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We propose a new approach for estimating causal effects when the ex-
posure is measured with error and confounding adjustment is performed via
a generalized propensity score (GPS). Using validation data, we propose a
regression calibration (RC)-based adjustment for a continuous error-prone
exposure combined with GPS to adjust for confounding (RC-GPS). The out-
come analysis is conducted after transforming the corrected continuous ex-
posure into a categorical exposure. We consider confounding adjustment in
the context of GPS subclassification, inverse probability treatment weighting
(IPTW) and matching. In simulations with varying degrees of exposure er-
ror and confounding bias, RC-GPS eliminates bias from exposure error and
confounding compared to standard approaches that rely on the error-prone
exposure. We applied RC-GPS to a rich data platform to estimate the causal
effect of long-term exposure to fine particles (PM> 5) on mortality in New
England for the period from 2000 to 2012. The main study consists of 2202
zip codes covered by 217,660 1 km x 1 km grid cells with yearly mortality
rates, yearly PM, 5 averages estimated from a spatio-temporal model (error-
prone exposure) and several potential confounders. The internal validation
study includes a subset of 83 1 km x 1 km grid cells within 75 zip codes from
the main study with error-free yearly PMj 5 exposures obtained from mon-
itor stations. Under assumptions of noninterference and weak unconfound-
edness, using matching we found that exposure to moderate levels of PM> 5
B8 <PMps5 <10 ug/m3) causes a 2.8% (95% CI: 0.6%, 3.6%) increase in
all-cause mortality compared to low exposure (PMj 5 <8 ug/ m3).

1. Introduction. When trying to estimate exposure effects, observational
studies are widely used but are susceptible to some well-recognized sources of
bias, including but not limited to (1) exposure measurement error and (2) con-
founding. The measurement error can arise from using mismeasured exposures in
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the analysis, since obtaining estimates of the error-free exposures is not always fea-
sible. In addition, there is a confounding problem due to the lack of randomization
in observational studies.

Measurement error approaches have been extensively studied in regression
problems (Fuller (2009)). There is a large literature on this topic both in lin-
ear and nonlinear regression models, including likelihood-based approaches, re-
gression calibration, simulation extrapolation (SIMEX) and Bayesian approaches
(Carroll et al. (2006)). In addition, in the context of air pollution, which is the
motivation of this work (see Section 4), methods to adjust for measurement er-
ror under a noncausal framework have been previously proposed; Alexeeff, Car-
roll and Coull (2016), Dominici, Zeger and Samet (2000), Gryparis et al. (2009),
Hart et al. (2015), Szpiro, Sheppard and Lumley (2011), Van Roosbroeck et al.
(2008). Many of them consider a “widely used, effective [and] reasonably well-
investigated” (Pierce and Kellerer (2004)) method to adjust for measurement error,
namely regression calibration. This method utilizes the following combined study
designs: a large main study, for which W (the error-prone exposure) and D (a set
of error-free covariates) are observed, and a smaller validation study, for which in
addition to observing (W, D), X is also observed (the error-free exposure). The
basic idea of regression calibration is to fit the regression model X|W,D in the
validation study, and use the coefficients from this model to predict X in the main
study. After this prediction step, the proposed statistical analysis is performed on
the main study with the predicted error-free exposures, X, to obtain parameter esti-
mates, and either bootstrap or the sandwich variance estimation are used to obtain
adjusted standard errors. The simplicity of this algorithm disguises its power.

In addition, observational studies are susceptible to confounding bias by fac-
tors that are associated with both the exposure and outcome of interest. Failure
to account for them in the analysis may lead to substantial bias. Although most
studies adjust for confounding, many do so by simply including the potential con-
founders as covariates in the outcome model. However, doing so may lead to model
misspecification and allows for residual confounding (Rothman, Greenland and
Lash (2008)). Therefore, addressing confounding bias in a causal inference frame-
work can be advantageous. A common approach for confounding adjustment in
this framework is using propensity scores, the probability of a unit being assigned
to a particular treatment, or exposure in our setting, given the pretreatment con-
founders.

Using propensity scores to adjust for confounding in a causal inference frame-
work was first introduced by Rosenbaum and Rubin (1983). After this seminal
paper, advanced propensity score techniques, both for estimation and implemen-
tation, have been developed to estimate causal effects in observational studies—
for propensity score estimation see Dehejia and Wahba (1998, 1999), McCaffrey,
Ridgeway and Morral (2004); for propensity score implementation see Harder,
Stuart and Anthony (2010), Hirano, Imbens and Ridder (2003), Robins, Herndn
and Brumback (2000), Rosenbaum and Rubin (1984). A common technique for
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estimation of the propensity score is by fitting a logistic regression model to pre-
dict the treatment (or in our setting exposure) with potential confounders included
as predictors in the model. Three common techniques for propensity score imple-
mentation are matching, inverse probability of treatment weighting (IPTW) and
subclassfication (Harder, Stuart and Anthony (2010)). This traditional propensity
score framework is only able to handle binary exposures.

In some cases the interest is in estimating the exposure effect for a categorical
exposure. To handle categorical exposures, a generalized propensity score (GPS)
framework has been developed (Imbens (2000)). Imbens (2000) developed a nat-
ural analogue to propensity score estimation under categorical exposures, which
uses multinomial logistic regression, instead of logistic regression, to predict mul-
tiple exposure categories with all potential confounders included as predictors.
They describe an analogue to IPTW for categorical exposures. Although there is
no natural analogue to matching and subclassification for the GPS (Imbens (2000),
Lechner (2001), Rassen et al. (2013)), Yang et al. (2016) propose an alternative
way to estimate causal effects using matching and subclassification for categori-
cal exposures by averaging potential outcomes separately for each of the exposure
categories.

Measurement error adjustment for binary exposures under a causal inference
framework has been studied by Babanezhad, Vansteelandt and Goetghebeur (2010)
and Braun et al. (2017). In Babanezhad, Vansteelandt and Goetghebeur (2010), au-
thors investigate how mismeasured exposures impact the estimation of the causal
effects using four different approaches to adjust for confounding, including ordi-
nary least squares (OLS), IPTW, G-estimation and propensity score covariate ad-
justment. They derive the asymptotic bias for these four estimators, and show they
are equally affected by measurement error under linear models when exposure
measurement error is independent of the confounders, but not otherwise. Braun
et al. (2017) proposes a two-step maximum likelihood approach using validation
data to adjust for the measurement error, which effectively corrects for measure-
ment error in binary exposures under a causal inference framework. Specifically,
they first use a likelihood based adjustment to correct for measurement error in
the propensity score model and estimate an adjusted propensity score. Next, based
on the adjusted propensity score, they perform a likelihood-based adjustment on
the outcome model to adjust for measurement error in the exposure variable di-
rectly. These approaches, however, assume binary exposures and are not directly
applicable to a categorical exposure.

