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EXPONENTIAL RANDOM GRAPHS BEHAVE LIKE MIXTURES OF
STOCHASTIC BLOCK MODELS

BY RONEN ELDAN1,2 AND RENAN GROSS1,3

Weizmann Institute of Science

We study the behavior of exponential random graphs in both the sparse
and the dense regime. We show that exponential random graphs are approxi-
mate mixtures of graphs with independent edges whose probability matrices
are critical points of an associated functional, thereby satisfying a certain ma-
trix equation. In the dense regime, every solution to this equation is close
to a block matrix, concluding that the exponential random graph behaves
roughly like a mixture of stochastic block models. We also show existence
and uniqueness of solutions to this equation for several families of exponen-
tial random graphs, including the case where the subgraphs are counted with
positive weights and the case where all weights are small in absolute value.
In particular, this generalizes some of the results in a paper by Chatterjee and
Diaconis from the dense regime to the sparse regime and strengthens their
bounds from the cut-metric to the one-metric.

1. Introduction. With the emergent realization that large networks abound in
science (e.g., metabolic networks), technology (e.g., the internet) and everyday life
(e.g., social networks), there has been widespread interest in probabilistic models
which capture the behavior of real life networks.

The simplest random graph is the Erdős–Rényi G(N,p) model of graphs with
independent edges. While this model is well understood, real networks often ex-
hibit dependencies between the edges: For example, in a social network, if two
people have many mutual friends, it is more likely that they themselves are friends.

A natural and well-studied model which captures edge dependencies is the ex-
ponential random graph model, denoted here by G

f
N . In this model, the probability

to obtain a graph G on N vertices

(1) Pr
[
G

f
N = G

]= exp
(
f (G)

)
/Z,
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where f is a real functional on graphs called the “Hamiltonian” and Z is a nor-
malizing constant. Typically, f is a “subgraph-counting function” of the form

f (G) =
�∑

i=1

βiN(Hi,G),

where the function N(Hi,G) counts how many times the graph Hi appears as a
subgraph of G. The parameters βi are called “weights,” and may be either positive
or negative. For a review of exponential graphs, see the papers in [8, 9].

Despite the simple definition of this distribution, many basic aspects about its
behavior are far from being well understood. For example, there is at present no
known explicit formula for the normalizing constant.

One of the first rigorous papers on the topic is due to Bhamidi, Bresler and Sly
[1], which analyzes the mixing of the associated Glauber dynamics in the case
that subgraphs are counted with positive weights, and gives a sufficient condition
on those weights (referred to as the “high temperature regime”) under which any
finite collection of edges are asymptotically independent.

Another significant advance toward understanding the dense case was done in
a paper of Chatterjee and Diaconis [3], based on the technology developed in [4],
which uses graph limit theory. They associate the normalizing constant with a
variational problem, showing that every exponential graph distribution is close to
the minimizing set of some functional on the space of graphons. Further, if the
Hamiltonian of this distribution counts subgraphs only positively, then under the
cut-metric the exponential random graph is close to a G(N,p) graph. In [11] and
[10], the graphon framework also served the investigation of a similar problem,
that of computing the asymptotic structure of graphs with constrained densities of
subgraphs.

More recently, in [6], it was shown that an exponential graph is close in ex-
pectation to a mixture of independent graphs. Unfortunately, this result gives no
information about the structure of those independent graphs.

Our contributions. In this work, we take one further step towards a better un-
derstanding of exponential random graphs. We strengthen the existing results in
the following three ways:

1. We characterize the structure of the independent graphs of the mixture model
in [6] by showing that the elements of the mixture approximately obey a certain
fixed-point equation. In particular, we show that under certain conditions, expo-
nential random graphs behave like mixtures of so-called stochastic block models.

2. We strengthen the results of both [3] and [1] by characterizing the graph
structure in terms of the one-norm. This norm induces a stronger metric than the
cut-metric on the space of graphons, and gives some information about the nature
of dependence between the edges and other aspects which are not captured by the
cut-metric.
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3. Our characterization is meaningful not only in the dense regime, but also in
a limited range of sparse graphs as well. In particular, several of our results hold
for an edge density p which depends polynomially on N , for example, p ≥ N−c

for some c > 0.

The following is an overview of our main theorems. An independent graph is a ran-
dom graph whose edges are independent Bernoulli random variables. Denote by
X the expected adjacency matrix of such a graph. In Theorem 10, we show that for
every subgraph-counting function f , the corresponding exponential graph behaves
like a mixture of independent graphs whose associated expectations satisfy∥∥X − (1 + tanh

(∇f (X)
))

/2
∥∥

1 = o
(
N2),

where 1 is the matrix with zero on the diagonal and whose off-diagonal entries
are 1, the tanh is applied entrywise, and ‖X‖1 =∑

i,j |Xij | is the one-norm. Using
this result, we then characterize our mixtures in three different settings:

1. Theorem 14 shows that every subgraph-counting exponential random graph
is o(N2) close to a mixture of stochastic block models with a small number of
blocks.

2. Theorem 18 roughly shows that if the subgraphs are counted only with pos-
itive weights, then there exists a constant matrix Xc so that for every mixture ele-
ment X, ‖X − Xc‖1 = o(N2). Thus, the graph behaves like G(N,p).

3. Theorem 19 shows that if the absolute values of the weights β are small
enough, then there exists a constant matrix Xc so that for every mixture element
X, ‖X − Xc‖1 = o(N2).

2. Background and notation. Throughout the entire paper, N > 0 is an in-
teger that represents the number of vertices and n = (N

2

)
represents the number

of possible edges in an N vertex simple graph. For two vertices v and u in a
graph, v ∼ u denotes that v is adjacent to u. We denote the discrete hypercube by
Cn = {0,1}n and the continuous hypercube by Cn = [0,1]n.

For ease of notation, we identify the vectors Cn with the family of symmetric
matrices of size N × N where the diagonal entries are 0 and the above diagonal
entries are 0 or 1. Such matrices correspond to simple graphs: For X ∈ Cn, the ver-
tex i is connected to vertex j if and only if Xij = 1. We therefore also identify the
vector X with the graph it represents. For two graphs G,G′ whose corresponding
vectors are X, Y , we use the notation ‖G − G′‖1 for ‖X − Y‖1.

This view extends also to vectors X ∈ Cn, by identifying with X the weighted
graph whose edge weights are (X)ij .

Thus, any function acting on a vector X ∈ Cn can also be seen as a function
acting on a symmetric N × N matrix with 0 diagonal or on a weighted graph on
N vertices, and vice versa.

We denote by 1 the matrix with zero on the diagonal and whose off-diagonal
entries are 1.
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2.1. Subgraph counting functions.

DEFINITION 1 (Injective homomorphism density). Let G be a simple graph
on N vertices and let H be a simple graph on m vertices. Denote by Inj(H,G)

the set of injective homomorphisms from H to G, that is, the set of functions φ :
V (H) → V (G) such that if x, y ∈ H and x ∼ y, then φ(x) ∼ φ(y), and if φ(x) =
φ(y), then x = y. Denote the number of such homomorphisms by inj(H,G) =
|Inj(H,G)|. The “injective homomorphism density” of H is defined as

t (H,G) = inj(H,G)

N(N − 1) · . . . · (N − m + 1)
.

DEFINITION 2 (Subgraph-counting function). Let �,N > 0 be integers. Let
H1, . . . ,H� be finite simple graphs and β1, . . . , β� be real numbers. The functional
f on simple graphs with N vertices defined by

(2) f (G) = N(N − 1)

�∑
i=1

βit (Hi,G)

is called a “subgraph-counting function.”
As we will see below (in Section 4), the normalization N(N − 1) is natural

since under this normalization, the typical values of f are of the same order as the
entropy of the graph.

REMARK 3. Subgraph counting functions are sometimes defined not by injec-
tive homomorphisms but by all general homomorphisms, denoted by Hom(H,G).
For our purposes, however, it is more convenient to use injective homomorphisms
to count subgraphs. The difference between the injective homomorphism density
and the general homomorphism density is asymptotically small, so this distinction
will not matter in asymptotic calculations, and our results are equally valid for
general homomorphism densities. See [12], Sections 5.2.1–5.2.3, for more details
on such distinctions.

Depending on both the weights and the subgraphs that are counted, when using
a subgraph-counting function as the Hamiltonian of an exponential random graph,
the resulting graph can be either sparse or dense. For example, suppose that for a
graph G = (V ,E) we define

f (G) = |E| log
p

1 − p

for some p ∈ (0,1). Then

exp
(
f (G)

)= exp
(
|E| log

p

1 − p

)
= p|E|(1 − p)−|E|.
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The normalizing constant in this case is just Z = (1 − p)(
N
2), so that

(3) Pr
[
G

f
N = G

]= p|E|(1 − p)(
N
2)−|E|.

This is exactly the G(N,p) distribution, and if p → 0 when N → ∞ we obtain a
sparse graph.

DEFINITION 4 (Discrete gradient, Lipschitz constant). Let f : Cn → R be a
real function on the Boolean hypercube. The discrete derivative of f at coordinate
i is defined as

∂if (Y ) = 1

2

(
f (Y1, . . . , Yi−1,1, Yi+1, . . . , Yn)

− f (Y1, . . . , Yi−1,0, Yi+1, . . . , Yn)
)
.

With this we define both the the discrete gradient:

∇f (Y ) = (
∂1f (Y ), . . . , ∂nf (Y )

)
,

and the Lipschitz constant of f :

Lip(f ) = max
i∈[n],Y∈Cn

∣∣∂if (Y )
∣∣.

Note that subgraph-counting functions and their gradients were originally defined
on simple graphs, or, alternatively, on vectors in Cn. However, they can be naturally
extended to weighted graphs, or, alternatively, to vectors in Cn, in the following
way.

For a simple graph G, let X be its adjacency matrix. A subgraph-counting func-
tion f that counts only a single graph H = ([m],E) has the form (this is a slight
variation from [6], Lemma 33):

(4) f (G) = β

(N − 2)(N − 3) · · · (N − m + 1)

∑
q∈[N]m

q has distinct elements

∏
(l,l′)∈E

Xql,ql′ .

