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The spectral gap γ� of a finite, ergodic and reversible Markov chain is
an important parameter measuring the asymptotic rate of convergence. In ap-
plications, the transition matrix P may be unknown, yet one sample of the
chain up to a fixed time n may be observed. We consider here the problem
of estimating γ� from this data. Let π be the stationary distribution of P ,
and π� = minx π(x). We show that if n is at least 1

γ�π�
times a logarithmic

correction, then γ� can be estimated to within a multiplicative factor with
high probability. When π is uniform on d states, this nearly matches a lower
bound of d

γ�
steps required for precise estimation of γ�. Moreover, we pro-

vide the first procedure for computing a fully data-dependent interval, from a
single finite-length trajectory of the chain, that traps the mixing time tmix of
the chain at a prescribed confidence level. The interval does not require the
knowledge of any parameters of the chain. This stands in contrast to previ-
ous approaches, which either only provide point estimates, or require a reset
mechanism, or additional prior knowledge. The interval is constructed around
the relaxation time trelax = 1/γ�, which is strongly related to the mixing time,
and the width of the interval converges to zero roughly at a 1/

√
n rate, where

n is the length of the sample path.

1. Introduction. This work tackles the challenge of constructing confidence
intervals for the mixing time of reversible Markov chains based on a single sam-
ple path. Let (Xt)t=1,2,... be an irreducible, aperiodic time-homogeneous Markov
chain on a finite state space [d] := {1,2, . . . , d} with transition matrix P . Un-
der this assumption, the chain converges to its unique stationary distribution
π = (πi)

d
i=1 regardless of the initial state distribution q:

lim
t→∞ Prq(Xt = i) = lim

t→∞
(
qP t )

i = πi for each i ∈ [d].
The mixing time tmix of the Markov chain is the number of time steps required for
the chain to be within a fixed threshold of its stationary distribution:

tmix := min
{
t ∈ N : sup

q
max
A⊂[d]

∣∣Pr
q
(Xt ∈ A) − π(A)

∣∣≤ 1/4
}
.(1)
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Here, π(A) =∑
i∈A πi is the probability assigned to set A by π , and the supremum

is over all possible initial distributions q . The problem studied in this work is
the construction of a nontrivial confidence interval Cn = Cn(X1,X2, . . . ,Xn, δ) ⊂
[0,∞], based only on the observed sample path (X1,X2, . . . ,Xn) and δ ∈ (0,1),
that succeeds with probability 1 − δ in trapping the value of the mixing time tmix.

This problem is motivated by the numerous scientific applications and machine
learning tasks in which the quantity of interest is the mean π(f ) = ∑

i πif (i)

for some function f of the states of a Markov chain. This is the setting of the
celebrated Markov chain Monte Carlo (MCMC) paradigm (Liu (2001)), but the
problem also arises in performance prediction involving time-correlated data, as
is common in reinforcement learning (Sutton and Barto (1998)). Observable, or a
posteriori bounds on mixing times are useful in the design and diagnostics of these
methods; they yield effective approaches to assessing the estimation quality, even
when a priori knowledge of the mixing time or correlation structure is unavailable.

1.1. Main results. Consider a reversible ergodic Markov chain on d states
with absolute spectral gap γ� and stationary distribution minorized by π� :=
mini∈[d] πi . As is well known (see, e.g., Levin, Peres and Wilmer (2009), The-
orems 12.3 and 12.4),

(2) (trelax − 1) ln 2 ≤ tmix ≤ trelax ln
4

π�

,

where trelax := 1/γ� is the relaxation time. Hence, it suffices to estimate γ� and π�.
Our main results are summarized as follows:

(1) In Section 3.1, we show that in some problems n = �(d/γ� + 1/π�) ob-
servations are necessary for any procedure to guarantee constant multiplicative
accuracy in estimating γ� (Theorems 3.1 and 3.2). Essentially, in some problems a
majority of the states may need to be visited about 1/γ� times, on average, before
an accurate estimate of the mixing time can be provided, regardless of the actual
estimation procedure used.

(2) In Section 3.2, we give a point estimator γ̂� for γ�, based an a single sample
path, and prove in Theorem 3.4 that | γ̂�

γ�
−1| < ε with high probability if the path is

of length Õ(1/(π�γ�ε
2)). (The Õ(·) notation suppresses logarithmic factors.) We

also provide and analyze a point estimator for π�. This establishes the feasibility of
estimating the mixing time in this setting, and the dependence on π� and γ� in the
path length matches our lower bound (up to logarithmic factors) in the case where
1/π� = �(d). We note, however, that these results give only a priori confidence
intervals that depend on the unknown quantities π� and γ�. As such, the results
do not lead to a universal (chain-independent) stopping rule for stopping the chain
when the relative error is below the prescribed accuracy.

(3) In Section 4, we propose a procedure for a posteriori constructing confi-
dence intervals for π� and γ� that depend only on the observed sample path and
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not on any unknown parameters. We prove that the intervals shrink at a Õ(1/
√

n)

rate (Theorems 4.1, 4.2). These confidence intervals trivially lead to a universal
stopping rule to stop the chain when a prescribed relative error is achieved.

1.2. Related work. There is a vast statistical literature on estimation in Markov
chains. For instance, it is known that under the assumptions on (Xt)t from above,
the law of large numbers guarantees that the sample mean πn(f ) := 1

n

∑n
t=1 f (Xt)

converges almost surely to π(f ) (Meyn and Tweedie (1993)), while the cen-
tral limit theorem tells us that as n → ∞, the distribution of the deviation√

n(πn(f ) − π(f )) will be normal with mean zero and asymptotic variance
limn→∞ nVar(πn(f )) (Kipnis and Varadhan (1986)).

Although these asymptotic results help us understand the limiting behavior
of the sample mean over a Markov chain, they say little about the finite-time
nonasymptotic behavior, which is often needed for the prudent evaluation of a
method or even its algorithmic design (Flegal and Jones (2011), Gyori and Paulin
(2014), Kontoyiannis, Lastras-Montaño and Meyn (2006)). To address this need,
numerous works have developed Chernoff-type bounds on Pr(|πn(f ) − π(f )| >

ε), thus providing valuable tools for nonasymptotic probabilistic analysis (Gillman
(1998), Kontorovich and Weiss (2014), Kontoyiannis, Lastras-Montaño and Meyn
(2006), León and Perron (2004), Paulin (2015)). These probability bounds are
larger than the corresponding bounds for independent and identically distributed
(i.i.d.) data due to the temporal dependence; intuitively, for the Markov chain to
yield a fresh draw Xt ′ that behaves as if it was independent of Xt , one must wait
	(tmix) time steps. Note that the bounds generally depend on distribution-specific
properties of the Markov chain (e.g., P , tmix, γ�), which are often unknown a pri-
ori in practice. Consequently, much effort has been put toward estimating these
unknown quantities, especially in the context of MCMC diagnostics, in order to
provide data-dependent assessments of estimation accuracy (e.g., Atchadé (2016),
Flegal and Jones (2011), Garren and Smith (2000), Gyori and Paulin (2014), Jones
and Hobert (2001)). However, these approaches generally only provide asymptotic
guarantees, and hence fall short of our goal of empirical bounds that are valid with
any finite-length sample path. In particular, they also fail to provide universal stop-
ping rules that allow the estimation of (e.g.) the mixing time with a fixed relative
accuracy.

Learning with dependent data is another main motivation to our work. Many
results from statistical learning and empirical process theory have been extended
to sufficiently fast mixing, dependent data (e.g., Gamarnik (2003), Karandikar and
Vidyasagar (2002), Mohri and Rostamizadeh (2008), Steinwart and Christmann
(2009), Steinwart, Hush and Scovel (2009), Yu (1994)), providing learnability
assurances (e.g., generalization error bounds). These results are often given in
terms of mixing coefficients, which can be consistently estimated in some cases
(McDonald, Shalizi and Schervish (2011)). However, the convergence rates of
the estimates from McDonald, Shalizi and Schervish (2011), which are needed
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to derive confidence bounds, are given in terms of unknown mixing coefficients.
When the data comes from a Markov chain, these mixing coefficients can often be
bounded in terms of mixing times, and hence our main results provide a way to
make them fully empirical, at least in the limited setting we study.

It is possible to eliminate many of the difficulties presented above when allowed
more flexible access to the Markov chain. For example, given a sampling oracle
that generates independent transitions from any given state (akin to a “reset” de-
vice), the mixing time becomes an efficiently testable property in the sense studied
by Batu et al. (2000, 2013), Bhattacharya and Valiant (2015). Note that in this
setting, Bhattacharya and Valiant (2015) asked if one could approximate tmix (up
to logarithmic factors) with a number of queries that is linear in both d and tmix;
our work answers the question affirmatively (up to logarithmic corrections) in the
case when the stationary distribution is near uniform. Finally, when one only has a
circuit-based description of the transition probabilities of a Markov chain over an
exponentially-large state space, there are complexity-theoretic barriers for many
MCMC diagnostic problems (Bhatnagar, Bogdanov and Mossel (2011)).

This paper is based on the conference paper of Hsu, Kontorovich and Szepesvári
(2015), combined with the results in the unpublished manuscript of Levin and
Peres (2016).

2. Preliminaries.

2.1. Notation. We denote the set of positive integers by N, and the set of the
first d positive integers {1,2, . . . , d} by [d]. The nonnegative part of a real number
x is [x]+ := max{0, x}, and 
x�+ := max{0, 
x�}. We use ln(·) for a natural log-
arithm, and we use log(·) for a logarithm with an arbitrary constant base > 1 that
does not matter in the given context. Boldface symbols are used for vectors and ma-
trices (e.g., v, M), and their entries are referenced by subindexing (e.g., vi , Mi,j ).
For a vector v, ‖v‖ denotes its Euclidean norm; for a matrix M , ‖M‖ denotes its
spectral norm. We use Diag(v) to denote the diagonal matrix whose (i, i)th entry
is vi . The probability simplex is denoted by 
d−1 = {p ∈ [0,1]d :∑d

i=1 pi = 1},
and we regard vectors in 
d−1 as row vectors.

2.2. Setting. Let P ∈ (
d−1)d ⊂ [0,1]d×d be a d × d row-stochastic matrix
for an ergodic (i.e., irreducible and aperiodic) Markov chain. This implies there is
a unique stationary distribution π ∈ 
d−1 with πi > 0 for all i ∈ [d] (Levin, Peres
and Wilmer (2009), Corollary 1.17). We also assume that P is reversible (with
respect to π ):

πiPi,j = πjPj,i, i, j ∈ [d].(3)

The minimum stationary probability is denoted by π� := mini∈[d] πi .
Define the matrices

M := Diag(π)P and L := Diag(π)−1/2M Diag(π)−1/2.
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The (i, j)th entry of the matrix Mi,j contains the doublet probabilities associ-
ated with P : Mi,j = πiPi,j is the probability of seeing state i followed by state
j when the chain is started from its stationary distribution. The matrix M is
symmetric on account of the reversibility of P , and hence it follows that L is
also symmetric. (We will strongly exploit the symmetry in our results.) Further,
L = Diag(π)1/2P Diag(π)−1/2, hence L and P are similar, and thus their eigen-
value systems are identical. Ergodicity and reversibility imply that the eigenvalues
of L are contained in the interval (−1,1], and that 1 is an eigenvalue of L with
multiplicity 1 (Levin, Peres and Wilmer (2009), Lemmas 12.1 and 12.2). Denote
and order the eigenvalues of L as

1 = λ1 > λ2 ≥ · · · ≥ λd > −1.

Let λ� := max{λ2, |λd |}, and define the (absolute) spectral gap to be γ� := 1 − λ�,
which is strictly positive on account of ergodicity.

