Electronic Journal of Statistics

Vol. 11 (2017) 5105-5164

ISSN: 1935-7524
https://doi.org/10.1214/17-EJS1340SI

Asymptotically exact inference in
differentiable generative models

Matthew M. Graham and Amos J. Storkey

School of Informatics
University of Edinburgh
e-mail: m.m.graham@ed.ac.uk; a.storkey@ed.ac.uk

Abstract: Many generative models can be expressed as a differentiable
function applied to input variables sampled from a known probability distri-
bution. This framework includes both the generative component of learned
parametric models such as variational autoencoders and generative adver-
sarial networks, and also procedurally defined simulator models which in-
volve only differentiable operations. Though the distribution on the input
variables to such models is known, often the distribution on the output
variables is only implicitly defined. We present a method for performing
efficient Markov chain Monte Carlo inference in such models when condi-
tioning on observations of the model output. For some models this offers an
asymptotically exact inference method where approximate Bayesian compu-
tation might otherwise be employed. We use the intuition that computing
conditional expectations is equivalent to integrating over a density defined
on the manifold corresponding to the set of inputs consistent with the
observed outputs. This motivates the use of a constrained variant of Hamil-
tonian Monte Carlo which leverages the smooth geometry of the manifold
to move between inputs exactly consistent with observations. We validate
the method by performing inference experiments in a diverse set of models.

MSC 2010 subject classifications: Primary 65C05; secondary 62F15.
Keywords and phrases: Generative models, implicit models, Markov
chain Monte Carlo, approximate Bayesian computation.

Received June 2017.

Contents

Introduction
Notation
Problem definition oo
Differentiable generative models
Approximate Bayesian Computation
Inference in the input space oL
Constrained Hamiltonian Monte Carlo
Implementation details L.
Related work
10 Numerical experiments
11 Discussion o L e
Acknowledgements L
References o L

© 00 O Uk Wi

http://projecteuclid.org/ejs
https://doi.org/10.1214/17-EJS1340SI
mailto:m.m.graham@ed.ac.uk
mailto:a.storkey@ed.ac.uk

5106 M. M. Graham and A. J. Storkey
1. Introduction

There has been a long interest in probabilistic models which are defined implic-
itly [10, 40, 27] - that is where we can generate random values for the latent
and observed variables in the model, but we cannot tractably evaluate a density
function for the probability distribution on those variables. This is in contrast
to the more typical case where the probabilistic model of interest is defined by
specifying an explicit (potentially unnormalised) probability density function on
latent and observed variables, often via a graphical model such as a Bayesian
network [74], Markov random field [45] or factor graph [32].

Although implicit models are challenging to work with from an inferential
perspective, they are ubiquitous in science and engineering in the form of prob-
abilistic models defined by the computational simulation of a physical or biolog-
ical system. Typically simulator models are specified procedurally in code with
any stochasticity introduced by drawing values from a pseudo-random number
generator (PRNG). The complexity of the function mapping from random in-
puts to simulated outputs means that computing a probability density on the
outputs is usually at best computationally challenging and often intractable.

Implicit models also arise through use of distributions defined by their quan-
tile function (inverse of the cumulative distribution function (CDF)) [42, 95].
Independent samples can be easily generated from such distributions by map-
ping standard uniform variates through the quantile function. Although these
quantile distributions can offer very flexible descriptions of shape of a distribu-
tion [36] often the quantile function will not have a closed-form inverse meaning
their CDF and so density function cannot be evaluated analytically.

Recently implicit generative models have also been the subject of much inter-
est in the machine learning community due to the significant gains in modelling
flexibility offered by dropping the requirement to be able to compute an explicit
density function on model outputs [62, 93]. For instance generative-adversarial
networks (GANs) [38] have become a popular approach in unsupervised machine
learning for training models which can generate plausible simulated data points,
typically images, given a large collection of data points to learn from. The gen-
erator of a GAN takes the form of differentiable network which receives as input
a vector of values drawn from a simple distribution such as the standard nor-
mal and outputs for example a generated image. The generator function will
typically be non-injective however, meaning that we cannot tractably evaluate
the probability density of the generated outputs as this requires integrating over
implicitly defined sets of inputs consistent with a particular output.

A lack of an explicit density on the variables in a generative model makes
it non-trivial to apply approximate inference approaches such as Markov chain
Monte Carlo (MCMC) to infer the values of unobserved variables given known val-
ues for a set of observed variables in the model. This has spurred the development
of inference approaches specifically targeted at implicit generative models such
as indirect inference [40] and approzimate Bayesian computation (ABC) [10].

In both indirect inference and ABC, inferences about plausible values of the
unobserved variables are made by computing distances between simulated ob-

Inference in differentiable generative models 5107

served variables and data. At a qualitative level, values of the unobserved vari-
ables associated with simulated observations that are ‘near’ to the data are
viewed to be more plausible. This approximation that the simulated observa-
tions are only close but not equal to the observed data makes the inference
problem more tractable but also biases the inference output. Further distance
measures tend to become increasingly less informative as the dimensionality of a
space increases, making it difficult to use these approaches to perform inference
in models with large numbers of unobserved variables [56].

In this article we describe a Hamiltonian Monte Carlo (HMC) [28, 55] method
for performing inference in a sub-class of implicitly-defined generative models
where the mapping from random inputs to the model to simulated observed and
latent variables is differentiable. Unlike existing approaches, this method allows
inference to be performed by conditioning the observed variables in the model to
be arbitrarily close to data values. This means that subject to the usual condi-
tions on the Markov chain being irreducible and aperiodic, asymptotically exact
inference can be performed: conditional expectation estimates computed using
the method will converge in the asymptotic limit to their true values. Further
by exploiting gradient information the approach is able to perform efficient in-
ference in models with large numbers of unobserved variables and conditioning
on all observed data rather than low-dimensional summaries.

2. Notation

We will briefly summarise the notation used in the rest of this article. Lower-
case bold-faced characters are used to represent vector quantities, e.g. x, with
upper case bold-face reserved for matrix quantities, e.g. A. The lower triangular
Cholesky factor of a positive definite matrix A is chol(A). The determinant of
a matrix A is |A|. The Euclidean norm of a vector @ is |||z and the infinity
norm is ||&||e.. Calligraphic characters are used for sets for example A and script
characters for o-algebras on a set, e.g. &. The Borel g-algebra on a topological
space X is B(X). The indicator function on a set A is I 4. Sans-serif variants of
characters are used for random variables (or vectors), for example x is a random
vector. The expectation of a random variable x is E[x] while E[x|y = y] is the
conditional expectation of x given y = y. The distribution of a random variable
x is Pyx. For two random variables x and y their joint distribution is P, and
the regular conditional distribution on x given y = y is denoted P, (-|y). The
density of a distribution P, of a real-valued random variable x with respect to
a reference measure y is py = %—P;. The joint density on random variables x and
y and conditional density on x given y are similarly denoted by pxy and pyy.
The density of a multivariate normal distribution with mean p and covariance
3 at a point x is N(x|p,X). The D-dimensional Hausdorfl measure on a
metric space is H”. All integrals without an explicit measure indicated should
be assumed to be with respect to the Lebesgue measure A. The gradient of a

function f: RP — Ris Vf: RP — RP with [Vf(x)]; = E?_ai and the Jacobian

of a function g : RV — RM is J, : RN — RM*N with [Jg(x)]mn = ‘g%’:.

5108 M. M. Graham and A. J. Storkey
3. Problem definition

Let (S,&,P) be a probability space, and (X,¥), (Z,5) be two measurable
spaces. We denote the vector of observed random variables in the model of
interest as x : § — X and the vector of unobserved random variables that we
wish to infer z : § — Z. Our objective is to be able to compute conditional
expectations of arbitrary measurable functions f : Z — F of the unobserved
variables given known values for the observed variables x, where the conditional
expectation E[f(z) |x] : X — F is defined as a measurable function satisfying

/ E[f(z)|x = z] Px(dz) = / f(2) Pxz(de, dz) VA9, (1)
A AXZ
with this identity uniquely defining E[f(z) | x] up to Px-null sets.

In models where the joint distribution Py, is specified by an explicit density
Px,z With respect to a product measure pix x ji,, then we have the standard result
that the conditional expectation can be expressed as

Bl@)x == — [[@)pua(e.2)inldz) Vo€ Xipe) >0, (2)

Although we typically cannot analytically evaluate this integral or the marginal
density px(z), having access to the joint density px . is sufficient to allow us to
apply approximate methods such as MCMC and variational inference to estimate
conditional expectations. In this article we consider the problem of computing
conditional expectations in models where we can generate samples from the joint
distribution Py, but we cannot evaluate the joint density px.,.

4. Differentiable generative models

Any probabilistic model that we can programmatically generate values from can
be expressed in the form of a deterministic function which takes as input a vector
of random inputs sampled from a known distribution. This observation just
corresponds to stating that we can track all of the calls to a PRNG in a program,
and that given the values sampled from the PRNG all of the operations then
performed by the program are deterministic’. To formalise this idea below we
give a concrete definition for what we will consider as constituting a generative
model for a set of observed variables x and unobserved variables z.

Definition 1 (Generative model): Let u : S — U be a random vector taking
on values in a measurable space (U, F). We require that the distribution Py has
a density py with respect to a reference measure p which we can evalulate and
that it is tractable to generate independent samples from Py. If g, : U — X and
g, : U — Z are measurable functions such that

x(s) =gy,ou(s) and z(s)=g,ou(s) VseS (3)

1For the purposes of clarity of exposition we consider the outputs of the PRNG as truly
random, even though in reality they are deterministically computed.

Inference in differentiable generative models 5109

then we define (U, F, pu, 14, gy, 9,) as a generative model for x and z. We refer
to (U, F) as the input space of the generative model, (X,%4) the observed out-
put space and (Z,9) the unobserved output space. Further we term g, as the
generator of x and likewise g, the generator of z. The random vector u is the
random inputs and the density p, the input density.

The input vector u encapsulates all of the values drawn from a PRNG in the
code of a generative model and the generator functions g, and g, represent the
operations used to generate values for x and z respectively given values for the
random inputs u. In some cases the number of random inputs used in a gener-
ator evaluation will depend on the values of the random inputs themselves, for
example if there is a branching statement which depends on a random input
and the operations in each branch use different random inputs. Although imple-
mentationally more challenging, we can still consider this case within the above
definition by enumerating the random inputs required in all possible control
flow paths through the generator code and mapping each to a different element
in u. In interpreted languages, this can be done lazily by detecting if a call to
a PRNG object has occurred at the same point in a execution trace previously
and if so matching to same element in u as used previously otherwise matching
to a new u element.

In this article we concentrate on a restricted class of generative models which
we term differentiable generative models.

Definition 2 (Differentiable generative model): Let (U,.Z, pu, i, gy, 9,) be a
generative model for x and z as specified in Definition 1. Then if the following
conditions are satisfied

1. U CRPy, Z =BU) and X CRP~, 4 = B(X),

2. Py has a density py with respect to the Lebesgue measure y = AP,
3. the input density gradient Vp, exists Py-almost everywhere,

4. the generator Jacobian Jg emwists Py-almost everywhere.

we describe (U, Z, pu, 1, 9y, 9,) 6s a differentiable generative model.

These requirements are quite severe: for example they exclude any models
with discrete random inputs and those in which branch statements in the gen-
erator code introduce discontinuities. This means the proposed method is not
for instance applicable to models with discrete latent variables which are com-
monly the target of existing ABC applications. However there are still a large
class of interesting models which do meet these conditions: for example simula-
tor models based on approximate integration of ordinary differential equations
(ODESs) (combined with a stochastic observation model) or stochastic differential
equation (SDE) models without a jump-process component. Similarly as differ-
entiability is usually a requirement for training the generative models used in
machine learning, many such models will also fall in to this class.

A further restriction we will typically assume is that the Jacobian Jg_is full
row-rank P,-almost everywhere, which also necessarily means that D, > Dy i.e
the number of random inputs is at least as many as the number of observed
variables that will be conditioned on. In cases where this does not hold the

5110 M. M. Graham and A. J. Storkey

implicitly defined probability distribution Py will not be absolutely continuous
with respect to the Dy-dimensional Lebesgue measure on X'. Instead Py will only
have support on a sub-manifold of dimension locally equal to the rank of Jg
and conditioning on arbitrary & € X is not a well-defined operation.