Further, for an edge e = {i, j}, the derivative satisfies

∂fij (G) = β

(N − 2)(N − 3) · · · (N − m + 1)

· ∑
(a,b)∈E

∑
q∈[N]m

q has distinct elements
qa=i,qb=j

∏
(l,l′)∈E

{l,l′}
={a,b}

Xql,ql′ .
(5)

As can be seen, both f (G) and each entry of ∇f (G) are just polynomials in the
entries of X. This notation allows us to extend f ’s and ∇f ’s domain to [0,1]n,
and thus to weighted matrices and graphs. Note that since we count injective ho-
momorphisms and the entries of the vector q in the above calculation are distinct,



EXPONENTIAL GRAPHS BEHAVE LIKE BLOCK MODELS 3703

the degree of each variable is either 0 or 1. Further by equation (5), for every
x ∈ [0,1] we have that

∂ijf (x1) = β|E|x|E|−1.

2.2. The variational approach. To state the results of Chatterjee and Diaco-
nis, we briefly present some definitions from graph limit theory; for a detailed
exposition, see [12], part 3. Denote by W the space of all measurable functions
w : [0,1]2 → [0,1], and by W̃ the space of equivalence classes of W under
the equivalence relation g ∼ h ⇐⇒ there exists a measure preserving bijection
σ : [0,1] → [0,1] such that g(x, y) = h(σ(x), σ (y)) = (σh)(x, y). The space W̃

is called the space of graphons.
For every graph G on N vertices, it is possible to assign a graphon G̃ by

G̃(x, y) =
{

1 
xN� ∼ 
yN� in G,

0 o.w.

With this correspondence, every distribution on graphs induces a distribution on
graphons by the push-forward mapping.

For any continuous bounded function w : [0,1]2 → R, its cut-norm is defined
as

‖w‖� = sup
S,T ⊆[0,1]

∣∣∣∣
∫
S×T

w(x, y) dx dy

∣∣∣∣.
This defines a metric on the space of graphons by d�(g̃, h̃) = infσ ‖σg − h‖�,
where the infimum is taken over all measure preserving bijections σ as above.

The results of Chatterjee and Diaconis can now be framed as follows.

THEOREM 5 (Theorem 3.2 in [3]). Let f : W̃ → R be a continuous bounded
functional. Denote by G

f
N the exponential random graph whose Hamiltonian is

f (G̃). Then there exists a bounded continuous functional ϕf : W̃ → R which de-
pends on f with the following property. Denote by F̃ ∗ the set of graphons maxi-
mizing ϕf . Then for any η > 0 there exist C,γ > 0 such that

Pr
[
d�
(
G̃

f
N, F̃ ∗)> η

]≤ Ce−N2γ .

As a corollary, they show the following result for subgraph counting functions.

THEOREM 6 (Theorem 4.2 in [3]). Assume that H1 = K2 is the complete
graph on two vertices and that β2, . . . , β� are all nonnegative. Then the set of
maximizers of ϕf consists of a finite set of constant graphons. Further,

min
ũ∈F̃ ∗

d�
(
G̃

f
N, ũ

)→ 0 in probability as N → ∞.
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In other words, the exponential random graph G
f
N is close in the cut-distance to

a distribution of Erdős–Rényi graphs G(N,p) where p is picked randomly from
some probability distribution.

In a later paper, Chatterjee and Dembo [2] derived a variational framework
which yields nontrivial estimates in the sparse regime. However, that framework
does not seem to give strong enough bounds on the partition function in order to
characterize the associated distribution.

2.3. Mixture models. In this paper, we are interested in approximating expo-
nential random graphs by mixtures of independent graphs. The following defini-
tions will be central to our results.

DEFINITION 7 (ρ-mixtures). For �p ∈ [0,1](N
2), denote by G(N, �p) the ran-

dom graph with independent edges such that the edge i ∼ j appears with proba-

bility �pij . Let ρ be a measure on [0,1](N
2). We define the random vector G(N,ρ)

by

Pr
[
G(N,ρ) = G

]= ∫
Pr
[
G(N, �p) = G

]
dρ( �p).

We say that G(N,ρ) is a ρ-mixture.

DEFINITION 8 (Approximate mixture decomposition). Let δ > 0 and let ρ be

a measure on [0,1](N
2). A random graph G is called a (ρ, δ)-mixture if there exists

a coupling between G(N,ρ) and G such that

E
∥∥G(N,ρ) − G

∥∥
1 ≤ δn.

A complementary result, given in [6] roughly states that an exponential random
graph G is close to a (ρ, o(1))-mixture in a way that most of the entropy comes
from the individual G(N, �p)′s rather than from the mixture.

For a random variable X with law ν, we define the entropy of X as

Ent(X) =
∫

− log
(
ν(x)

)
dν.

THEOREM 9 (Theorem 9 in [6]). For any positive integers N,�, finite sim-
ple graphs H1, . . . ,H�, real numbers β1, . . . , β� and ε ∈ (0,1/2), the exponential
graph defined in 1, is a (ρ, δ)-mixture, and such that

δ ≤ 34n−1/12

ε1/3

(
�∑

i=1

|βi |
∣∣E(Hi)

∣∣)1/3

with

Ent
(
G(N,ρ)

)≤ ∫ Ent
(
G(N, �p)

)
dρ( �p) + ε

(
N

2

)
.
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3. Results. The results of this paper are based on the following technical state-
ment which is an application of the framework in [7]. This result gives a charac-
terization of the measure ρ described above: With high probability with respect to
ρ, the vector �p is nearly a critical point of a certain functional associated with f .
In order to formulate this result, let us make some notation.

For every subgraph-counting function f of the form (2), define the constant

Cβ = max

{
12

�∑
i=1

|βi |
∣∣E(Hi)

∣∣2,2

}
.

Remark that Cβ depends only on the graph counting parameters, barring N . De-
note by Xf the set

(6) Xf = {
X ∈ [0,1]n : ∥∥X − (1 + tanh

(∇f (X)
))

/2
∥∥

1 ≤ 5000C2
βn15/16},

with the tanh applied entrywise to the entries of ∇f (X).

THEOREM 10 (Product decomposition of exponential random graphs). Let
f be a subgraph counting function. There exists a measure ρ on [0,1]n (which

depends on n and on f ) such that G
f
n is a (ρ,80

Cβ

n1/16 )-mixture with

ρ(Xf ) ≥ 1 − 80
Cβ

n1/16 .

In other words, almost all the mass of the mixture resides on random graphs
whose adjacency matrices X almost satisfy the fixed-point equation

(7) X = 1 + tanh(∇f (X))

2
.

REMARK 11. In fact, more is known about the structure of the measure ρ.
Following the notation in [7], for a vector θ ∈R

n, the tilt τθν of a distribution ν is
defined by

d(τθν)

dν
(y) = e〈θ,y〉∫

Cn
e〈θ,z〉 dν

.

As it turns out, the measure ρ in Theorem 10 is composed of small tilts, that is,
there exists a measure m on R

n supported on small vectors θ such that ρ is the
push-forward of m under the map θ �→ EX∼τθ ν[X]. For more details, see [7].

REMARK 12. One can check that the solutions of the fixed-point equation
are exactly the critical points of the functional f (X) + H(X) where H(X) =∑

i<j Xij logXij + (1 − Xij ) log(1 − Xij ) is the entropy of X. This is a variant
of the functional that arises in the variational problem in [3].
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As described in [7], the solutions to the equation X = (1 + tanh(∇f (X)))/2
are critical points of a certain functional. Comparing our result to Theorem 3.2 in
[3]: The latter shows that the exponential graphs are close to global maxima of the
variational problem, while the former only shows that it is close to critical points;
however, it gives a stronger, distributional description and works beyond the dense
regime.

Our first main result shows that in the dense regime, the matrices obtained by
Theorem 10 are close to matrices that can be decomposed into a small number of
blocks, defined as follows.

DEFINITION 13 (Stochastic block model). Let N,k > 0 be positive integers.
A symmetric matrix X ∈ R

N×N is called a “block matrix” with k communities, if
there exists a symmetric matrix P ∈ R

k×k and a partition of the indices 1, . . . ,N

into k disjoint sets V1, . . . , Vk such that for i ∈ V�1 and j ∈ V�2 with �1, �2 ∈ [k],
Xij = P�1,�2 .

The sets V1, . . . , Vk are called the “communities” of X. A random graph with in-
dependent edges whose expected adjacency matrix is a block matrix is called a
“stochastic block model.”

THEOREM 14 (Small number of communities for counting functions). Let 0 <

δ < 1 and let f be a subgraph-counting function. Then there exists a constant Cδ >

0 (which depends on δ, the subgraphs Hi , and their weights βi but is otherwise
independent of N ) such that for any X ∈ Xf , there exists a block matrix X∗ with
no more than Cδ communities such that∥∥X − X∗∥∥

1 ≤ δn + 5000C2
βn15/16.

One can derive an explicit expression for the constant Cδ , which is in general
exponential in 1/δ2. The explicit dependence in the case of triangle-counting func-
tions is derived in the proof.

Theorems 10 and 14 combined give the following corollary.

COROLLARY 15. For any finite set of graphs H1, . . . ,H�, constants β1, . . . , β�

and any constant δ > 0 there exists a constant Cδ such that the following holds.
For every N , there exists a measure ρ supported on block matrices with at most Cδ

communities such that if G
f
N is the exponential random graph with the Hamilto-

nian f (g) = N(N − 1)
∑�

i=1 βit (Hi, g) then there is a coupling between G
f
N and

G(N,ρ) which satisfies

E
∥∥Gf

N − G(n,ρ)
∥∥

1 ≤ δ

(
N

2

)
.
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We conjecture that Theorem 14 can be strengthened as follows.

CONJECTURE 16. Let f be a subgraph-counting function. Then there is a
constant c independent of N (but dependent on the weights βi ) such that every
X ∈ Xf is o(n)-close to a block matrix with no more than c communities.