Let (Xt)t∈N be a Markov chain whose transition probabilities are governed by
P . For each t ∈ N, let π (t) ∈ 
d−1 denote the marginal distribution of Xt , so

π (t+1) = π (t)P , t ∈ N.

Note that the initial distribution π (1) is arbitrary, and need not be the stationary
distribution π .

The goal is to estimate π� and γ� from the length n sample path (Xt)t∈[n], and
also to construct confidence intervals that π� and γ� with high probability; in par-
ticular, the construction of the intervals should be fully empirical and not depend
on any unobservable quantities, including π� and γ� themselves. As mentioned in
the Introduction, it is well known that the mixing time of the Markov chain tmix (de-
fined in equation (1)) is bounded in terms of π� and γ�, as shown in equation (2).
Moreover, convergence rates for empirical processes on Markov chain sequences
are also often given in terms of mixing coefficients that can ultimately be bounded
in terms of π� and γ� (as we will show in the proof of our first result). There-
fore, valid confidence intervals for π� and γ� can be used to make these rates fully
observable.

3. Point estimation. In this section, we present lower and upper bounds on
achievable rates for estimating the spectral gap as a function of the length of the
sample path n.

3.1. Lower bounds. The purpose of this section is to show lower bounds on
the number of observations necessary to achieve a fixed multiplicative (or even
just additive) accuracy in estimating the spectral gap γ�. By equation (2), the mul-
tiplicative accuracy lower bound for γ� gives the same lower bound for estimating
the mixing time. Our first result holds even for two state Markov chains and shows
that a sequence length of �(1/π�) is necessary to achieve even a constant additive
accuracy in estimating γ�.
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THEOREM 3.1. Pick any π̄ ∈ (0,1/4). Consider any estimator γ̂� that takes
as input a random sample path of length n ≤ 1/(4π̄ ) from a Markov chain starting
from any desired initial state distribution. There exists a two-state ergodic and
reversible Markov chain distribution with spectral gap γ� ≥ 1/2 and minimum
stationary probability π� ≥ π̄ such that

Pr
[|γ̂� − γ�| ≥ 1/8

]≥ 3/8.

Next, considering d state chains, we show that a sequence of length �(d/γ�)

is required to estimate γ� up to a constant multiplicative accuracy. Essentially, the
sequence may have to visit a majority of the d states at least 1/γ� times each, on
average. This holds even if π� is within a factor of two of the largest possible value
of 1/d that it can take, that is, when π is nearly uniform.

THEOREM 3.2. There is an absolute constant c > 0 such that the following
holds. Pick any positive integer d ≥ 10 and any γ̄� ∈ (0,1/2). Consider any es-
timator γ̂� that takes as input a random sample path of length n < cd/γ̄� from a
d-state reversible Markov chain starting from any desired initial state distribution.
There is an ergodic and reversible Markov chain distribution with spectral gap
γ� ∈ [γ̄�,2γ̄�] and minimum stationary probability π� ≥ 1/(2d) such that

Pr
[|γ̂� − γ�| ≥ γ̄�/2

]≥ 1/50.

The proofs of Theorems 3.1 and 3.2 are given in Section 5.

3.2. A plug-in based point estimator and its accuracy. Let us now consider the
problem of estimating γ�. For this, we construct a natural plug-in estimator. Along
the way, we also provide an estimator for the minimum stationary probability,
allowing one to use the bounds from equation (2) to trap the mixing time.

Define the random matrix M̂ ∈ [0,1]d×d and random vector π̂ ∈ 
d−1 by

M̂i,j := |{t ∈ [n − 1] : (Xt ,Xt+1) = (i, j)}|
n − 1

, i, j ∈ [d],

π̂i := |{t ∈ [n] : Xt = i}|
n

, i ∈ [d].
Furthermore, define

L̂ := Diag(π̂)−1/2M̂ Diag(π̂)−1/2,

and let

Sym(L̂) := 1

2

(
L̂ + L̂�)

be its symmetrized version. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d be the eigenvalues of Sym(L̂).
Our estimator of the minimum stationary probability π� is π̂� := mini∈[d] π̂i , and
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our estimator of the spectral gap γ� is γ̂� := 1−min{1,max{λ̂2, |λ̂d |}} ∈ [0,1]. The
astute reader may notice that our estimator is ill-defined when π̂ is not positive
valued. In this case, we can simply set γ̂� = 0.

These estimators have the following accuracy guarantees.

THEOREM 3.3. There exists an absolute constant C ≥ 1 such that the follow-
ing holds. Let (Xt)

n
t=1 be an ergodic and reversible Markov chain with spectral

gap γ� and minimum stationary probability π� > 0. Let π̂� = π̂�((Xt )
n
t=1) and

γ̂� = γ̂�((Xt )
n
t=1) be the estimators described above. For any δ ∈ (0,1), with prob-

ability at least 1 − δ,

(4) |π̂� − π�| ≤ C

(√√√√π� log 1
π�δ

γ�n
+ log 1

π�δ

γ�n

)
and

(5) |γ̂� − γ�| ≤ C

√√√√ log d
δ

· log n
π�δ

π�γ�n
.

Theorem 3.3 implies that the sequence lengths sufficient to estimate π� and γ�

to within constant multiplicative factors are, respectively,

Õ

(
1

π�γ�

)
and Õ

(
1

π�γ 3
�

)
.

The proof of Theorem 3.3 is based on analyzing the convergence of the sample
averages M̂ and π̂ to their expectation, and then using perturbation bounds for
eigenvalues to derive a bound on the error of γ̂�. However, since these averages are
formed using a single sample path from a (possibly) nonstationary Markov chain,
we cannot use standard large deviation bounds; moreover applying Chernoff-type
bounds for Markov chains to each entry of M̂ would result in a significantly worse
sequence length requirement, roughly a factor of d larger. Instead, we adapt prob-
ability tail bounds for sums of independent random matrices (Tropp (2015)) to our
non-i.i.d. setting by directly applying a blocking technique of Bernstein (1927) as
described in the article of Yu (1994). Due to ergodicity, the convergence rate can
be bounded without any dependence on the initial state distribution π (1). The proof
of Theorem 3.3 is given in Section 6.

3.3. Improving the plug-in estimator. We can bootstrap the plug-in estimator
in equation (5) to show that in fact, to obtain any prescribed multiplicative accu-
racy, Õ(1/(π�γ�)) steps suffice to estimate γ�. The idea is to apply the estimator γ̂�

from equation (5) to the a-skipped chain (Xas)
n/a
s=1 for some a ≥ 1. This chain has

spectral gap γ�(a) := 1− (1−γ�)
a . Thus, letting γ̂�(a) be the plug-in estimator for

γ�(a) based on the a-skipped chain, a natural estimator of γ� is 1 − (1− γ̂�(a))1/a .
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Why may this improve on the original plug-in estimator from Section 3.2? Ob-
serve that γ�(a) = �(γ�a) for a ≤ 1/γ�, so the additive accuracy bound from equa-
tion (5) for the plug-in estimator on (Xas)

n/a
s=1 is roughly the same for all a ≤ 1/γ�.

However, when γ�(a) is bounded away from 0 and 1, a small additive error in es-
timating γ�(a) with γ̂�(a) translates to a small multiplicative error in estimating
γ� using 1 − (1 − γ̂�(a))1/a . So it suffices to use the skipped chain estimator with
some a = O(1/γ�). Since γ� is not known (of course), we use a doubling trick to
find a suitable value of a.

The estimator is defined as follows. For simplicity, assume n is a power of two.
Initially, set k := 0. Let a := 2k and γ̂�(a) := γ̂�((Xas)

n/a
s=1). If γ̂�(a) > 0.31 or

a = n, then set A := a and return γ̃� := 1 − (1 − γ̂�(A))1/A; otherwise, increment
k by one and repeat.

THEOREM 3.4. There exists a polynomial function L of the logarithms of
γ −1
� , π−1

� , δ−1, and d such that the following holds. Let (Xt)
n
t=1 be an ergodic and

reversible Markov chain with spectral gap γ� and minimum stationary probability
π� > 0. Let γ̃� = γ̃�((Xt )

n
t=1) be the estimator defined above. For any ε, δ ∈ (0,1),

if n ≥ L/(π�γ�ε
2), then with probability at least 1 − δ,∣∣∣∣ γ̃�

γ�

− 1
∣∣∣∣≤ ε.

The definition of L is in equation (37). The proof of Theorem 3.4 is given in
Section 7. The result shows that to estimate both π� and γ� to within constant
multiplicative factors, a single sequence of length Õ(1/(π�γ�)) suffices.

4. A posteriori confidence intervals. In this section, we describe and analyze
a procedure for constructing confidence intervals for the stationary probabilities
and the spectral gap γ�.

4.1. Procedure. We first note that the point estimators from Theorem 3.3 and
Theorem 3.4 fall short of being directly suitable for obtaining a fully empirical, a
posteriori confidence interval for γ� and π�. This is because the deviation terms
themselves depend inversely both on γ� and π�, and hence can never rule out 0 (or
an arbitrarily small positive value) as a possibility for γ� or π�.1 In effect, the fact
that the Markov chain could be slow mixing and the long-term frequency of some
states could be small makes it difficult to be confident in the estimates provided by
γ̂� and π̂�.

1Using Theorem 3.3, it is possible to trap γ� in the union of two empirical confidence intervals—
one around γ̂� and the other around zero, both of which shrink in width as the sequence length
increases.
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The main idea behind our procedure, given as Algorithm 1, is to use the Markov
property to eliminate the dependence of the confidence intervals on the unknown
quantities (including π� and γ�). Specifically, we estimate the transition probabil-
ities from the sample path using simple state visit counts: as a consequence of the
Markov property, for each state, the frequency estimates converge at a rate that
depends only on the number of visits to the state, and in particular the rate (given
the visit count of the state) is independent of the mixing time of the chain.

With confidence intervals for the entries of P in hand, it is possible to form
a confidence interval for γ� based on the eigenvalues of an estimated transition
probability matrix by appealing to the Ostrowski–Elsner theorem (cf. Theorem 1.4
on page 170 of Stewart and Sun (1990)). However, directly using this perturbation
result leads to very wide intervals, shrinking only at a rate of O(n−1/(2d)). We
avoid this slow rate by constructing confidence intervals for the symmetric matrix
L, so that we can use a stronger perturbation result (namely Weyl’s inequality, as
in the proof of Theorem 3.3) available for symmetric matrices.

To form an estimate of L based on an estimate of the transition probabilities, one
possibility is to estimate π using state visit counts as was done in Section 3, and
appeal to the relation L = Diag(π)1/2P Diag(π)−1/2 to form a plug-in estimate of
L. However, it is not clear how to construct a confidence interval for the entries of
π because the accuracy of this estimator depends on the unknown mixing time.

We adopt a different strategy for estimating π based on the group inverse Â# of
Â = I − P̂ . Recall that the group inverse of a square matrix M , a special case of
the Drazin inverse, is the unique matrix M# satisfying MM#M = M , M#MM# =
M# and M#M = MM#. In our case, where P̂ defines an ergodic chain (due to the
use of the smoothed estimates), the group inverse Â# can be computed at the cost
of inverting an (d−1)×(d−1) matrix (Meyer (1975), Theorem 5.2). Finally, given
Â#, the unique stationary distribution π̂ of P̂ can be read out from the last row
of Â# (Meyer (1975), Theorem 5.3), and π̂ can be regarded as an estimate of the
stationary distribution π of P . This way of estimating π decouples the bound on
the estimation error from the mixing time. Indeed, the sensitivity of π̂ to P̂ is also
controlled by the group inverse through

κ̂ := 1

2
max

{
Â#

j,j − min
{
Â#

i,j : i ∈ [d]} : j ∈ [d]}.
A perturbation bound from Cho and Meyer (2001) grants the inequality

(6) max
i∈[d] |π̂i − πi | ≤ κ̂ max

i∈[d]
∑

j∈[d]
|P̂i,j − Pi,j |.