In this work, we focus on settings for which we have a continuous exposure
measured with error, yet our interest is in estimating causal effects on a categorical
scale. We propose a regression calibration (RC)-based adjustment to adjust for the
measurement error in the exposure combined with GPS to adjust for confounding
(RC-GPS). The RC model is fitted using the continuous exposure, regressing the
true exposure on the error-prone exposure and additional covariates on which the
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measurement error could depend. Outcome analysis adjusting for confounding us-
ing GPS is then conducted after transforming the corrected continuous exposure
into a categorical exposure. The proposed method is innovative in the following
ways: (1) it provides a correction for measurement error in the exposure for both
design and analysis phases with GPS; (2) GPS implementations can be paired with
any GLM outcome model (e.g., log-linear model); (3) we show how standardized
bias can be used to assess balance in the context of GPS analysis for categorical
exposures.

In Section 2 we introduce the proposed adjustment. We then run extensive sim-
ulations to assess the performance of our proposed adjustment in Section 3. We
apply our proposed approach to investigate the effect between long-term PM 5
exposure and mortality in New England (VT, NH, CT, MA, RI and ME), using zip
code aggregated data from Medicare. For the entire Medicare population (main
study), long-term exposure to fine particles (PMj 5) is determined from a spatio-
temporal model that uses multiple different sources as input (meteorological, land
use variables, satellite data, etc.). PM» s exposure based on these predictions is in-
accurate, but for a subset of zip codes (validation study) we have actual PM» 5 con-
centrations measured at monitors (error-free exposure). Although in reality PM> 5
concentrations measured at monitors could still contain measurement error, for
example, instrumental measurement error, for the purpose of this manuscript we
use the word “‘error-free” to refer to PM; 5 concentrations measured at monitors,
since these are the best available source for ground-level PM> 5 concentrations.
Using this internal validation study, we apply our proposed RC-GPS in Section 4.
Finally, we conclude with a discussion in Section 5.

2. Methods.

2.1. General notation and overview. Let Y denote the observed outcome, X
denote the corresponding true continuous exposure, X . denote the true categorical
exposure, which is obtained from X based on pre-specified cut-offs, selected ac-
cording to scientific interest, W denote the error-prone continuous exposure, W,
denote the error-prone categorical exposure, which is obtained using the same pre-
specified cut-offs, D denote error-free covariates associated with the measurement
error, and C denote error-free confounders associated with the true exposure and
outcome. There is no restriction on whether D and C include the same covariates
or not. For the main study, only (¥, W, D, C) are observed. In addition, suppose a
validation study for which (X, W, D) are observed. Note the validation study does
not have to be internal.

Our interest is in estimating the causal effect of a categorical exposure on the
outcome in observational studies. The target estimand is the average treatment
effect (ATE). Following the potential outcomes framework (Rubin (1974)), we
assume no-interference (Cox (1958)), which is sometimes referred to as the stable-
unit-treatment-value assumption (SUTVA) (Rubin (1990)). Under this assumption,
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we assume that the potential outcome for a given observation is not affected by the
exposure of any other unit, and that each exposure defines a unique outcome for
each observation.

Furthermore, under overlap and weak unconfoundedness assumptions (dis-
cussed in detail later), GPS can be used to estimate the ATE with observed cat-
egorical exposures adjusting for confounding. In the main study, the exposure is
mismeasured; only W (along with W,) are observed instead of X.. Estimating the
ATE based on W, instead of X, may result in biased estimates of the ATE. Our
goal is to adjust for the measurement error in the exposure and obtain unbiased
estimates of the ATE. We accomplish this by introducing a regression calibration
(RC)-based adjustment for mismeasured exposures combined with GPS to adjust
for confounding (RC-GPS). This approach relies on a main study/validation study
design.

2.2. Regression calibration. In this section, we propose a regression calibra-
tion approach to adjust for measurement error in a continuous exposure. The ad-
justment relies on two common measurement error assumptions: (1) Transporta-
bility: we assume that the relationship between X and W, D would be the same
in the validation study where X is observed and in the main study in which it
is not. (2) Nondifferential measurement error: ¥ 1L W|X, D. This assumption is
equivalent to the surrogacy assumption and it means the conditional distribution of
outcome Y given (W, X, D) depends only on (X, D).

The relationship between true exposures X and error-prone exposures W, con-
ditional on other covariates D, is modeled using a regression model specified by
mean and variance;

EX|W,D)=mx(W,D,y),
2.1
Var(X|W,D) = V(W,D, »)SxjwpV’ (W, D, ).

Under transportability, we assume that the coefficients y which are estimated in
the validation study are transportable to the main study. Thus, unobserved X in the
main study can be estimated using mx (W, D, y). A well-studied case is a linear
regression model specified by:

EXIW,D)=p+rnW+»'D,
Var(XlW, D) = EXlW,D-

(2.2)
Under transportability, unobserved X in the main study can be estimated using
equation 2.2;
X=yo+7W+5'D.
When tr(Xxw,p) = 0, this reduces to the standard regression calibration model in
which we only need to estimate E(X|W, D) and X is an unbiased estimator of X
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(parroll et al. (2006)). Carroll et al. (2006) proved by Taylor series expansions that
X is approximately unbiased when the model has good fit, that is, tr(Xx|w p) is
small.

2.3. Generalized propensity scores estimation. In this section, we discuss
the generalization of the propensity score, introduced in the causal literature by
Rosenbaum and Rubin (1983) for a binary treatment, to the setting of categorical
exposures. We follow the generalization proposed by Imbens (2000). Under the
assumption that we know the true exposure, denote X, € X, = {1,2,...,n} the
true categorical exposure having n categories. Let p(x|c) = Pr(X, = x|C = ¢) for
pre-specified categories x = 1,2,3,...,n. We define the GPS as the conditional
probability of receiving each category of the exposure given other pre-exposed
covariates c:

(2.3) GPS(c) = (p(1]e), pQ2le), ..., p(n]e)).

The individual p(x|c) is called the xth element of GPS(c).

To model GPS(c¢) = (p(l|c), p(2|e), ..., p(n|c)), we consider a generalized
linear model (GLM) relating X, to C, that is p(x|c) =Pr(X, =x|C=¢,p) =
g "(nox + n1x’ ¢), where g is known. One common g is the multinomial logistic
regression model.

Pr(X,=x|C=c,pn)

T
n = + C.
Pr(X, =n|C=c,n) Nox T Nx

2.4. Generalized propensity scores implementation. We consider three GPS
implementations; subclassification, IPTW and matching, all conditional on the es-
timated GPS (Imbens (2000), Yang et al. (2016)). Following Yang et al. (2016),
let X, ; denote the true categorical exposure for unit j, X. ; € X ={1,2,...,n},
and Y;(x) denote the potential outcome for an exposure x for observation j. The

observed outcome can then be written as Yj‘-’bS = Y;(X,, ;). Define the indicator
variables 1 (x) € {0, 1},

I( ) 1 ichvjzx,
(x) =
/ 0 otherwise.

In addition to the no-interference assumption described above, we require the fol-
lowing two assumptions for proposing the GPS implementations.