Our second main result regarding the characterization of exponential graphs ap-
plies to subgraph-counting functions with positive weights. Its statement remains
nontrivial for graphs with polynomially small density, for some range of expo-
nents, as will be demonstrated in Example 23.

Following the notation of [1], we define ϕβ : [0,1] → R by

ϕβ(x) = 1 + tanh(
∑�

i=1 βi |E(Hi)|x|E(Hi)|−1)

2
.

Note that ϕβ(x) is equal to any off-diagonal entry of the constant matrix (1 +
tanh(∇f (x1)))/2. If the equation x = ϕβ(x) has a unique fixed-point x0, define

the constant Dβ = supx∈[0,1]
x 
=x0

|ϕβ (x)−x0|
|x−x0| .

The following simple lemma gives a useful bound on Dβ ; we present it without
proof.

LEMMA 17. 1. There exists an x0 ∈ [0,1] such that x0 = ϕβ(x0). Hence there
always exists a constant solution Xc = x01 to the fixed-point equation (7).

2. Assume that ϕβ(x) is increasing. If the solution x0 is unique and ϕ′
β(x0) < 1,

then Dβ < 1.

The condition in item (2) in the above lemma is referred to in [1] as the high
temperature regime.

THEOREM 18 (Positive weights). Let N > 3 be an integer. Let H1, . . . ,H� be
graphs, let α ∈ R and β1, . . . , β� ∈ R be real numbers and let f be a subgraph-
counting function

f (X) = α inj(K2,X) + N(N − 1)

�∑
i=1

βit (Hi,X),

where K2 is the complete graph on 2 vertices. Assume that βi ≥ 0 are positive for
all i, that the equation x = ϕβ(x) has a unique solution x0 and that Dβ < 1. Then
for any X ∈ Xf and any 0 < λ < 1,

(8) ‖X − x01‖1 ≤ λn + 10,000C3
βλ

logCβ
logDβ n15/16.

In particular, for any constants Cβ and Dβ , there exists constants 0 < γ < 1/16
and Q > 0 such that

(9) ‖X − x01‖1 ≤ Q · n1−γ .
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Our third main result regarding the characterization of exponential graphs ap-
plies to subgraph-counting functions whose weights are small in absolute value: If
all β’s are small enough, the only solution to equation (7) is the trivial one.

THEOREM 19 (Small weights). Let N > 3 be an integer. Let H1, . . . ,H� be
graphs, let α ∈ R and β1, . . . , β� ∈ R be real numbers and let f be a subgraph-
counting function

f (X) = α inj(K2,X) + N(N − 1)

�∑
i=1

βit (Hi,X),

where K2 is the complete graph on 2 vertices. Denote mi = |E(Hi)| and define the
sum

Sβ =
�∑

i=1

|βi |
(
mi

2

)
.

If Sβ < 1, then the constant solution Xc obtained from item (1) in Lemma 17 is the
only solution to the fixed-point equation (7). Further, any X ∈ Xf satisfies

‖X − Xc‖1 ≤ 5000C2
β

1 − Sβ
n15/16.

REMARK 20. One should compare Theorem 18 and Theorem 19 to Theorems
4.2 and 6.2 in [3], respectively. There, similar conditions (positive β’s or Sβ < 1)
imply that the exponential random graph is close in the cut metric to a finite set of
constant graphons.

Finally, for the particular case of triangle-counts, it turns out that if β < 0 is
smaller than some universal constant, there exists at least one nontrivial solution
in the form of two blocks.

THEOREM 21 (Two block model). Let N > 3 be an integer, let β ∈ R, and
let f (X) = β

N−2 inj(K3,X), where K3 is the triangle graph. There exists a β0 < 0
such that if β < β0, there is a solution to equation (7) in the form of a block model
with 2 communities. Specifically, the N vertices can be divided into two sets of
equal size U and W , such that Xij = c1 if (i, j) ∈ (U × W) ∪ (W × U), and
Xij = c2 if (i, j) ∈ (U × U) ∪ (W × W) for i 
= j . Further, as β → −∞, c1 → 1

2
and c2 → 0.

REMARK 22 (A remark on bounds and sparsity). When considering subgraph
counting functions, it is useful to think of the special case that the βi ’s are constants
independent of N . In this case, the typical exponential graph will be dense, and
inequalities involving the one-norm of matrices will yield meaningful information.
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However, letting the βi ’s depend explicitly on N can lead to sparse graphs. The
sparse case is typically harder analyze than the dense case, although there are some
exact results in this regime (see, e.g., [15] where the partition function and two-
edge correlations are derived for certain families of β’s).

Our theorems still hold true in the sparse regime, but for graphs which are too
sparse they may only be trivially true. Consider Theorem 18 as an example. If the
weights βi are such that the expected number of edges in the exponential graph

is smaller than the error term infλ∈(0,1) λn + 1000C3
βλ

logCβ
logDβ n15/16, then the weight

matrix is trivially close to a constant matrix: namely, the zero matrix. In this case,
the theorem tells us nothing new. The next example demonstrates that this is not
always the case, and our results can give meaningful information in the sparse
regime.

EXAMPLE 23. In this informal example, we give a sketch for the case of tri-
angle counts. Let f be the function

f (X) = α inj(K2,X) + β

N − 2
inj(K3,X),

where α = 1
2 log p

1−p
and 1

200 |α| ≤ β ≤ 1
100 |α|. We will take p = p(N) = n−c

for some c > 0. This implies that α ∝ − logN and β ∝ logN ; thus α → −∞
and β → ∞ as N → ∞. We expect the typical number of edges in the resulting
exponential graph to be �(np).

It can be verified that for large enough N , there is only a single solution to
the equation x = ϕβ(x); denote it by x0. Our first task is to calculate Dβ . By its
definition, it is always smaller than the maximum of the derivative of ϕβ(x) =
1+tanh(α+3βx2)

2 . Thus, neglecting constants,

Dβ ≤ max
x∈[0,1]

∣∣ϕ′(x)
∣∣= max

x∈[0,1]
3βx2

cosh2(α + 3βx2)

≤ 3β

cosh2(1
2α)

� |α|eα.

Hence for all N large enough, we have Dβ < 1, and can apply Theorem 18: For
any X ∈Xf , we have

‖X − x01‖1 ≤ λn + 10,000C3
βλ

logCβ
logDβ n15/16.

Now, since Dβ ≤ |α|eα < 1, we have that | logDβ | � |α|, while Cβ ≈ |α|, so
logCβ ≈ log |α|; this gives∣∣∣∣ logCβ

logDβ

∣∣∣∣� log | logp|
| logp| ≈ log logn

c logn
.
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Set λ = n−1 = e− logn. Then

λ
logCβ
logD ≈ e

− logn
log logn
−c logn = ec′ log logn = (logn)c

′
.

Since we want the error term to be smaller than the number of edges, then ignoring
all logarithmic terms (i.e., those coming from λ and Cβ ), we require the following
inequality to hold:

np � n15/16.

This indeed allows a polynomial dependence between p and n. For any p satisfy-
ing

p � n−1/16,

we conclude that there exists a constant p′ and a coupling between G(n,p′) and
G

f
N such that

E
∥∥G(n,p′)− G

f
N

∥∥
1 = o(np).

3.1. Open questions and further directions.

• Theorems 18 and 19 show that in some cases, the random graphs in the mixture
are close to an actual fixed point of equation (7). It is natural to ask whether
this is a general phenomenon. Let X ∈ Xf and denote by S = {Y : Y = (1 +
tanh(∇f (Y )))/2} the set of solutions to the fixed-point equation (7). Is it true
that

inf
Y∈S

‖X − Y‖1 = o(n)?

In other words, is it true that approximately-fixed points are approximately
fixed-points?

• How quickly can the the parameter δ in Theorem 14 approach 0 while still keep-
ing a meaningful bound? Can the theorem be improved to obtain a polynomial
dependence on N?

• Can Theorem 14 be formulated in a meaningful way for sparse exponential ran-
dom graphs?

• Lubetzky and Zhao proposed in [13] a variant of subgraph-counting functions
where the Hamiltonian is of the form

f (G) = N(N − 1)

(
�∑

i=1

βit (Hi,G)αi

)

for some α1, . . . , α� > 0. Theorem 14 in [7] implies that this modified Hamil-
tonian also breaks up into a mixture of product measures. What are the com-
ponents of this mixture? Is there a criterion on the exponents αi that en-
ables/ensures symmetry-breaking?
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• The fixed-point equation X = (1 + tanh(∇f (X)))/2 corresponds to the critical
points of a variational problem. Classify these critical points; is it true that they
are all maxima? If not, how does the mass of ρ distribute among the different
types? In particular, is the mass always distributed on global maxima?

• Show that for the case of triangle counts, every solution to the exact fixed point
equation X = (1 + tanh(

β
N−2X2))/2 is close to a stochastic block model with

two communities. In other words, show an “only if” condition for Theorem 21.

Organization. The rest of this paper is organized as follows. The proof of The-
orem 10 is given in Section 4. In Section 5, we prove the block model Theorem 14;
we first show the proof for triangle-counting functions, and then generalize it to ar-
bitrary counting functions. Finally, Section 6, Section 7 and Section 8 are devoted
to proving the existence and uniqueness of solutions of the fixed-point equation in
some special cases, as described in Theorems 18, 19 and 21.

4. Proof of the mixture decomposition. The proof of Theorem 10 will fol-
low as a corollary from the main result of [7]. In order to formulate this result, we
need the following definition.

DEFINITION 24 (Gaussian width, gradient complexity). The Gaussian-width
of a set K ⊆ R

n is defined as

GW(K) = E

[
sup
X∈K

〈X,�〉
]
,

where � ∼ N(0, Id) is a standard Gaussian vector in R
n. For a function f : Cn →

R, the gradient complexity of f is defined as

D(f ) = GW
({∇f (Y ) : Y ∈ Cn

}∪ {0}).
The main result of [7] reads the following.