(In fact, with A := I − P and

κ := 1

2
max

{
A#

j,j − min
{
A#

i,j : i ∈ [d]} : j ∈ [d]},
the inequality in (6) also holds with κ in place of κ̂ . The quantity κ appears in our
main result below.)
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Algorithm 1 Confidence intervals
Input: Sample path (X1,X2, . . . ,Xn), confidence parameter δ ∈ (0,1).

1: Compute state visit counts and smoothed transition probability estimates:

Ni := ∣∣{t ∈ [n − 1] : Xt = i
}∣∣, i ∈ [d];

Ni,j := ∣∣{t ∈ [n − 1] : (Xt ,Xt+1) = (i, j)
}∣∣, (i, j) ∈ [d]2;

P̂i,j := Ni,j + 1/d

Ni + 1
, (i, j) ∈ [d]2.

2: Let Â# be the group inverse of Â := I − P̂ .
3: Let π̂ ∈ 
d−1 be the unique stationary distribution for P̂ .
4: Compute eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d of Sym(L̂), where

L̂ := Diag(π̂)1/2P̂ Diag(π̂)−1/2.

5: Spectral gap estimate:

γ̂� := 1 − max
{
λ̂2, |λ̂d |}.

6: Bounds for |P̂i,j−Pi,j | for (i, j) ∈ [d]2: c := 1.1, τn,δ := inf{t ≥ 0 : 2d2(1 +

logc

2n
t
�+)e−t ≤ δ}, and

B̂i,j :=
(√

cτn,δ

2Ni

+
√√√√cτn,δ

2Ni

+
√

2cP̂i,j (1 − P̂i,j )τn,δ

Ni

+
4
3τn,δ + |P̂i,j − 1

d
|

Ni

)2
.

7: Relative sensitivity of π :

κ̂ := 1

2
max

{
Â#

j,j − min
{
Â#

i,j : i ∈ [d]} : j ∈ [d]}.
8: Bounds for maxi∈[d] |π̂i − πi | and max

⋃
i∈[d]{|

√
πi/π̂i − 1|, |√π̂i/πi − 1|}:

b̂ := dκ̂ max
{
B̂i,j : (i, j) ∈ [d]2}, ρ̂ := 1

2
max

⋃
i∈[d]

{
b̂

π̂i

,
b̂

[π̂i − b̂]+
}
.

9: Bounds for |γ̂� − γ�|:
ŵ := 2ρ̂ + ρ̂2 + (

1 + 2ρ̂ + ρ̂2)‖B̃‖,
where

B̃i,j :=
√

π̂i

π̂j

B̂i,j .
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We can now follow the strategy based on estimating L alluded to above. Using
π̂ and P̂ , we construct the plug-in estimate L̂ of L, and use the eigenvalues of its
symmetrization to form the estimate γ̂� of the spectral gap (Steps 4 and 5). In the
remaining steps, we use matrix perturbation analyses to relate π̂ and π , viewing P
as the perturbation of P̂ ; and also to relate γ̂� and γ�, viewing L as a perturbation of
Sym(L̂). Both analyses give error bounds entirely in terms of observable quantities
(e.g., κ̂), tracing back to empirical error bounds for the estimate of P .

The most computationally expensive step in Algorithm 1 is the computation of
the group inverse Â#, which, as noted earlier, reduces to matrix inversion. Thus,
with a standard implementation of matrix inversion, the algorithm’s time complex-
ity is O(n + d3), while its space complexity is O(d2).

4.2. Main result. We now state our main theorems. Below, the big-O notation
should be interpreted as follows. For a random sequence (Yn)n≥1 and a (nonran-
dom) positive sequence (εθ,n)n≥1 parameterized by θ , we say “Yn = O(εθ,n) holds
almost surely as n → ∞” if there is some universal constant C > 0 such that for
all θ , lim supn→∞ Yn/εθ,n ≤ C holds almost surely.

THEOREM 4.1. Suppose Algorithm 1 is given as input a sample path of length
n from an ergodic and reversible Markov chain and confidence parameter δ ∈
(0,1). Let γ� > 0 denote the spectral gap, π the unique stationary distribution,
and π� > 0 the minimum stationary probability. Then, on an event of probability
at least 1 − δ,

πi ∈ [π̂i − b̂, π̂i + b̂] for all i ∈ [d] and γ� ∈ [γ̂� − ŵ, γ̂� + ŵ].
Moreover,

b̂ = O

(
max

(i,j)∈[d]2
dκ

√
Pi,j log logn

πin

)
, ŵ = O

(
d

κ

π�

√
log logn

π�n

)
almost surely as n → ∞.

The proof of Theorem 4.1 is given in Section 8. As mentioned above, the ob-
stacle encountered in Theorem 3.3 is avoided by exploiting the Markov property.
We establish fully observable upper and lower bounds on the entries of P that
converge at a

√
(log logn)/n rate using standard martingale tail inequalities; this

justifies the validity of the bounds from Step 6. Properties of the group inverse (Cho
and Meyer (2001), Meyer (1975)) and eigenvalue perturbation theory (Stewart and
Sun (1990)) are used to validate the empirical bounds on πi and γ� developed in
the remaining steps of the algorithm.

The first part of Theorem 4.1 provides valid empirical confidence intervals for
each πi and for γ�, which are simultaneously valid at confidence level δ. The sec-
ond part of Theorem 4.1 shows that the width of the intervals decrease as the
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sequence length increases. The rate at which the widths shrink is given in terms of
P , π , κ , and n. We show in Section 8.5 (Lemma 8.8) that

κ ≤ 1

γ�

min
{
d,8 + log(4/π�)

}
,

and hence

b̂ = O

(
max

(i,j)∈[d]2

d min{d, log(1/π�)}
γ�

√
Pi,j log logn

πin

)
,

ŵ = O

(
d min{d, log(1/π�)}

π�γ�

√
log logn

π�n

)
.

It is easy to combine Theorems 3.3 and 4.1 to yield intervals whose widths
shrink at least as fast as both the nonempirical intervals from Theorem 3.3 and
the empirical intervals from Theorem 4.1. Specifically, determine lower bounds
on π� and γ� using Algorithm 1, π� ≥ mini∈[d][π̂i − b̂]+, γ� ≥ [γ̂� − ŵ]+; then
plug-in these lower bounds for π� and γ� in the deviation bounds in equation (5)
from Theorem 3.3. This yields a new interval centered around the estimate of γ�

from Theorem 3.3 and the new interval no longer depends on unknown quanti-
ties. The interval is a valid 1 − 2δ probability confidence interval for γ�, and for
sufficiently large n; the width shrinks at the rate given in equation (5). We can sim-
ilarly construct an empirical confidence interval for π� using equation (4), which
is valid on the same 1 − 2δ probability event.2 Finally, we can take the intersection
of these new intervals with the corresponding intervals from Algorithm 1. This is
summarized in the following theorem, which we prove in Section 9.

THEOREM 4.2. The following holds under the same conditions as Theo-
rem 4.1. For any δ ∈ (0,1), the confidence intervals Û and V̂ described above
for π� and γ�, respectively, satisfy π� ∈ Û and γ� ∈ V̂ with probability at least

1 − 2δ. Furthermore, |Û | = O(

√
π� log d

π�δ

γ�n
)and |V̂ | = O(min{

√
log d

δ
·log(n)

π�γ�n
, ŵ}) al-

most surely as n → ∞, where ŵ is the width from Algorithm 1.

Finally, note that a stopping rule that stops when γ� and π� are estimated with a
given relative error ε can be obtained as follows. At time n:

1: if n = 2k for an integer k, then
2: Run Algorithm 1 (or the improved variant from Theorem 4.2) with inputs

(X1,X2, . . . ,Xn) and δ/(k(k + 1)) to obtain intervals for π� and γ�.

2For the π� interval, we only plug-in lower bounds on π� and γ� only where these quantities
appear as 1/π� and 1/γ� in equation (4). It is then possible to “solve” for observable bounds on π�.
See Section 9 for details.
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3: Stop if, for each interval, the interval width divided by the lower bound on
estimated quantity falls below ε.

4: end if
It is easy to see then that with probability 1 − δ, the algorithm only stops when the
relative accuracy of its estimate is at least ε. Combined with the lower bounds, we
conjecture that the expected stopping time of the resulting procedure is optimal up
to log factors.

5. Proofs of Theorems 3.1 and 3.2. In this section, we prove Theorem 3.1
and Theorem 3.2.

5.1. Proof of Theorem 3.1. Fix π̄ ∈ (0,1/4). Consider two Markov chains
given by the following stochastic matrices:

P (1) :=
[
1 − π̄ π̄

1 − π̄ π̄

]
, P (2) :=

[
1 − π̄ π̄

1/2 1/2

]
.

Each Markov chain is ergodic and reversible; their stationary distributions are,
respectively, π (1) = (1 − π̄ , π̄) and π (2) = (1/(1 + 2π̄ ),2π̄/(1 + 2π̄ )). We have
π� ≥ π̄ in both cases. For the first Markov chain, λ� = 0, and hence the spectral
gap is 1; for the second Markov chain, λ� = 1/2− π̄ , so the spectral gap is 1/2+ π̄ .

In order to guarantee |γ̂� − γ�| < 1/8 < |1 − (1/2 + π̄)|/2, it must be possible
to distinguish the two Markov chains. Assume that the initial state distribution has
mass at least 1/2 on state 1. (If this is not the case, we swap the roles of states 1
and 2 in the constructions above.) With probability at least half, the initial state is
1; and both chains have the same transition probabilities from state 1. The chains
are indistinguishable unless the sample path eventually reaches state 2. But with
probability at least 3/4, a sample path of length n < 1/(4π̄ ) starting from state
1 always remains in the same state (this follows from properties of the geometric
distribution and the assumption π̄ < 1/4).

5.2. Proof of Theorem 3.2. For d ≥ 10, and for simplicity of the analysis d

even (a slight modification of the proof covers the odd case), we consider d-state
Markov chains of the following form:

Pi,j =
⎧⎨⎩1 − εi if i = j ;

εi

d − 1
if i �= j

for some ε1, ε2, . . . , εd ∈ (0,1). Such a chain is ergodic and reversible, and its
unique stationary distribution π satisfies

πi = 1/εi∑d
j=1 1/εj

.

We fix ε := d−1
d/2 γ̄ and set ε′ := d/2−1

d−1 ε < ε. Consider the following d + 1 different
Markov chains of the type described above:
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• P (0): ε1 = · · · = εd = ε. For this Markov chain, λ2 = λd = λ� = 1 − d
d−1ε.

• P (i) for i ∈ [d]: εj = ε for j �= i, and εi = ε′. For these Markov chains, λ2 =
1 − ε′ − 1

d−1ε = 1 − d/2
d−1ε, and λd = 1 − d

d−1ε. So λ� = 1 − d/2
d−1ε.

The spectral gap in each chain satisfies γ� ∈ [γ̄ ,2γ̄ ]; in P (i) for i ∈ [d], it is half
of what it is in P (0). Also πi ≥ 1/(2d) for each i ∈ [d].