ASSUMPTION 1 (Overlap/positivity). For all values of ¢, the probability of
receiving any category of the exposure is positive:

Pr(X,=x|C=¢)>0 for all x, c.
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This assumption guarantees that for all possible values of ¢, we will be able to
estimate the ATE for each category of the exposure without relying on extrapo-
lation. In many applications, there are regions of the confounder space with low
probability values of receiving one of the exposures, which leads to a violation
of this assumption. There are methods for improving overlap; specifically, both
Harder, Stuart and Anthony (2010) and Yang et al. (2016) suggest dropping units
from the analysis with low and high values of the GPS, and conducting analysis
on the trimmed sample.

ASSUMPTION 2 (Weak unconfoundedness). The assignment mechanism is
weakly unconfounded if for all x € X, ={1, 2, ..., n},

I‘,-(x) iR Y_/()C)|Cj.

There are two things to note about this assumption. First, it can be preserved
if we condition on a specific scalar function of Cj, i.e. p(x|C;), as shown in
Lemma 1 below. This is favorable since it allows for the reduction in the dimen-
sion of the conditioning covariates when estimating causal effects. Second, this
assumption is sufficient for constructing a form of the ATE, which will be formal-
ized in Lemma 2.

LEMMA 1 (Weak unconfoundedness given GPS). Suppose the assignment
mechanism is weakly unconfounded. Then for all x € X, ={1,2,...,n},

Ii(x) LY;(x)|px|Cj).
Lemma 1 allows us to estimate the following ATE, described in Lemma 2.

LEMMA 2 (Average treatment effects under weak unconfoundedness). Sup-
pose the assignment mechanism is weakly unconfounded. Then for all x, x' € X, =

{1,2,...,n},
ATE(x'; x) = E[Y;(x') — Y;(x)]
= E[E[Y{™|X.; =x', p(x'|C;)]] — E[E[Y{*™| X, j =x, p(x|C))]].

Lemma 2 allows us to loosen the constraint in comparison of exposure effects.
Instead of conditioning on the full set of n — 1 generalized propensity scores
(p(1IC)), ..., p(n—1|C})), we can estimate the average effect E[Y;(x") — Y (x)]
by constructing an overall average estimate for each exposure category x sepa-
rately. For a single exposure category x, the corresponding subpopulations are
defined by the value of a single score, p(x|C;), leading to the equality;

E[Y;(x)] = E[E[Y;?bﬂxc,j =x, p(x|C]]-
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Even though the comparisons of exposure effects are not constructed by condi-
tioning on the full set of generalized propensity scores, which makes us lose the
ability to create subpopulations where we can extrapolate causal effects, our esti-
mated ATE for whole population under the weak unconfoundedness assumption is
still valid in causal inference (Imbens (2000)). In contrast, under strong uncound-
edness where X ; AL (Y;(1),Y;(2),...,Y;(n))|C; (defined in Rosenbaum and
Rubin (1983)), we can estimate ATE for subpopulation, that is, the ATE in pop-
ulation with exposure category 1 and 2 only. Our interest, however, is usually in
causal effects for whole population, which can be achieved under the weak uncon-
foundedness assumption.

2.4.1. Subclassification. We follow the approach proposed by Yang et al.
(2016). Consider classifying individuals into K groups based on the xth GPS ele-
ment, each group containing Ny , observations having similar values of the corre-
sponding estimated GPS elements. The most common way to construct subclasses
is to use quantiles of the GPS. The ATE between two exposures, x” and x, that
is, ATE(x’; x), can be written as the difference of two expectations E[Y; (x")] and

E[Y;(x)], which can be estimated separately. Let qf (k xlej be the value of p(x|C;)
in kth quantile in the sample. The average value of Y;(x) in subclass k is estimated
as;
it = —— )3 yobs
X Nk 9
Tl <l =gl x =

where Ny , is the number of units with the xth GPS element falling into the interval

[qf(lflcl),qf(lflc)) and X, ; = x. The overall average of Y (x), E[Y;(x)], is then
estimated as,

E[Y;(x)] = E[E [YOb“|X” =x, p(x|C)]]

K
z N e

where Ny is the number of individuals with the xth GPS element falling into the in-
terval [q)‘:7 (lflcl) , qf (lflc)) and N is the total sample size. We can estimate E[Y; ]
similarly, and consequently, obtain the ATE between any two categories of expo-

sure.

2.4.2. Inverse probability of treatment weighting (IPTW). IPTW involves
weighting each individual by the inverse of their GPS. This approach was first in-
troduced by Imbens (2000) and is an analog of using IPTW with propensity scores
under a binary exposure. The probability weight assigned to a particular individual
is the GPS element corresponding to its true category of treatment. Note that the
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use of IPTW can be construed as a further extension of subclassification, with the
number of subclasses going to infinity. One can estimate the overall average of
Y;(x) using IPTW as;

YOS (x)}
pxICj) I

We can estimate E[Y; (x)] similarly, and consequently, obtain the ATE between
any two categories of exposure.

E[Y;(x)]= E[

2.4.3. Matching. We follow the approach proposed by Yang et al. (2016),
which involves matching individuals who receive one category of exposure to indi-
viduals who received another category of exposure based on their estimated GPS.
There are various ways of matching, for example, matching on the full set of GPS,
yet here we match based on a scalar variable to furthest reduce the dimensionality
of the matching problem. Following Yang et al. (2016), we define a one-to-one
nearest neighbor matching function with replacement,

Mgps(x, p) = arg min Hp(xIC_,-) - PH
JiXe j=x

Using this matching function, we impute Y;(x) as: ¥;(x) = YZZSS(X, pxic;y for
j=1,2,..., N successively, to create a dataset with the sample size N, yet with
replicated observations. By resampling with replacement from the original dataset,
we can construct a finite sample representing the pseudo subpopulation having
exposure X ; = x. The overall average of Y (x) can be expressed as;

. 1 &
. _ 0obsS
E[Y;0]= N “ Ymgps(x,p(x\q))'
1=
We can estimate E[Y;(x")] similarly by creating another dataset with observations
receiving exposure X ; = x’ using the matching function defined above, and con-

sequently, obtain the ATE between any two categories of exposure.

2.5. Outcome analyses. In the causal framework, one might be interested in
a specific statistical quantity, for example, ratio measures. The three GPS imple-
mentations are not explicit about the forms of the outcome model, and provide the
flexibility to estimate such statistical quantities directly from the estimates of the
overall averages for each exposure category. For example, the ATE measured by
ratio can be expressed as;

_Efy;o)]
ETY;(x)]
However, if one is interested in incorporating covariates into the outcome model,

to further adjust for confounding, one may want to specify an outcome model. For
instance, one may specify the following outcome model; Y| X, C using a GLM,

ATE40 (x ' ;X )
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EY (X)) =r""(Bo + Yoo Bixl(Xe = x) 4+ B2C), where I(-) is an indicator
for the corresponding exposure category. While we conduct all analyses assuming
B2 =0 and exclude C from the outcome model, 8, # 0 could be included to adjust
for residual imbalances not captured by the generalized propensity score imple-
mentation or to improve precision of causal estimates (Harder, Stuart and Anthony
(2010)).