THEOREM 25 (Theorem 9 in [7]). Let n > 0, let f : Cn →R, and let X
f
n be a

random vector given by the law

Pr
[
Xf

n = X
]= exp

(
f (X)

)
/Z,

where Z is a normalizing constant. Denote

D =D(f ),

L1 = max
{
1,Lip(f )

}
,

L2 = max
{

1, max
X 
=Y∈Cn

‖∇f (X) − ∇f (Y )‖1

‖X − Y‖1

}
.
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Denote by Xf the set

Xf =
{
X ∈ Cn :

∥∥∥∥X − 1 + tanh(∇f (X))

2

∥∥∥∥
1
≤ 5000L1L

3/4
2 D1/4n3/4

}
,

where 1 is the N ×N matrix with zero on the diagonal and whose off-diagonal en-
tries are 1, ∇f (X) is extrapolated to Cn by equation (5) and with the tanh applied

entrywise to the entries of ∇f (X). Then X
f
n is a (ρ,80D1/4

n1/4 )-mixture such that

ρ(Xf ) ≥ 1 − 80
D1/4

n1/4 .

We will prove Theorem 10 by applying the above theorem; this requires giv-
ing bounds on D(f ), Lip(f ) and max ‖∇f (x)−∇f (y)‖1‖x−y‖1

. We bound the latter two
quantities in the following three lemmas.

For a vector X ∈ Cn, denote by X+
j the vector X+

j = (X1,X2, . . . ,Xj−1,

1,Xj+1, . . . ,Xn), and by X−
j the vector X−

j = (X1,X2, . . . ,Xj−1,0,Xj+1,

. . . ,Xn). In terms of graphs, X+
j is the graph X with the edge at index j added (if

it is not already there), while X−
j is the graph X with the edge at index j removed.

The first lemma states that such subgraph-counting functions have bounded Lip-
schitz constants.

LEMMA 26. Let f be a subgraph-counting function of the form (2). Then for
every X ∈ Cn and for every index j , |∂jf (X)| ≤∑�

i=1 |βi ||E(Hi)|. In other words,
f is

∑�
i=1 |βi ||E(Hi)|-Lipschitz.

PROOF. By definition, for any graph H ,

∂j inj(H,X) = inj(H,X+
j ) − inj(H,X−

j )

2
.

The graphs X+
j and X−

j differ by only one edge, which we call e. Now look at
inj(H,X+

j )− inj(H,X−
j ). All homomorphisms which do not send at least one edge

of H into the edge e cancel out in this sum. Hence it is equal to

#
{
φ ∈ Inj

(
H,X+

j

) : e ∈ E
(
φ(H)

)}
.

To bound the number of such homomorphisms, we construct them as follows: first
map one of the edges of H to the edge e, and then injectively map the remaining
vertices of H to vertices of G. There are 2|E(H)| ways to do the former and
(N − 2)(N − 3) · · · (N − m + 1) ways to do the latter, so overall:

∂j inj(H,X) = inj(H,X+
j ) − inj(H,X−

j )

2

≤ ∣∣E(H)
∣∣(N − 2)(N − 3) · · · (N − m + 1).

(10)
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This means that

∣∣∂jf (X)
∣∣=

∣∣∣∣∣∂iN(N − 1)

�∑
i=1

βi inj(Hi,X)

N(N − 1) · · · (N − m + 1)

∣∣∣∣∣,

(triangle ineq.) ≤
�∑

i=1

|βi |
∣∣∣∣∂i

inj(Hi,X)

(N − 2) · · · (N − m + 1)

∣∣∣∣,
[
by (10)

]≤ �∑
i=1

|βi |
∣∣E(Hi)

∣∣
as needed. �

The second lemma tells us that that if X and Y differ by only one index, then
∇f (X) and ∇f (Y ) are close to each other.

LEMMA 27. Let f be a subgraph-counting function. Let X,Y ∈ Cn be two
vectors that differ only in a single index k. Let j be an index, ej be the edge that
corresponds to index j , and ek be the edge that corresponds to index k. If ej and
ek share a common vertex, then

∣∣∂jf (X) − ∂jf (Y )
∣∣≤ �∑

i=1

2|βi ||E(Hi)|2√
n

.

If ej and ek do not share a common vertex, then

∣∣∂jf (X) − ∂jf (Y )
∣∣≤ �∑

i=1

6|βi ||E(Hi)|2
n

.

PROOF. Assume without loss of generality that Xk = 1 while Yk = 0. This
means that X contains the edge ek while Y does not. Then for every graph H ,

∂j inj(H,X) − ∂j inj(H,Y )

= inj(H,X+
j ) − inj(H,X−

j )

2
− inj(H,Y+

j ) − inj(H,Y−
j )

2
.

We can assume that j 
= k: If they were equal, then X+
j and X−

j would be equal to

Y+
j and Y−

j , respectively, and the difference ∂j inj(H,X)− ∂j inj(H,Y ) would just
be 0.

Similar to the proof of Lemma 26, the first term inj(H,X+
j )− inj(H,X−

j ) counts
the number of homomorphisms from H to X that map an edge of H into the
edge ej , while the second term inj(H,Y+

j ) − inj(H,Y−
j ) counts the number of

homomorphisms from H to Y that map an edge of H into the edge ej . However,
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the homomorphisms in the first term may map edges from H into the edge ek ,
while those of the second term may not, since ek does not exist in Y . Thus, their
difference is equal to

∂j inj(H,X) − ∂j inj(H,Y )

= #{φ ∈ Inj(H,X+
j ) : {ej , ek} ⊆ E(φ(H))}

2
.

To bound the number of such homomorphisms, we construct them as follows: first
map two of the edges of H to the edges ej and ek , and then injectively map the
remaining vertices of H to vertices of G. There are less than (2|E(H)|)2 ways
to do the former. For the latter, it depends on whether ej and ek have a vertex in
common. If they do not, then the edges in H mapping to ej and ek must also be
disjoint, and mapping them involves choosing 4 vertices to map to the vertices of
ej and ek . This gives (N − 4) · · · (N − m + 1) ways to map the remaining vertices
of H . If ej and ek do have a vertex in common, then it is possible to map the
corresponding edges of H by mapping only 3 vertices to the vertices of ej and ek .
This gives (N − 3) · · · (N − m + 1) ways to map the remaining vertices of H .

So overall, we get that

ej ∩ ek = ∅

=⇒ ∂j inj(H,X) − ∂j inj(H,Y ) ≤ 2
∣∣E(H)

∣∣2(N − 4) · · · (N − m + 1),

ej ∩ ek 
= ∅

=⇒ ∂j inj(H,X) − ∂j inj(H,Y ) ≤ 2
∣∣E(H)

∣∣2(N − 3) · · · (N − m + 1).

This means that for ej ∩ ek =∅, we get

∣∣∂jf (X) − ∂jf (Y )
∣∣=

∣∣∣∣∣∂jN(N − 1)

�∑
i=1

βi

inj(Hi,X)

N · · · (N − m + 1)

− ∂jN(N − 1)

�∑
i=1

βi

inj(Hi, Y )

N · · · (N − m + 1)

∣∣∣∣∣
(triangle ineq.) ≤

�∑
i=1

|βi |
(N − 2) · · · (N − m + 1)

∣∣∂j inj(Hi,X) − ∂j inj(Hi, Y )
∣∣

≤
�∑

i=1

|βi |
(N − 2) · · · (N − m + 1)

· (2∣∣E(Hi)
∣∣2(N − 4) · · · (N − m + 1)

)

=
�∑

i=1

2|βi ||E(Hi)|2
(N − 2)(N − 3)

≤
�∑

i=1

6|βi ||E(Hi)|2
n

,
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while for ej ∩ ek 
= ∅, we get∣∣∂jf (X) − ∂jf (Y )
∣∣

≤
�∑

i=1

|βi |
(N − 2) · · · (N − m + 1)

(
2
∣∣E(Hi)

∣∣2(N − 3) · · · (N − m + 1)
)

=
�∑

i=1

2|βi ||E(Hi)|2
N − 2

≤
�∑

i=1

2|βi ||E(Hi)|2√
n

as needed. �

This result can be generalized to arbitrary X,Y , giving us a bound for the one-
norm ‖∇f (X) − ∇f (Y )‖1.

LEMMA 28. Let f be a subgraph-counting function. Let X,Y ∈ Cn be two
vectors. Then ∥∥∇f (X) − ∇f (Y )

∥∥
1 ≤ C‖X − Y‖1,

where C = 12
∑�

i=1 |βi ||E(Hi)|2.

PROOF. First, assume that X and Y differ only in single coordinate k. Then for
each coordinate j , either the edge ej intersects with ek or not. Holding all other
coordinates fixed, ∇f is linear as a function of the kth coordinate. Then using
Lemma 27, we can write∥∥∇f (X) − ∇f (Y )

∥∥
1

=
n∑

j=1

∣∣∂jf (X) − ∂jf (Y )
∣∣|Xk − Yk|

≤
�∑

i=1

n∑
j=1

(
1ej∩ek=∅

6

n
+ 1ej∩ek 
=∅

2√
n

)
|βi |

∣∣E(Hi)
∣∣2|Xk − Yk|.

The edge ek can intersect at most N different edges at each of its endpoints,
so the number of indices j for which ej ∩ ek 
= ∅ is bounded by 2N ≤ 2

√
2n.

The number of indices j for which ej ∩ ek = ∅ is trivially bounded by n, giv-
ing ∥∥∇f (X) − ∇f (Y )

∥∥
1

≤
�∑

i=1

n∑
j=1

(
1ej∩ek=∅

6

n
+ 1ej∩ek 
=∅

2√
n

)
|βi |

∣∣E(Hi)
∣∣2|Xk − Yk|
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≤
�∑

i=1

(
6
n

n
+ 2 · 2

√
2
√

n√
n

)
|βi |

∣∣E(Hi)
∣∣2|Xk − Yk|

≤ 12
�∑

i=1

|βi |
∣∣E(Hi)

∣∣2|Xk − Yk|.

The above reasoning is valid for X and Y which differ by one coordinate; by
the triangle inequality we achieve the desired result for arbitrary X,Y ∈ Cn.