Although we only required the existence of the input density gradient Vp,
and generator Jacobian Jg above, unsurprisingly this is motivated by the need
to evaluate these terms in the proposed method. Although this may seem a limit-
ing requirement for complex models, the availability of efficient general-purpose
automatic differentiation (AD) libraries [8] means it is possible to automatically
calculate the necessary derivatives given just the code defining the forward func-
tions p, and g,. For generative models implemented in existing code this will
typically require re-coding using an appropriate AD framework.

When applying reverse-mode AD [89, 54] to a function h : RX — R the
Jacobian Jj can be calculated at an operation-count cost which is at most c¢L
times the corresponding cost of evaluating the function h itself. The constant
factor ¢ guaranteed to be less than six and more typically around two to three [8].
The gradient Vp, can therefore be evaluated at a cost proportional to evaluating
the density itself and the Jacobian Jg can be evaluated at a cost which is
proportional to Dy times the cost of a single evaluation of the generator g,.

4.1. Model parameterisation

A generative model (U, .Z, pu, 14, gy, 9,) for x and z will not uniquely define the
resulting joint distribution Py,. As a simple example if (U, .Z, pu, 4, 95, 9,) is
a differentiable generative model and f : U4 — U is a diffeomorphism, then
we can reparameterise the random inputs as v = f~'(u). Using the change of
variables formula, the corresponding input density is py(v) = |J#(v)| pu(f(v))
and (U, Z#, pu, , g5 © f,g,0 f) is also a generative model for x and z.

The MCMC method we propose performs updates in the input space to the
generator, therefore the ability to reparameterise a generative model can be
exploited to endow the input density with properties favourable for MCMC infer-
ence. For example it will generally be desirable to reparameterise variables with
bounded support to transformed variables with unbounded support, for exam-
ple reparameterising in terms of the logarithm of a strictly positive variable. In
general performing updates to unbounded variables simplifies MCMC inference
by preventing the need to check transitions respect bounding constraints. Prob-
abilistic programming frameworks such as Stan [34] and PyMC3 [85] make use
of a range of such transformations within their MCMC implementations. Choos-
ing parameterisations in terms input variables with a common prior scale, for
example using unit variance distributions, is also a useful heuristic as it will
typically simplify the choice of scale parameters of MCMC updates.

Although we motivated our definition of u by saying it could be constructed by
tracking all the draws from a PRNG, in general we will not want to parameterise
u in terms of low-level uniform draws, but instead use the output of higher-level
functions for producing samples from standard densities. This is important as if

Inference in differentiable generative models 5111

for example we defined as inputs the uniform draws used in the rejection sam-
pling routines typically used to generate Gamma random variables, the resulting
g, would be non-differentiable. If we instead use the generated Gamma variable
itself as the input by including an appropriate Gamma density factor in p, we
side step this issue.

In some cases using the outputs of higher-level PRNG routines as the input
variables will introduce dependencies between the variables in the input density
pu- In particular if u; corresponds to the output of a routine which is passed
arguments depending on one or more previous random inputs {u;};czs, then
an appropriate conditional density factor on u; given {u;};cs will need to be
included in p,. By using alternative parameterisations it may be possible to
avoid introducing such dependencies; for example a random input v; generated
from a normal distribution with mean g and standard deviation o which depend
on previous random inputs {u;};cs can instead be parameterised in terms of
an independent random variable u; distributed with a standard normal density
N(0,1) and v; computed as ou; + i in the generator. Such non-centred parame-
terisations [78, 18, 73] (also known by the ‘reparameterisation trick’ in the ma-
chine learning literature [46, 82]) are available for example for all location-scale
family distributions. Whether it is necessarily helpful to remove dependencies
in p, like this for the proposed method is an open question and will likely be
model specific; it has previously been found that non-centred parameterisations
can be beneficial when performing MCMC inference in hierarchical models when
the unobserved variables are only weakly identified by observations [72, 73, 14].

4.2. Directed and undirected generative models

So far we have considered generative models where both the observed and unob-
served variables are jointly generated from u without assuming any particular
relationship between x and z. This structure is shown as a factor graph in Figure
la and a corresponding factor graph for just x and z with u marginalised out
shown in Figure 1b.

A common special case is when the input space decomposes as U = U; X Us
and the unobserved variables z are generated from a subset of the random inputs
u; : S = U; (e.g. corresponding to sampling from a prior distribution over the
parameters of a simulator model), with the observed variables x then generated
from a function 9yz + £ X Uy — X which takes as input both the generated
unobserved variables z and the remaining random variables us : & — Us, i.e.
X = gy1,(z,u2) = g,,(g,(u1), u2). This is illustrated as a factor graph in Figure
lc. Again a corresponding factor graph with u marginalised out is shown in
Figure 1d, with in this case the structure of the generator making a directed
factorisation in terms p, and py|, natural.

We will therefore term models with this structure as directed generative mod-
els (with the more general case termed undirected for symmetry). The method
we propose are equally applicable to undirected and directed generative models,
though often the extra structure present in the directed case can allow compu-
tational gains. Most ABC inference methods concentrate on directed generative

5112 M. M. Graham and A. J. Storkey

=)o)

n o Px,z ’ gxlz x|z
g, Puz +
© ONENO
(a) (b) (© (@)

Fia 1. Factor graphs visualising the structure of models considered in this paper. Circular
nodes represent random variables, filled square nodes probabilistic factors and unfilled dia-
monds deterministic factors. Shaded circular nodes are observed. Panel (a) shows the more
general undirected model case in which observed variables x and latent variables z are jointly
generated from random inputs u by mapping through functions g, and g,, with (b) showing
an equivalent factor graph after marginalising out the random inputs. Panel (c) shows the
directed model case in which we first generate the latent variables z from a subset of the
random inputs uy then generate the observed variables x from z and the remaining random
inputs uz, with (d) showing resulting natural directed factorisation of joint distribution when
marginalising out ur and ua.

models. Typically the marginal density p, (i.e. the density of the prior distribu-
tion on the unobserved variables) will be tractable to explicitly compute, such
that it is only the conditional density py, which cannot be evaluated. As this
conditional density is often referred to as the likelihood, an alternative designa-
tion of likelihood-free inference is sometimes used for ABC and related methods.

5. Approximate Bayesian Computation

We will now review the ABC approach to inference in generative models in order
to help motivate our proposed method. We will assume here that the observed
variables in the generative model of interest are real-valued, i.e. that X C RPx,
with inference in generative models with discrete observations being in general
simpler from a theoretical perspective (though not necessarily computationally).
The auxiliary-variable description we give of ABC is non-standard, but is consis-
tent with the algorithms used in practice and will help illustrate the relation of
our proposed approach to existing ABC methods.

We introduce an auxiliary X-valued random vector y which depends on the
observed random vector x via a regular conditional distribution Py, we term
the kernel which has a conditional density k. : X x X — [0, 00) with respect to
the Lebesgue measure,

Py|x(Aw)=Ake(y;w)dy VA€ B(X). (4)

The kernel density k. is parameterised by a tolerance € and chosen such that
the following conditions holds for arbitrary measurable functions f : X — R

lim / FW) helyiz)dy = (@) and Dim [f(@)k(y:@)de = fy). ()
X =0 Jx

e—0

Inference in differentiable generative models 5113

For kernels meeting these conditions (5) we have that V.A € B(X)

lig Py(A) =l | Pyx(A|) Py(d) (6)

e—0

— lim /X /X La(y) ke (y:) dy Py (da) (7)

e—0
_ / Li(z) Py(dz) = Py(A), (8)
X

i.e. that in the limit € — 0, y has the same distribution as x. Intuitively, as we
decrease the tolerance € we increasingly tightly constrain y and x to have similar
distributions. Two common choices of kernels satisfying (5) are the uniform ball
and Gaussian kernels which respectively have densities

1
ke(y;x) o< —5-To,q(ly — z|l2) (uniform ball kernel), 9)
6 X
and ke (y;z) = N(y |z, €T) (Gaussian kernel). (10)

The marginal distribution of y can be written V.A € B(X) as

Py(A) = /X PyelAl) Pulida) = /A /X k(v) Pu(da)dy, (1)

from which we have that Py has a density with respect to the Lebesgue measure

py(y) = /X ke(?ﬁw) Px(dw) = / ke(?ﬁw) Px,z(dwvdz) Yy e X. (12)

XXZ

The density py exists for € > 0 irrespective of whether P, has a density with
respect to the Lebesgue measure (it may not for example if Py only has support
on a sub-manifold of X). Using this definition of the density py we have that for
any measurable function f : Z — F and for all A € B(X) that

(Pyaldydz) = [f(2)Pynaldyda,da))
AxZ XXX Z
= //4/X><Z f(z) ke(va) Px’z(diﬂ7dz) dy (14)
1

_ /A o) o (P Helwi2) Pralde, d2) Py(dy) (15)

XXZ

where we define A* = {y € A: py(y) > 0}. Comparing this to the definition of
the conditional expectation in (1) we have that Vy € X' : py(y) > 0

Elf(2) |y = v: E]pygw /X f@hyo)Pu(dedz) (10

Sz F(2) k(g @) Py (da, d2) .
 Jewz ke(yim) Pe(dw,dz) (17)

5114 M. M. Graham and A. J. Storkey

For the case of a model in which P, has a density p, with respect to the Lebesgue
measure, then if we use f = I 4 for A € B(Z) in (17) and the definition of a
regular conditional distribution P,y (A|y) = E[l4(z) |y = y] we have

o kel) Puz(dz | 2) az)
Pay(Aly) = / e dz. (18)

In this case the regular conditional distribution P,y has a conditional density
Pzly with respect to the Lebesgue measure,

1
py(y)

In reference to terminology of Bayesian inference, the density p,), is termed the
ABC posterior density, and therefore conditional expectations of the form of (17)
which correspond to an integral with respect to this ABC posterior, are termed
ABC posterior expectations.

We now consider how E[f(z) |y = y; €] is related to the conditional expec-
tation we are interested in evaluating E[f(z) |x = y]. If we assume that Py, is
absolutely continuous with respect to the Lebesgue measure with density px,
and using (5) we have that Vy € X' : px(y) >0

pz|y(z | y) = /X ke(y; :B) Px\z(dw ‘ Z) pz(z>' (19)

; o [F(R) [y ke(y; @) pra(, 2) dadz
lg%E[f(Z) |y g 6] B ilj;% ZfZ fX X px 2(513 Z) dedz (20)
f px (Y, 2z) dz
— Zfz 2 dz (21)
=E[f(z)|x=1y]. (22)

We therefore have that conditional expectations E[f(z) |y; €] converge as ¢ —
0 to the conditional expectations we wish to be able to estimate E[f(z)|x].
Crucially we also have that the numerator and denominator of (17) take the
forms of expectations of known functions of x and z, i.e.

E[f(2)|y =y e = %

Generating Monte Carlo estimates of these expectations only requires us to be
able to generate samples from Py, without any requirement to be able to eval-
uate px, and therefore can be achieved in the implicit generative models of
interest. We can therefore estimate E[f(z) |y = y; €] by generating a set of inde-

(23)

pendent pairs of random vectors {xs, zs,,}f:1 from Py ,? and computing Monte
Carlo estimates of the numerator and denominator in (23), which gives the
following estimator for the conditional expectation E[f(z) |y = y; €]

S (f(2s) ke(ys %))
S (ke(ys %))

2As ABC is usually applied to directed models this is usually considered as generating z
from a prior then simulating x given z however more generally we can sample from the joint.

fS,e = (24)

Inference in differentiable generative models 5115

This directly corresponds to an importance sampling estimator for expectations
with respect to Py |y using Py, as the proposal distribution. Therefore if both

f(2) ke(y;x) and kc(y;x) have finite variance, then the estimator fg, will be
consistent,

lim E|fs.| =Elf(2) |y = s . (25)

S—o00

If the kernel used is the uniform ball kernel (9), the estimator can be manipulated
in to a particularly intuitive form

fse= L D (f(zs) with A={se{l...S}:[y—xl2<e} (26)
‘A| sec A

which corresponds to averaging the values of sampled unobserved variables zg
where the corresponding samples of model observed variables xg are within a
distance € of the observed data y. The is the standard ABC rejection algorithm
[84, 90, 33, 96, 79] , with A corresponding to the indices of the set of accepted
samples, with the other samples being ‘rejected’ as the simulated observations
X5 are more than a distance e from the observed data y. As an instance of
a rejection sampler, conditioned on the acceptance set containing at least one
sample, i.e. |A] > 0, (26) is an unbiased estimator for E[f(z) |y = y; €].