Following a half-covering argument similar to Wolfer and Kontorovich (2019b),
in order to guarantee |γ̂� − γ�| < γ̄ /2, it must be possible to distinguish P (0) from
P (i), where i ∈ [d] is drawn uniformly at random. But P (0) is identical to P (i)

except for the transition probabilities from state i. Therefore, regardless of the
initial state, and from symmetry considerations, the sample path must visit at least
half of the states in order to distinguish P (0) from P (i), i ∈ [d] with constant
probability of success. For any of the d + 1 Markov chains above, the earliest
time in which a sample path visits at least d/2 states stochastically dominates a
generalized coupon half-collection time T1/2 = 1 + ∑d/2−1

i=1 Ti , where Ti is the
number of steps required to see the (i + 1)th distinct state in the sample path
beyond the first i. The random variables T1, T2, . . . , Td/2−1 are independent, and
are geometrically distributed, Ti ∼ Geom(ε − (i − 1)ε/(d − 1)). We have that

E[Ti] = d − 1

ε(d − i)
, var(Ti) = 1 − ε d−i

d−1

(ε d−i
d−1)2

.

Therefore,

E[T1/2] = 1 + d − 1

ε
(Hd−1 − Hd/2), var(T1/2) ≤

(
d − 1

ε

)2 π2

6
,

where Hd−1 = 1 + 1/2 + 1/3 + · · · + 1/(d − 1). For d ≥ 10, it is the case that
Hd−1 − Hd/2 ≥ 2/5, and by the Paley–Zygmund inequality,

Pr
(
T1/2 >

1

3
E[T1/2]

)
≥ 1

1 + var(T1/2)

(1−1/3)2E[T1/2]2

≥ 1

1 + ( d−1
ε

)2 π2
6

(4/9)( d−1
ε

(2/5))2

≥ 1

25
.

Since n < cd/γ̄ ≤ E[T1/2]/3 (for an appropriate absolute constant c), with prob-
ability at least 1/25, the sample path does not visit at least half of the d states.
By symmetry, with probability 1/2 over the draw of i, the state that differs was
not visited, the distribution of trajectories of length n conditioned on this event are
identical, and one cannot do better than to choose an hypothesis at random.

6. Proof of Theorem 3.3. In this section, we prove Theorem 3.3.

6.1. Accuracy of π̂�. We start by proving the deviation bound on π�− π̂�, from
which we may easily deduce equation (4) in Theorem 3.3.
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LEMMA 6.1. Pick any δ ∈ (0,1), and let

(7) εn :=
ln(d

δ

√
2
π�

)

γ�n
.

With probability at least 1 − δ, the following inequalities hold simultaneously:

|π̂i − πi | ≤
√

8πi(1 − πi)εn + 20εn for all i ∈ [d];(8)

|π̂� − π�| ≤ 4
√

π�εn + 47εn.(9)

PROOF. We use the following Bernstein-type inequality for Markov chains of
Paulin, ((2015, Theorem 3.3): letting P

π denote the probability with respect to the
stationary chain (where the marginal distribution of each Xt is π ), we have for
every ε > 0,

P
π (|π̂i − πi | > ε

)≤ 2 exp
(
− nγ�ε

2

4πi(1 − πi) + 10ε

)
, i ∈ [d].

To handle possibly nonstationary chains, as is our case, we combine the above
inequality with Paulin ((2015), Proposition 3.10) to obtain for any ε > 0,

P
(|π̂i − πi | > ε

)≤√ 1

π�

Pπ
(|π̂i − πi | > ε

)≤√ 2

π�

exp
(
− nγ�ε

2

8πi(1 − πi) + 20ε

)
.

Using this tail inequality with ε := √
8πi(1 − πi)εn + 20εn and a union bound

over all i ∈ [d] implies that the inequalities in equation (8) hold with probability at
least 1 − δ.

Now assume this 1 − δ probability event holds; it remains to prove that equa-
tion (9) also holds in this event. Without loss of generality, we assume that
π� = π1 ≤ π2 ≤ · · · ≤ πd . Let j ∈ [d] be such that π̂� = π̂j . By equation (8),
we have |πi − π̂i | ≤ √

8πiεn + 20εn for each i ∈ {1, j}. Since π̂� ≤ π̂1,

π̂� − π� ≤ π̂1 − π1 ≤√8π�εn + 20εn ≤ π� + 22εn,

where the last inequality follows by the AM/GM inequality. Furthermore, using
the fact that a ≤ b

√
a + c ⇒ a ≤ b2 + b

√
c + c for nonnegative numbers a, b, c ≥

0 (see, e.g., Bousquet, Boucheron and Lugosi (2004)) with the inequality πj ≤√
8εn

√
πj + (π̂j + 20εn) gives

πj ≤ π̂j +
√

8(π̂j + 20εn)εn + 28εn.

Therefore,

π� − π̂� ≤ πj − π̂j ≤
√

8(π̂� + 20εn)εn + 28εn ≤√8(2π� + 42εn)εn + 28εn

≤ 4
√

π�εn + 47εn,

where the second-to-last inequality follows from the above bound on π̂� − π�, and
the last inequality uses

√
a + b ≤ √

a + √
b for nonnegative a, b ≥ 0. �
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6.2. Accuracy of γ̂�. Let us now turn to proving equation (5), that is, the
bound on the error of the spectral gap estimate γ̂�. Recall the definitions of L̂
and Sym(L̂):

L̂ := Diag(π̂)−1/2M̂ Diag(π̂)−1/2, Sym(L̂) := 1

2

(
L̂ + L̂�).

The accuracy of γ̂� is based on the accuracy of Sym(L̂) in approximating L via
Weyl’s inequality:

|λ̂i − λi | ≤
∥∥Sym(L̂) − L

∥∥ for all i ∈ [d].
Moreover, the triangle inequality implies that symmetrizing L̂ can only help∥∥Sym(L̂) − L

∥∥≤ ‖L̂ − L‖.
Therefore, we can deduce equation (5) in Theorem 3.3 from the following lemma.

LEMMA 6.2. There exists an absolute constant C > 0 such that the following
holds. For any δ ∈ (0,1), if

(10) n ≥ C

( log 1
π�δ

π�γ�

+ logn

γ�

)
,

then with probability at least 1 − δ, the bounds from Lemma 6.1 hold, and

‖L̂ − L‖ ≤ C
(√

ε + ε + ε2),
where

ε := (log d
δ
)(log n

π�δ
)

π�γ�n
.

We briefly describe how to obtain the bound on |γ̂� − γ�| that appears in equa-
tion (5), which is of the form C′√ε. Observe that if ε > 1/C′, then, owing to
C′ ≥ 1, the bound on |γ̂� − γ�| is trivial. So we may assume that ε ≤ 1/C′,
which implies n/ logn ≥ C′(log(d/δ))/(π�γ�) (and thus n ≥ 2), and also n ≥
C′(log(d/δ))(log(1/(π�δ)))/(π�γ�). These inequalities imply that n satisfies the
condition in equation (10), so by Lemma 6.2, we have |γ̂� − γ�| ≤ ‖L̂ − L‖ ≤
C(

√
ε + ε + ε2) ≤ C ′√ε.

The remainder of this section is devoted to proving this lemma.
When π̂ is positive valued, the error L̂ − L may be written as

L̂ − L = EM + EπL + LEπ + EπLEπ + EπEM + EMEπ + EπEMEπ ,

where

Eπ := Diag(π̂)−1/2 Diag(π)1/2 − I and

EM := Diag(π)−1/2(M̂ − M)Diag(π)−1/2.
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Therefore,

‖L̂ − L‖ ≤ ‖EM‖ + (‖EM‖ + ‖L‖)(2‖Eπ‖ + ‖Eπ‖2).
If ‖Eπ‖ ≤ 1 also holds, then, thanks to ‖L‖ ≤ 1,

‖L̂ − L‖ ≤ ‖EM‖ + ‖EM‖2 + 3‖Eπ‖.(11)

6.3. A bound on ‖Eπ‖. Since Eπ is diagonal,

‖Eπ‖ = max
i∈[d]

∣∣∣∣
√

πi

π̂i

− 1
∣∣∣∣.

Assume that

(12) n ≥
108 ln(d

δ

√
2
π�

)

π�γ�

,

in which case √
8πi(1 − πi)εn + 20εn ≤ πi

2
,

where εn is as defined in equation (7). Therefore, on the 1 − δ probability event
from Lemma 6.1, we have |πi − π̂i | ≤ πi/2 for each i ∈ [d], and moreover, 2/3 ≤
πi/π̂i ≤ 2 for each i ∈ [d]. In particular, it also holds that π̂ is positive valued.
Further, for this range of πi/π̂i , we have∣∣∣∣

√
πi

π̂i

− 1
∣∣∣∣≤ ∣∣∣∣ π̂i

πi

− 1
∣∣∣∣.

We conclude that if n satisfies equation (12), then on this 1 − δ probability event
from Lemma 6.1, π̂ is positive valued and

(13)

‖Eπ‖ ≤ max
i∈[d]

∣∣∣∣ π̂i

πi

− 1
∣∣∣∣≤ max

i∈[d]

√
8πi(1 − πi)εn + 20εn

πi

≤
√

8εn

π�

+ 20εn

π�

=
√√√√8 ln(d

δ

√
2
π�

)

π�γ�n
+

20 ln(d
δ

√
2
π�

)

π�γ�n

≤ min
{
C′(

√
ε + ε),1

}
for some suitable constant C′ > 0, where ε as defined in Lemma 6.2.

6.4. Accuracy of doublet frequency estimates (bounding ‖EM‖). In this sec-
tion, we prove a bound on ‖EM‖. For this, we decompose EM =
Diag(π)−1/2(M̂ − M)Diag(π)−1/2 into E(EM) and EM −E(EM), the first mea-
suring the effect of a nonstationary start of the chain, while the second measuring
the variation due to randomness.
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6.4.1. Bounding ‖E(EM)‖: The price of a nonstationary start. Let π (t) be the
distribution of states at time step t . We will make use of the following proposi-
tion, which can be derived by following Montenegro and Tetali (2006), Proposi-
tion 1.12:

PROPOSITION 6.3. For t ≥ 1, let ϒ(t) be the vector with ϒ
(t)
i = π

(t)
i

πi
and let

‖ · ‖2,π denote the π -weighted 2-norm

‖v‖2,π :=
(

d∑
i=1

πiv
2
i

)1/2

.(14)

Then

(15)
∥∥ϒ(t) − 1

∥∥
2,π ≤ (1 − γ�)

t−1

√
π�

.

An immediate corollary of this result is that

∥∥Diag
(
π (t))Diag(π)−1 − I

∥∥≤ (1 − γ�)
t−1

π�

.(16)

Now note that

E(M̂) = 1

n − 1

n−1∑
t=1

Diag
(
π (t))P

and thus

E(EM) = Diag(π)−1/2(
E(M̂) − M

)
Diag(π)−1/2

= 1

n − 1

n−1∑
t=1

Diag(π)−1/2(Diag
(
π (t))− Diag(π)

)
P Diag(π)−1/2

= 1

n − 1

n−1∑
t=1

Diag(π)−1/2(Diag
(
π (t))Diag(π)−1 − I

)
M Diag(π)−1/2

= 1

n − 1

n−1∑
t=1

(
Diag

(
π (t))Diag(π)−1 − I

)
L.

Combining this, ‖L‖ ≤ 1 and equation (16), we get

∥∥E(EM)
∥∥≤ 1

(n − 1)π�

n−1∑
t=1

(1 − γ�)
t−1 ≤ 1

(n − 1)γ�π�

.(17)
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6.4.2. Bounding ‖EM − E(EM)‖: Application of a matrix tail inequality. In
this section, we analyze the deviations of EM −E(EM).