�

PROOF OF THEOREM 10. By [6], Section 5, the Gaussian-width of the image
of ∇f is bounded by

D(f ) ≤∑
i

|β|∣∣E(Hi)
∣∣N3/2 ≤ Cβn3/4.

By Lemma 26, Lip(f ) ≤ Cβ , and by Lemma 28,

max
X,Y∈Cn

‖∇f (X) − ∇f (Y )‖1

‖X − Y‖1
≤ Cβ

as well. Plugging these bounds into Theorem 25, we obtain the desired results. �

5. Approximate block model for the dense regime. In this section, we prove
Theorem 14. It will be instructive to first prove the theorem for triangle-counting
functions, as this case is simple and gives easy-to-calculate bounds. The same
techniques will then be used to give a sketch of the proof for general subgraph-
counting functions.

The proof technique uses random orthogonal projections in order to perform
some of the calculations in a low-dimensional space. For this, we will need the
following results concerning concentration of measure of orthogonal random pro-
jections.

LEMMA 29 (Orthogonal projections preserve distance. Due to [5], page 62).
Let 0 < δ < 1, let d, k > 0 be positive integers, let π : Rd → R

k be an orthogonal
projection into a uniformly random k dimensional subspace, and let g : Rd → R

k

be defined as g(v) =
√

d
k
π(v). Then for any vector v ∈ R

d ,

Pr
[
(1 − δ)‖v‖2 ≤ ∥∥g(v)

∥∥2 ≤ (1 + δ)‖v‖2]≤ 2e−k(δ2/2−δ3/3)/2.

From this lemma about the magnitude of vectors, it is possible to obtain similar
bounds on the scalar product between two vectors.

LEMMA 30 (Preserving scalar products). Let 0 < δ < 1, let d, k > 0 be pos-
itive integers, and let g : Rd → R

k be a linear transformation. Let u, v ∈ R
d be
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two vectors of norm smaller than 1 such that (1 − δ)‖u ± v‖2 ≤ ‖g(u ± v)‖2 ≤
(1 + δ)‖u ± v‖2. Then ∣∣〈g(v1), g(v2)

〉− 〈v1, v2〉
∣∣≤ 2δ.

The proof is postponed to the Appendix.

5.1. Counting triangles.

PROOF OF THEOREM 14 (FOR THE CASE OF TRIANGLE-COUNTING FUNC-
TIONS). Let N be a positive integer, let α,β ∈ R be real numbers, and let be f

of the form

f (X) = α inj(K2,X) + β

N − 2
inj(K3,X),

where K2 is the complete graph on two vertices and K3 is the triangle graph. Let
X ∈ Xf . It can be verified by direct calculation that

f (X) = α Tr
(
X2)+ β

N − 2
Tr
(
X3)

and

(11) ∇f (X) = α1 + 3β

N − 2
X2,

where X2 is the matrix with zero on the diagonal and whose off-diagonal entries
are those of X2. We then have by Theorem 10 that

(12)
∥∥∥∥X − 1 + tanh(α1 + 3β

N−2X2)

2

∥∥∥∥
1
≤ 5000C2

βn15/16.

We proceed to show that the term 3β
N−2X2 is close to a block matrix with a small

number of communities. This is done roughly as follows: Each entry in the ma-
trix 3β

N−2X2 can be written as the scalar product of two vectors in R
N ; namely,

the column vectors of
√

3β
N−2X. It is possible to project these vectors into a low-

dimensional space, so that their scalar products are almost preserved. This low-
dimensional projection can then be rounded to a δ-net, whose size depends only
on δ and on the dimension. Thus if the dimension is small, then the δ-net is small.
The matrix 3β

N−2X2 can then be approximated by scalar products of elements from
the δ-net, and each element in the net defines a community. Applying tanh entry-
wise, adding the constant 1 and dividing by 2 does not change the block model
parameters, implying that X itself is close to a block matrix.

Denote by vi the ith column of X multiplied by 1/
√

N , so that

(vi)j = 1√
N

Xij .
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Since all the entries of X are in [0,1], each vi lies within the unit ball:

(13) ‖vi‖2 = 1

N

N∑
j=1

X2
ij ≤ 1.

Let f be a triangle-counting function, and assume that β = 1. Then for two distinct
vertices i and j , the derivative ∂ijf is equal to

∂ijf (X) = N

N − 2
〈vi, vj 〉 = N

N − 2

1

N

∑
k

XikXkj =
(

1

N − 2
X2
)

ij

.

This is because the difference between inj(K3,G) with G containing the edge ij

and inj(K3,G) where G does not contain the edge ij is exactly the sum of weights
of all the triangles of the form ijk for k = 1, . . . , n.

Let k > 0 be a positive integer to be chosen later, let U ⊆ R
N be a uniformly

random subspace of dimension k, and denote by π : RN → U an orthogonal pro-

jection from R
N into U . Let g :RN → U be defined as g(v) =

√
N
k
π(v). For every

two indices i 
= j , denote

Bij = {
(1 − δ)‖x‖2 ≤ ∥∥g(x)

∥∥2 ≤ (1 + δ)‖x‖2 for x ∈ {vi, vj , vi + vj , vi − vj }},
the event that g almost preserves the squared norm of both of the original vectors
vi and vj and of their sum and difference vi + vj and vi − vj . By Lemma 29, the
probability for Bij to occur is at least

(14) Pr[Bij ] ≥ 1 − 8e−k(δ2/2−δ3/3)/2.

Under this event, since δ < 1, both g(vi) and g(vj ) are contained inside a ball of
radius 2 around the origin. Further, by Lemma 30, the scalar product between vi

and vj is also almost preserved:

(15)
∣∣〈g(vi), g(vj )

〉− 〈vi, vj 〉
∣∣≤ 2δ.

Let T be a δ-net of the ball of radius 2 around the origin in k dimensions. By [14],
Lemma 2.6, there exists such a net of size smaller than (1 + 4/δ)k+1. For every
vertex i, denote by wi = argminw∈T ‖g(vi) − w‖ the vector in T that is closest
to g(vi), and denote by �wi = wi − g(vi) the difference between the two. Then
under Bij , since g(vi) is in the ball of radius 2, the magnitude of the difference
‖�wi‖ is smaller than δ. In this case,∣∣〈wi,wj 〉 − 〈g(vi), g(vj )

〉∣∣= ∣∣〈g(vi) + �wi,g(vj ) + �wj

〉− 〈g(vi), g(vj )
〉∣∣

= ∣∣〈g(vi),�wj

〉+ 〈�wi,g(vj )
〉+ 〈�wi,�wj 〉

∣∣(
since ‖�w‖ ≤ δ

)≤ 6δ.

Thus, under Bij and together with equation (15), we almost surely have that∣∣〈wi,wj 〉 − 〈vi, vj 〉
∣∣≤ 8δ.
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Denote by X̃ the matrix defined by (X̃)ij = 〈wi,wj 〉 for i 
= j and with 0 on the
diagonal. It is clear that the matrix X̃ is a block matrix, with the communities in
correspondence with the elements of the δ-net T ; hence there are no more than
(1 + 4/δ)k+1 communities in X̃.

The expected value of the one-norm between 1
N

X2 and X̃ is

E

∥∥∥∥ 1

N
X2 − X̃

∥∥∥∥
1
= E

∑
i,j

∣∣∣∣ 1

N

(
X2
)
ij − (X̃)ij

∣∣∣∣
=∑

i 
=j

E
∣∣〈vi, vj 〉 − 〈wi,wj 〉

∣∣.(16)

Each expectation term of the form E|〈vi, vj 〉 − 〈wi,wj 〉| can be controlled by
conditioning on the event Bij . Keeping in mind that in the general case |〈vi, vj 〉 −
〈wi,wj 〉| ≤ 5 since the norm of vi and vj is bounded by 1 and the norm of wi and
wj is bounded by 2, we can bound the expectation by

E
∣∣〈vi, vj 〉 − 〈wi,wj 〉

∣∣= E
[∣∣〈vi, vj 〉 − 〈wi,wj 〉

∣∣ | Bij

]
Pr[Bij ]

+E
[∣∣〈vi, vj 〉 − 〈wi,wj 〉

∣∣ | ¬Bij

]
Pr[¬Bij ]

≤ 8δ · 1 + 5 · 8e−k(δ2/2−δ3/3)/2.

Choosing k = 
2 log(1/δ)(δ2/2 − δ3/3)−1�, we have

E
∣∣〈vi, vj 〉 − 〈wi,wj 〉

∣∣≤ 48δ.

Plugging this into equation (16), we obtain the bound

E

∥∥∥∥ 1

N
X2 − X̃

∥∥∥∥
1
≤ 48δn.

Hence, there exists a block matrix X̂ with no more than (1+4/δ)k+1 communities
such that ∥∥∥∥ 1

N
X2 − X̂

∥∥∥∥
1
≤ 48δn.

Multiplying both sides by 3βN/(N − 2), we have that∥∥∥∥ 3β

N − 2
X2 − 3βN

N − 2
X̂

∥∥∥∥
1
≤ 144

N

N − 2
βδn ≤ 450βδn.

Note that the function tanh is contracting; that is,

(17)
∣∣tanh(x) − tanh(y)

∣∣≤ |x − y|.
This implies that∥∥∥∥1 + tanh(α1 + 3β

N−2X2)

2
− 1 + tanh(α1 + 3βN

N−2X̂)

2

∥∥∥∥
1

= 1

2

∥∥∥∥ 3β

N − 2
X2 − 3βN

N − 2
X̂

∥∥∥∥
1
≤ 225βδn.
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Finally, by equation (12),
∥∥∥∥X − 1 + tanh(α1 + 3β

N
X2)

2

∥∥∥∥
1
≤ 5000C2

βn15/16,

and so by the triangle inequality, denoting X∗ = 1+tanh(α1+3βX̂)
2 ,∥∥X − X∗∥∥

1 ≤ 225βδn + 5000C2
βn15/16. �

5.2. Counting general subgraphs. In this section, we give a proof sketch of
general form of Theorem 14. The proof relies on the same techniques as those in
the previous subsection, which gave block matrix bounds for the specific case of
triangles.