If we instead use a Gaussian kernel (10), then as for the general case for
importance sampling, the estimator (24) is no longer unbiased. In the Gaussian
kernel case we more highly weight samples if the simulated observed variables
are closer to the data which may be viewed as preferable to equally weight-
ing all values within a fixed tolerance as in ABC reject. However as it has
support on all of X', the Gaussian kernel also gives non-zero weights to all
of the samples, with typically most making little contribution to the expec-
tation. This may be considered somewhat wasteful of computation versus the
rejection scheme which creates a sparse set of samples to compute expecta-
tions over [10]. Kernels with bounded support but non-flat densities such as
the Epanechnikov kernel [29] which has a parabolic density in a bounded re-
gion, offer some of the advantages of both the uniform ball and Gaussian ker-
nels.

Irrespective of the kernel chosen, the estimate formed is only consistent for the
ABC posterior expectation E[f(z) |y = y; €] rather than the actual posterior ex-
pectation E[f(z) | x = y] we are directly interested in. Ase — 0, E[f(2) |y = y; €]
converges to E[f(z) | x = y], however for reject ABC we also have that as € — 0
the proportion of accepted samples will tend to zero meaning that we need to
expend increasing computational effort to get an estimator for E[f(z) |y = y; €]
with a similar variance (which by a standard Monte Carlo argument is inversely
proportional to the number of accepted samples).

In the more general importance sampling case, although we do not explicitly
reject any samples if using a kernel with unbounded support, we instead have
that as € — 0 that the kernel weightings in (24) will becoming increasingly dom-
inated by the few samples closest to the observed data and so the contribution
from to the estimator (24) from all but a few will be negligible, again leading

5116 M. M. Graham and A. J. Storkey

to an increasing number of samples being needed to keep the variance of the
estimator reasonable. For the exact ¢ = 0 case we would only accept (or equiv-
alently put non-zero weight on) samples for which x; is exactly equal to y. For
X C RPx if P, is absolutely continuous with respect to the Lebesgue measure,
the event x = y has zero measure under Py, and so some degree of approxima-
tion due to a € > 0 is always required in practice in these simple Monte Carlo
ABC schemes.

When the dimensionality of the observed variable vector x is high it quickly
becomes impractical to reduce the variance of these naive Monte Carlo esti-
mators for (17) to reasonable levels without using large e¢ which introduces
significant approximation error. The ABC rejection method is well known to
scale poorly with dimensionality due to curse of dimensionality effects [16, 56,
77]. Although often discussed specifically in the context of ABC, the issues
faced are much the same as encountered when trying to use any simple re-
jection or importance sampling scheme to approximate expectations with re-
spect to a probability distribution on a high-dimensional space. If the proposal
distribution (Px, here) is significantly more diffuse than the target distribu-
tion (Py .y here) an exponentially small proportion of the probability mass of
the proposal distribution will lie in the typical set of the target distribution
and so very few samples will be accepted or have non-negligible importance
weights.

Rather than conditioning on the full observed data most applications of ABC
methods therefore instead use summary statistics to extract lower dimensional
representations of the observed data [77]. A function s : X — T is defined which
computes summary statistics from simulated observed outputs x and observed
data y with the dimensionality of the summaries, dim(7), typically much smaller
than Dy. The ABC posterior expectation is then computed using

z) ke(s(y); s(x)) Py, (dx,dz
Blf(a) s = s(y)s o = P2l) B08)
XxZ e ? X,z ’

with now the variable conditioned on the T-valued variable s with

Pyx(Alx) = /Ake(s;s(x)) ds YA€ B(T), x e X. (28)

In general the statistics used will not be sufficient - the posterior distribution on
z will differ when conditioning on s(x) compared to conditioning on x directly.
By a data processing inequality argument we know that the mutual information
between z and s(x) will be less than or equal to the mutual information between
z and x therefore we would expect for the posterior distribution on z given s(x)
to be less informative about z than the posterior distribution given x [5]. This
means that even in the limit of € — 0 estimates of the ABC summary statistics
posterior expectation E[f(z) | s = s(y); €] will generally not converge to the true
posterior expectations E[f(z) | x = y] of interest.

ABC methods therefore trade-off between the approximation errors intro-
duced due to using summary statistics and a non-zero tolerance e, and the

Inference in differentiable generative models 5117

Monte Carlo error from using a finite number of samples in the estimates. If
informative summary statistics can be found then typically the approximation
error can be kept to a more reasonable level compared to the conditioning on the
full data without the Monte Carlo error becoming impractically large by allow-
ing a smaller € to be used while maintaining a reasonable accept rate. Finding
informative low-dimensional summaries is often critical to getting ABC methods
to work well in practice and there is a wide literature on methods for choosing
summary statistics - see [77] and [17] for reviews.

In some cases use of summary statistics might not be viewed just as a com-
putational aid, but as a purposeful exercise in removing ‘irrelevant’ information
from the data. For example if inferring plausible parameter values for a dynamic
model of a system given observed sequences of the system state showing peri-
odic behaviour, then we might view the phase of observed state sequences as an
irrelevant artefact of the arbitrary point at which observations were started. In
this case conditioning on the exact observed data could be viewed as over con-
straining the model to reproduce features of the data which are only incidental,
and using summary statistics which are invariant to phase could be preferable
to conditioning on the full data [99].

Similarly the introduction of a kernel in ABC need not be viewed as simply
a method for making inference tractable, but instead as part of the modelling
process [98]. In general we will expect any observed data to be subject to some
amount of measurement noise (at the very least it will include some quantifica-
tion noise) and so conditioning the model to reproduce the exact values of the
data is not necessarily desirable. In this context we can consider y the noisy
measured version of an underlying state x and the kernel Py, as representing
the measurement noise model. We might also instead view the kernel Py, as
accounting for the mismatch between our proposed model for how the observed
values are generated and the true data generating process [81, 98]. In both
these cases we could then consider e as a further unobserved variable to be
inferred.

These examples demonstrate that in some cases there may be a modelling
motivation for introducing summary statistics or a ‘noise’ kernel. In practice
however the summary statistics and tolerance e are more typically chosen on
grounds of computational tractability [56, 83, 77]. Therefore inference methods
which are able to maintain tractability when conditioning on higher-dimensional
summaries or in some cases all observations, and when using smaller tolerance
€ values are of significant practical interest.

As an alternative to the simple Monte Carlo ABC inference schemes so far de-
scribed, methods have also been proposed to utilise more scalable inference meth-
ods to estimate the approximate expectation (16) including sequential Monte
Carlo methods [87, 92], population Monte Carlo [9], expectation propagation
[7] and variational Bayes [94]. Of particular relevance to our work is the use
of MCMC within an ABC framework [57, 86]. As is standard in ABC methods,
ABC MCMC approaches are generally targeted at directed models where the un-
observed variables have a known marginal density p, but we can only generate
samples from the conditional distribution P,,. If a Markov chain is constructed

5118 M. M. Graham and A. J. Storkey

on a (x,z) state pair with unique stationary distribution

;y) /B /A pa(2) ke(y: @) Pya(dz | 2)dz (29)

Px,z|y(-’47 B | y) = Py

then we can compute consistent MCMC estimators for (17) by computing aver-
ages over the unobserved variable z components of the chain states.

The standard ABC MCMC approach [57] uses a Metropolis—Hastings scheme
which perturbatively updates the unobserved variables but independently re-
samples the observed variables. A new chain state (z*, z*) is proposed given
the current state (x5, zs) by sampling z* from a Markov kernel with density
q:Z x Z — [0,00) and then generating a new x* by sampling from Py, (-] z*).
With probability

q(zs | 2*) pa(2*) ke (y; x*) }

Q(z* | Zs) pz(zs) ke(y; ms) (30)

ale”, z" |xs, 25) = min{l7

the proposed (x*,z*) pair is accepted such that (xsy1,2511) « (x*,2*) oth-
erwise a rejection occurs and (Zs41,2s4+1) < (s, 25). The transition operator
defined by this process leaves (29) invariant, and under a suitable choice of pro-
posal density for the z updates will be aperiodic and irreducible and so have
(29) as its unique stationary distribution.

By making small changes to the unobserved variables z and so making use
of information from the previous state about plausible values for z under P, ,,
rather than independently sampling them from P, as in the simpler Monte
Carlo schemes, ABC MCMC can often increase efficiency in generative models
with large numbers of unobserved variables to infer [86]. This potential im-
proved efficiency comes at a cost of introducing the usual challenges associated
with MCMC methods compared to simpler Monte Carlo methods of dependence
between successive samples and the difficulty of assessing convergence.

Further ABC MCMC chains can be prone to ‘sticking’ pathologies - suffering
large series of rejections visible as the variables being stuck at a fixed value in
traces of the chain state. Though small moves are proposed to z, proposed up-
dates to the simulated observations x are sampled independently of the previous
simulated observations. Generally the conditional distribution Py, y, i.e. describ-
ing the plausible values for x given the observed data and proposed z values,
will be much more concentrated than the distribution Py ,y and so proposing
updates to x from the latter will often lead to proposed values for (x,z) with a
very low acceptance probability. The ABC MCMC Metropolis—Hastings scheme
is an instance of a pseudo-marginal MCMC method [10, 4] where such sticking
artifacts are a well known problem [65].

6. Inference in the input space

To try to overcome some of the limitations of the standard ABC MCMC approach,
we now consider reparameterising the inference problem using the formulation

Inference in differentiable generative models 5119

of a generative model as a deterministic transformation of random inputs intro-
duced in Definition 1 in Section 4. For a generative model (U, .Z, py, 11, g4, g,) for
observed variables x and unobserved variables z, the ABC posterior expectation
(17) can be reparameterised as

E[f(z)|y = y:] = py}y) (@) kely: %)) (31)
1

= L E 0 w) b g, (w) (32)

=py}y / f o gy(w) ke(y; gy(w) pulw) du. (33)

Crucially this reparameterisation takes the form of an integral of a function
f o g, against an explicit probability density

me(u) = ke(y; gx(w)) pu(u), (34)

that we can evaluate up to an unknown normalising constant py(y). This is the
typical setting for approximate inference in (explicit) probabilistic models, and
so is amenable to applying standard variants of methods such as MCMC and
variational inference. In the common special case (and typical ABC setting) of a
directed generative model with a tractable marginal density on the unobserved
variables p,, using the notation introduced in Section 4.2 we have that

Elf@)ly =y = 1@ k(5 942z, w2))] (35)

1
N0
- / [1@k 9gnle.) el 2) iz (36)

with now the explicit target density for inference being

1
ez 2) = ke (45 a2 1)) Pel2) s (), (37)

This latter form is directly comparable to the reparameterisation suggested in
[67] for pseudo-marginal inference problems. There it is applied to construct a
MCMC method which uses slice sampling transition operators to iterate between
updating the unobserved variables z given random inputs ug and vice versa.
For models in which the target density (34) is continuous with respect to both
arguments, the slice sampling updates will be almost surely move the state a
non-zero distance, therefore the chain will not ‘stick’. Related approaches using
Metropolis updates instead have also been proposed [24, 25].

In reparameterising inference in terms of evaluating an integral over the input
space we have still so far required the definition of a kernel k. and tolerance e,
with the integral being estimated the ABC posterior expectation E[f(z) |y, €] (17)
rather than exact posterior expectation E[f(z)|x] we are directly interested in.

5120 M. M. Graham and A. J. Storkey

We now consider in the specific case of differentiable generative models how to
perform inference without introducing an ABC kernel.

We begin an initial intuition for the approach, by considering taking the limit
of ¢ — 0 in the integral (31) corresponding to evaluating the ABC posterior
expectation in the generator input space. We previously showed in (20) that the
approximate expectation E[f(z) | y = y; €] converges as e — 0 to the conditional
expectation of interest E[f(z) |x = y], providing that the implicit distribution
of the observed variables in the generative model Py is absolutely continuous
with respect to the Lebesgue measure with density pyx. Informally for kernels
meeting the conditions (5), in the limit of € — 0 the kernel density k.(y; g,(u))
tends to a Dirac delta é(y — g,(u)) and so

E[f(2)[x=y] = Im E[f(z) |y = y; €] (38)

e—0
Sy fog.(u)d(y — gy(w)) pu(u) du
Ju 0y — g, () pu(w) du
The Dirac delta term restricts the integral across the input space ¢ to a D, — Dy

dimensional, implicitly-defined manifold corresponding to the fibre of y under
gy (i.e. the pre-image under g, of the singleton set {y}),

(39)

g 'yl ={uecl:g,(u) =y} (40)

It is not necessarily immediately clear how to define the required probability den-
sity on the manifold for arbitrary non-injective g,. In differentiable generative
models we can however use a derivation equivalent to that given by Diaconis,
Holmes and Shahshahani in [26] for conditional densities on a manifold to find
an expression for the conditional expectation consistent with definition given in
(1). The key result we use is Federer’s co-area formula [30, §3.2.12]. This gener-
alises Fubini’s theorem for iterated integrals on spaces defined by a Cartesian
product to more general foliations of a space.