THEOREM 6.4. If

n ≥ 7 + 6

γ�

ln
2(n − 2)

π�δ
,

then with probability at least 1 − 4δ,

(18)

∥∥EM −E(EM)
∥∥

= ∥∥Diag(π)−1/2(M̂ −E[M̂])Diag(π)−1/2∥∥
≤ 4
 1

γ�
ln 2(n−2)

π�δ
�

π�(n − 1)
+
√√√√4(dP + 2) ln 4d

δ

μ
+ 2( 1

π�
+ 2) ln 4d

δ

3μ
,

where

dP := max
i∈[d]

d∑
j=1

Pi,j

πj

≤ 1

π�

and μ, defined below, satisfies

μ ≥ n − 1

2(1 + 1
γ�

ln 2(n−2)
π�δ

)
− 2.

The proof of Theorem 6.4 proceeds in several steps. First, we note that the
matrix M̂ − E(M̂) is defined as a sum of dependent centered random matrices.
We will use the blocking technique of Bernstein (1927) to relate the likely devi-
ations of this matrix to that of a sum of independent centered random matrices.
The deviations of these will then bounded with the help of a Bernstein-type matrix
tail inequality due to Tropp (2015), stated in Lemma 6.5. There is a tradeoff in
choosing the block size a: larger blocks allow for faster decay of dependencies but
induce a smaller effective sample size; this tradeoff is optimized in our choice of
a in (27).

PROOF OF THEOREM 6.4. We divide [n − 1] into contiguous blocks of time
steps; each has size a ≤ n/3 except possibly the first block, which has size between
a and 2a − 1. Formally, let a′ := a + ((n − 1) mod a) ≤ 2a − 1, and define

F := [
a′],

Hs := {
t ∈ [n − 1] : a′ + 2(s − 1)a + 1 ≤ t ≤ a′ + (2s − 1)a

}
,

Ts := {
t ∈ [n − 1] : a′ + (2s − 1)a + 1 ≤ t ≤ a′ + 2sa

}
,
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for s = 1,2, . . . . Let μH (resp., μT ) be the number of nonempty Hs (resp., Ts)
blocks. Let nH := aμH (resp., nT := aμT ) be the number of time steps in

⋃
s Hs

(resp.,
⋃

s Ts ). We have

(19)

M̂ = 1

n − 1

n−1∑
t=1

eXt eXt+1
�

= a′

n − 1
· 1

a′
∑
t∈F

eXt eXt+1
�

︸ ︷︷ ︸
M̂F

+ nH

n − 1
· 1

μH

μH∑
s=1

(
1

a

∑
t∈Hs

eXt eXt+1
�
)

︸ ︷︷ ︸
M̂H

+ nT

n − 1
· 1

μT

μT∑
s=1

(
1

a

∑
t∈Ts

eXt eXt+1
�
)

︸ ︷︷ ︸
M̂T

.

Here, ei is the ith coordinate basis vector, so eiej
� ∈ {0,1}d×d is a d × d matrix

of all zeros except for a 1 in the (i, j)th position.
The contribution of the first block is easily bounded using the triangle inequal-

ity:

(20)

a′

n − 1

∥∥Diag(π)−1/2(M̂F −E(M̂F )
)

Diag(π)−1/2∥∥
≤ 1

n − 1

∑
t∈F

{∥∥∥∥ eXt eXt+1
�

√
πXt πXt+1

∥∥∥∥+
∥∥∥∥E( eXt eXt+1

�
√

πXt πXt+1

)∥∥∥∥}≤ 2a′

π�(n − 1)
.

It remains to bound the contributions of the Hs blocks and the Ts blocks. We
just focus on the the Hs blocks, since the analysis is identical for the Ts blocks.

Let

Y s := 1

a

∑
t∈Hs

eXt eXt+1
�, s ∈ [μH ],

so

M̂H = 1

μH

μH∑
s=1

Y s,

an average of the random matrices Y s . For each s ∈ [μH ], the random matrix Y s

is a function of (
Xt : a′ + 2(s − 1)a + 1 ≤ t ≤ a′ + (2s − 1)a + 1

)
(note the +1 in the upper limit of t), so Y s+1 is a time steps ahead of Y s . When
a is sufficiently large, we will be able to effectively treat the random matrices Y s
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as if they were independent. In the sequel, we shall always assume that the block
length a satisfies

(21) a ≥ aδ := 1

γ�

ln
2(n − 2)

δπ�

for δ ∈ (0,1).
Define

π (Hs) := 1

a

∑
t∈Hs

π (t), π (H) := 1

μH

μH∑
s=1

π (Hs).

Observe that

E(Y s) = Diag
(
π (Hs)

)
P

so

E

(
1

μH

μH∑
s=1

Y s

)
= Diag

(
π (H))P .

Define

(22) Zs := Diag(π)−1/2(Y s −E(Y s)
)

Diag(π)−1/2.

We apply the matrix tail inequality in Lemma 6.5 to the average of independent
copies of the Zs ’s. More precisely, we will apply the tail inequality to independent
copies Z̃s , s ∈ [μH ] of the random variables Zs and then relate the average of Z̃s

to that of Zs . To apply Lemma 6.5, it suffices to bound the spectral norms of Zs

(almost surely), E(ZsZs
�) and E(Zs

�Zs). These are furnished by Lemmas 6.6
and 6.7 below:

‖Zs‖ ≤ 1

π�

+ 2,(23)

∥∥E(ZsZs
�)∥∥,∥∥E(Zs

�Zs

)∥∥≤ 2 max
i∈[d]

(
d∑

j=1

Pi,j

πj

)
+ 4.(24)

Armed with these estimates, we are ready to invoke Lemma 6.5. Let Z̃s for
s ∈ [μH ] be independent copies of Zs for s ∈ [μH ]. Applying Lemma 6.5 to the
average of these random matrices, we have

(25) P

(∥∥∥∥∥ 1

μH

μH∑
s=1

Z̃s

∥∥∥∥∥>

√√√√4(dP + 2) ln 4d
δ

μH

+ 2( 1
π�

+ 2) ln 4d
δ

3μH

)
≤ δ,

where

dP := max
i∈[d]

d∑
j=1

Pi,j

πj

≤ 1

π�

.
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To bound the probability that ‖∑μH

s=1 Zs/μH‖ is large, we appeal to the fol-
lowing result (a consequence of Yu (1994), Corollary 2.7). For each s ∈ [μH ],
let X(Hs) := (Xt : a′ + 2(s − 1)a + 1 ≤ t ≤ a′ + (2s − 1)a + 1), which are the
random variables determining Zs . Let P denote the joint distribution of (X(Hs) :
s ∈ [μH ]); let Ps be its marginal over X(Hs), and let P1:s+1 be its marginal over
(X(H1),X(H2), . . . ,X(Hs+1)). Let P̃ be the product distribution formed from the
marginals P1,P2, . . . ,PμH

, so P̃ governs the joint distribution of (Z̃s : s ∈ [μH ]).
The result from Yu (1994), Corollary 2.7, implies for any event E,∣∣P(E) − P̃(E)

∣∣≤ (μH − 1)β(P),

where

β(P) := max
1≤s≤μH −1

E
(∥∥P1:s+1

(·|X(H1),X(H2), . . . ,X(Hs)
)− Ps+1

∥∥
tv

)
.

Here, ‖ · ‖tv denotes the total variation norm. The β-mixing coefficient of the
stochastic process {X(Hs)}s∈[μH ] (Bradley (2005)) can be seen to give an upper
bound on β(P): In the definition of β(P), hidden in the total variation norm, the
maximum is taken over a projection of the measure whose total variation norm is
used in the definition of β-mixing. The cited result of Yu implies that the bound
from equation (25) for ‖∑μH

s=1 Z̃s/μH‖ also holds for ‖∑μH

s=1 Zs/μH‖, except the
probability bound increases from δ to δ + (μH − 1)β(P):

(26)
P

(∥∥∥∥∥ 1

μH

μH∑
s=1

Zs

∥∥∥∥∥>

√√√√4(dP + 2) ln 4d
δ

μH

+ 2( 1
π�

+ 2) ln 4d
δ

3μH

)

≤ δ + (μH − 1)β(P).

By the triangle inequality,

β(P) ≤ max
1≤s≤μH −1

E
(∥∥P1:s+1

(·|X(H1),X(H2), . . . ,X(Hs)
)−P

π
∥∥

tv+∥∥Ps+1−P
π
∥∥

tv

)
,

where P
π is the marginal distribution of X(H1) under the stationary chain. Using

the Markov property and integrating out Xt for t > minHs+1 = a′ + 2sa + 1,∥∥P1:s+1
(·|X(H1),X(H2), . . . ,X(Hs)

)− P
π
∥∥

tv

= ∥∥L(Xa′+2sa+1|Xa′+(2s−1)a+1) − π
∥∥

tv,

where L(Y |Z) denotes the conditional distribution of Y given Z. We bound this
distance using standard arguments for bounding the mixing time in terms of the
relaxation time 1/γ� (see, e.g., the proof of Theorem 12.3 of Levin, Peres and
Wilmer (2009)): for any i ∈ [d],∥∥L(Xa′+2sa+1|Xa′+(2s−1)a+1 = i) − π

∥∥
tv = ∥∥L(Xa+1|X1 = i) − π

∥∥
tv

≤ exp(−aγ�)

π�

.
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The distance ‖Ps+1 − P
π‖tv can be bounded similarly:∥∥Ps+1 − P

π
∥∥

tv = ∥∥L(Xa′+2sa+1) − π
∥∥

tv

=
∥∥∥∥∥

d∑
i=1

P(X1 = i)L(Xa′+2sa+1|X1 = i) − π

∥∥∥∥∥
tv

≤
d∑

i=1

P(X1 = i)
∥∥L(Xa′+2sa+1|X1 = i) − π

∥∥
tv

≤ exp(−(a′ + 2sa)γ�)

π�

≤ exp(−aγ�)

π�

.

We conclude

(μH − 1)β(P) ≤ (μH − 1)
2 exp(−aγ�)

π�

≤ 2(n − 2) exp(−aγ�)

π�

≤ δ,

where the last step follows from the block length assumption equation (21).
We return to the decomposition from equation (19). We apply equation (26) to

both the Hs blocks and the Ts blocks, and combine with equation (20) to obtain
the following probabilistic bound. Pick any δ ∈ (0,1), let the block length be

(27) a := 
aδ� =
⌈

1

γ�

ln
2(n − 2)

π�δ

⌉
,

so

min{μH,μT } =
⌊
n − 1 − a′

2a

⌋
≥ n − 1

2(1 + 1
γ�

ln 2(n−2)
π�δ

)
− 2 = μ.

Thus, for n ≥ 7 + 6
γ�

ln 2(n−2)
π�δ

≥ 3a, the bound in (18) holds. �

LEMMA 6.5 (Matrix Bernstein inequality (Tropp (2015), Theorem 6.1.1)). Let
Q1,Q2, . . . ,Qm be a sequence of independent, random d1 ×d2 matrices. Assume
that E(Qi ) = 0 and ‖Qi‖ ≤ R for each 1 ≤ i ≤ m. Let S =∑m

i=1 Qi and let

v = max
{∥∥∥∥E∑

i

QiQ
�
i

∥∥∥∥,∥∥∥∥E∑
i

Q�
i Qi

∥∥∥∥}.
Then, for all t ≥ 0,

P
(‖S‖ ≥ t

)≤ 2(d1 + d2) exp
(
− t2/2

v + Rt/3

)
.

In other words, for any δ ∈ (0,1),

P

(
‖S‖ >

√
2v ln

2(d1 + d2)

δ
+ 2R

3
ln

2(d1 + d2)

δ

)
≤ δ.
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LEMMA 6.6 (Range bound). Let Zs be as defined in (22). Then

‖Zs‖ ≤ 1

π�

+ 2.

PROOF. By the triangle inequality,

‖Zs‖ ≤ ∥∥Diag(π)−1/2Y s Diag(π)−1/2∥∥+ ∥∥Diag(π)−1/2
E(Y s)Diag(π)−1/2∥∥.

