of V .

If Q satisfies (3), then the polyhedral sets that are mapped by ∇ψ onto the xi ’s
are uniquely determined up to differences in the boundaries, which entails that any
two minimizers u, ψ̃ satisfy ψ̃ = ψ + L for some constant L. Consequently, two
minimizers, z, z̃ of V must satisfy z̃i = zi − L, i = 1, . . . , k.

For the claims about the differentiability of V , it suffices to focus on

Ṽ (z) = E max
1≤j≤k

(xj · Y − zj )

and note that

Ṽ (z + h) − Ṽ (z) −
k∑

j=1

hjQ
(
Aj(z)

)

=
k∑

j=1

E
[(

max
1≤i≤k

(
xi · Y − (zi + hi)

) − (
xj · Y − (zj + hj )

))
IAj (z)(Y )

]
.

It is easy to check that 0 ≤ (max1≤i≤k(xi · Y − (zi + hi)) − (xj · Y − (zj +
hj )))IAj (z)(Y ) ≤ 2 max1≤j≤k |hj | while, as h → 0, (max1≤i≤k(xi ·Y −(zi +hi))−
(xj · Y − (zj + hj )))IAj (z)(Y ) eventually vanishes (except, possibly, if Y belongs
to the boundary of Aj(z)). Then, from dominated convergence we conclude that

Ṽ (z + h) − Ṽ (z) − ∑k
j=1 hjQ(Aj (z))

‖h‖ → 0
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as ‖h‖ → 0, proving that Ṽ and, therefore, V are differentiable. Obviously, the
condition ∇V (z) = 0 is exactly the necessary and sufficient condition for z to be a
minimizer of V shown above.

Finally, let us fix z ∈ R
k and write ψ(y) = max1≤j≤k(xj · y − zj ). Since

ψ(y) + ‖y‖2

2
≥ ‖xj + y‖2

2
− zj − ‖xj‖2

2
≥ −zj − ‖xj‖2

2

we see that a := infyRd (ψ(y) + ‖y‖2

2 ), a is finite. As noted above, V remains un-
changed if we replace (z1, . . . , zk) by (z1 + a, . . . , zk + a) and ψ(y) becomes
ψ(y)−a. As a consequence, in the minimization of V it suffices to consider points
(z1, . . . , zk) such that

(12) inf
y∈Rd

(
ψ(y) + ‖y‖2

2

)
= 0.

Let us assume that (12) holds and consider z̃j = supy∈Rd (xj · y − ψ(y)). As
above, we have z̃j ≤ zj , j = 1, . . . , n, ψ̃(y) = max1≤j≤k(xj · y − z̃j ) = ψ(y)

and V (z̃1, . . . , z̃k) ≤ V (z1, . . . , zk). We observe now that

z̃j + ‖xj‖2

2
= sup

y∈Rd

(
xj · y + ‖xj‖2

2
− ψ(y)

)

≥ sup
y∈Rd

(
−‖y‖2

2
− ψ(y)

)
= − inf

y∈Rr

(
ψ(y) + ‖y‖2

2

)
= 0.

On the other hand,

V (z̃1, . . . , z̃k) + 1

2

k∑
i=1

pi‖xi‖2 + 1

2

∫
Rd

‖y‖2 dQ(y)

=
k∑

i=1

pi

(
z̃i + ‖xi‖2

2

)
+

∫
Rd

ψ(y) + ‖y‖2

2
dQ(y)

which, by (12), implies that

k∑
i=1

pi

(
z̃i + ‖xi‖2

2

)
≤ V (z̃1, . . . , z̃k) + 1

2

k∑
i=1

pi‖xi‖2 + 1

2

∫
Rd

‖y‖2 dQ(y).