Theorem 1 (Co-area formula): Let V C RY and W C RX with L > K, and
let m :V — W be a Lipschitz function and h : V — R a Lebesque measurable
function. Then

/v h(v) Jm(v) A" (dv) = /W /m—l[w] h(v) HE =¥ (dv) A* (dw) (41)

with HY=% denoting the L — K -dimensional Hausdorff measure and Jp,(v) de-
noting the generalised Jacobian determinant for ‘wide’ rectangular Jacobian ma-
trices

Tm(v) ‘Jm(u)Jm(u)T

(42)

More immediately applicable in our case is the following corollary.

Corollary 1: If Q is a probability measure on V with density q with respect to
the Lebesque measure A\ and J, is full row-rank Q-almost everywhere, then

Inference in differentiable generative models 5121

for Lebesgue measurable f 1V — R

/ f(v)g(v) A\ (dv) =

(43)
/ / £ (0) () Ju(0) ™ HEF (d) A< (dw).
W Jm—1{w]

This can be shown by setting A(v) = f(v) q(v)Jm(v)”" in (41) and using
the equivalence of Lebesgue integrals in which the integrand differs only zero-
measure sets. We now show that distribution of the observed variables Py has a
density pyx with respect to the Lebesgue measure.

Proposition 1 (Change of variables in a differentiable generative model): For
a differentiable generative model (U, F, pu, 1, Gy, 9,) as defined in Definition 2,
then if the generator g, is Lipschitz and the Jacobian Jg has full row-rank
Pu-almost everywhere, the observed vector x has a density with respect to the
Lebesque measure satisfying

px(T) = / L]pu(U) Jg.(w) P HP P (du) Vr € XL (44)

Proof. From Definitions 1 and 2 we have that x = g, (u) and 3% = p, and so

PL(A) = /u 1y (2) Py(da) /u Lio g (uw)pa(uw) A\>*(du) VA€, (45)

As g, is Lipschitz and J4_has full row-rank Py-almost everywhere we can apply
Corollary 1, and so we have that VA € ¢4

The term I 40 g,(u) inside the inner integral is equal to I 4(x) across all points
on the fibre g, ![x] being integrated across and so can be taken outside the inner
integral to give

PulA) = [Tu(a) / []pu<u>ng<u>*1HD"*D«duwx(dw) (a7
/ / [] Jg (w) " HP e (du) AP (d). (48)

By definition the density px of a probability measure Py with respect to the
Lebesgue measure \Px satisfies

Px(A) = /A px(x) AP*(dx) VAeY (49)

*. Px has a density corresponding to (44) with respect to APx. |

5122 M. M. Graham and A. J. Storkey

This is a generalisation of the standard change of variables formula under a
diffeomorphism. We now derive a result for the conditional expectation.

Proposition 2 (Conditional expectations in a differentiable generative model):
For a differentiable generative model (U, F, pu, 14, 9y, g,) as defined in Definition
2 and satisfying the conditions in Proposition 1, then for Lebesgue measurable
functions f: X - R and x € X such that px(x) > 0 we have that

1
px(T)

B x=al = s [Foau(wpuw) Jp) HE . 60)

Proof. From Definition 1 we have that x = g,(u) and z = g,(u) and so VA € ¥

/ F(2) Paa(da, dz) = / Lu(@) f(2) Pra(de, dz) (51)
AXZ XXZ

- /M Lo gy(u) f o g,(u) pu(u) A (dw). (52)

Applying the co-area corollary (43) to the right-hand side and again noting
I40 g,(u) is constant across the fibre being integrated on, we have that VA € 4

/ f(2) Pxz(de, dz) (53)

AXZ

-, 10 0a(0) T 0 9,(00)pulu) Jy (w) ™ M (du) A% () (54)

[L@ [| fogwpa(u) o W du) A (dr) (59)
X gx " [=]

B /A/ gy 0940 pul) o, ()T HP () A (). (56)

Finally using that P, has a density px with respect to the Lebesgue measure as
shown in the previous proposition and so Px(dx) = px(x)APx(dx), we have that

/ F(2) Pra(da, dz) =
AxZ (57)

! —1 5 /Dy—Dx w x
/Apx(:c) /gl[w]fogz(u) Pult) Jg,(w) ™" H = Px(du) Py(d).

Here we ignore the points for which px(x) = 0 as the set of all such points has
zero measure under Py, and so does not contribute to integrals against the prob-
ability measure Py. Comparing to the definition of the conditional expectation
(1) we have that (50) satisfies the definition. O

The expression derived for the conditional expectation has the form of an
integral of function f o g, integrated against a density

() = —— Jg,(u) " pu(u) (58)

Inference in differentiable generative models 5123

which we can evaluate up to an unknown normalising constant px(x). The key
complicating factor is that the integral is now not across a Euclidean space, but
an implicitly defined manifold corresponding to the fibre g, *[x]. However if we
can construct a Markov transition operator which has an invariant distribution
with density (58) with respect to the Hausdorff measure on the manifold, then
we can use samples of the chain states {u,}5_; to compute an estimator

S
Z f o g,(uy)) (59)

Cl)l*—‘

which providing the chain is also aperiodic and irreducible will be a consistent
estimator for E[f(z)|x = x]. Although constructing a Markov transition oper-
ator with the required properties is non-trivial, there is a significant body of
existing work on methods for defining Markov chains on manifolds. We propose
here to use a constrained Hamiltonian Monte Carlo method.

7. Constrained Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [28, 68] is an auxiliary variable MCMC method
which exploits the gradient of the density of the target distribution. The vector
variable of interest, here the generator random inputs u € RP+ and that for the
purposes of this section we will refer to as the configuration state, is augmented
with a vector of auxiliary momentum variables p € RP. Typically the momenta
are specified to be independent of the configuration state with a zero mean
normal distribution with covariance M termed the mass matrix, i.e

oo(1) = A (p0.0) i exp (55 M 'p). (60)

The density 7 of the target distribution on the configuration state is used to
define a potential energy function ¢ : U — R

Hlur) =~ logm(u) ~ log O <= (u) = & exp(~(u) (61)

with C' a normalising constant, and similarly the quadratic form %pTM “1p
corresponding to the negative logarithm of the unnormalised density on the
momenta is termed the kinetic energy. The joint distribution on u and p then
has a density proportional to exp(—h(u,p)) where the Hamiltonian h(u,p) is

h(u,p) = ¢(u) + §pTM’1p- (62)

The canonical Hamiltonian dynamic is then described by the system of ODEs

du OhT ., dp onT
Ei% = p, 1w - ou = —Vo(u). (63)

5124 M. M. Graham and A. J. Storkey

This dynamic is time-reversible, volume-preserving and exactly conserves the
Hamiltonian. Symplectic integrators allow approximate integration of the Hamil-
tonian dynamic while maintaining the time-reversibility and volume-preservation
properties. Further subject to stability bounds on the time-step, symplectic in-
tegrators will exactly conserve a ‘nearby’ Hamiltonian, and so the change in the
Hamiltonian will remain bounded even over long simulated trajectories [50].

These properties make simulated Hamiltonian dynamics an ideal proposal
mechanism for a Metropolis MCMC method. The Metropolis accept ratio for a
proposal (uy, p,) generated by simulating the dynamic N, time steps forward
from (u, p) with a symplectic integrator and then negating the momentum,
is simply exp (h(u, D) — h(up, pp)). Typically the change in the Hamiltonian
will be small and so the probability of acceptance high. To ensure ergodicity,
simulated dynamic moves are interleaved with updates independently sampling
new momentum values from A (0, M).

In our case the target distribution on the configuration state u is defined
on an implicitly defined manifold embedded in a Euclidean space U = RPu.
Intuitively we can consider the manifold as representing the allowable configura-
tions of mechanical system subject to a constraint. By simulating a constrained
Hamiltonian dynamic we can therefore construct a HMC transition operator anal-
ogous to that just described but that generates chains on an implicitly defined
manifold rather than an unconstrained Euclidean space.

The use of constrained Hamiltonian dynamics within a MCMC method has
been proposed by multiple authors. In the molecular dynamics literature, Hart-
mann and Schutte [41] and Lelievre, Rousset and Stoltz [52] used simulated con-
strained Hamiltonian dynamics within a HMC framework to estimate free-energy
profiles of molecular systems. Most relevantly for our case, Brubaker, Salzmann
and Urtasun [19] proposed a constrained HMC algorithm for performing infer-
ence in target distributions defined on implicitly defined embedded manifolds.
We will concentrate on the algorithm proposed in [19] here.

To simplify notation and emphasise the generality of the approach beyond
our specific setting, we define the following notation for the vector constraint
function on the system and corresponding Jacobian

c(u) = g, (u) — x, Je(u) = Jg (u). (64)

The constraint manifold is then defined as the zero level-set of ¢, in our case
corresponding to the fibre of under the generator g,

C={ucR":c(u)=0}=g, " [x] (65)

Defining as previously the potential energy ¢ as the negative logarithm of the un-
normalised target density and the kinetic energy as a quadratic form % p' M 'p,
the Hamiltonian for the constrained system can be written as

s, p) = (w) + 5P M 'p o+ cfu)A, (66)

where A is a vector of Lagrangian multipliers for the constraints.

Inference in differentiable generative models 5125

The constrained Hamiltonian dynamic is then defined by

u h T

=M Pt Vo) - ddw'A (o)
with the Lagrange multipliers taking values to ensure the system constraints are
satisfied. In addition to the configuration constraint c¢(u) = 0 there is a corre-
sponding implied constraint on the momenta p requiring that the configuration
velocity M~ 'p is always tangential to the constraint manifold at the current
configuration, or equivalently that the momenta are in the tangent space to the
constraint manifold. The tangent space 7,C at a configuration u is defined as

Tl ={peRM :J(u)yM 'p=0}. (68)

The complete set of valid configuration—momentum state pairs is termed the
tangent bundle 7C of the constraint manifold and defined as

TC={u,pe R™ xRM : ¢(u) =0, J(u)M 'p =0}. (69)

The solution at time ¢ to the initial value problem defined by the ODEs (67)
defines a flow map ~, : C — JC between states in the tangent bundle of
the constraint manifold. As with the unconstrained Hamiltonian dynamics en-
countered previously, this flow map exactly conserves the Hamiltonian and is
reversible under negation of the momenta. Further the flow map of the con-
strained dynamic is symplectic and conserves the volume element of the con-
straint manifold tangent bundle [50].

Importantly there exist symplectic integrators which can be used to approx-
imate the constrained Hamiltonian dynamic flow map and which map between
states exactly in the constraint manifold tangent bundle (modulo numerical er-
ror due to finite precision arithmetic). The approximate flow maps defined by
these integrators are reversible and conserve the tangent bundle volume ele-
ment. They also exhibit the bounded change in the Hamiltonian over simulated
trajectories discussed previously for the unconstrained case.

A popular symplectic numerical integrator for constrained Hamiltonian dy-
namics is the RATTLE method [3, 51]. This a generalisation of the Stérmer—Verlet
or leapfrog integrator typically used to integrate the Hamiltonian dynamics in
standard HMC, with additional steps to project the states on to the tangent bun-
dle of the constraint manifold. A RATTLE step is composed of three component
maps. The first map is defined by

F3(w.p) = (u+ M (p = Je(w)'A), p— Iw)')

(70)

solving for A such that c(u +6tM ™~ (p — Jc(u)T/\)) =0.
This defines an approximate geodesic step on the constraint manifold: the con-
figuration w is incremented in the direction of the current velocity M~ 'p and
then the new configuration state projected back on to the constraint manifold
by solving a non-linear system of equations for the Lagrange multipliers .

5126 M. M. Graham and A. J. Storkey

The second component map updates the momenta with a ‘kick’ in the direc-
tion of the potential energy gradient

T3 (u,p) = (. p = 0tVo(w)"). (71)

Though both 4%, and 4%, steps will map between configurations in the constraint
manifold (trivially in the case of 4%, as the configurations are kept fixed), the
corresponding momenta will not be confined to the tangent spaces to the man-
ifold. The final component map projects the momenta in to the tangent space
of the constraint manifold at the current configuration. It is defined by

P (u,p) = (u, p— Je(u)' A
5" (u,p) = ((u)'A) -
solving for A such that Jo(u)M ' (p — Jo(u)'A) = 0.