For the first term, we have∥∥Diag(π)−1/2Y s Diag(π)−1/2∥∥≤ 1

π�

.(28)

For the second term, we use the fact ‖L‖ ≤ 1 to bound∥∥Diag(π)−1/2(
E(Y s) − M

)
Diag(π)−1/2∥∥= ∥∥(Diag

(
π (Hs)

)
Diag(π)−1 − I

)
L
∥∥

≤ ∥∥Diag
(
π (Hs)

)
Diag(π)−1 − I

∥∥.
Then, using equation (16),

(29)
∥∥Diag

(
π (Hs)

)
Diag(π)−1 − I

∥∥≤ (1 − γ�)
a′+2(s−1)a

π�

≤ (1 − γ�)
a

π�

≤ 1,

where the last inequality follows from the assumption that the block length a satis-
fies equation (21). Combining this with ‖Diag(π)−1/2M Diag(π)−1/2‖ = ‖L‖ ≤
1, it follows that ∥∥Diag(π)−1/2

E(Y s)Diag(π)−1/2∥∥≤ 2(30)

by the triangle inequality. Therefore, together with equation (28), we obtain the
claimed range bound. �

LEMMA 6.7 (Variance bound). Let Zs be as defined in (22). Then

∥∥E(ZsZs
�)∥∥,∥∥E(Zs

�Zs

)∥∥≤ 2 max
i∈[d]

(
d∑

j=1

Pi,j

πj

)
+ 4.

PROOF. Observe that

E
(
ZsZs

�)
= 1

a2

∑
t∈Hs

E
(
Diag(π)−1/2eXt eXt+1

�

× Diag(π)−1eXt+1eXt

� Diag(π)−1/2)(31)
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+ 1

a2

∑
t �=t ′

t,t ′∈Hs

E
(
Diag(π)−1/2eXt eXt+1

�

× Diag(π)−1eXt ′+1
eXt ′

� Diag(π)−1/2)
(32)

− Diag(π)−1/2
E(Y s)Diag(π)−1

E
(
Y s

�)Diag(π)−1/2.(33)

The first sum, equation (31), easily simplifies to the diagonal matrix

1

a2

∑
t∈Hs

d∑
i=1

d∑
j=1

Pr(Xt = i,Xt+1 = j) · 1

πiπj

eiej
�ejei

�

= 1

a2

∑
t∈Hs

d∑
i=1

d∑
j=1

π
(t)
i Pi,j · 1

πiπj

eiei
� = 1

a

d∑
i=1

π
(Hs)
i

πi

(
d∑

j=1

Pi,j

πj

)
eiei

�.

For the second sum, equation (32), a symmetric matrix, consider

u�
(

1

a2

∑
t �=t ′

t,t ′∈Hs

E
(
Diag(π)−1/2eXt eXt+1

� Diag(π)−1eXt ′+1
eXt ′

� Diag(π)−1/2))u

for an arbitrary unit vector u. By Cauchy–Schwarz and AM/GM inequalities, this
is bounded from above by

1

2a2

∑
t �=t ′

t,t ′∈Hs

[
E
(
u� Diag(π)−1/2eXt eXt+1

� Diag(π)−1eXt+1eXt

� Diag(π)−1/2u
)

+E
(
u� Diag(π)−1/2eXt ′ eXt ′+1

� Diag(π)−1eXt ′+1
eXt ′

� Diag(π)−1/2u
)]

,

which simplifies to

a − 1

a2 u�
E

(∑
t∈Hs

Diag(π)−1/2eXt eXt+1
� Diag(π)−1eXt+1eXt

� Diag(π)−1/2
)
u.

The expectation is the same as that for the first term, equation (31).
Finally, the spectral norm of the third term, equation (33), is bounded using

equation (30): ∥∥Diag(π)−1/2
E(Y s)Diag(π)−1/2∥∥2 ≤ 4.

Therefore, by the triangle inequality, the bound π
(H)
i /πi ≤ 2 from equa-

tion (29), and simplifications,

∥∥E(ZsZs
�)∥∥≤ max

i∈[d]

(
d∑

j=1

Pi,j

πj

)
π

(H)
i

πi

+ 4 ≤ 2 max
i∈[d]

(
d∑

j=1

Pi,j

πj

)
+ 4.
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We can bound E(Zs
�Zs) in a similar way; the only difference is that the re-

versibility needs to be used at one place to simplify an expectation:

1

a2

∑
t∈Hs

E
(
Diag(π)−1/2eXt+1eXt

� Diag(π)−1eXt eXt+1
� Diag(π)−1/2)

= 1

a2

∑
t∈Hs

d∑
i=1

d∑
j=1

Pr(Xt = i,Xt+1 = j) · 1

πiπj

ejej
�

= 1

a2

∑
t∈Hs

d∑
i=1

d∑
j=1

π
(t)
i Pi,j · 1

πiπj

ejej
�

= 1

a2

∑
t∈Hs

d∑
j=1

(
d∑

i=1

π
(t)
i

πi

· Pj,i

πi

)
ejej

�,

where the last step uses equation (3). As before, we get

∥∥E(Zs
�Zs

)∥∥≤ max
i∈[d]

(
d∑

j=1

Pi,j

πj

· π
(H)
j

πj

)
+ 4 ≤ 2 max

i∈[d]

(
d∑

j=1

Pi,j

πj

)
+ 4

again using the bound π
(H)
i /πi ≤ 2 from equation (29). �

6.4.3. The bound on ‖EM‖. Combining the probabilistic bound from above
with the bound on the bias from equation (17), we obtain the following. Assuming
the condition on n from equation (6.4), with probability at least 1 − 4δ,

(34)

‖EM‖ ≤ 1

(n − 1)γ�π�

+ 4
 1
γ�

ln 2(n−2)
π�δ

�
π�(n − 1)

+
√√√√4(dP + 2) ln 4d

δ

μ
+ 2( 1

π�
+ 2) ln 4d

δ

3μ
≤ C′(

√
ε + ε),

for some suitable constant C′ > 0, where ε is defined in Lemma 6.2.

6.5. Overall error bound. Observe that the assumption on the sequence length
in equation (10) implies the conditions in equation (12) and equation (6.4) for
a suitable choice of C > 0. With this assumption, there is a 1 − 5δ probability
event in which equations (8), (9), (34) hold; in particular, we have the bound on
‖EM‖ from equation (34). In this event, the bound on ‖Eπ‖ in equation (13) also
holds, and the claimed bound on ‖L̂ − L‖ follows from combining the bound in
equation (11) with the bounds on ‖Eπ‖ and ‖EM‖:

‖L̂ − L‖ ≤ ‖EM‖ + ‖EM‖2 + 3‖Eπ‖
≤ 4C′(

√
ε + ε) + C′2(

√
ε + ε)2 ≤ C

(√
ε + ε + ε2),
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where ε is defined in the statement of Lemma 6.2. The proof of Lemma 6.2 now
follows by replacing δ with δ/5.

7. Proof of Theorem 3.4. In this section, we prove Theorem 3.4.
We call γ̂� of Theorem 3.3 the initial estimator. Let C be the constant from

Theorem 3.3, and define

n1 = n1(ε; δ, γ�) := 3C2

ε2π�γ�

·
(

log
d

δ

)
·
(

log
3C2

ε2π2
� γ�δ

)
and

M(n; δ, γ�) := C

√√√√ log d
δ

· log n
π�δ

π�γ�n
,

which is the right-hand side of equation (5). Observe that

M(n1; δ, γ�) ≤ ε

√√√√√√ log 3C2

ε2π2
� γ�δ

+ log log d
δ

+ log log 3C2

ε2π2
� γ�δ

3 log 3C2

ε2π2
� γ 2

� δ

≤ ε.

(Each term in the numerator under the radical is at most a third of the denominator.
We have used that π� ≤ 1/d in comparing the second term in the numerator to the
denominator.)

For a > 0, the spectral gap of the chain with transition matrix P a is denoted by
γ�(a), and the initial estimator of γ�(a), based on n/a steps of P a , is denoted by
γ̂�(a). Note that

γ�(a) = 1 − (1 − γ�)
a.

Define Kγ� := �log2(1/γ�)� and, for any δ ∈ (0,1), δγ� = δγ�(δ) := δ/(Kγ� +1).

PROPOSITION 7.1. Fix ε ∈ (0,0.01) and δ ∈ (0,1). Let A be the random
variable defined in the estimator of Theorem 3.4 (which depends on (Xt)

n
t=1).

If n > n1(ε/
√

2; δγ�, γ�), then there is an event G(ε) having probability at least
1 − δ, such that on G(ε),

0.30 < γ�(A) < 0.54 if γ� < 1/2,

A = 1 if γ� ≥ 1/2.

Moreover, on G(ε), the initial estimator γ̂�(A) applied to the chain (XAs)
n/A
s=1 sat-

isfies ∣∣γ̂�(A) − γ�(A)
∣∣≤ ε.(35)

The proof of Proposition 7.1 is based on the following lemma.
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LEMMA 7.2. Fix n ≥ n1(ε/
√

2; δ, γ�). If aγ� ≤ 1, then

Pr
(∣∣γ�(a) − γ̂�(a)

∣∣≤ ε
)
> 1 − δ.

PROOF. Recall the bound M(n; δ, γ�) on the right-hand side of equation (5).
If γ�(a) ≥ γ�a/2, then

M
(
n/a; δ, γ�(a)

)≤ √
2M(n;aδ, γ�) ≤ √

2M(n; δ, γ�) ≤ √
2 · ε√

2
= ε,

and the lemma follows from applying Theorem 3.3 to the P a-chain. We now show
that γ�(a) ≥ γ�a/2. A Taylor expansion of (1 − γ�)

a implies that there exists ξ ∈
[0, γ�] ⊆ [0,1/a] such that

γ�(a) = 1 − (1 − γ�)
a = γ�a − a(a − 1)(1 − ξ)a−2γ 2

�

2
≥ γ�a

2
.

(We have used the hypothesis aγ� ≤ 1 in the inequality.) �

PROOF OF PROPOSITION 7.1. Define the events G(a; ε) := {|γ�(a)− γ̂�(a)| ≤
ε}, and G = G(ε) :=⋂Kγ�

k=0 G(2k; ε). If k ≤ Kγ� , then γ�2k ≤ γ�2log2(1/γ�) ≤ 1 and
Lemma 7.2 implies that

Pr
(
Gc)≤ Kγ�∑

k=0

Pr
(
G
(
2k; ε)c)≤ (Kγ� + 1) · δ

Kγ� + 1
= δ.

On G, if γ� ≥ 1/2, then |γ̂� − γ�| ≤ 0.01, and consequently γ̂� ≥ 0.49 > 0.31. In
this case, A = 1 on G.

On the event G, if the algorithm has not terminated by step k − 1, then the
following hold:

(1) If γ�(2k) ≤ 0.30, then the algorithm does not terminate at step k.
(2) If γ�(2k) > 0.32, then the algorithm terminates at step k.

Also, assuming γ� ≤ 1/2,

γ�

(
2Kγ�

)≥ 1 − (1 − γ�)
1

2γ� ≥ 1 − e−1/2 ≥ 0.39,

so the algorithm always terminates before k = Kγ� on G, and thus (35) holds on G.
Finally, on G, if A > 1, then γ�(A/2) ≤ 0.32, and therefore

γ�(A) = 1 − (1 − γ�(A/2)
)2 ≤ 1 − (0.68)2 < 0.54.