Nonnegativity of W2
2 (P,Q) shows that minz∈Rk V (z) ≤ 1

2(
∑k

i=1 pi‖xi‖2 +∫
Rd ‖y‖2 dQ(y)). Hence, there exists a minimizer of V that satisfies zi + ‖xi‖2

2 ≥ 0

and
∑k

i=1 pi(zi + ‖xi‖2

2 ) ≤ M := max1≤i≤k ‖xi‖2 + ∫
Rd ‖y‖2 dQ(y). Adding a

constant, if necessary, we see that there is a unique minimizer of V that satisfies

zi + ‖xi‖2

2 ≥ 0 and
∑k

i=1 pi(zi + ‖xi‖2

2 ) = M . �
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We note that the minimizing z = (z1, . . . , zk) in Proposition 4.2 satisfy zi =
ϕ0(xi), i = 1, . . . , k with ϕ0 = ψ∗

0 and ψ0 the optimal transportation potential from
Q to P (which is unique up to the addition of a constant by Theorem 2.1 under (3).
Hence, we see that the optimal transportation potential from P to Q is also unique
(up to the addition of a constant) in this setup.

We can prove now the announced CLT for W2
2 (Pn,Q) when P is finitely sup-

ported.

THEOREM 4.3. If P has a finite support, and moreover if Q satisfies (3) and
has a finite fourth moment. If X1, . . . ,Xn are i.i.d. r.v.’s with law P and Pn denotes
the empirical measure on X1, . . . ,Xn, then√

n
(
W2

2 (Pn,Q) −W2
2 (P,Q)

) →
w

N
(
0, σ 2(P,Q)

)
as n → ∞, where σ 2(P,Q) is as in Theorem 4.3.

PROOF. We assume that P is as in Proposition 4.2. We can write W2
2 (P,Q) =

maxz∈CM
M(z) with

M(z) =
k∑

j=1

pj‖xj‖2 +
∫
Rd

‖y‖2 dQ(y) − 2
k∑

j=1

pjzj − 2Ṽ (z),

Ṽ (z) = E max1≤j≤k(xj · Y − zj ) and CM = {z ∈ R
d : zi + ‖xi‖2

2 ≥ 0, i =
1, . . . , k;∑k

i=1 pi(zi + ‖xi‖2

2 ) = M}. Similarly, W2
2 (Pn,Q) = maxz∈CM

Mn(z),
where Mn is obtained replacing the pj ’s by the empirical frequencies, pn,j ’s.
We write zn and z0 for the unique maximizers of Mn and M , respectively,
given by in Theorem 4.2. By the central limit theorem in R

k , we have Un :=
[√n(pn,j − pj )]1≤j≤k →

w
U with U a centered Gaussian random vector with co-

variance matrix � = [σi,j ]1≤i,j≤k , σi,i = pi(1−pi), σi,j = −pipj , i �= j . Without
loss of generality, we can assume that Un → U a.s. Note that, in particular,

(13) Mn(z) − M(z) = 1√
n

k∑
i=1

Un,i

(‖xi‖2 − 2zi

)
.

On the other hand, the choice of zn guarantees that it is a bounded sequence. As-
sume that, through a subsequence, zn → ẑ. Then Mn(zn) → M(ẑ) (here we are
using the continuity of Ṽ . For any fixed z, we have M(z) = limn→∞ Mn(z) ≤
limn→∞ Mn(zn) = M(ẑ). Hence, ẑ is a maximizer of M . But obviously ẑi +
‖xi‖2

2 ≥ 0 and
∑k

i=1 pi(ẑi + ‖xi‖2

2 ) = M . Hence, by uniqueness, we must have
ẑ = z0, that is, zn → z0 a.s. From this fact, we see that√

n
(
W2

2 (P,Q) −W2
2 (P,Q)

)
= √

n
(
Mn(zn) − M(z0)

)
= √

n
(
Mn(zn) − M(zn)

) + √
n
(
M(zn) − M(z0)

)
.

(14)
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Now, by optimality we see that
√

n(Mn(z0) − M(z0)) − √
n(Mn(zn) − M(zn)) ≤√

n(M(zn) − M(z0)) ≤ 0. Also, from (13) we see that
√

n(Mn(zn) − M(zn)) →∑k
i=1 Ui(‖xi‖2 − 2z0,i ),

√
n(Mn(z0) − M(z0)) → ∑k

i=1 Ui(‖xi‖2 − 2z0,i ) a.s. As
a consequence,

√
n(M(zn) − M(z0)) → 0 a.s. which, together with (14), shows

that

√
n
(
W2

2 (Pn,Q) −W2
2 (P,Q)

) →
w

k∑
i=1

Ui

(‖xi‖2 − 2z0,i

)
.