In this case the system of equation needing to be solved is linear and has an
analytic solution, giving the following closed-form definition

7 (u,p) = (P~ Jow) (Felw) M~ Iw))) ()M). (73)
An overall RATTLE step is then defined by the composition

~R ~

Yot =3 X

o,

oA 0 04 oAl (74)

v
e

In practice the intermediate momentum projection steps 4% are redundant [58]
and so typically the momentum is only projected back in to the tangent space
at the end of the step, giving the following update

'AYfS{t =4"0 ’AY%% © ;Ygt © '7[% (75)

Solving the non-linear constraint equations in the geodesic step 43, is computa-
tionally challenging, with closed form solutions generally not available and so an
iterative approach required. Further the system of equations are not guaranteed
to have a unique solution: if the step size dt is too large there can be multiple
or no solutions [50]. It is important therefore to keep the step size small enough
to avoid the iterative solver converging to an incorrect solution or not converg-
ing at all. Often the resulting step size will be smaller than required however
in terms of controlling the Hamiltonian error over a simulated trajectory. An
alternative to the standard RATTLE integrator is therefore to perform N, > 1
inner geodesic steps */*:@_t for each outer pair of momentum kick steps ’y"’;?t

g9

2,G 2P

. b A Ny ap
Yor =4 0¥ 0 (¥ 045) " 0¥ 0 A5 (76)

e

5t
Ng

This geodesic integrator [49, 48] scheme can reduce the number of potential
energy gradient evaluations required by using a larger step size for the momen-
tum kick updates while still maintaining a sufficiently small step size to avoid
convergence issues in the geodesic step.

Inference in differentiable generative models 5127

Assuming the iterative solving of the projections to constraint manifold in
the geodesic steps converge correctly, the approximate flow map defined by
iterating RATTLE or geodesic integrator steps preserves the volume element of
ZC and is reversible under negation of the momenta. We can therefore use the
composition of the approximate flow map with a momentum reversal operator
to define a volume-preserving involution between states in ZC. We can then
use this involution as a proposal generating mechanism for a Metropolis accept
step to correct for the Hamiltonian error in the approximate flow map.

As in the standard HMC algorithm, Metropolis updates with approximate
flow map proposals are interleaved with updates in which the momenta are
independently resampled. To ensure the momenta remain in the tangent space
uC to the constraint manifold after generating new values from N (0, M), the
momenta are projected in to the tangent space using the projection operator
defined in (73). The overall constrained HMC transition operator defined by
this combination of momentum resampling and Metropolis accept step with a
constrained dynamic proposal, leaves invariant the distribution with negative log
density defined by the Hamiltonian in (66) on the constraint manifold tangent
bundle .7C, and so marginally leaves the target distribution on C invariant.

Ensuring ergodicity of chains generated by the constrained HMC transition
operator is in general more challenging than for HMC on Euclidean spaces due
to the often complex geometry of the constraint manifold C and potential for
numerical issues in the projection steps. In [19] it is shown that if?

e C is a connected, smooth differentiable manifold,
e J. has full row-rank everywhere,
e and 7(u) x exp(—¢(u)) is smooth and strictly positive on C

for a constrained HMC transition using an approximate flow map defined by
a symplectic integrator with step size dt, if the integrator step size dt is set
sufficiently small such that there is a unique solution to the choice of Lagrange
multipliers A in each geodesic step (70) and the iterative method employed
converges to this solution in every step, that the overall transition operator will
be irreducible, aperiodic and leave the target distribution on C invariant.

These conditions put stricter requirements on the generator g, of a differen-
tiable generative model than those specified in Definition 2 and Proposition 2 if
we wish to use a constrained HMC method to estimate conditional expectations
under the model. The requirement that C = g, ![z] is a smooth and connected
manifold is likely to be challenging to check for complex generators. If the fibre
of x under the generator g, consists of multiple disconnected components then
the constrained Hamiltonian dynamic will remain confined to just one of them.
Although problematic, this issue is similar to that faced by other MCMC meth-
ods in target distributions with multiple separated modes. The requirement that
the Jacobian Jg is defined and full row-rank everywhere is also stricter than
previously required.

3We give only a loose statement of the full conditions here for brevity; for complete details
see Theorems 1 to 4 in [19].

5128 M. M. Graham and A. J. Storkey

U2

FiG 2. Visualisations of the hyperbola fibre gx *[1] of the generator g, defined in (78) consist-
ing of two disconnected components and the corresponding connected hyperbolic paraboloid
fibre gy_l[l] of the noisy generator.

If we define an augmented ‘noisy’ generator
gy(u,n) = g,(u) +en (77)

with n ~ N(0,I) and € a small positive constant, then if g, is differentiable
everywhere then the Jacobian of the augmented generator Jg will be full row-
rank everywhere. Further in some cases the fibres under the noisy generator
g, '[z] will be connected when the fibres under the original generator g, '[x]
are not. As a simple example consider

gu(u) =ui —uj, gy(u,n)=uf—uj+en (78)
The fibres g ![z] are hyperbola in R?, for = # 0 consisting of two disconnected
components as shown in Figure 2a. The fibres of g, L[x] are connected hyperbolic
paraboloids in R? as shown in Figure 2b.

This noisy augmentation of the generator corresponds to using an ABC ap-
proach with a Gaussian kernel with tolerance ¢, and so we could instead perform
standard HMC in the ABC posterior density in the generator input space (34).
The potential energy function corresponding to (34) in this case is

1

= 52 (@ = g,(w) (@ — g,(u)) — log pu(u), (79)

¢(u)
The energy function combines a term favouring inputs u which generate outputs
close to the observed data x and prior term favouring input values which are
plausible under P,. Typically the input density p, will have a simple form e.g.
standard normal A (w]0,I) in which case the main complexity in the target
density arises from the term due to the Gaussian kernel k. and generator func-
tion g,; this term puts high density on inputs close to the fibre g, *[x] of the
observed data x under the generator function g,. For small € this will mean
the distribution in the input space is increasingly tightly concentrated in a nar-
row ‘ridge’ around the manifold embedded in the input space corresponding to

Inference in differentiable generative models 5129

Uzt

Uy

Fic 3. Illustration of oscillatory behaviour in HMC trajectories when using an ABC posterior
density (34) in the input space to a generative model. The left axis shows the two-dimensional
input space U of a differentiable generative model with a Gaussian input density pu (green
shading). The dashed curve shows the one-dimensional manifold corresponding to the pre-
image under the generator function g, of an observed output . The right azis shows the same
input space with now the green shading showing the density proportional to ke(x; g, (u)) pu(w)
with a Gaussian ke. The red curve shows a corresponding simulated HMC trajectory: the large
magnitude density gradients normal to the manifold cause high-frequency oscillations and
slows movement along the manifold (which corresponds to variation in the latent variable z).

gy [zx]. Although the gradient-based Hamiltonian dynamic is able to propose
moves which remain within this high-density region, the strong gradients nor-
mal to the manifold tends to produce trajectories which oscillate back and forth
across the ridge, limiting the motion tangential to the manifold and requiring a
small integrator step-size for stability; this is illustrated in a simple model with
a two dimensional input space in Figure 3. In some cases (examples of which
will be shown in the numerical experiments in Section 10) applying constrained
HMC with the noisy generator g, can therefore be more efficient than running
standard HMC in the ABC target density, despite the much higher per-step costs,
as constrained HMC updates are able to use a much larger integrator step size
when using small e.

Riemannian manifold Hamiltonian Monte Carlo (RMHMC) [37] extends the
standard HMC algorithm by introducing momenta with a configuration-depen-
dent covariance matrix G : RP+ — RP«XDu_ typically termed the metric. The
metric, which is required to be positive-definite almost-everywhere in the con-
figuration space, is able to condition the momenta to adjust for locally varying
curvature in the target density, potentially significantly improving the ability
of the simulated Hamiltonian dynamic to explore the configuration space. An
alternative approach to remedying the issues with performing standard HMC
in the generator input space is therefore to apply a RMHMC algorithm using a
metric exploiting the geometry of the target density to improve the behaviour
of the simulated dynamic. For example the metric

Glu) = 530, (w) T, () + T (30)

is positive definite everywhere and equal to the Hessian of the potential energy
(79) for u € g;'lz]. Using this metric, for small € and inputs u generating

5130 M. M. Graham and A. J. Storkey

outputs close to the data @ i.e. small values of 1||g,(u) — z||,, the velocity in
the RMHMC dynamic ‘é—’t‘ = G(u) !p will tend to be higher along the directions
tangential to the fibre g, ![x], reducing the tendency for the dynamic to oscillate
normal to the fibre. RMHMC requires use of a computationally costly implicit
integrator due to the non-separable Hamiltonian and so like the constrained
HMC method proposed here has a significantly higher computational cost per
sample than the standard HMC algorithm. However as with constrained HMC
the potential for improved exploration of the space for small € may compensate
for the more costly updates. We do not explore this idea further here but it may
be an interesting avenue for future work.

Geodesic Monte Carlo [20] also considers applying a HMC scheme to sample
from non-linear manifolds embedded in a Euclidean space. Similarly to [19] how-
ever the motivation is performing inference with respect to distributions explic-
itly defined on a manifold such as directional statistics. The method presented
in [20] uses an exact solution for the geodesic flow on the manifold. The use of a
geodesic integration scheme within a constrained HMC update as discussed here
can be considered an extension for cases when an exact geodesic solution is not
available. Instead the geodesic flow is approximately simulated while still main-
taining the required volume-preservation and reversibility properties for validity
of the overall HMC scheme.

An alternative Metropolis method for sampling from densities defined on
manifolds embedded in a Euclidean space is proposed in [100]. Compared to
constrained HMC this alleviates the requirements to calculate the gradient of
(the logarithm of) the target density on the manifold, though still requires eval-
uation of the constraint function Jacobian. As discussed in Section 4, using
reverse-mode AD the gradient of the target density can be computed at a cost
proportional to evaluation of the target density itself. In general we would expect
exploiting the gradient of the target density on the manifold within a simulated
Hamiltonian dynamic to lead to more coherent exploration of the target dis-
tribution, instead of the more random-walk behaviour of a non-gradient based
Metropolis update, and so for the gradient evaluation overhead to be worthwhile.

There is extensive theoretical discussion of the issues involved in sampling
from distributions defined on manifolds in [26], including a derivation of condi-
tional densities on a manifold using the co-area formula which directly motivated
our earlier derivations of expressions for conditional expectations under a dif-
ferentiable generative model. The experiments in [26] are mainly concentrated
on expository examples using simple parameterised manifolds such as a torus
embedded in R? and conditional testing in exponential family distributions.

8. Implementation details

The constrained HMC implementation we propose for performing inference in
differentiable generative models is shown in Algorithm 1. This algorithm differs
in some details from that proposed [19] and we discuss these differences and
computational issues specific to our setting in the following subsections.

Inference in differentiable generative models 5131

Algorithm 1 Constrained HMC in a differentiable generative model

Input:

g, : observed variable generator function;

¢ : potential energy function ¢(u) = —log pu(u) + 3 log |Jg,(u)Jg (u)l;

x : observed data values being conditioned on;

u : current chain state (model inputs) with [|g,(u) — || < €

(¢,J, L) : cached values of ¢, Jg and chol(ngngT) evaluated at u;

€ : convergence tolerance for Newton iteration;

I : number of Newton iterations to try before rejecting for non-convergence;
dt : integrator time step; N, : number of time steps to simulate;

N, : number of geodesic steps per time step.

Output:

uy, : new chain state with ||g,(un) — z|lec < €;
(¢n, In, Ln) : values of ¢, Jg and chol(Jg,Jg, ") evaluated at new wx.