If γ� < 1/2 and A = 1, then γ�(A) = γ� ≤ 1/2. �

We now prove Theorem 3.4.
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PROOF OF THEOREM 3.4. Let

(36) n0(ε; δ, γ�,π�) = n0(ε) := L
π�γ�ε2 ,

where

(37)

L := 3 · (16
√

2)2 ·
(

log
d(�log2(1/γ�)� + 1)

δ

)

·
(

log
3 · (16

√
2)2 · C2(�log2(1/γ�)� + 1)

ε2π2
� γ�δ

)
,

and C is the constant in equation (5).
Fix n > n0(ε) = n1(ε/(16

√
2); δγ�, γ�). Let A and G be as defined in Proposi-

tion 7.1. Assume we are on the event G = G(ε/16) for the rest of this proof.
Suppose first that γ� < 1/2. We have 0.30 < γ�(A) < 0.54, and∣∣γ̂�(A) − γ�(A)

∣∣≤ ε

16
< 0.01,

so both γ�(A) and γ̂�(A) are in [0.29,0.55], say.
Let h(x) = 1 − (1 − x)1/A, so γ� = h(γ�(A)) and γ̃� = h(γ̂�(A)). Since (1 −

x)1/A ≤ 1 − x/A, we have

1

1 − (1 − x)1/A
≤ A

x
.

Consequently, on [0.29,0.55],∣∣∣∣ d

dx
logh(x)

∣∣∣∣= 1
A
(1 − x)1/A−1

1 − (1 − x)1/A
≤ 1

A(1 − x)

A

x

= 1

(1 − x)x
≤ 1

(0.45)(0.29)
< 8.

Thus, | d
dx

logh(x)| is bounded (by 8) on [0.29,0.55]. We have∣∣log
(
h
(
γ̂�(A)

)
/γ�

)∣∣= ∣∣logh
(
γ�(A)

)− logh
(
γ̂�(A)

)∣∣≤ 8
∣∣γ�(A) − γ̂�(A)

∣∣
≤ 8

ε

16
≤ ε

2
.

Thus,

γ̃�

γ�

= h(γ̂�(A))

γ�

≤ eε/2 ≤ 1 + ε.

Similarly, γ�

h(γ̂�(A))
≤ eε/2, so

γ̃�

γ�

= h(γ̂�(A))

γ�

≥ e−ε/2 ≥ 1 − ε.
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Now instead suppose that γ� ≥ 1/2. Then A = 1 on the event G, and

|γ̃� − γ�| < ε

16
,

so ∣∣∣∣ γ̃�

γ�

− 1
∣∣∣∣< ε

16γ�

≤ ε. �

8. Proof of Theorem 4.1. In this section, we derive Algorithm 1 and prove
Theorem 4.1.

8.1. Estimators for π and γ�. The algorithm forms the estimator P̂ of P using
Laplace smoothing:

P̂i,j := Ni,j + α

Ni + dα
,

where

Ni,j := ∣∣{t ∈ [n − 1] : (Xt ,Xt+1) = (i, j)
}∣∣, Ni := ∣∣{t ∈ [n − 1] : Xt = i

}∣∣
and α > 0 is a positive constant, which we set beforehand as α := 1/d for simplic-
ity.

As a result of the smoothing, all entries of P̂ are positive, and hence P̂ is a
transition probability matrix for an ergodic Markov chain. We let π̂ be the unique
stationary distribution for P̂ . Using π̂ , we form an estimator Sym(L̂) of L using:

Sym(L̂) := 1

2

(
L̂ + L̂�), L̂ := Diag(π̂)1/2P̂ Diag(π̂)−1/2.

Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂d be the eigenvalues of Sym(L̂) (and in fact, we have 1 =
λ̂1 > λ̂2 and λ̂d > −1). The algorithm estimates the spectral gap γ� using

γ̂� := 1 − max
{
λ̂2, |λ̂d |}.

8.2. Empirical bounds for P . We make use of a simple corollary of Freed-
man’s inequality for martingales (Freedman (1975), Theorem 1.6).

THEOREM 8.1 (Freedman’s inequality). Let (Yt )t∈N be a bounded martingale
difference sequence with respect to the filtration F0 ⊂ F1 ⊂ F2 ⊂ · · · ; assume for
some b > 0, |Yt | ≤ b almost surely for all t ∈ N. Let Vk :=∑k

t=1 E(Y 2
t |Ft−1) and

Sk :=∑k
t=1 Yt for k ∈ N. For all s, v > 0,

Pr[∃k ∈ N s.t. Sk > s ∧ Vk ≤ v] ≤
(

v/b2

s/b + v/b2

)s/b+v/b2

es/b

= exp
(
− v

b2 · h
(

bs

v

))
,

where h(u) := (1 + u) ln(1 + u) − u.
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Observe that in Theorem 8.1, for any x > 0, if s := √
2vx + bx/3 and z :=

b2x/v, then the probability bound on the right-hand side becomes

exp
(
−x · h(

√
2z + z/3)

z

)
≤ e−x

since h(
√

2z+ z/3)/z ≥ 1 for all z > 0 (see, e.g., Audibert, Munos and Szepesvári
(2009), proof of Lemma 5).

COROLLARY 8.2. Under the same setting as Theorem 8.1, for any n ≥ 1,
x > 0, and c > 1,

Pr
[∃k ∈ [n] s.t. Sk >

√
2cVkx + 4bx/3

]≤ (1 + ⌈logc(2n/x)
⌉
+
)
e−x.

PROOF. Define vi := cib2x/2 for i = 0,1,2, . . . , 
logc(2n/x)�+, and let
v−1 := −∞. Then, since Vk ∈ [0, b2n] for all k ∈ [n],

Pr
[∃k ∈ [n] s.t. Sk >

√
2 max{v0, cVk}x + bx/3

]
=


logc(2n/x)�+∑
i=0

Pr
[∃k ∈ [n] s.t.

Sk >
√

2 max{v0, cVk}x + bx/3 ∧ vi−1 < Vk ≤ vi

]
≤


logc(2n/x)�+∑
i=0

Pr
[∃k ∈ [n] s.t.

Sk >
√

2 max{v0, cvi−1}x + bx/3 ∧ vi−1 < Vk ≤ vi

]
≤


logc(2n/x)�+∑
i=0

Pr
[∃k ∈ [n] s.t. Sk >

√
2vix + bx/3 ∧ Vk ≤ vi

]
≤ (1 + ⌈logc(2n/x)

⌉
+
)
e−x,

where the final inequality uses Theorem 8.1. The conclusion now follows because√
2cVkx + 4bx/3 ≥√2 max{v0, cVk}x + bx/3

for all k ∈ [n]. �

LEMMA 8.3. The following holds for any constant c > 1 with probability at
least 1 − δ: for all (i, j) ∈ [d]2,

(38)
|P̂i,j − Pi,j | ≤

√(
Ni

Ni + dα

)
2cPi,j (1 − Pi,j )τn,δ

Ni + dα

+ (4/3)τn,δ

Ni + dα
+ |α − dαPi,j |

Ni + dα
,
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where

(39) τn,δ := inf
{
t ≥ 0 : 2d2(1 + ⌈logc(2n/t)

⌉
+
)
e−t ≤ δ

}= O

(
log
(

d log(n)

δ

))
.

PROOF. Let Ft be the σ -field generated by X1,X2, . . . ,Xt . Fix a pair (i, j) ∈
[d]2. Let Y1 := 0, and for t ≥ 2,

Yt := 1{Xt−1 = i}(1{Xt = j} − Pi,j

)
,

so that
n∑

t=1

Yt = Ni,j − NiPi,j .

The Markov property implies that the stochastic process (Yt )t∈[n] is an (Ft )-
adapted martingale difference sequence: Yt is Ft -measurable and E(Yt |Ft−1) = 0,
for each t . Moreover, for all t ∈ [n],

Yt ∈ [−Pi,j ,1 − Pi,j ],
and for t ≥ 2,

E
(
Y 2

t |Ft−1
)= 1{Xt−1 = i}Pi,j (1 − Pi,j ).

Therefore, by Corollary 8.2 and union bounds, we have

|Ni,j − NiPi,j | ≤
√

2cNiPi,j (1 − Pi,j )τn,δ + 4τn,δ

3

for all (i, j) ∈ [d]2. �

Equation (38) can be viewed as constraints on the possible value that Pi,j may
have (with high probability). Since Pi,j is the only unobserved quantity in the
bound from equation (38), we can numerically maximize |P̂i,j − Pi,j | subject to
the constraint in equation (38) (viewing Pi,j as the optimization variable). Let B∗

i,j

be this maximum value, so we have

Pi,j ∈ [P̂i,j − B∗
i,j , P̂i,j + B∗

i,j

]
in the same event where equation (38) holds.

In the algorithm, we give a simple alternative to computing B∗
i,j that avoids nu-

merical optimization, derived in the spirit of empirical Bernstein bounds (Audibert,
Munos and Szepesvári (2009)). Specifically, with c := 1.1 (an arbitrary choice), we
compute

(40)

B̂i,j :=
(√

cτn,δ

2Ni

+
√√√√cτn,δ

2Ni

+
√

2cP̂i,j (1 − P̂i,j )τn,δ

Ni

+ (4/3)τn,δ + |α − dαP̂i,j |
Ni

)2
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for each (i, j) ∈ [d]2, where τn,δ is defined in equation (39). We show in
Lemma 8.4 that

Pi,j ∈ [P̂i,j − B̂i,j , P̂i,j + B̂i,j ]
again, in the same event where equation (38) holds. The observable bound in equa-
tion (40) is not too far from the unobservable bound in equation (38).

LEMMA 8.4. In the same 1 − δ event as from Lemma 8.3, we have Pi,j ∈
[P̂i,j − B̂i,j , P̂i,j + B̂i,j ] for all (i, j) ∈ [d]2, where B̂i,j is defined in equation (40).

PROOF. Recall that in the 1 − δ probability event from Lemma 8.3, we have
for all (i, j) ∈ [d]2,

|P̂i,j − Pi,j | =
∣∣∣∣Ni,j − NiPi,j

Ni + dα
+ α − dαPi,j

Ni + dα

∣∣∣∣
≤
√

2cNiPi,j (1 − Pi,j )τn,δ

(Ni + dα)2 + (4/3)τn,δ

Ni + dα
+ |α − dαPi,j |

Ni + dα
.

Applying the triangle inequality to the right-hand side, we obtain

|P̂i,j − Pi,j | ≤
√

2cNi(P̂i,j (1 − P̂i,j ) + |P̂i,j − Pi,j |)τn,δ

(Ni + dα)2 + (4/3)τn,δ

Ni + dα

+ |α − dαP̂i,j | + dα|P̂i,j − Pi,j |
Ni + dα

.

Since
√

A + B ≤ √
A+√

B for nonnegative A,B , we loosen the above inequality
and rearrange it to obtain(

1 − dα

Ni + dα

)
|P̂i,j − Pi,j |

≤
√

|P̂i,j − Pi,j | ·
√

2cNiτn,δ

(Ni + dα)2

+
√

2cNiP̂i,j (1 − P̂i,j )τn,δ

(Ni + dα)2 + (4/3)τn,δ + |α − dαP̂i,j |
Ni + dα

.

Whenever Ni > 0, we can solve a quadratic inequality to conclude |P̂i,j − Pi,j | ≤
B̂i,j . �

8.3. Empirical bounds for π . Recall that π̂ is obtained as the unique station-
ary distribution for P̂ . Let Â := I − P̂ , and let Â# be the group inverse of Â, that
is, the unique square matrix satisfying the following equalities:

ÂÂ#Â = Â, Â#ÂÂ# = Â#, Â#Â = ÂÂ#.
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The matrix Â#, which is well defined no matter what transition probability matrix
P̂ we start with (Meyer (1975)), is a central quantity that captures many properties
of the ergodic Markov chain with transition matrix P̂ (Meyer (1975)). We denote
the (i, j)th entry of Â# by Â#

i,j . Define

κ̂ := 1

2
max

{
Â#

j,j − min
{
Â#

i,j : i ∈ [d]} : j ∈ [d]}.
Analogously, define

A := I − P ,

A# := group inverse of A,

κ := 1

2
max

{
A#

j,j − min
{
A#

i,j : i ∈ [d]} : j ∈ [d]}.
We now use the following perturbation bound from Cho and Meyer (2001), Sec-
tion 3.3 (derived from Haviv and Van der Heyden (1984), Kirkland, Neumann and
Shader (1998)).