Let X ∈ Xf . The main argument in the previous proof was as follows: For tri-

angles, each entry in the gradient ∇f (X) = 3β
N−2X2 was written as a scalar prod-

uct between two vectors. These vectors were then projected to a low dimensional
space, yielding a block matrix form.

We will generalize the above procedure, and show that the gradient ∇f of any
subgraph-counting function f can be written as a sum of scalar products of vec-
tors: There exist an integer S > 0, a family of constants cr , r = 1, . . . , S, and two
families of vectors vr

i and ur
i of norm smaller than 1, such that

(18) ∂ijf =
S∑

r=1

cr

〈
vr
i , u

r
j

〉
.

The number of scalar products S and the constants cr depend on the subgraphs
Hk that f counts and their weights βk , but do not grow explicitly with N . Repeat-
ing the reasoning in the previous proof, these vectors can all be simultaneously
projected by an orthogonal projection g to a low dimensional space, so that

∂ijf ≈
S∑

r=1

cr

〈
g
(
vr
i

)
, g
(
ur

j

)〉
.

Taking a δ-net of the sphere in the new space will give us an approximation of
these sums: For every r we will obtain a block matrix Wr whose ij th entry ap-
proximates the scalar product 〈g(vr

i ), g(ur
j )〉. As before, the number of communi-

ties of Wr will depend only on δ. Finally, since the sum of S block matrices is also
a block matrix (albeit with a number of communities exponential in S), the sum∑S

r=1 cr〈g(vr
i ), g(ur

j )〉 is itself a block matrix, with a number of communities that
depends only on the subgraphs Hk , their weights βk , and on δ.

Let us now fill in some of the details for this proof sketch. Let H = ([m],E(H))

be a finite simple graph on m vertices with edge set E(H). This simple edge set
can also be viewed as a directed edge set, with two directed edges replacing ev-
ery original simple edge: D(H) =⋃

{x,y}∈E(H){(x, y), (y, x)}. The essential part
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of the proof is showing that ∂i,j inj(H,G) can be obtained by scalar products as
above; the rest will follow from linearity.

Let i be a vertex of G and let e = (x, y) ∈ D(H) be an oriented edge of H .
Denote by �e the set of all injective maps from H \ {x, y} to G. The vectors ve

i

and ue
i will have one entry for every function φ ∈ �e. For ve

i , the entry ve
i (φ)

contains the weight of edges from i to the image φ(H \ {y}), times the square
root of the weight of the image φ(H \ {x, y}). For ue

i , the entry ue
i (φ) contains

the weight of edges from i to the image φ(H \ {x}), times the square root of the
weight of the image φ(H \ {x, y}). More formally, for every φ ∈ �e,

ve
i (φ) = ∏

a s.t. {x,a}∈E(H\{y})
Xi,φ(a)

∏
{a,b}∈E(H\{x,y})

√
Xφ(a),φ(b),

ue
i (φ) = ∏

a s.t. {y,a}∈E(H\{x})
Xi,φ(a)

∏
{a,b}∈E(H\{x,y})

√
Xφ(a),φ(b).

For two different vertices i 
= j , the scalar product between two vectors becomes

〈
ve
i , u

e
j

〉= ∑
φ∈�e

( ∏
{x,a}∈E(H\{y})

Xi,φ(a)

∏
{y,a}∈E(H\{x})

Xj,φ(a)

· ∏
{a,b}∈E(H\{x,y})

Xφ(a),φ(b)

)
.

Let us inspect this scalar product. For each fixed φ, the summand is the edge weight
of the image of the homomorphism ψ : H → G, where

ψ(z) =

⎧⎪⎪⎨
⎪⎪⎩

i z = x,

j z = y,

φ(z) o.w.

The mapping ψ is in general not an injection: Although φ itself was chosen to be
an injection, the function ψ is not one-to-one when φ(a) = i or φ(a) = j for some
a ∈ H . But in this case, either Xi,φ(a) or Xj,φ(a) are 0, since the diagonal entries
of X are 0. Thus, summing over all φ effectively means summing over all injective
mappings that send the particular (directed) edge (x, y) in H to (i, j) in G. By the
discussion in the proof of Lemma 26, summing over all possible edges e that can
map to (i, j) exactly gives the definition of the discrete derivative:

∂ij inj(H,G) = 1

2

∑
e∈D(H)

〈
ve
i , u

e
j

〉
.

The gradient of a subgraph-counting function that counts a single subgraph H with
weight β can then be written as

∂ijf = β

2(N − 2) · · · (N − m + 1)

∑
e∈D(H)

〈
ve
i , u

e
j

〉
.
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When we proved the theorem for the case of triangles, it was important that the
vectors were of unit length—this meant that the projection was contained in a ball
of radius 2, and this is what allowed us to take a δ-net that did not depend on N .
This is the case here as well: Each entry of ve

i and ue
i is bounded by 1. Their

norm is therefore bounded by the square root of the number of entries, which is
the number of injective mappings from H \ {x, y} to G. Thus,∥∥ve

i

∥∥2 ≤ |�e| < N(N − 1) · · · (N − m + 3).

This means that ve
i /

√
N · . . . · (N − m + 3) and ue

i /
√

N · . . . · (N − m + 3) have
their norm bounded by 1.

Finally, for the case of general subgraph-counting functions that count the sub-
graphs H1, . . . ,H� with weights β1, . . . , β�, we have that

∂ijf =
�∑

k=1

N(N − 1)

(N − mk + 2)(N − mk + 1)

·
(

βk

2

2|E(Hk)|∑
r=1

〈
v

k,r
i√

N · . . . · (N − mk + 3)
,

u
k,r
j√

N · . . . · (N − mk + 3)

〉)
.

This shows that ∂ijf can indeed be written in the form of equation (18).

6. Positive weights.

6.1. The exact case. We would like to first give some intuition regarding
the proof of Theorem 18: We will show that if all the weights βi are posi-
tive and if x = ϕ(x) has a unique solution, then the fixed-point equation X =
(1 + tanh(∇f (X)))/2 has a single solution x01. The proof that any X ∈ Xf is
close to x01 will be more involved but analogous.

For clarity, we will assume that f counts edges and triangles. Let α,β ∈ R with
β > 0, and let f be of the form

f (X) = α inj(K2,X) + β

N − 2
inj(K3,X),

where K2 is an edge and K3 is the triangle graph. Direct calculation shows that
∇f (X) = α1+ 3β

N−2X2. In terms of the adjacency matrix, the fixed- point equation
is then

(19) X = 1 + tanh(α1 + 3β
N−2X2)

2
.

Let X be a solution to equation (19). Denote by a the minimum off-diagonal entry
of X and by b the maximum off-diagonal entry of X. For every index i and j with
i 
= j , we have

3β

N − 2

(
X2
)
ij = 3β

N − 2

N∑
k=1

XikXkj .
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For k = i and k = j , we have Xii = Xjj = 0. For all other indices k, Xik ≤ b by
definition, so

(20)
3β

N − 2

(
X2
)
ij ≤ 3βb2.

This is where the condition β > 0 comes into play: The inequality would have
been reversed had β been negative. The maximum element of the right- hand side
of equation (19) is

max
1 + tanh(α1 + 3β

N−2X2)

2
≤ 1 + tanh(α1 + 3βb2)

2
.

Taking the maximum of both sides of equation (19), we get

b ≤ 1 + tanh(α1 + 3βb2)

2
.

By similar argument, we get that

3β

N − 2

(
X2
)
ij ≥ 3βa2,

and hence

a ≥ 1 + tanh(α1 + 3βa2)

2
.

Putting both of these together, we must solve the two inequalities

2a − 1 ≥ tanh
(
α1 + 3βa2),

2b − 1 ≤ tanh
(
α1 + 3βb2).(21)

By assumption, there is exactly one solution x0 to the equation 2x −1 = tanh(α1+
3βx2). By equation (21), we would then need that a ≥ x0 and b ≤ x0. But a is the
minimum off-diagonal entry of X and b is the maximum off-diagonal entry of X,
so they must be equal. Hence the constant solution x01 of Lemma 17 is the only
solution; see Figure 1 for an illustration.

In order to generalize this argument to any subgraph-counting function, recall
that every entry of ∇f (x1) is just some polynomial p(x). If all the weights are
βi are positive then the preceding argument can be repeated for p(x) with the
inequalities all intact.

6.2. Closeness.

PROOF OF THEOREM 18. Let X ∈ Xf . We would have liked to use an argu-
ment in the same vein as that of Section 6.1 and claim that the solution X is close
to a constant solution because its minimum and maximum entries are close to each
other. However, this is not in general true: A matrix X can easily have minX = 0
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FIG. 1. An illustration of the permissible range for a and b.

and maxX = 1 while still satisfying the equation ‖X − (1 + tanh(∇f (X)))/2‖1 =
o(n), since the equation is not sensitive to changes in a small number of entries.

To overcome this, we will iterate the function 1+tanh(∇f (X))
2 , showing that each

time we do so, the minimum and maximum values tend closer to a constant.
Define the sequence of functions {ϕi}∞i=1 by ϕ1(x) = ϕβ(x) and ϕi+1(x) =

ϕ(ϕi(x)) for i ≥ 1. Denote k = 
 logλ
logDβ

� = 
logDβ
(λ)�. By assumption, for all

x0 ∈ [0,1] we have ∣∣ϕβ(x) − x0
∣∣≤ Dβ |x − x0|.

This implies that

(22)
∣∣ϕk(x) − x0

∣∣≤ Dk
β |x − x0| ≤ λ.

Denote by � : Rn → R
n the function �(X) = 1+tanh(∇f (X))

2 , let Y0 = X and re-
cursively define Yi+1 = �(Yi). Then ‖Yk − x01‖∞ ≤ λ. To see this, observe that
since all β’s are positive,

minY1 = min�(X) = min
1 + tanh(∇f (X))

2

≥ min
1 + tanh(∇f ((minX)1))

2

= ϕ(minX).