For IPTW, the outcome model can be easily implemented as a GLM with the
corresponding GPS elements specified as weights. For subclassification, the out-
come model is essentially implemented on samples selected from subclasses con-
structed by the corresponding GPS elements, and then weighted by sample size
of their corresponding subclass. For matching, the outcome model is essentially
implemented on the replicated samples constructed by GPS matching as described
above.

For inference, we estimate the standard errors (SEs) of the ATE using boot-
strap to jointly account for the variability in the estimation of RC parameters p,
GPS parameters 5 and outcome model parameters 8. We use standard bootstrap
to construct the SEs for GPS subclassfication and IPTW. We use a modified boot-
strap method for GPS matching, as standard bootstrap may provide invalid stan-
dard errors for matching (Abadie and Imbens (2008)). Certain modifications to the
standard bootstrap, like the m-out-of-n bootstrap in Bickel, Gotze and van Zwet
(2012), were proven to recover the validity.

2.6. Proposed RC-GPS. Our proposed RC-GPS adjustment is a two-stage ap-
proach.

Stage 1: Measurement error correction

1. Fit a RC model in the validation study. More specifically, fit E(X|W,D) =
Y0 + 1W + »2”D to obtain estimated y, that is,  in the validation study. The
form of RC model is not restricted to linear regression, although otherwise one
needs further justifications of approximations for the RC model to fully adjust for
measurement error (Section 2.2).

2. Under the transportability assumption, estimate X= Yo+ W+ }?ZTD in
the main study. The X is approximately unbiased if the RC model is correctly
specified and has good fit (i.e., tr(E%lW’D) is small).

3. Based on pre-defined categories, transform X into Xc eX.={1,2,...,n},a
categorical variable. The choice of category can be determined to either be policy-
relevant or by optimizing overlap through sensitivity analyses.

Stage 2: GPS estimation, implementation, outcome analysis
Stage 2A: Design phase with GPS

4. After obtaining X, in the main study, estimate the GPS model using a GLM
relating X, to C as described in Section 2.3. The estimated GPS is approximately
error-free if the RC model is correctly specified and has good fit.
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Stage 2B: Analysis phase with GPS

5. Estimate E[Y(x)] for each exposure category x € X, = {1,2,...,n} after
adjusting for confounding using GPS subclassfication, IPTW or matching methods
(Section 2.4).

6. Estimate the ATE as the contrast of £ [Y(x)] and E [Y (x")] between any two
exposure categories x, x’.

7. Estimate the SEs of the ATE using bootstrap to jointly account for the vari-
ability in the estimation of RC parameters y, GPS parameters 5 and outcome
model parameters f.

3. Simulations. We conduct simulation studies to evaluate the performance
of the proposed RC-GPS approach under the three types of GPS implementations
outlined in Section 2.6 (IPTW, subclassification and matching). We estimate the
ATE based on (1) the true exposures in both GPS and outcome models, (2) the
error-prone exposures in both GPS and outcome models, (3) our proposed RC-
GPS adjustment.

3.1. Simulation strategies. We generate a main study/internal validation study
setting, in which the validation study is randomly sampled from the main study.
The data generation strategy is summarized in Table 1. Briefly, we generate six
confounders (Cy, Ca, ..., C¢), which include a combination of continuous and cat-
egorical variables. We generate three covariates in the measurement error model,
(D1, Dy, D3), which are continuous. Note that C and D could include the same
covariates, although this is not required. For simulations we assume that C; = Dy,
but that the remaining covariates are different.

The variables [W|C, ], [X|W,D, y], [Y|X, C, B] were generated as continu-
ous under linear regression models with parameters specified in Table 1. We begin
by generating the error-prone exposures W, and then generate X, which guaran-
tees the correct specification of the RC model. We consider seven settings, where
we vary (1) T to control the strength of confounding for exposure, (2) y; to con-
trol the correlations between X and W, (3) Xx w,p to control the goodness of RC
model fit, (4) quadratic term in the RC model to control RC model misspecifica-
tion, (5) B1 to control the magnitude of treatment effect in outcome model, and
(6) B, to control the strength of confounding for outcome. The default setting, dis-
cussed in detail in the main text, is highlighted in Table 1. We fix the sample size of
the main study as 2000 and the internal validation study as 500. We conduct 1000
replicates of each scenario. The R code for all simulations is available on github
https://github.com/wxwx1993/RC-GPS.

3.2. Simulation results. To implement the RC-GPS we follow the approach
described in Section 2.6. After fitting the RC model and estimating X in the main
study, we categorize these estimates into three categories based on pre-defined
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TABLE 1

Simulation parameters: data generating mechanism under which simulations were conducted

Confounding for exposure, E[W|C, 7]
(1) Moderate confounding
(2) Large confounding

T
(0.8,0.8,1.6,1.2,2.4,1.6,2.4)T
(1.6,1.6,3.2,2.4,4.8,3.2,4.8)7

Measurement Error Model, E[X|W,D, y]y

(1) Strong correlation: 0.85

1 =08,y,=02,1,5)T

(2) Weak correlation: 0.40 y1=02,y,=02,1, 3T

Measurement Error Model Fit Zx|w,D
(1) Good of fit diag(2X|W,D) :IN
(2) Lack of fit diag(Zx\w,p) = 101 y

Measurement Error Model Specification Model structure

(1) Linear Model X=yW+y,D
(2) Quadratic Model (y3 = 0.05) X =y W+y,D+ 3 W2
Outcome Model, E[Y|X, C, B] B

Br=1,B=03,2,1,42D"
B1=05B=3,21,42DT

(1) Large treatment effect
(2) Small treatment effect

Confounding for outcome B
(1) Moderate confounding B1=1,B8,=0,2,1,4,2, nT
(2) Large confounding B1=1, B, =(15,10,5,20, 10, 57T

Ny, and Ny
Ny = 2000 and N, = 500

Sample size

ey

Covariate Distribution
0 2 1 —1

(1) C1 — C3/C4/Cs/Cq N [<0> , ( 11 —O-SH/U{—Z, 2}/U(=3,3)/x%(1)
0 -1 -05 1

(2) D1/D2/ X3 C1/N(@0.4)/U(=5.5)

Cut-off points k
@)) ki =—-5and k, =15

cut-off points (k; = —5, kp = 15), and obtain exposure categories )A(C =1,2,3.
We also obtain W, from W using the same cutoffs. Using X. we then fit the GPS
model and estimate the ATE. For subclassification, we classify subjects into 10
subclasses by deciles based on each GPS element. For IPTW, weights were calcu-
lated as the inverse of the corresponding GPS elements as described in Section 2.4,
and extreme weights are set equal to 10 if the weights are greater than 10, named
“truncating” (Harder, Stuart and Anthony (2010)). For matching, we use a form of
one-to-one nearest neighbor matching with replacement based on the correspond-
ing GPS elements as described in Section 2.4.