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24

25:

n ~ N(0,1) 26: function ProJECTPOS(u, J, L)
. p < ProJECTMOM(n, J, L) o 0+ g, (u)—x
. Up, Py, Ip, Lp < SIMDYN(u, p, J, L) 28. 140
: op < p(u) 20 while ||d]jcc >€cand i < I
. ~U(0,1) 30: uu—JLTLT'S
. pa < exp(@+ 3PP —9p — 3PLP,) s 6 g,(u) —zx
if 7 < pa 32: i—i+1
uHaSDHvJHaLnHuPWPP:JPaLp 33: if’L:I
. else 34: raise REJECTMOVE
Un, Pn, o, In < u, 0, J, L 35 return u
36:
function SIMDYN(u, p, J, L) s7. function SIMGEO(u, p, J, L)
pp— %V¢(u)T ss: forie{l...Ny4}
p + ProJECTMOM(p, J, L) 39: U ut 1% p
u,p,J, L < SMGEO(u,p,J,L) 10: u’ < ProJECTPOS(@, J, L)
for s € {2...N,} a1 J < Jg (u)
P p—6tVo(u)' 12, L « chol(JJT)
p + ProJECTMOM(p, J, L) 13: D %(u’ —u)
u,p,J, L < SIMGEO(u,p,J,L) aa p < PrROJECTMOM(p, J, L)
b p—EVo() o ur e = yp
p < ProJECTMOM(p, J, L) 46: u, < ProOJECTPOS(Ur, J, L)
return u,p,J, L ar: if |u— .|| > Ve
48 raise REJECTMOVE
. function ProJECTMOM(p, J, L) 49: u e u
return p— J'L "L 'Jp s0. return u,p,J, L

8.

1. Iterative solver for projection on to manifold

Rather than the RATTLE integrator used in [19], we use the geodesic integra-

to

r generalisation discussed in the previous section to simulate the constrained

dynamic. This gives increased flexibility in balancing the need for an appro-
priately small step-size to ensure convergence of the iterative solution of the

5132 M. M. Graham and A. J. Storkey

equations projecting on to the constraint manifold and using a more efficient
larger step size for updates to the momentum due to the potential energy gra-
dient. We assume M =T here; other mass matrix choices can be implemented
by reparameterising the model with an initial linear transformation stage in the
generator.

The projection on to the constraint manifold in the geodesic steps is per-
formed in the function PROJECTPOS in Algorithm 1. We use a quasi-Newton
method for solving for A the system of equations g, (u + (5t/N,)p — J'A) = x
where J = Jg (u). Expressing directly in terms of the configuration state u
rather than the Lagrange multipliers, the full Newton update would be

w e —JT (ng(u’)JT)_l(gx(u’) —). (81)

This requires recalculating the Jacobian and solving a dense linear system within
the optimisation loop. Instead as proposed in [6] we use a symmetric quasi-
Newton update,

u e —JT (JJT)_l(gx(u') —). (82)

The Jacobian product JJ' is used to condition the moves. This matrix is
positive-definite and a Cholesky decomposition can be calculated outside the
optimisation loop allowing cheaper quadratic cost solves within the loop.

Convergence of the quasi-Newton iteration is signalled when the maximum
absolute difference between the generated observed variables and the observed
data is below a tolerance e, i.e. ||gy(u) — x||cc < €. The tolerance is analo-
gous to the e parameter in ABC methods, however here we can set this value
close to machine precision (¢ = 10~® in the experiments here) and so the er-
ror introduced is comparable to that otherwise incurred for using non-exact
arithmetic.

In some cases the quasi-Newton iteration will fail to converge. We use a fixed
upper limit on the number of iterations and reject the move (line 34 in Algorithm
1) if convergence is not achieved within this limit. To ensure reversibility, once
we have solved for a forward geodesic step on the manifold in SIMGEO, we then
check if the corresponding reverse step (with the momentum negated) returns
to the original position and reject if not. This involves running a second Newton
iteration, though as it reuses the same Jacobian J and Cholesky factor L, the
evaluation of which tend to be the dominant costs in the algorithm, we found
the overhead introduced tended to be quite small (around a 20% increase in
run-time compared to only performing the forward step). A similar scheme for
ensuring reversibility is proposed in [100].

The square root of the tolerance e used for the Newton convergence check in
the output space of generator (line 29 in Algorithm 1) is used for the reverse-step
check on the inputs (line 48 in Algorithm 1) based on standard recommendations
for checking convergence in optimisation routines [22]. In the implementation
used in the experiments, we fall back to a MINPACK [63] implementation of
Powell’s Hybrid method [76] if the quasi-Newton iteration fails to converge, with

Inference in differentiable generative models 5133

| g,
Puy
B> > gxl\z
Pus ;
te{l..N}
(a) Independent x; (b) Markovian x;

Fic 4. Factor graphs of examples of structured directed generative models.

a rejection then only occurring if both iterative solvers fail. In practice we found
if the step size 0t and number of geodesic steps NN, are chosen appropriately
then rejections due to non-convergence or non-reversible steps occur rarely.

8.2. Exploiting model structure

For larger systems, the Cholesky decomposition of the Jacobian matrix product
Jg Jg T (line 42) will become a dominant cost, generally scaling cubically with
Dy. In many models however conditional independency structure will mean that
not all observed variables x are dependent on all of the input variables u and so
the Jacobian Jg has a sparse structure which can be exploited to reduce this
worst-case cost. In particular two common cases are directed generative models
in which the observed variables x can be split into groups {x;}>, such that
all of the x; are either conditionally independent given the latent variables z =
g,(u1) (for example a model for a independent and identically distributed (I1ID)
dataset), or each x; is conditionally independent of all {xj } j<i—1 given x;_1 and
z (most commonly Markov chains for example from simulation of a SDE model,
though more general tree structured dependencies can also be ordered into this
form).

Figure 4 shows factor graphs for directed generative models with these two
structures, with the conditional independencies corresponding to each x; being
generated as a function of only a subset uy; of the random input variables us.
We assume here each x; vector has the same dimensionality as the correspond-
ing random input vector uz;. For models with these structures the generator
Jacobian

99y | 99«]
8u1

9u, (83)

ng{

has a component 99x/ou, which is either block-diagonal (independent) or block-
triangular (Markovian). Considering first the simplest case where each (x;, uz ;)

5134 M. M. Graham and A. J. Storkey

pair are single dimensional, the Cholesky decomposition of

+ _ Og, 0g,' | Og, 0g,'

J -
9" 9x Ou; Ouq Oug Ousg

(84)

can then be computed by low-rank Cholesky updates of the triangular or di-
agonal matrix 99x/ou, with each of the columns of 99x/0u,. As dim(uq) = L is
often significantly less than the number of observations being conditioned on
Dy, the resulting O(LD2) cost of the low-rank Cholesky updates is a significant
improvement over the original O(D3).

For cases in which each (x;,us;) pair are both vectors of dimension D and
S0 99x/ou, is block diagonal or triangular, then the Cholesky factorisation of
(09,/0u,)(99x/0us)T can be computed at a cost O(GD?) for block diagonal, and
O(G?D?3) for block triangular 29,/ou,, with then again O(LD2) cost low-rank
updates of this Cholesky factor by the columns of 99x/ou, performed.

8.3. Efficiently evaluating the potential energy and gradient

The Metropolis accept step and momentum updates in the SIMDYN routine
require evaluating the potential energy corresponding to (58) and its gradient
respectively. Although this can by achieved by directly using the expression
given in (58) (and applying reverse-mode AD to get the gradient), both the
potential energy and its gradient can be more efficiently calculated by reusing
the Cholesky decomposition of the constraint Jacobian Gram matrix computed
in line 42.

Dropping the dependence of the Jacobian on w for brevity we have that the
potential energy ¢ corresponding to the negative logarithm of the unnormalised
target density on the manifold (58) is

1
o(u) = 3 log‘ngngT| — log pu(u) (85)

In general evaluating the determinant |Jg J ng\ has computational cost which
scales as O(D,D2). However the lower-triangular Cholesky decomposition L of
Jg Jg T is already calculated in the SIMGEO routine in Algorithm 1. Using basic
properties of the matrix determinant

Dy
P(u) = Z log(Li;) — log pu(u). (86)

Given the Cholesky factor L we can therefore can evaluate the potential energy
¢ at a marginal computational cost that scales linearly with D,. For the gradient
we can use reverse-mode AD to calculate the derivative of (86) with respect to
u. This requires propagating derivatives through the Cholesky decomposition
[64]; implementations for this are present in many AD frameworks.

Inference in differentiable generative models 5135

Alternatively using the standard result for the derivative of a log determinant
and the invariance of the trace to cyclic permutations we have that the gradient
of the log determinant term in (85) can be manipulated in to the form

19 T T 7y-19J,

200 10g|JgXJgX ’ = trace (ng (Jg,3g.") 2u, (87)
We denote the matrix vectorisation operator vec such that for a M x N matrix A,
we have vec(A) = [A11,.. ., Am1, A12, .-, AN’M}T. Then as the trace of a ma-
trix product defines an inner product we have that trace(AB) = vec(A) vec(B).
We can therefore write the gradient of the log determinant term as

10

T 8vec(ng)
2 0u Ou

7u (88)

log‘ngngT| = VeC(ngT (ngngT>_1)

The matrix inside the left vec operator can be computed once by reusing
the Cholesky factorisation of Jg J ng to solve the system of equations by for-
ward and backward substitution. We then have an expression in the form of a
vector-Jacobian product which is provided as an efficient primitive in many AD
frameworks, e.g. as Lop in Theano, and like the gradient (which is actually a
special case) can be evaluated at cost which is a constant over head of evaluating
the forward function (i.e. the cost of evaluating Jg4 here).

8.4. Initialising the state

A final implementation detail is the requirement to find an initial u satisfying
gy(u) = x to initialise the chain at. In directed generative models with one
of the structures described in Section 8.2, a method we found worked well in
the experiments was to sample a u, us pair from P, and then keeping the
uy values fixed, solve g,,(g,(u1), u2) = @ for us using for example Newton's
method or by directly minimising the Euclidean norm | g,(g,(w1), u2) — z||3
with respect to us by gradient descent. In more general cases one strategy is
to randomly sample affine subspaces by generating a D, X Dy matrix P and
D, dimensional vector b and then attempt to find any intersections with the
manifold by iteratively solving g, (Pwv + b) for v, sampling a new subspace if
no roots are found.

9. Related work

Several related approaches to applying gradient-based Monte Carlo inference
methods within a ABC setting have been proposed. The pseudo-marginal HMC
algorithm of [53] is particularly closely related to our approach, the authors
proposing use of a HMC transition operator to jointly update the target variables
z being inferred and auxiliary random input variables uy used in computing the
density estimate in pseudo-marginal inference problems. The authors discuss
the specific relevance of their approach to an ABC setting, though formulate

5136 M. M. Graham and A. J. Storkey

the method in terms of the wider context of the pseudo-marginal framework for
MCMC inference using an unbiased density estimator [4].

Compared to the suggestion in Section 6 to directly apply a standard HMC
transition operator to the ABC posterior density in the input space (34), the
method proposed in [53] assumes extra structure in the models considered.
Specifically the auxiliary random inputs uy are assumed to marginally be in-
dependent standard normal variables, with this additional structure leveraged
in a more efficient symplectic integrator compared to the standard leapfrog
method that gives improved scaling to problems where the dimensionality of
the auxiliary random inputs us is high.

Unlike the constrained HMC approach suggested here, the pseudo-marginal
HMC method still requires use of a non-zero € tolerance in ABC inference prob-
lems, and the complex ‘narrow-ridge’ geometry typical of the ABC posterior
densities in the input space will often require use of a small integrator step-size
as illustrated in Figure 3. This limits the gains in sampling efficiency from us-
ing a gradient-based approach and in the experiments of [53] it was found the
proposed pseudo-marginal HMC method performed comparably to using non
gradient- based elliptical slice sampling [66] updates to the target variables z
and auxiliary random input variables us as proposed in [67].

Hamiltonian ABC [60], also proposes applying HMC to perform inference in
simulator models. Rather than using reverse-mode AD to exactly calculate gra-
dients of the generator function, Hamiltonian ABC uses a stochastic gradient
estimator calculated using a simultaneous perturbation stochastic approrima-
tion (SPSA) scheme [88]. This is based on previous work considering methods for
using a stochastic gradients within HMC [97, 21]. It has been suggested however
that the use of stochastic gradients can compromise the favourable properties of
Hamiltonian dynamics which enable coherent exploration of high dimensional
state spaces [12]. The approach proposed in [60] also differs from that discussed
in this paper in using a synthetic likelihood based ABC method [99] as opposed
to the kernel-based formulation used here and described in Section 5. The syn-
thetic likelihood method generates multiple simulated observed variables x for
each evaluation of the approximated posterior density, using the empirical mean
and standard deviation estimates of the set of simulated observations given the
current unobserved variables z to fit a ‘synthetic’ normal model for the condi-
tional density py, (the likelihood). In [60] this is motivated by the observation
that SPSA estimates of the gradients of the synthetic likelihood ABC posterior
density are lower variance than the corresponding SPSA gradient estimator for
a kernel-based ABC posterior density, albeit at the introduction of further bias
compared to the gradients of the exact posterior density of interest.