Iterating, we have that

minYk ≥ ϕk(minX).
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But by equation (22), |ϕk(x) − x0| < λ for every x ∈ [0,1], and in particular for
minX. Hence

minYk ∈ [x0 − λ,x0 + λ].
The same argument can be applied to maxYk , showing that all of Yk’s entries are
in [x0 − λ,x0 + λ]. Consequently,

(23) ‖Yk − x01‖1 ≤ λn.

The distance between X and Yk can be bounded as follows. By Lemma 28, we
have that for any two matrices A and B ,∥∥�(A) − �(B)

∥∥
1 ≤ Cβ‖A − B‖1.

This gives a bound on consecutive iterations:

‖Yi − Yi−1‖1 = ∥∥�(Yi−1) − �(Yi−2)
∥∥

1

≤ Cβ‖Yi−1 − Yi−2‖1,

and so by induction,

‖Yi − Yi−1‖1 ≤ Ci
β‖X − Y1‖1 = Ci

β

∥∥X − �(X)
∥∥

1.

Using this bound, we have

‖X − Yk‖1 =
∥∥∥∥∥

k∑
i=1

Yi − Yi−1

∥∥∥∥∥
1

≤
k∑

i=1

‖Yi − Yi−1‖1

≤
k∑

i=1

Ci
β

∥∥X − �(X)
∥∥

1

≤ 2Ck
β

∥∥X − �(X)
∥∥

1.

(24)

Combining equations (23), (24) and Theorem 10, we have

‖X − x01‖1 ≤ λn + C

logλ
logDβ

+1

β 10,000C2
βn15/16

= λn + 10,000C3
βλ

logCβ
logDβ n15/16.

Optimizing over λ gives the dependence described in equation (9). �
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7. Small weights. In this section, we prove Theorem 19.

PROOF. We will show that the function

�f (X) = 1 + tanh(∇f (X))

2
is contracting if Sβ < 1. For that, we will need the following lemma, whose proof
is postponed to the Appendix.

LEMMA 31. Let f be a subgraph counting function. Then for any two matri-
ces X,Y ∈ Cn,

∥∥∇f (X) − ∇f (Y )
∥∥

1 ≤
�∑

i=1

|βi |mi(mi − 1)‖X − Y‖1.

Using this lemma, we have that

∥∥�f (X) − �f (Y )
∥∥

1 =
∥∥∥∥1 + tanh(∇f (X))

2
− 1 + tanh(∇f (Y ))

2

∥∥∥∥
1[

by equation (17)
]≤ 1

2

∥∥∇f (X) − ∇f (Y )
∥∥

1

(by Lemma 31) ≤ 1

2

�∑
i=1

|βi |mi(mi − 1)‖X − Y‖1

=
�∑

i=1

|βi |
(
mi

2

)
‖X − Y‖1

= Sβ‖X − Y‖1.

(25)

If Sβ < 1, then �f (X) is contracting, and by Banach’s fixed-point theorem it
has a unique fixed point in the compact space of all matrices with entries in [0,1];
we already know by Lemma 17 that it is a constant solution Xc = c · 1. This shows
the first part of Theorem 19. For the second part, let X ∈ Xf . Then by a simple
calculation,

‖X − Xc‖1 = ∥∥X − �f (X) + �f (X) − Xc + �f (Xc) − �f (Xc)
∥∥

1

≤ ∥∥X − �f (X)
∥∥

1 + ∥∥�f (X) − �f (Xc)
∥∥

1 + ∥∥Xc − �f (Xc)
∥∥

1

= ∥∥X − �f (X)
∥∥

1 + ∥∥�f (X) − �f (Xc)
∥∥

1[
by equation (25)

]≤ ∥∥X − �f (X)
∥∥

1 + Sβ‖X − Xc‖1.

Rearranging, we get the desired result:

‖X − Xc‖1 ≤ ‖X − �f (X)‖1

1 − Sβ
≤ 5000C2

β

1 − Sβ
n15/16. �



EXPONENTIAL GRAPHS BEHAVE LIKE BLOCK MODELS 3727

8. Two block model. The proof of Theorem 21 is rather technical. It goes
roughly as follows: We assume that there exists a fixed point of the form

X = α1v1v
T
1 + α2v2v

T
2 − I(α1 + α2),

where v1 is the vector (1,1, . . . ,1) whose entries are all 1, and v2 is the vector
(−1, . . . ,−1,1, . . . ,1) whose first N/2 entries are −1 and whose second N/2
entries are 1. From this assumption, we arrive at pair of nonlinear scalar equations
for α1 and α2; nontrivial solutions of these equations guarantee a nontrivial block
model for X. We then show by direct calculation that for large enough |β|, such a
solution does indeed exist.

We postpone the proof to the Appendix.

APPENDIX

PROOF OF LEMMA 30. We will show the proof only for the inequality
〈g(v1), g(v2)〉 − 〈v1, v2〉 ≤ 2δ; the inequality 〈v1, v2〉 − 〈g(v1), g(v2)〉 ≤ 2δ fol-
lows a similar calculation.

The scalar product between any two vectors x and y can be written as a function
of x + y and x − y:

〈x, y〉 = 1

4

(‖x + y‖2 − ‖x − y‖2).
We can now calculate:

〈
g(v1), g(v2)

〉= 1

4

(∥∥g(v1) + g(v2)
∥∥2 − ∥∥g(v1) − g(v2)

∥∥2)

= 1

4

(∥∥g(v1 + v2)
∥∥2 − ∥∥g(v1 − v2)

∥∥2)

≤ 1

4

(
(1 + δ)‖v1 + v2‖2 − (1 − δ)‖v1 − v2‖2)

= 1

4

(
4〈v1, v2〉 + δ‖v1 + v2‖2 + δ‖v1 − v2‖2)

(
because ‖v1 ± v2‖2 ≤ 4

)≤ 1

4

(
4〈v1, v2〉 + 8δ

)
= 〈v1, v2〉 + 2δ.

This implies that 〈g(v1), g(v2)〉 − 〈v1, v2〉 ≤ 2δ. �

LEMMA 32. Let I ⊆ [n] be a set of indices. Then for any X,Y ∈ Cn,∣∣∣∣∏
α∈I

Xα − ∏
α∈I

Yα

∣∣∣∣≤∑
α∈I

|Xα − Yα|.
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PROOF. By induction on |I |. Let β ∈ I . Then∣∣∣∣∏
α∈I

Xα − ∏
α∈I

Yα

∣∣∣∣=
∣∣∣∣∏
α∈I

Xα − ∏
α∈I

Yα + Yβ

∏
α∈I
α 
=β

Xα − Yβ

∏
α∈I
α 
=β

Xα

∣∣∣∣

=
∣∣∣∣
(∏

α∈I
α 
=β

Xα

)
(Xβ − Yβ) + Yβ

(∏
α∈I
α 
=β

Xα − ∏
α∈I
α 
=β

Yα

)∣∣∣∣

≤ |Xβ − Yβ | +
∣∣∣∣∏
α∈I
α 
=β

Xα − ∏
α∈I
α 
=β

Yα

∣∣∣∣,

where the last inequality is because |Xα| ≤ 1 for all α. �

PROOF OF LEMMA 31. It is enough to show the result for a function f that
counts just a single subgraph H = (V ,E) with m := |E|; the general result follows
by linearity of the derivative and the triangle inequality. By equation (5),

∂fij (X) = β

(N − 2)(N − 3) · · · (N − m + 1)

· ∑
(a,b)∈E

∑
q∈[N]m

q has distinct elements
qa=i,qb=j

∏
(l,l′)∈E

{l,l′}
={a,b}

Xql,ql′ .

The difference between the gradients is then∥∥∇f (X) − ∇f (Y )
∥∥

1

=∑
ij

∣∣∣∣ |β|
(N − 2)(N − 3) · · · (N − m + 1)

· ∑
(a,b)∈E

∑
q∈[N]m

q has distinct elements
qa=i,qb=j

( ∏
(l,l′)∈E

{l,l′}
={a,b}

Xql,ql′ − ∏
(l,l′)∈E

{l,l′}
={a,b}

Yql,ql′

)∣∣∣∣.

By Lemma 32, this can be bounded by

∥∥∇f (X) − ∇f (Y )
∥∥

1 ≤∑
ij

|β|
(N − 2)(N − 3) · · · (N − m + 1)

· ∑
(a,b)∈E

∑
q∈[N]m

q has distinct elements
qa=i,qb=j

∑
(l,l′)∈E

{l,l′}
={a,b}

|Xql,ql′ − Yql,ql′ |.
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Fix a pair of vertices α, β . By symmetry, as i and j span over all possible pairs of
vertices, the term |Xα,β −Yα,β | appears m(m− 1)(N − 2)(N − 3) · · · (N −m+ 1)

times. Thus ∥∥∇f (X) − ∇f (Y )
∥∥

1 ≤ |β|m(m − 1)‖X − Y‖1. �

LEMMA 33. For every α ∈ R, the equation

2x − 1 = tanh
(
αx2)

has a unique solution with x ∈ (0,1).

PROOF. Denote g(x) = 2x −1 and h(x) = tanh(αx2); we must then show that
there is a unique point x ∈ (0,1) such that g(x) = h(x):

• The case α = 0 is solved by x = 1
2 .

• The case α < 0: The function g(x) is strictly increasing with g(0) = −1 and
g(1) = 1, while h(0) = 0 and is strictly decreasing. A solution exists as both
functions are continuous.

• The case α > 0: The function g(x) is increasing with g(0) = −1 and g(1) = 1,
while h(0) = 0 and h is strictly bounded by 1; hence by continuity a solution
exists. For uniqueness of this solution, denote the smallest point of intersection
of g and h by x1. Note that x1 > 1

2 , since g(1
2) = 0 and h(1

2) > 0. Since g(x) <

h(x) in the interval [0, x1), the derivative h′ must be no greater than g′ = 2
at x1. But in order for there to be another point of intersection, the derivative
must be larger than 2 at some point in the interval [x1,1]. Differentiating, we
have

(26) h′(x) = 2αx

cosh2(αx2)
.

Differentiating again, we have

h′′(x) = 2α

cosh2(αx2)

(
1 − 4αx2 tanh

(
αx2)).