We provide a detailed description of the simulation results from the default set-
ting (highlighted in bold in Table 1). Under this setting, the true ATE is f; =
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FIG. 1.  Simulation results for default setting described in Table 1. Subclassification: (a) Error-free:
GPS approach using error-free exposures X; (b) Error-prone: GPS approach using error-prone ex-
posure W¢; (c) X ~ W: the proposed two-stage RC-GPS approach, in which exposures are estimated
using a misspecified RC model X = Yo+ Y1 W which does not include covariates; (d) X ~ W+ D: the
proposed two-stage RC-GPS approach, in which exposures are estimated using the correctly speci-
fied RC model X= W+NW+ ;?ZTD which includes covariates. The red dashed line represents the
true ATE (gold standard).

(22.56,21.50) (for exposure categories X.=2vs. 1 and X. =3 vs. 2, respec-
tively) which is estimated by fitting the linear model Y = By + Z Bl (Xe =
i) 4 B> C for a large simulated dataset with sample size N = 109.

The ATE for subclassification is shown in Figure 1. The left plot represents
the ATE of exposure X.=2vs. X, =1, and the right plot represents the ATE
of exposure Xc =3 vs. XC = 2. The ATE is estimated based on four different
approaches from left to right: (a) based on GPS approach using error-free exposure
X, categorized from X; (b) based on GPS approach using error-prone exposure
W, categorized from W; (c) based on the proposed two-stage RC-GPS approach,
in which X is estimated using a misspecified RC model X = Y0 + Y1 W which
does not include covariates; (d) based on proposed two-stage RC-GPS approach
in Wthh X, is estimated using the correctly specified RC model X = Y+ W+
”2 "D which includes covariates. The true ATE is denoted by the red dashed line.

GPS implementation with subclassification using the error-free exposures re-
sults in a very small bias compared to the true ATE. Yet even in this setting where
the error-prone and error-free exposures are highly correlated, GPS implementa-
tions using error-prone exposures result in significant bias, which illustrates the
necessity of adjusting for the measurement error. RC-GPS using a correctly spec-
ified RC model performs really well, significantly reducing the bias of the esti-
mated ATE compared to using the error-prone exposure. The bias was reduced
from —17.07% to —0.36% and from —15.13% to 0.55% (exposure categories
Xe=2vs. 1 and X. =3 vs. 2, respectively). RC-GPS using a misspecified RC
model still reduces, although does not completely eliminate, the bias. The bias un-
der this setting was reduced from —17.07% to —10.58% and from —15.13% to
—8.77% (exposure categories X, =2 vs. 1 and X, = 3 vs. 2, respectively). Addi-
tional results (Figure A1l in Supplement (Wu et al. (2019))), show that IPTW and
matching perform similarly compared to subclassification.
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FI1G. 2. Overlap. Each panel represents histograms of each corrected GPS element, colored ac-
cording to different subpopulations. For assessing overlap, we can see the majority of samples have
GPS elements away from zero or one, and the ranges of each GPS element overlap across sam-
ples with different exposure providing the evidence that the overlap assumption likely holds. Results
corresponding to the default setting are described in Table 1.

3.3. Overlap and balance. We evaluate the overlap assumption by inspecting
the distributions of each estimated GPS element for all subjects as shown in Fig-
ure 2. In this simulation study, we see that the overlap assumption likely holds in
general, since the majority of samples have GPS elements away from zero or one.
The histogram also shows the ranges of each GPS element overlap across samples
with different exposure, which is referred to complete overlap in practice (Vaughn
(2008)). Therefore, we do not need to trim the data. In additional simulations in
which the overlap assumption is (close to being) violated, we trimmed the data
to improve overlap. For IPTW, we also minimize the influence of outlier weights
by rounding down extreme weights, also referred to as truncation. We see that the
estimates based on the three GPS implementations become less consistent. The
performance of IPTW is notably different from the other two approaches. This
difference is due to the altering of the target estimand which is caused when trun-
cating the weights for a potentially large portion of observations. We also find the
untruncated IPTW estimates provide overall less biased results yet may have large
variances (outliers) compared to truncated IPTW estimates (Figures A11-13 in
Supplement (Wu et al. (2019))).

Under weak unconfoundness, the single GPS element p(x|¢;) is only required
to achieve balance between subpopulations with X, = x and subpopulations with
X # x. One can assess balance by estimating the absolute standardized biases
of each confounder before and after GPS implementation using techniques simi-
lar to those described in Harder, Stuart and Anthony (2010). The key is that each
GPS element p(x|cj) is treated as a binary exposure propensity score, and bal-
ance is evaluated across all confounders between subpopulations with X, = x and
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FI1G. 3. Absolute standardized bias (ASB). Each panel represents the absolute standardized biases
for each of the six confounders (cf), between subpopulations with X . = x and subpopulations with
X¢ # x in the original data (solid line) and after GPS implementations (dashed line). All three
GPS implementations perform similarly and all improve confounder balance substantially. Results
corresponding to the default setting are described in Table 1.

subpopulations with X. # x. For each of the six confounders, we estimate the
absolute standardized bias (ASB). The ASB for each covariate is calculated by di-
viding the difference in means of the covariate between the treated group and the
comparison group by the standard deviation (Harder, Stuart and Anthony (2010)).
We see that balance improves substantially across all six confounders for all three
implementation approaches (Figure 3).

3.4. Sensitivity analysis. We assess the sensitivity of the proposed approach
to the transportability assumption by evaluating how well the approach performs
under settings in which the true y is misspecified. We sample 1 , from a normal
distribution with mean y; and augmented standard deviation estimated by adding
absolute values 0.1/0. 2/ 0.3/0.5 to the 0r1g1na1 standard deviation (0.0023) of y;.
X is then estimated by X = Y+ 7.aW + 72 ™p. By adding this misspecification
of the RC model, we artificially violate the transportability assumption and show
how this violation could affect the ATE estimates. The results in Figure 4 show that
for subclassification even when the standard deviation is around 100 times higher
than the original standard deviation, the estimated ATE using GPS is still robust.
Not surprisingly, the variances of the estimated ATE increase under this extreme
setting. The results from using GPS with IPTW and matching are also robust to the
violation of transportability assumption (see Figure A2 in Supplement (Wu et al.
(2019))).

3.5. Additional simulations. We conducted additional simulations (as de-
scribed in Table 1) with varying degrees of exposure error and confounding bias.
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FI1G. 4.  Sensitivity analysis of the ATE estimates based on GPS approach using subclassification.
Original represents the estimated ATE when the transportability assumption holds. Various violations
of the transportability assumption are conducted, by sampling y in the RC model from a distribution
with mean y and augmented standard deviation. The red dashed line represents the true ATE. Results
correspond to the default setting described in Table 1.