LEMMA 8.5 (Haviv and Van der Heyden (1984), Kirkland, Neumann and
Shader (1998)). If |P̂i,j − Pi,j | ≤ B̂i,j for each (i, j) ∈ [d]2, then

max
{|π̂i − πi | : i ∈ [d]}≤ min{κ, κ̂}max

{ ∑
j∈[d]

|B̂i,j | : i ∈ [d]
}

≤ κ̂d max
{
B̂i,j : (i, j) ∈ [d]2}.

This establishes the validity of the confidence intervals for the πi in the same
event from Lemma 8.3.

We now establish the validity of the bounds for the ratio quantities
√

π̂i/πi and√
πi/π̂i .

LEMMA 8.6. If max{|π̂i − πi | : i ∈ [d]} ≤ b̂, then

max
⋃

i∈[d]

{|√πi/π̂i − 1|, |
√

π̂i/πi − 1|}≤ 1

2
max

⋃
i∈[d]

{
b̂

π̂i

,
b̂

[π̂i − b̂]+
}
.

PROOF. By Lemma 8.5, we have for each i ∈ [d],
|π̂i − πi |

π̂i

≤ b̂

π̂i

,
|π̂i − πi |

πi

≤ b̂

πi

≤ b̂

[π̂i − b̂]+
.

Therefore, using the fact that for any x > 0,

max
{|√x − 1|, |

√
1/x − 1|}≤ 1

2
max

{|x − 1|, |1/x − 1|}
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we have for every i ∈ [d],
max

{|√πi/π̂i − 1|, |
√

π̂i/πi − 1|}≤ 1

2
max

{|πi/π̂i − 1|, |π̂i/πi − 1|}
≤ 1

2
max

{
b̂

π̂i

,
b̂

[π̂i − b̂]+
}
. �

8.4. Empirical bounds for L. By Weyl’s inequality and the triangle inequality,

max
i∈[d] |λi − λ̂i | ≤

∥∥L − Sym(L̂)
∥∥≤ ‖L − L̂‖.

It is easy to show that |γ̂� − γ�| is bounded by the same quantity. Therefore, it
remains to establish an empirical bound on ‖L − L̂‖.

LEMMA 8.7. If |P̂i,j − Pi,j | ≤ B̂i,j for each (i, j) ∈ [d]2 and max{|π̂i − πi | :
i ∈ [d]} ≤ b̂, then

‖L̂ − L‖ ≤ 2ρ̂ + ρ̂2 + (1 + 2ρ̂ + ρ̂2)‖B̃‖,
where B̃ is the matrix with

B̃i,j :=
√

π̂i

π̂j

B̂i,j

and

ρ̂ := 1

2
max

⋃
i∈[d]

{
b̂

π̂i

,
b̂

[π̂i − b̂]+
}
.

PROOF. We use the following decomposition of L − L̂:

L−L̂ = EP +Eπ ,1L̂+L̂Eπ ,2 +Eπ ,1EP +EPEπ ,2 +Eπ ,1L̂Eπ ,2 +Eπ ,1EPEπ ,2,

where

EP := Diag(π̂)1/2(P − P̂ )Diag(π̂)−1/2,

Eπ ,1 := Diag(π)1/2 Diag(π̂)−1/2 − I ,

Eπ ,2 := Diag(π̂)1/2 Diag(π)−1/2 − I .

Therefore,

‖L − L̂‖ ≤ ‖Eπ ,1‖ + ‖Eπ ,2‖ + ‖Eπ ,1‖‖Eπ ,2‖
+ (1 + ‖Eπ ,1‖ + ‖Eπ ,2‖ + ‖Eπ ,1‖‖Eπ ,2‖)‖EP ‖.

Observe that for each (i, j) ∈ [d]2, the (i, j )th entry of EP is bounded in absolute
value by ∣∣(EP )i,j

∣∣= π̂
1/2
i π̂

−1/2
j |Pi,j − P̂i,j | ≤ π̂

1/2
i π̂

−1/2
j B̂i,j = B̃i,j .
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It follows that the spectral norm of EP can be bounded as

‖EP ‖ ≤ ‖B̃‖.
Finally, the spectral norms of Eπ ,1 and Eπ ,2 satisfy

max
{‖Eπ ,1‖,‖Eπ ,2‖}= max

⋃
i∈[d]

{|√πi/π̂i − 1|, |
√

π̂i/πi − 1|},
which can be bounded using Lemma 8.6. �

This establishes the validity of the confidence interval for γ� in the same event
from Lemma 8.3.

8.5. Asymptotic widths of intervals. Let us now turn to the asymptotic behav-
ior of the interval widths (regarding b̂, ρ̂ and ŵ all as functions of n).

A simple calculation gives that, almost surely, as n → ∞,√
n

log logn
b̂ = O

(
max
i,j

dκ

√
Pi,j

πi

)
,

√
n

log logn
ρ̂ = O

(
dκ

π
3/2
�

)
.

Here, we use the fact that κ̂ → κ as n → ∞ since Â# → A# as P̂ → P (Benítez
and Liu (2012), Li and Wei (2001)).

Further, since√
n

log logn

(∑
i,j

π̂i

π̂j

B̂2
i,j

)1/2
= O

((∑
i,j

πi

πj

· Pi,j (1 − Pi,j )

πi

)1/2)
= O

(√
d

π�

)
,

we thus have √
n

log logn
ŵ = O

(
dκ

π
3/2
�

)
.

This completes the proof of Theorem 4.1.
The following lemma provides a bound on κ in terms of the number of states

and the spectral gap.

LEMMA 8.8. κ ≤ 1
γ�

min{d,8 + ln(4/π�)}
Before proving this, we prove a lemma of independent interest.

LEMMA 8.9. Let τj be the first positive time that state j is visited by the
Markov chain. Then

(41) Eiτj ≤ 2
(
tmix + 8

trelax

πj

)
.
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PROOF. By taking f to be the indicator of state j in Theorem 12.19 of Levin,
Peres and Wilmer (2009), for any i, if t = tmix + 8trelax/πj , then

Pri (τj > t) ≤ 1

2
.

Thus, Pri (τj > tk) ≤ 2−k , so equation (41) follows. �

PROOF OF LEMMA 8.8. It is established by Cho and Meyer (2001) that

κ ≤ max
i,j

∣∣A#
i,j

∣∣≤ sup
‖v‖1=1,〈v,1〉=0

∥∥v�A#∥∥
1

(our κ is the κ4 quantity from Cho and Meyer (2001)), and Seneta (1993) estab-
lishes

sup
‖v‖1=1,〈v,1〉=0

∥∥v�A#∥∥
1 ≤ d

γ�

.

Since it is shown in Cho and Meyer (2001) that

κ = 1

2
max

j

[
max
i �=j

Ei (τj )
]
πj ,

it follows from Lemma 8.9 that

κ ≤ tmix + 8trelax ≤ trelax
(
8 + ln(4/π�)

)
. �

9. Proof of Theorem 4.2. Let π̂�,lb and γ̂�,lb be the lower bounds on π� and
γ�, respectively, computed from Algorithm 1. Let π̂� and γ̂� be the estimates of π�

and γ� computed using the estimators from Theorem 3.3. By a union bound, we
have by Theorems 3.3 and 4.1 that with probability at least 1 − 2δ,

(42) |π̂� − π�| ≤ C

(√√√√π� log d
π̂�,lbδ

γ̂�,lbn
+

log d
π̂�,lbδ

γ̂�,lbn

)
and

(43) |γ̂� − γ�| ≤ C

(√√√√ log d
δ

· log n
π̂�,lbδ

π̂�,lbγ̂�,lbn

)
.

The bound on |γ̂� − γ�| in equation (43)—call it ŵ′—is fully observable, and
hence yields a confidence interval for γ�. The bound on |π̂� − π�| in equation (42)
depends on π�, but from it one can derive

|π̂� − π�| ≤ C′
(√√√√ π̂� log d

π̂�,lbδ

γ̂�,lbn
+

log d
π̂�,lbδ

γ̂�,lbn

)
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using the approach from the proof of Lemma 8.4. Here, C′ > 0 is an absolute con-
stant that depends only on C. This bound—call it b̂′—is now also fully observable.
We have established that in the 1 − 2δ probability event from above,

π� ∈ Û := [
π̂� − b̂′, π̂� + b̂′], γ� ∈ V̂ := [

γ̂� − ŵ′, γ̂� + ŵ′].
It is easy to see that almost surely (as n → ∞),√

n

logn
ŵ′ = O

(√
log(d/δ)

π�γ�

)
and

√
nb̂′ = O

(√√√√π� log d
π�δ

γ�

)
.

This completes the proof of Theorem 4.2.

10. Discussion. The construction used in Theorem 4.2 applies more gener-
ally: Given a confidence interval of the form In = In(γ�,π�, δ) for some con-
fidence level δ and a confidence set En(δ) for (γ�,π�) for the same level,
I ′
n = En(δ)∩⋃(γ,π)∈En(δ) In(γ,π, δ) is a valid 2δ-level confidence interval whose

asymptotic width matches that of In up to lower order terms under reasonable as-
sumptions on En and In. In particular, this suggests that future theoretical work
should focus on closing the gap between the lower and upper bounds on the ac-
curacy of point-estimation. The bootstrap estimator of Theorem 3.4 closes most
of the gap when π is uniform. Another interesting direction is to reduce the com-
putation cost: the current cubic cost in the number of states can be too high even
when the number of states is only moderately large. Both of these questions, as
well as an extension to nonreversible Markov chains, are addressed in Wolfer and
Kontorovich (2019a).

For practical purposes, there is much room for improvement. One major defi-
ciency of this work is that the confidence interval constructed by our procedure
(Algorithm 1) appears to be quite conservative. This likely stems from the reliance
on perturbation bounds that guard against worst-case perturbations but are loose in
the “typical” cases. To illustrate this, we generated sample paths of varying lengths
n from the Markov chain P (d) described in the proof of Theorem 3.2, with d = 3
and γ� = 0.49, each starting from state 1. The following plot shows the widths of
the γ�-interval constructed by Algorithm 1 in Figure 1. However, the actual cov-
erage of each interval appears to be far greater than 1 − δ: in 1000 independent
trials, the intervals never failed to contain γ�. Moreover, on each of 1000 inde-
pendent sample paths of length n = 1024, we computed the spectral gap of the
maximum likelihood estimate of P . In 950 of these cases, this empirical estimate
was within a factor of 1 ± 0.115 of the true spectral gap, and an interval of length
0.109 around the empirical estimate contained the true spectral gap.
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FIG. 1. Confidence interval width as function of sample path length.

Another deficiency is that the procedure is restricted to finite (and small) state
spaces. In most practical applications the state space is continuous or is exponen-
tially large in some natural parameters. To subvert our lower bounds, we must
restrict attention to Markov chains with additional structure. Parametric classes,
such as Markov chains with factored transition kernels with a few factors, are
promising candidates for such future investigations. Another natural candidate is
the exponential family of transition matrices considered by Hayashi and Watanabe
(2016). The results presented here are a first step in the ambitious research agenda
outlined above, and we hope that they will serve as a point of departure for fur-
ther insights on the topic of fully empirical estimation of Markov chain parameters
based on a single sample path.
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