The maximum of the derivative is attained when the second derivative is 0, that
is, 1 − 4αx2 tanh(αx2) = 0. This implies that 2αx = 1

2 tanh(αx2)x
. Substituting

this into equation (26), we get that for all 1
2 < x < 1,

h′(x) = 2αx

cosh2(αx2)

≤ 1

x · 2 tanh(αx2) cosh2(αx2)

= 1

x · 2 sinh(αx2) cosh(αx2)

= 1

x · sinh(2αx2)
< 2
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FIG. 2. Two examples showing that there is only one intersection between 2x − 1 and tanh(αx2).

since x > 1
2 and sinh(2αx2) > 1. Hence no other intersection point ex-

ists.

See Figure 2 for a visual illustration of g and h. �

PROOF OF THEOREM 21. For simplicity, instead of solving the equation X =
1+tanh(

3β
N−2 X2)

2 for negative β , we will solve the equation X = 1−tanh(
β

N−2 X2)

2 for
positive β (where we assimilated the factor of 3 inside β).

Denote by v1 the vector (1,1, . . . ,1) whose entries are all 1, and by v2 the
vector (−1, . . . ,−1,1, . . . ,1) whose first N/2 entries are −1 and whose second
N/2 entries are 1. Let

X = α1v1v
T
1 + α2v2v

T
2 − I(α1 + α2).

Then X is a symmetric matrix with 0 on the diagonal, α1 + α2 in the top left
and bottom right quarters, and α1 − α2 in the top right and bottom left quarters.
Squaring X, we get

X2 = (
α1v1v

T
1 + α2v2v

T
2 − I(α1 + α2)

)2
= α2

1
(
v1v

T
1
)2 + α2

(
v2v

T
2
)2 + I(α1 + α2)

2

− 2α1(α1 + α2)v1v
T
1 − 2α2(α1 + α2)v2v

T
2

= (
α2

1(N − 2) − 2α1α2
)
v1v

T
1

+ (α2
2(N − 2) − 2α1α2

)
v2v

T
2 + I(α1 + α2)

2.

Setting the diagonal to zero, we have

X2 = (
α2

1(N − 2) − 2α1α2
)
v1v

T
1 + (α2

2(N − 2) − 2α1α2
)
v2v

T
2

− I
(
α2

1(N − 2) + α2
2(N − 2) − 4α1α2

)
.
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So β
N−2X2 is a symmetric matrix with 0 on the diagonal, β

N−2((α2
1 + α2

2)(N −
2) − 4α1α2) in the top left and bottom right quarters, and β(α2

1 − α2
2) in the top

right and bottom left quarters. The matrix tanh(
β

N−2X2) can then also be written
as a sum of the form av1v

T
1 + bv2v

T
2 − I(a + b), where

tanh
(
β

((
α2

1 + α2
2
)
(N − 2) − 4

N − 2
α1α2

))
= a + b,

tanh
(
β
(
α2

1 − α2
2
))= a − b.

(27)

The expression
1−tanh(

β
N−2 X2)

2 can then be written as

1 − tanh(
β

N−2X2)

2
= 1 − a

2
v1v

T
1 − b

2
v2v

T
2 + I

(
1

2
a + 1

2
b − 1

2

)
.

Equating this with X, we get

α1 = 1 − a

2
,

α2 = −b

2
.

Rearranging and plugging into equation (27), we obtain the following two equa-
tions in two variables:

tanh
(
β

((
α2

1 + α2
2
)− 4

N − 2
α1α2

))
= 1 − 2α1 − 2α2,

tanh
(
β
(
α2

1 − α2
2
))= 1 − 2α1 + 2α2.

(28)

We will now show that for large enough β , these equations have at least two solu-
tions. As shown in Lemma 17, there is always a constant X = c · 1 is solution to
the fixed-point equation (7). It corresponds to the case α2 = 0; in this case the two
equations both identify to tanh(βα2

1) = 1 − 2α1. We must therefore show that that
for large enough β , there is a solution with α2 
= 0.

Let us change variables in order to bring the equations to a more friendly form.
Denote x = α1 + α2 and y = α1 − α2. Then α2

1 − α2
2 = xy, α2

1 + α2
2 = 1

2(x2 + y2)

and α1α2 = 1
4(x2 − y2), and (28) can be rewritten as

tanh
(

β

N − 2

(
N − 4

2
x2 + N

2
y2
))

= 1 − 2x,

tanh(βxy) = 1 − 2y.

(29)

We now need to show that there exists a solution with x 
= y.
The matrix X has entries in [0,1], so we know that

0 ≤ α1 − α2 ≤ 1,

0 ≤ α1 + α2 ≤ 1.
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FIG. 3. Two examples illustrating the behavior of g and h. For small β , there is only one intersec-
tion between them, while for large β there are 3. For making these images, N was assumed large
enough so that N − 4 ≈ N − 2 ≈ N .

Hence x and y are also in [0,1]. For the first equation in (29), if x is small enough,
then there is a unique y ∈ R the satisfies it. Denote this y by g(x); its range and
domain will be calculated later. For the second equation, a unique y ∈ (0,1) exists
for all x ∈ [0,1] since tanh(βxy) is an increasing function of y while 1 − 2y is a
decreasing function y. Denote this y by h(x) : [0,1] → (0,1).

Showing that a nonconstant solution exists therefore requires showing that g

and h intersect at a point for which x 
= y. Figure 3 shows that this is indeed the
case for large enough β (by numerical calculations, the solution first appears at
around β ≈ 22, if we approximate N − 4 ≈ N − 2 ≈ N ).

Let us now grit our teeth and show this result analytically. First, consider h. It
satisfies the functional equation

tanh
(
βxh(x)

)− 1 + 2h(x) = 0.

At x = 0, we must have h(0) = 1
2 . Differentiating, we get

β(h(x) + xh′(x))

cosh2(βxh(x))
+ 2h′(x) = 0.

Isolating h′, we obtain

h′(x) = − βh(x)

βx + 2 cosh2(βxh(x))
.

Thus h is decreasing. Forgoing calculations, differentiating again shows that h′′ is
positive. Hence h′ is increasing, so we can bound h′ by

h′(x) ≥ h′(0)

= − βh(0)

β · 0 + 2 cosh2(β · 0 · h(0))

= −β/2.

(30)
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Now consider g. It satisfies the functional equation

(31) tanh
(

β

N − 2

(
N − 4

2
x2 + N

2
g2(x)

))
− 1 + 2x = 0.

First, let us calculate its domain.
There exists an x1 > 0 such that g(x1) = 1. Indeed, setting g(x) = 1, we have

tanh
(

β

2

(
N − 4

N − 2
x2 + N

N − 2

))
= 1 − 2x.

At x = 0, the left-hand side is equal to tanh(
β
2

N
N−2), which is smaller than 1.

The left-hand side is increasing as a function of x, while the right-hand side is
decreasing as a function of x, with derivative −2. Hence a solution x1 exists, with

x1 ≤ 1 − tanh(
β
2 )

2
.

Using tanh(z) = 1−e−2z

1+e2z , this can also be written as

x1 ≤ 1 − 1−e−β

1+e−β

2
=

2e−β

1+e−β

2
= 2e−β

1 + e−β
≤ 2e−β.

There exists an x2 such that g(x2) = 0. Indeed, setting g(x) = 0, we get

tanh
(
β

N − 4

2(N − 2)
x2
)

= 1 − 2x,

and a unique solution exists by Lemma 33. It is clear that for all x1 < x < x2, a
unique solution exists for g(x). Differentiating equation (31), we get

β
N−2((N − 4)x + Ng(x)g′(x))

cosh2(
β

N−2(N−4
2 x2 + N

2 g2(x)))
+ 2 = 0,

and isolating g′, we obtain

g′(x) = −2 cosh2(
β

N−2(N−4
2 x2 + N

2 g2(x))) − β
N−2(N − 4)x

βg(x)
.

This is negative, and so g is decreasing. The domain of g is therefore [x1, x2], and
its range is [0,1].

We may now finally inspect the intersection of g and h. Let ε = 2
β2 , and let β

be large enough so that 1
2ε = 1

β2 > 2e−β > x1; this implies that ε − x1 ≥ 1
β2 . By

(30) and the fact that h(0) = 1
2 , we have that

h(ε) ≥ 1

2
− εβ/2

= 1

2
− 1

β
.
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Assume by contradiction that in the interval [x1, ε], there is no intersection be-
tween g and h. Since g(x1) = 1 > h(x1), this means that in g(x) > h(x) for the
entire interval [x1, ε]. In particular, we have g(x) > 1

2 − 1
β

. We can then give a
bound on the derivative g′:

g′(x) = −2 cosh2(
β

N−2(N−4
2 x2 + N

2 g2(x))) − β
N−2(N − 4)x

βg(x)

≤ −2 cosh2(βg2(x))

β

≤ −2 cosh2(β(1
2 − 1

β
)2)

β

(for β > 4) ≤ −2 cosh2(β(1
4)2)

β

= −2 cosh2(
β
16)

β
.

We then have

g(ε) ≤ g(x1) + (ε − x1)
−2 cosh2(

β
16)

β

≤ 1 + 1

β2

−2 cosh2(
β
16)

β

= 1 − 2 cosh2(
β
16)

β3 .

This quantity goes to −∞ as β → ∞. This is a contradiction, as we assumed
g(x) ≥ 1

2 − 1
β

in the interval [x1, ε]. Thus for β large enough, the curves g and h

intersect at a point x∗ ∈ [x1,
2
β2 ]. This intersection point satisfies g(x∗) ≥ 1

2 − 1
β

;

for β > 4, we have y = g(x∗) > 1
4 . However, x∗ ≤ 2

β2 < 1
4 . This intersection point

does not satisfy x = y and, therefore, does not correspond to the constant solution.
Finally, as β → ∞, it is clear that x∗ → 0 and y∗ = g(x∗) → 1

2 , implying that
α1 → 1

4 and α2 → −1
4 , meaning that X tends to the adjacency matrix of a bipartite

graph. �
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