Details on the additional simulations can be found in the Supplement (Wu et al.
(2019)). Briefly, we show that in a variety of settings our proposed RC-GPS ap-
proach can significantly reduce the bias of the estimated ATE. More specifically,
when the correlation between true exposure X and error-prone exposure W is low
the proposed approach significantly eliminates the bias if the RC model is correctly
specified and has good fit. Yet the proposed approach is more sensitive to the cor-
rect specification of the RC model in these settings (see Figure A3 in Supplement
(Wu et al. (2019))). When the RC model does not fit well the proposed method
improves the bias in the ATE, but does not completely eliminate it (see Figure A4
in Supplement (Wu et al. (2019))). When the true treatment effect is small the
proposed approach eliminates the bias if the RC model is correctly specified and
has good fit (see Figure A5 in Supplement (Wu et al. (2019))). When confounding
is large the proposed approach significantly eliminates the bias if the RC model
is correctly specified and has good fit, yet the variance of the estimated ATE in-
creases (see Figures A6 and A7 in Supplement (Wu et al. (2019))). Lastly, when
the RC model is nonlinear with respect to error-prone exposure W the proposed
approach significantly eliminates the bias if the RC model is correctly specified
and has good fit. Yet if we only use a linear model as our RC model (when the
data generating mechanism was from a nonlinear model), we do not see bias re-
ductions using the proposed approach (see Figure A8 in Supplement (Wu et al.
(2019))). Overall, through the simulation study, we show the RC-GPS approach
works remarkably well with varying degrees of exposure error and confounding
bias.

4. Data application. We apply the proposed RC-GPS method to estimate the
effect of long-term PM; 5 exposure on health outcomes. While PMj 5 concentra-
tions are continuous, our interest is in comparing the effects of exposure in three
categories based on pre-specified PMj 5 cut-offs. The current long-term PMj 5
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standard is annual mean of 12.0 ug/m?3, refer to National Ambient Air Quality
Standards (NAAQS) Table (USEPA (2012)) There is a wide literature studying the
effect of PMj 5 exposures at these higher levels (Beelen et al. (2014), Dockery
et al. (1993), Kioumourtzoglou et al. (2016)), yet limited literature is available on
the effects of exposure at lower levels (Shi et al. (2016), Villeneuve et al. (2015)).

Our interest is in estimating the exposure effects in the lower ranges, the results
of which can help inform future policy regulations. Specifically, we consider two
cut-offs; annual mean PM, 5 levels of 8 and 10 g/m?, resulting in three exposure
categories. Our main study population is Medicare participants across New Eng-
land (VT, NH, CT, MA, RI and ME) from 2000 to 2012, and all-cause mortality
is the outcome of interest. This study population includes a total of 3.3 million
individuals with 24.5 million person-years of follow up, who reside in 2202 zip
codes.

PM, 5 exposures are determined at each 1 km x 1 km grid cell using a spatio-
temporal prediction model which uses multiple different sources as input (Di et al.
(2016)). Although the prediction model performs well (Di, Koutrakis and Schwartz
(2016)), there is still error associated with these predictions. For a subset of grid
cells we have monitor stations that measure the actual observed PMj s concen-
trations. We assume PMj 5 concentrations monitored inside a grid cell are error-
free exposures of the average concentrations in that grid cell, which is a reason-
able assumption (Burton, Suh and Koutrakis (1996), Sarnat et al. (2010), Wilson
and Suh (1997)). For New England we have 2202 zip codes covered by 217,660
1 km x 1 km grids (main study). For a subset of these grids (m = 83) within 75
zip codes, we have actual PM» 5 measured from monitoring stations (internal val-
idation study). Figure 5 shows the locations of all 119 monitor stations in New
England, 83 of which have actual PM» s measures. Medicare data is available at
the zip code level, yet PMj 5 exposures are estimated at the grid level. To obtain
annual average PMj 5 at each zip code, we aggregate these gridded concentrations
through area-weighted averages. The distributions of annual mean PM> 5 expo-
sures from the spatio-temporal prediction model in the main and the validation
studies are compared in Figure 6, showing that the monitors are not randomized
across areas, that is, they are more likely to be located at areas with higher PM> 5
concentrations.

RC model. The RC stage of our two-stage RC-GPS approach is implemented
at the grid level. We have 217,660 grids in the main study and 83 grids in the
internal validation study. After fitting the RC model, we obtained estimates of the
true PM 5 exposures at each grid cell in New England. To improve the fit of the
RC model we included 14 meteorological variables as predictors, many of which
were significant, with total cloud coverage (p < 0.001) and total precipitation (p =
0.008) as the most significant ones. The details of model fit are presented in the
Supplement (Wu et al. (2019)). Subsequently, to obtain annual average PM> 5 at
the zip code, we aggregated the grid-level PM» 5 exposures using area-weighted
averages. After the aggregation, we categorized the exposures into three categories,
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corresponding to exposure levels PMs s < 8 ug/m3, 8 < PMs s < 10 ug/m> and
PM,s > 10 ug/m?>. For each calendar year that participants were at risk, their
exposure was the annual average PM> 5 for that year, based on their zip code of
residence.

GPS model. For the GPS model we include 16 area-level covariates as con-
founders. The GPS model is fitted using multinomial logistic regression with the
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FI1G. 6. The distribution of annual mean predicted PM, 5 exposures in the main and the validation
study across 13 years (2000-2012).
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16 confounders. The details of the model fit are presented in the Supplement (Wu
et al. (2019)).

Outcome analysis. Following the GPS implementations, we fit the outcome
model using a stratified log-linear model with a person-time offset. We use 4 in-
dividual level covariates as stratification variables. We do not include confounders
in the outcome model and assume the GPS implementations fully adjust for all
potential confounding. The incidence rate ratio (IRR) is estimated from the out-
come model, and 95% confidence intervals (CIs) were obtained by bootstrap with
100 replicates. We constructed the Cls using standard errors (SEs) estimated by
bootstrap under the normality assumption, since estimation of a SE requires fewer
bootstrapped replicates (25-200) than the direct estimation of the CI (1000-2000)
(Efron and Tibshirani (1994)). We conducted 100 replicates in the data application.

4.1. Data analysis results. For each of the GPS implementations, we compare
the estimated IRR using (1) a GPS approach using error-prone PM> 5 exposures
only, and (2) the proposed RC-GPS approach. To improve overlap, we trim the data
to include only observations with GPS falling into the overlapping ranges of each
GPS element among the different exposure subpopulations, which removes 1.7%
of the original data. For IPTW truncating, we further set weights equal to 10 if the
weights are greater than 10 (Harder, Stuart and Anthony (2010)), which truncates
the weights of 3.1% of the observations. We conduct the outcome analysis based
on the trimmed dataset.