A simple computation shows that the right-hand side in this last display is a cen-
tered Gaussian random variable with variance σ 2(P,Q) as in Theorem 3.1. �

REMARK 4.4. We note that, provided Q has a finite moment of order 4 + δ

for some δ > 0, the linearization bound in Theorem 3.2 can be adapted to cover
this setup and conclude that

nVar
(
W2

2 (Pn,Q)
) → σ 2(P,Q)

and
√

n
(
W2

2 (Pn,Q) − E
(
W2

2 (Pn,Q)
)) →

w
N

(
0, σ 2(P,Q)

)
.

On the other hand, the centering constants E(W2
2 (Pn,Q)) in Theorem 4.1 can-

not be replaced in general by W2
2 (P,Q). As an example, consider the case when

P = Q is the uniform distribution on the d-dimensional unit cube. In this case,
Theorem 4.1 yields that

√
n
(
W2

2 (Pn,Q) − EW2
2 (Pn,Q)

) → 0

in probability. On the other hand, EW2
2 (Pn,Q) is of order n−2/d if d ≥ 5 (see The-

orem 1 and subsequent comments in [11]) and we cannot have
√

nW2
2 (Pn,Q) → 0

(otherwise we would conclude that EW2
2 (Pn,Q) = o(n−1/2)).

To conclude, we would like to add two final comments. First we note that in the
case P = Q Theorem 1 in [11] yields that (provided d ≥ 5 and assuming that P

has finite moment of order q > 2d
d−2 )

n2/d(
W2

2 (Pn,Q) − EW2
2 (Pn,Q)

)
is stochastically bounded. In this setup, assuming P has finite moment of order 4
(and a density) we see that

√
n
(
W2

2 (Pn,Q) − EW2
2 (Pn,Q)

)
is stochastically bounded. Under slightly stronger assumptions, Theorem 4.1,
shows that

√
n
(
W2

2 (Pn,Q) − EW2
2 (Pn,Q)

) → 0
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in probability. It would be of great interest to investigate whether a nontrivial CLT
holds in this setup at a different rate.

In the one-dimensional case, the problem was considered in [7], proving weak
convergence to some nondegenerate and non-Gaussian limit law. This case pro-
vides some indication that the case P = Q is, essentially, of a different nature and
that a nontrivial CLT in that case cannot be obtained with the techniques used in
this paper.

REFERENCES

[1] AJTAI, M., KOMLÓS, J. and TUSNÁDY, G. (1984). On optimal matchings. Combinatorica 4
259–264. MR0779885

[2] AMBROSIO, L., STRA, F. and TREVISAN, D. (2016). A PDE approach to a 2-dimensional
matching problem. Preprint. Available at arXiv:1611.04960.

[3] BOBKOV, S. and LEDOUX, M. (2016). One-dimensional empirical measures, order statistics
and Kantorovich transport distances. Memoirs of the AMS. To appear.

[4] BOUCHERON, S., LUGOSI, G. and MASSART, P. (2013). Concentration Inequalities:
A Nonasymptotic Theory of Independence. Oxford Univ. Press, Oxford. MR3185193

[5] CUESTA-ALBERTOS, J. A., MATRÁN, C. and TUERO-DÍ AZ, A. (1997). Optimal transporta-
tion plans and convergence in distribution. J. Multivariate Anal. 60 72–83. MR1441460

[6] DEL BARRIO, E., GINÉ, E. and MATRÁN, C. (1999). Central limit theorems for the Wasser-
stein distance between the empirical and the true distributions. Ann. Probab. 27 1009–
1071. MR1698999

[7] DEL BARRIO, E., GINÉ, E. and UTZET, F. (2005). Asymptotics for L2 functionals of the
empirical quantile process, with applications to tests of fit based on weighted Wasserstein
distances. Bernoulli 11 131–189. MR2121458

[8] DEL BARRIO, E. and MATRÁN, C. (2013). Rates of convergence for partial mass problems.
Probab. Theory Related Fields 155 521–542. MR3034786
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