The authors of Hamiltonian ABC also observe that representing the generative
model as a deterministic function by fixing the random inputs to the generator is
a useful method for improving exploration of the state space. This is achieved by
including the state of the PRNG in the chain state however rather than directly
updating the random inputs. As pointed out by the authors, this formulation
puts minimal requirements on the model implementation with most numerical
computing libraries having some facility to control the internal state of the PRNG

Inference in differentiable generative models 5137

being used, simplifying the application of the method with existing legacy code.
In comparison the approach we propose will generally require some re-coding in a
framework supporting reverse-mode AD and explicitly enumerating the random
inputs used in the generator code.

Also related is Optimization Monte Carlo [61]. The authors propose using an
optimiser to find parameters of a simulator model consistent with observed data
(to within some tolerance €) given fixed random inputs sampled independently.
The optimisation is not volume-preserving and so the Jacobian of the map is
approximated with finite differences to weight the samples. Our proposed con-
strained HMC method also uses an optimiser to find inputs consistent with the
observations, however by using a volume-preserving dynamic we avoid having to
re-weight samples. Our method also differs in treating all inputs to a generator
equivalently; while the Optimization Monte Carlo authors similarly identify the
simulator models as deterministic functions they distinguish between parame-
ters and random inputs, optimising the first and independently sampling the
latter. This can lead to random inputs being sampled for which no parameters
can be found consistent with the observations (even with a within e constraint).
Although optimisation failure is also potentially an issue for our method, we
found this occurred rarely in practice if an appropriate step size is chosen.

10. Numerical experiments

To evaluate the performance of the MCMC methods proposed in Sections 6 and
7 we performed inference experiments with three implicit generative models: a
quantile distribution model for an 11D dataset, a Lotka—Volterra predator-prey
SDE simulator model, and a differentiable generator network model for human
poses. In all experiments Theano [91], a Python computation graph framework
providing reverse-mode AD, was used to specify the generator functions and
compute derivatives. All experiments were run on a Intel Core i5-2400 quad-core
CPU. Python code for the experiments is available at https://git.io/dgn.

10.1. Quantile distribution inference

As a first example we consider inferring the parameters of quantile distribution
model for a IID dataset of univariate values. The generalised Tukey lambda distri-
bution [80, 31] is a four parameter family of distributions defined via its quantile
function. It has very flexible form which can describe distributions with a range
of shapes, including close approximations of standard distributions such as the
normal but also allowing asymmetric distributions with more general skewness
and kurtosis. This flexibility has supported it use for statistical modelling in a
diverse range of settings, including for example finance [23], climatology [69],
control engineering [70] and material science [15].

Using the inverse CDF transform method it is simple to generate samples given
a quantile function by mapping standard uniform samples through the quantile
function. The quantile function does not have an analytic inverse however so the

https://git.io/dgm

5138 M. M. Graham and A. J. Storkey

0.30
0.25 —
0.20 —

0.15

Density

0.10

0.05 —

0.00 |

T

Fic 5. Histogram of generated gemeralised lambda distribution dataset used in experiments
with N = 250 points generated using the quantile function parameterisation in (89) with
parameters z1 = 5, zo0 = 1, z3 = 0.4 and z4 = —0.1. The light orange region shows the
histogram of the generated data with the orange ticks along the x axis indicating the actual
data points. The green curve shows a kernel density estimate of the density of the distribution
using a separate set of 10000 independent samples.

CDF and corresponding density function do not have explicit forms. The use of
ABC to perform Bayesian inference using quantile distributions was suggested
by Allingham, King and Mengersen [2], with they employing a pseudo-marginal
ABC MCMC approach based on order statistics of the observation in their exper-
iments. McVinish [59] proposed a more efficient ‘modified” ABC MCMC scheme
specifically tailored to quantile distributions, with interval bisection used to
identify an efficient proposal distribution for updates to the auxiliary uniform
variables mapped through the quantile function.

We follow [59] in parameterising the quantile function of the generalised
lambda distribution as

1/p®—1 (1—p)=—1
dolp|2) = 2 + —(p Gl)) (89)
z9 z3 zZa

with z; a location parameter, 2o a positive scale parameter and z3 and z4 shape
parameters. In the experiments in [59], a synthetic dataset of N = 250 inde-
pendent samples is generated from a generalised lambda distribution using the
quantile function (89) with parameters z; =5, 2o = 1, z3 = 0.4 and z4 = —0.1.
The task considered in [59] is then inferring the posterior distribution on the
parameters z given observed (synthetic) data .

A prior density on z is defined as

pz(2) = Aexp(—Az2)[[g,00)(22) N (21 | 0, 02) N(z3]0, 02) N (z4]0, 02) (90)

corresponding to independent normal priors on each of the location and shape
parameters and an exponential prior on the location parameter. In the experi-
ments in [59] the prior hyperparameters are chosen as o = 10 and A = 1/10. In
[59] the proposed modified ABC MCMC algorithm is compared to a standard ABC
MCMC approach and a population Monte Carlo ABC method [9]. The proposed
modified ABC MCMC algorithm was found to significantly outperform the other
two approaches, and so we focus on comparing to this method.

Inference in differentiable generative models 5139

We compare a Cython [11] implementation of the modified ABC MCMC algo-
rithm to two of the algorithms discussed in previous sections: an ABC approach
with a Gaussian kernel k., running HMC in the input space to a differentiable
generator for the model as discussed in Section 6; the constrained HMC method
described in Algorithm 1, conditioning the output of a differentiable generator
to be exactly equal to observed data. As in [59] we use N = 250 generated data
points using the parameters z = [5, 1, 0.4, —0.1]" with the generated data used
in our experiments shown in Figure 5.

We formulate the quantile distribution model as a directed differentiable gen-
erative model as follows. We define a generator g, for the parameters z by

function g,(u1)
Z1 <— Ou1,1
Z3 <— OU1,2
Zy < OU13

z5 ilog(l + eXP(%UM))
return [z1, zo, z3, za]"

Here the input variables uy 1, ui2 and uy 3 are assumed to have independent
standard normal distributions N(0,1). The input variable uy 4, which maps to
the scale parameter z5, has a zero-mean and unit-variance logistic distribution

—2
s UL 4
U = —— cosh = . 91
pu1,4(1,4) 4\/5 (2\/§> ()

Given a vector of inputs u; with these distributions, g, outputs a parameter
vector z distributed according to the prior density (90).

The generator for the observed variables x given the parameters z and addi-
tional random inputs us is then specified by

function g,,(z, u2)
forne {1...N}
—1
pn (1 + exp<—%uz,n)>
Xn <= qer(pn | Z)
return [xi, x2, ..., xN]T

Here the input variables us have independent zero-mean and unit-variance lo-
gistic distributions with density as in (91). These are transformed to standard
uniform variables via a logistic sigmoid function, with these uniform variables
then mapped through the quantile function to generate values from the gener-
alised lambda quantile distribution given the provided parameter values z.

As the generated observed variables x are conditionally independent given
the parameters z, the Jacobian of the overall generator g,(u) = g,,(g,(u1), uz2)
has the block structure discussed in Section 8.2, with a dense matrix block
corresponding to the partial derivatives of the generated x with respect to the
inputs u; mapping to parameters, and a diagonal matrix block corresponding

5140 M. M. Graham and A. J. Storkey

to the partial derivatives of the generated x with respect to the inputs uy. As
described in Section 8.2 this allows efficient computation of the Jacobian product
Cholesky factor in the constrained HMC algorithm.

The modified ABC MCMC method uses a proposal kernel to generate updates
to the parameters z which are then accepted or rejected in a Metropolis—Hastings
step. We follow the experiments of [59] and use a uniform random-walk proposal
density U(z' |z — s,z + s) where s is a step-size parameter, which was tuned to
give an average accept rate of approximately 0.25 in pilot runs, with s = 0.075
used in our experiments. The interval bisection method used to construct the
proposed updates to the auxiliary uniform variables has a free parameter m
defining the number of bisection iterations; following the experiments of [59]
we use m = 16. The ABC kernel used in the modified ABC MCMC algorithm is
uniform across a cubic region specified by an infinity norm tolerance

D
1 1
ke(y|) = plp.q(ly —zlle) = =5 I T to.(lyi — i) (92)
d=1

with the product decomposition of this kernel being central to the proposed
efficient update to the auxiliary variables in [59]. We follow [59] in using a
tolerance of € = 0.1 in the experiments.

In pilot runs with the modified ABC MCMC algorithm, we found that when
initialising chains from the normal-exponential prior (90) with hyperparameters
o = 10 and A = 1/10, that some chains failed to converge, remaining at the initial
state for long series of rejections even with very small step sizes and in some
cases failing completely due to numerical overflow. By generating additional
synthetic datasets using parameters sampled from a prior with ¢ = 10 and
A = 110 it was found that this prior choice put significant mass on settings
leading to very extreme sampled values and in some cases producing values
beyond the maximum range of double precision floating point. As such extreme
variation in the target distribution seem implausible a-priori, we use a more
informative choice of prior in our experiments with ¢ = A = 1, with this choice
giving a more plausible range of variation for simulated datasets. We found the
regularisation provided by this choice to significantly improve the stability of all
the methods tested while having a negligible impact on the inferred posteriors.

For all the approaches tested, the chains for the parameter values z, or corre-
spondingly the input variables u; in the case of the methods parameterised in
the generator input space, were initialised from values sampled from the prior,
with the same 5 independently sampled initial states used for all chains. For the
constrained HMC chains, the initial states of the remaining uy input variables
were set by using an optimisation routine to solve for values of these variables
giving generated observed outputs within an maximum elementwise distance of
1078 of the observed data values. These same optimised u, initial states were
also used for the unconstrained HMC chains. This optimisation was a negligible
overhead (less than one second) and so not included in the run time estimates.

For the constrained HMC chains we used an integrator step size 6t = 0.6
and N, = 4 inner geodesic steps per overall time step. These values were cho-

Inference in differentiable generative models 5141

sen based on pilot runs to give an average accept rate in the range 0.6 to
0.9 [13] and to minimise the occurrence of any rejections due to non-reversible
geodesic steps or convergence failure in the iterative solver. The number of inte-
grator steps N, for each constrained HMC update was uniformly sampled from
[5,10].

For the unconstrained HMC chains using a Gaussian kernel ABC target density
in the generator input space (34), we ran sets of chains for € = 0.25 and ¢ = 0.05
(due to the different kernel from that used in the modified ABC MCMC method
the tolerance values cannot be directly compared between the two methods). For
€ = 0.25 we used a integrator step size 6t = 2.5 x 1072 and for € = 0.05, §t =
5x 1074, again chosen based on trying to achieve a target accept rate in [0.6,0.9].
We found however that the sensitivity of the stability of the updates to ¢t made
it challenging to meet this requirement, with values for §t giving reasonable
accept rates below 0.9 for some chains leading to other having very low accept
rates, and so the chosen dt values gave accept rates closer to 0.95 in most cases.
We sampled the number of leapfrog steps L per update uniformly from [20, 40]
for the e = 0.25 chains and [40, 80] for the e = 0.05 chains; these values were
chosen relatively arbitrarily and performance could likely be improved by tuning
these values or using the adaptive NUTS algorithm [43].

For all chains we ran initial warm-up phases which were excluded from the
later estimates to allow for convergence to the posterior typical set and re-
duce the estimator bias. The number of warm-up iterations for each chain was
hand-tuned based on visualising traces of the chains and setting the number
of warm-up iterations to remove any obvious initial transient behaviour in the
chains. For the constrained and unconstrained HMC chains we found it helped
stability to use a smaller integrator step size and fewer integrator steps in the
warm-up phase. The initial states have atypically high potential energy and so
the momenta quickly grow large in the simulated dynamics in the early chain
iterations, in some cases leading to stability issues with the step size. Using a
smaller initial step size and smaller number of integration steps and so more
frequent momentum resampling operations where the momenta are restored to
values with more reasonable magnitudes helps to alleviate this issue.