We see in Table 2 that the IRR estimates from the RC-GPS approach are con-
sistent across all three implementations. The RC-GPS approach yields more pro-
nounced point estimates compared to the error-prone implementation. The 95%
CIs are overlapping across all three implementations. For example, using match-
ing we see a IRR of 1.028 under RC-GPS, for exposure category 1 vs. category
2, meaning a moderate exposure level of annual average PMjy5 (8 < PMj5 <
10 ng/m3) causes a 2.8% increase in all-cause mortality compared to low expo-
sure level of annual average PM; 5 (PM>5 <8 ug/ m> ). Using error-prone expo-
sures we see less consistent results across the three different GPS implementations.
The difference in results across the three GPS implementations indicates that these
three approaches have different levels of sensitivity to measurement error. It is
worth noting that truncating weights in IPTW will affect the estimate of ATE itself
(Harder, Stuart and Anthony (2010)), thus possibly causes the differences in results
between IPTW and the other two approaches. The untruncated IPTW guarantees
asymptotically unbiased estimates of the ATE, yet is sensitive to extreme weights,
and performs poorly both in terms bias and variance in finite samples. Therefore,
in the data application we recommend careful thought when truncating weights for
IPTW.

We assess overlap by evaluating the distributions of the GPS elements for each
exposure category as discussed in Section 3.3. Comparing the figures before and



TABLE 2

Data application results: ATE of long-term PM» 5 exposure on mortality measured by incidence rate ratios (IRRs). Error-prone implements GPS
approaches to adjust confounding based on error-prone exposures. RC-GPS is based on the proposed approach adjusting for measurement error by RC
model and adjusting confounding using GPS approaches based on corrected exposures. All 95% confidence intervals were obtained by bootstrap

ATE [95% CI]

IPTW (untruncated)

GPS, Error-prone
RC-GPS

GPS, Error-prone
RC-GPS

Subclassification IPTW Matching
Results for exposure levels PMjy 5 < 8 ,l,cg/rn3 vs. 8 <PMy 5 <10 ,ug/m3
1.013 [0.999, 1.029] 1.031 [1.021, 1.042] 1.020 [1.004, 1.036]
1.025 [1.006, 1.045] 1.022 [1.007, 1.038] 1.028 [1.012, 1.045]

Results for exposure levels PM> 5 < 8 ,u,g/m3 vs. PMy 5 > 10 ,u,g/m3

1.015[0.993, 1.037] 1.050 [1.032, 1.068] 1.018 [0.996, 1.040]
1.035[0.999, 1.072] 1.030 [1.005, 1.056] 1.035[1.015, 1.055]

0.963 [0.894, 1.038]
1.032 [0.978, 1.088]

0.981[0.892, 1.079]
1.043 [0.973, 1.118]
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F1G. 7. Absolute standardized bias (ASB). Each panel represents the absolute standardized biases
for each confounders, between subpopulation with X, = x and subpopulation with X, # x in orig-
inal data (solid line) and after GPS implementations (dashed line). All three GPS implementations
improve the covariates balances for most of confounders.

after trimming (see Supplement (Wu et al. (2019))), we notice the overlap assump-
tion does not hold using the original data, but improves after trimming. This high-
lights the necessity of trimming in order to improve overlap. We assess the balance
by calculating the ASB for each confounder for the different exposure categories
(e.g., Xc =1 vs. X, # 1) as discussed in Section 3.3. It is also important to note,
that based on the calculations and figures the GPS implementations largely im-
prove covariate balance for most of confounders (see Figure 7 and Table A10 in
Supplement (Wu et al. (2019))).

5. Discussion. We developed an innovative two-stage approach, RC-GPS, to
estimate the average causal effect on a categorical scale in the setting of GPS anal-
ysis while correcting for measurement error in continuous exposures. Our simula-
tion study shows that the proposed method has the potential to fully adjust for both
the mismeasured exposure as well as confounding bias. We have also conducted
sensitivity analyses and showed that the approach is robust under modest levels of
model misspecification and assumption violations.

The assumptions for the first component of our proposed approach, the RC
model, are (1) transportability and (2) nondifferential measurement error (surro-
gacy). In our setting, we require the transportability of E(X|W, D). Although this
is not verifiable, it can be evaluated by sensitivity analysis, which we included as
part of our simulation study in Section 3. We see that in simulation scenarios con-
sidered, results are robust to the violation of this assumption. For the application,
one should give careful thought about how likely this assumption will hold, and
a sensitivity analysis to assess how the ATE varies for the violation of transporta-
bility assumption is recommended. The nondifferential measurement error (surro-
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gacy) assumption is believed to be held in many similar settings in air pollution
studies (Dominici, Zeger and Samet (2000), Hart et al. (2015), Kioumourtzoglou
et al. (2014)). We believe it holds, since in the context of air pollution applications,
it is reasonable to assume that given the true exposures and confounders, the error-
prone exposures do not provide any additional information on the health outcomes
(i.e., mortality). In our study, we only consider the RC model as a linear regression
model, though the form of RC model is not restricted to linear regression. However,
since the RC model is only an approximation, fully adjusting for measurement
error relies on assumptions, for example, measurement error is “small” (Carroll
and Stefanski (1990)), or outcome models without severe curvature (Carroll et al.
(2006)), if other forms of the RC model are used.

The regression of X on (W, D), is an art (Carroll et al. (2006)), since true model
of X|W,D can never be known. Therefore, assessing the robustness of the RC to
model misspecification is very important. In summary, we considered three types
of model misspecification for the RC model (2.2) in simulations: (1) vary y in a
correctly specified RC model, (2) exclude covariates D associated with the mea-
surement error in the RC model, (3) vary the true model structure of the RC model
by introducing a nonlinear (quadric) relationship between true exposure X and
error prone W. The first type of model misspecification introduces additional vari-
ability in estimating the coefficients y, although it does not violate the true struc-
ture of the RC model (2.2). Under this type of misspecification, we found that the
RC-GPS maintains the capability to eliminate the bias, yet the variances of the
estimated ATE increase. The second type actually violates the specification of the
RC model (2.2) since omission of the covariates D changes the mean function.
We found that under this type of model misspecification, the RC-GPS approach
still reduces the bias, although it does not completely eliminate it. The third type
(shown in Figure A8 in Supplement (Wu et al. (2019))) is a severe misspecifi-
cation, since we introduce a nonlinear relationship between X and W, which we
ignore when we fit the RC model. We present this type of extreme model misspec-
ification to show that under such a severe case, bias reduction is not guaranteed.
Correct specification of the RC model, however, would still eliminate the bias. It
is highly recommended, therefore, that goodness of fit is assessed and sensitivity
analyses performed to best characterize the functional form of the RC model in
real-life applications.