We used 6t = 0.05 and Ny = 2 in 200 warm up iterations for each constrained
HMC chain; 6t = 1073, L = 10 for 1000 warm up iterations for each ¢ = 0.25
HMC chain; and 6t = 2.5 x 10™% and L = 20 for 5000 warm up iterations for each
€ = 0.05 HMC chain. For the modified ABC MCMC chains we used 5000 warm up
iterations (using the same s = 0.075 step size as in the main runs). We ran the
main sampling phase for 1000 iterations for the constrained HMC chains, 30 000
iterations for the ¢ = 0.25 HMC chains, 15000 iterations for the ¢ = 0.05 HMC
chains and 100 000 iterations for the modified ABC MCMC chains; in all cases this
leading to chains taking roughly five minutes to run each in our implementations
(we recorded exact run times for each chain including the warm-up iterations to
use in normalising efficiency estimates). Although performance of the different
methods is somewhat implementation dependent, in all cases the use of efficient
compiled updates for the main computational bottlenecks (either via Cython for
the modified ABC MCMC implementation or Theano for the two HMC algorithms)

5142 M. M. Graham and A. J. Storkey

IS
IS
o
o
o
o
-
-
o
(=]
(=]
o
-
(=]
o
o
N
o
N

Mod. ABC MCMC
| | |
| | |
<) 0 'S
N | |
<) w 'S
| | |

I
»
o
o
=)
o

PN
+
.7 P T'
EF
: | o :
AO [V £
| | |

|

IS
IS
w
o
o
w

PN
| [|
}
'T A |
[=} M [
| | |
P

IS
'S
o
o
(=]
o
-
=
o
(=]
(=]
o
-
o
o
o
N
(=1
N

ABC HMC (e = 1/4) ABC HMC (e = 1/20) Constrained HMC

! ! !

o - N w S
! ! ! !

1<) %) 'S

N ! !

(=} N -

) | ! !)

™
fh
R
N
w S
w
I
IS

Fic 6. Estimated marginal posterior distributions of generalised lambda model parameters.
Each row corresponds to samples from five independent chains for MCMC method labelled to
left of plot, while each column corresponds to one of the four distribution parameters, labelled
to bottom of plot. The orange dashed line on each axis indicates the value of the parameter
used to generate the data.

meant that the interpreter overhead from using Python was at least minimal,
with all chains fully utilising a single CPU core when running.

The estimated parameter posterior distributions using the samples from all of
the chains run for each of the approaches tested are shown in Figure 6. We can
see that the marginal posteriors generally concentrate relatively tightly around
the values of the parameters used to generate the data (shown by dashed lines),
with the constrained HMC and modified ABC MCMC algorithms showing tighter
estimated distributions than the Gaussian kernel HMC chains, with the e = 0.25
case being the most diffuse as expected. The estimated posterior marginals from
the e = 0.05 HMC chains show spurious appearing irregularities not evident in

Inference in differentiable generative models 5143

I 1 Mod. ABC MCMC 01 Constrained HMC
I8 ABC HMC (e = 1/20) 1 8 ABC HMC (e = 1/4)
3.62

~
|

ESS per run time / s7!
!

21 z22 Z3 2

Fia 7. Estimated ESS for posterior means of each generalised lambda model parameter nor-
malised by chain run time. Each coloured set of bars corresponds to mean estimated ESS per
run time across five independent chains for the method indicated in the legend. The ticks on
the bars show 1 standard error of mean.

the results from the other chains, which is indicative of convergence issues in
the chains. The estimated potential scale reduction factor (PSRF) statistic [35]
for the ¢ = 0.05 HMC chains was R = 1.21 which also suggests convergence
problems (]:3 values close one are indicative of chains having converged); for
both the constrained HMC and modified ABC MCMC chains R = 1.00 while for

the € = 0.25 HMC chains R = 1.03.

Figure 7 shows estimates of the effective sample size (ESS) for the posterior
means of each model parameter (calculated using the CODA package in R [75])
normalised by the chain run time in seconds and grouped by chains of each the
four approaches tested. The coloured bars show the mean values across the five
independent chains for each method and the black ticks 41 standard error of
mean. Although as noted above the wall time performance of the methods is
implementation dependent, it seems that the proposed constrained HMC method
performs broadly about as well as the modified ABC MCMC approach here in
terms of sampling efficiency, while the methods performing HMC in the generator
input space using a Gaussian ABC kernel are significantly less efficient.

That the proposed constrained HMC method works about as well as an algo-
rithm custom tuned to this particular problem is encouraging. Further given the
generally improved relative performance of HMC methods compared to random-
walk Metropolis based methods as the dimension of the target distribution grows,
it seems plausible that the comparison would be even more positive towards the
constrained HMC method in models with larger numbers of parameters. It is in-
teresting to note that both approaches use iterative optimisation methods within
the inner loop of the algorithms: in the modified ABC MCMC method interval
bisection is used to find a relatively tight bounding box on the allowable values
of the auxiliary uniform variables used to generate the simulated data given
the current parameter values, while in our constrained HMC approach a quasi-

5144 M. M. Graham and A. J. Storkey

Newton iteration is used to project on to the constraint manifold in the input
space corresponding to the fibre of observed data under the generator function
gy In both cases this helps overcome the curse of dimensionality effects typi-
cally experienced when conditioning on high-dimensional observed data in ABC
inference problems.

10.2. Lotka—Volterra parameter inference

As a second test case we considered inferring the parameters of a SDE variant
of the Lotka—Volterra predator—prey model, a common example problem in the
ABC literature e.g. [61, 71]. In particular given observed predator—prey popula-
tion data we consider inferring the parameters of the following pair of SDEs

dr = (z1r — zor f)dt + dn,, df = (zarf — 2z3f)dt + dny, (93)
where r represents the prey population, f the predator population, {zi}?zl the
system parameters and n, and n; are zero-mean white noise processes.

A simulator for these SDEs can be formed by using an Euler-Maruyama [47]
integration scheme to generate simulated realisations of the stochastic process
at discrete time points. If the white-noise processes n, and ny have variances o2
and UJ% respectively, then an Euler-Maruyama discretisation of S time points of
the SDE 93 with an integrator time step dt and initial system state (ro, fo) can
be generated given a vector of standard normal random variates us as defined
in the following pseudo-code.

function g,,(z, u2)

ro < 7o

fo < fo

for se {1...5}
rs < rs—1 + 0t(zirs—1 — zars—1fs—1) + \/EJTUZ,QS
fy ¢ fo1 + 6t(zars—1fs—1 — z3fs_1) + Vdtosuz 2541

X [r1, f1, ...rs, fs]

return x

As suggested by the notation we can consider this Euler-Maruyama integration
as defining the observed generator 9xz of a directed generative model, mapping
from the unobserved parameter variables z and an auxiliary vector of standard
normal random inputs us to a vector formed by the concatenation of the sim-
ulated state sequences. This mapping is differentiable with respect to z and us
and so can be used to define a differentiable generative model. The generator in
this case has the Markovian structure discussed in Section 8.2 allowing efficient
computation of the Cholesky factor of the Jacobian matrix product J ng;X.

In the Lotka—Volterra SDE parameterisation used in (93), all of the parame-
ter variables z are required to be positive. A simple suitable choice of a prior

Inference in differentiable generative models 5145

100 —

Population

—— Prey r(t)
—— Predator f(t)

0 T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50

Time t

F1G 8. Traces of generated realisations of Lotka—Volterra SDE model (93) used as the obser-
vations in the experiments.

distribution on the parameters is therefore a log-normal distribution

4
p.(z) = H LogNormal(z; | m, s;). (94)

i=1

A generator function for the parameters can then be defined by

function g,(u1)
z <+ exp(s © uy +m)
return z

where u; is an input vector of standard normal variables.

For the experiments we generated a synthetic observed data set « of S = 50
simulated time points of predator—prey population state sequences using the
Euler-Maruyama generator function defined above with an integrator time step
0t = 1, white noise process standard deviations oy = 0, = 1, initial conditions
ro = fo = 100 and model parameter values z; = 0.4, zo = 0.005, z3 = 0.05
and z4 = 0.001 (chosen to give stable, oscillatory dynamics). The generated
sequences used in the experiments are shown in Figure 8. We then considered
the problem of inferring the ‘unknown’ model parameters z (with the initial
states, integrator time step and noise variances assumed to be known) given the
observed data x.

For the log-normal prior, we used location hyperparameters m; = —2 Vi €
{1...4} and scale hyperparameters to s; = 1 Vi € {1...4}. As in the gener-
alised lambda distribution experiments in the previous section this choice of a
relatively informative prior was motivated by trying to minimise the prior proba-
bility mass put on parameters corresponding to implausible generated sequences,
with in particular in this case the Lotka—Volterra dynamics being unstable for
many parameter settings, with an exponential blow-up in the prey population if
the predator population ‘dies off’. Biasing the prior towards smaller values was
found to favour more plausible appearing sequences with stable dynamics.

We first tested several standard ABC approaches to perform inference, condi-

5146 M. M. Graham and A. J. Storkey

-2 -1 0 1 -6 -5 —4 -3 -3 -2 -1 0 1 -7 -6 -5 -4 -3

log z1 log 22 log 23 log z4

Fic 9. Estimated marginal posterior distributions of Lotka—Volterra model parameters using
random-walk Metropolis pseudo-marginal ABC MCMC chains with nine-dimensional sum-
mary statistics and a uniform ball kernel with € = 2.5. Each histogram corresponds to last
250 000 samples from five independent chains of 500 000 samples. The orange dashed line on
each axis indicates the value of the parameter used to generate the data.

tioning on the full observed data sequences i.e. without use of summary statistics.
ABC rejection using a uniform ball kernel failed catastrophically, with no accep-
tances in 10% samples even with a very large tolerance ¢ = 1000. A standard
(pseudo-marginal) ABC MCMC method with a Gaussian random-walk proposal
distribution also performed very poorly with the dynamic having zero accep-
tances over multiple runs of 10° updates for e = 100 and getting stuck at points
in parameter space over thousands of iterations for larger ¢ = 1000, even with
very small proposal steps. Similar issues were also observed when attempting
to run pseudo-marginal ABC MCMC chains using a Gaussian kernel. This poor
performance is not unexpected, but highlights the challenges of working with
high-dimensional observations in standard ABC approaches.

We next attempted to reduce the dimensionality of the observed data and
generated observations by using a set of summary statistics. We used the nine
summary statistics employed in a similar Lotka—Volterra inference problem in
[71] - the means and log variances of the two sequences, lag-one and lag-two au-
tocorrelation coefficients and cross-correlation coefficient of the sequences. Even
when reducing to this much lower dimensional space, ABC reject continued to
give zero accepts unless a non-informatively large tolerance was used. Using this
set of summary statistics we were however able to successfully run ABC MCMC
chains which appeared to converge (PSRF statistic of R = 1.02 across five in-
dependent chains of 500000 samples) when using a uniform ball kernel with
€ = 2.5 on the nine-dimensional summary statistics.

A histogram of the resulting estimated marginal posteriors on the model pa-
rameters from the last 250 000 samples of five 500000 sample chains is shown
in Figure 9 with the orange dashed lines indicating the values of the param-
eters used to generate the data. The estimated marginal posteriors of z; and
zo are concentrated around the values of the parameters used to generate the
data, however this is not the case for the estimated marginal posteriors of the
z3 and z4 parameters. Although there is nothing to guarantee that the true

Inference in differentiable generative models 5147

posterior is centred at the parameters used to generate the data* the degree of
discrepancy between where the posterior mass is located and the parameters
used to generate the data is potentially concerning. We will see in later results
that the posterior distributions conditioned on the summary statistics of gener-
ated observations exactly matching the data summary statistics appears to be
concentrated around the data generating parameters as does the ABC posterior
when conditioning on all of the data using a uniform ball kernel.

It therefore seems here that it may be the combined use of summary statistics
and an ABC kernel which is causing a potentially non-representative posterior
distribution (in the sense of being representative of the true posterior we are
interested in, the estimated posterior may in fact be reflective of the true location
of the mass of the distribution conditioned on the summary statistics of the
data being within a distance of ¢ = 2.5 of the data). These issues highlight
the challenges in assessing the impact of the choice of summary statistics and
tolerance on the inferred posterior in ABC methods.

As the generative model here is differentiable we are able to apply our pro-
posed constrained HMC method in the input space of the generator to construct
chains directly targeting the posterior distribution of interest, constraining the
output of the generator to be equal to the observed data (to within a 1078
infinity norm distance used as the convergence tolerance in the Newton itera-
tion). We ran ten independent constrained HMC chains of 1000 samples, using
an integrator step size dt = 0.25, the number of integrator time steps per pro-
posed update N uniformly sampled from [4, 8] on each iteration, N; = 3 inner
geodesic steps per update and a Newton convergence tolerance of ¢ = 1078, As
in the experiments in the previous section, the initial