For the GPS implementation, there are three main assumptions (1) no-
interference, (2) overlap and (3) weak unconfoundedness. The no-interference as-
sumption is a fundamental assumption in the potential outcome framework. In the
air pollution context it could be violated as exposure in the current period could
affect mortality in subsequent periods (Baccini et al. (2017)). Baccini et al. (2017)
argue that by enlarging the time window of exposure averages the no-interference
assumption is more likely to hold. In the data application we consider long-term
annual mean exposures (rather than short-term daily exposures), which will likely
increase the validity of the assumption.
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As we saw in the data application, there are settings in which the overlap as-
sumption does not hold. A common approach, and also the approach we used in
data application, to improve overlap is trimming the sample by disregarding sub-
jects with low and high values of GPS elements (Crump et al. (2009)). Yet the
limitation is that by doing so we alter the target population, and thus the target
estimand. The estimated ATE based on the trimmed sample, can deviate from the
quantity of interest, that is, the ATE for the whole population, thus we need to
carefully think about the generalizability of our results. In our data application,
1.7% of the observations were trimmed. We compare population characteristics in
the entire population and trimmed population, and there is no evidence that those
two populations are significantly different (see Table A8 in the Supplement (Wu
et al. (2019))).

The unconfoundedness assumption is not verifiable, since data is always unin-
formative about the distribution of counter-factual outcome for unreceived expo-
sures, yet this is a common assumption in propensity score analysis. In our set-
ting, we only assume weak unconfoundedness, which only requires the potential
outcome for each category of exposure and the exposure to be assigned at the
corresponding category, are pairwise independent conditional on all potential con-
founders (Imbens (2000)). It is weaker than strong unconfoundedness defined in
Rosenbaum and Rubin (1983), which requires the joint distribution of potential
outcomes to be independent with the assignment mechanism for all exposures con-
ditional on all potential confounders. The limitation of weak unconfoundedness is
that we are not able to estimate ATE for subpopulations, that is, the ATE in pop-
ulations with exposure category 1 and 2 only. However, the interest is usually in
estimating the ATE for the whole population, which can be estimated under weak
unconfoundedness.

For inference, the main strategy is to use bootstrapping to obtain the CIs, and the
validity of inference is guaranteed by the validity of the bootstrap procedures. The
RC stage in most scenarios does not introduce a substantial amount of additional
variability in effect estimates, except when both the RC model lacks fit and the
validation size is small (see Tables A2—A3 in Supplement (Wu et al. (2019))). In
the data application, the results show (slightly) wider CIs for RC-GPS compared
to the naive GPS estimates which do not consider the RC correction (Table 2). The
reason that we obtain wider Cls for RC-GPS compared to GPS without correction
is that: (1) the validation size is relatively small, (2) the propagation of the uncer-
tainty in the RC stage, (3) in our application, Medicare data is available at the zip
code level, but PM; 5 exposures are estimated at the grid level. To obtain annual
average PM; 5 at each zip code, we aggregate these gridded concentrations through
area-weighted averages. The aggregation procedure itself could potentially intro-
duce a lot variability as well. Explicitly, the aggregation procedure may amplify
the uncertainty during the estimation of RC models. The GPS estimation stage,
in general, does not increase the variability in effect estimates compared to those
using the true GPS, since Abadie and Imbens (2016), Lunceford and Davidian
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(2004) proved that for all three types of PS implementations using the estimated
PS is more efficient than using the true PS in large samples, and the arguments in
Imai and van Dyk (2004) confirmed the conclusion can be extended to GPS set-
tings. We found similar finite sample properties in simulations (see Tables A4—AS5
in Supplement (Wu et al. (2019))).

This data application illustrates the ability of the proposed RC-GPS approach to
estimate corrected causal effects between long-term PM; 5 on a categorical scale
and all cause mortality. There are a few potential limitations in our analysis of
the data application. The first is that the validation data is not a random sample
of main study, since monitor locations are not randomized across areas, that is,
more monitors are within urban areas, which could impact the transportability as-
sumption. However, by conditioning on additional covariates in the RC model,
such as weather variables which explain geographical heterogeneity between grid
cells, the transportability assumption is more likely to hold. The second is that the
RC model is not guaranteed to be correctly specified or have a good fit, due to
both lack of potential predictive covariates and modeling assumptions. The third
is that the estimated GPS can be biased since it relies on correct specification of
the GPS model, and is not robust to unmeasured confounding. The correctly spec-
ified GPS maintains a balancing property as described in Section 3.3. In the data
application, we assessed balance and there was some evidence of imbalance. Even
with some evidence of imbalance, the advantage of GPS approaches is that they
are more robust to outcome model misspecification compared to fitting outcome
models with confounders as covariates. The fourth is that overlap may still be lim-
ited even after we trim the data. There is always a trade-off between guaranteeing
overlap and trimming out samples excessively, thus modifying the population. The
fifth is the cut-off selection. In the data application, cut-offs were selected from a
policy perspective. The first PMj 5 cut-off was selected at 10 g/m?>, which is the
current Air Quality Guideline proposed by the World Health Organization (WHO)
for annual PM; 5 concentrations (WHO (2018)). Currently, in the US the NAAQS
is 12 ug/m> (USEPA (2012)). Understanding, therefore, the effect of PM> 5 ex-
posure on mortality in the US population at lower levels, like the WHO guideline
or even lower, is of great interest, as it can inform regulatory action. This is also
the motivation behind including an additional cut-off at 8 ;g/m> annual mean.
From a statistical perspective, potential cut-off choices could be driven by mod-
eling assumptions. Specifically, cut-offs can be selected to ensure that the overlap
assumption holds for valid causal inference. Based on the distribution of annual
mean PM> s exposures, the chosen 8 pug/m> and 10 pug/m? cut-offs divide the
units into three categories approximately evenly, which arguably is more likely
to ensure overlap. We have also conducted some sensitivity analysis to evaluate
the overlap assumption (see Table A9 in the Supplement (Wu et al. (2019))); the
current cut-off points (8 ug/m?> and 10 pg/m?) provided the best overlap.

Although air pollution has motivated our application, the proposed RC-GPS ap-
proach is not limited to one specific area. One other potential application of this
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approach could be in the setting of clinical studies of biomarkers. Commonly, in
clinical trials, we are interested in the dose response of categorical levels of drug
doses, for example, Vitamin D supplements, yet in order to evaluate this treatment
in human subjects, we measure the biomarkers, for example, blood levels of Vita-
min D. In this setting we might have an error-prone continuous treatment for each
patient based on blood work from routine medical examinations, and an internal
subset of samples for which we know the true treatment based on blood work
from a more robust central laboratory. The accurate measures of blood samples
through a standard central laboratory are costly and infeasible for every patient,
and therefore we obtain this gold-standard measurement only for a subset of pa-
tients (internal validation study). A detailed example can be found in Gail et al.
(2016). In such study designs, one can fit a RC model to estimate true treatments
for each patient. After that, one can use GPS based on the estimated true treatments
in the main study, in order to obtain causal effects for various vitamin D doses, to
determine the most effective dose of Vitamin D supplements.

The RC-GPS approach introduced in this paper is the first approach which al-
lows for the correction of exposure error in both design and analysis phases using
GPS, and assesses covariate balance through standardized bias in the context of
GPS for categorical exposures. It can be further generalized to estimate causal ef-
fects on a continuous scale rather than categorical to answer different scientific
questions. Simulations have shown the proposed approach is robust and we are
optimistic about the adaption of the approach to various research areas.
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