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Abstract: This paper presents a variational Bayes approach to a semi-
parametric regression model that consists of parametric and nonparametric
components. The assumed univariate nonparametric component is repre-
sented with a cosine series based on a spectral analysis of Gaussian process
priors. Here, we develop fast variational methods for fitting the semipara-
metric regression model that reduce the computation time by an order
of magnitude over Markov chain Monte Carlo methods. Further, we ex-
plore the possible use of the variational lower bound and variational infor-
mation criteria for model choice of a parametric regression model against
a semiparametric alternative. In addition, variational methods are devel-
oped for estimating univariate shape-restricted regression functions that
are monotonic, monotonic convex or monotonic concave. Since these varia-
tional methods are approximate, we explore some of the trade-offs involved
in using them in terms of speed, accuracy and automation of the implemen-
tation in comparison with Markov chain Monte Carlo methods and discuss
their potential and limitations.
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1. Introduction

This paper develops a mean field variational Bayes approximation algorithm for
a semiparametric regression model, known as a partial linear model, that con-
sists of parametric and nonparametric components. The nonparametric compo-
nent is represented with a cosine series based on a spectral analysis of Gaussian

*Corresponding author.

4258


http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/17-EJS1324
mailto:trchoi@korea.ac.kr

VB approach to semiparametric regression 4259

process priors. Specifically, the semiparametric regression model is given by

where w;r,B is referred to as the parametric component, w; and 3 are p + 1
dimensional vectors of known covariates and coefficients respectively, and f(-)
is an unknown function of x that is univariate and defined on the interval [0, 1],
the nonparametric component. The error terms {¢;} are a random sample from
a normal distribution with mean 0 and an unknown variance . For modeling
the nonparametric component f(z), a Gaussian process is used for the unknown
f, f(x) = Z(x), where Z is a second-order Gaussian process with mean function
equal to zero and covariance function v(s,t) = Cov(Z(s), Z(t)), s,t € [0,1].

Gaussian processes provide a natural way to specify prior distributions on the
space of functions for nonparametric regression (O’Hagan, 1978), and are also
widely used for machine learning applications (e.g., Rasmussen and Williams
(2006)). One of the main practical drawbacks in the application of Gaussian
process regression (hereafter GPR) is the computational burden in fitting these
models when the number of data points increases, due to the need for large
dense matrix calculations and associated storage requirements. An alternative
approach that avoids these problems is to linearize the covariance function and
to use a computationally efficient basis representation via the spectral represen-
tation of covariance functions. For example, Paciorek (2007), Lazaro-Gredilla
et al. (2010) and Tan et al. (2016) considered using the spectral representa-
tion of a stationary covariance function based on Bochner’s theorem (see, e.g.,
Grenander (1981) and Cressie and Wikle (2011)).

On the other hand, Lenk (1999) and Lenk and Choi (2017) exploited the
spectral representation via the Karhunen-Loéve expansion and Mercer’s theorem
(see, e.g., Grenander (1981) and Adler and Taylor (2007)),

Z(x) =Y 0,0, (1.2)
j=0

where ¢;(x), j > 0, form an orthonormal basis on [0, 1]. In particular, the cosine
functions, o(r) = 1 and p;(z) = v/2cos(mjx), j > 1 are used as an orthonormal
basis with unknown spectral coefficients to be estimated, 6; = fol Z(x)pj(z)de.
In addition to Gaussian process priors, Bayesian inference has been considered
for the semiparametric regression model using spline smoothing (e.g., Zhao and
Lian (2014), Hu, Zhao and Lian (2015) and Waldmann and Kneib (2015)) and
wavelets (e.g., Ko, Qu and Vannucci (2009) and Wand and Ormerod (2011)),
for instance.

In Lenk and Choi (2017) the Bayesian semiparametric regression framework
using Gaussian process priors in (1.2) was used, referred to as Bayesian spectral
analysis regression (BSAR), and Markov chain Monte Carlo (MCMC) methods
were developed. In particular, they proposed a Bayesian method to estimate
shape-restricted regression functions by assuming that the derivatives of the
functions are squares of Gaussian processes. In regression models it is often the
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case that subject matter knowledge imposes shape restrictions on the unknown
regression functions, which can yield fitted models that are more interpretable
and have improved performance compared to those without restrictions. The
proposed model based on BSAR in Lenk and Choi (2017) was able to success-
fully deal with shape restrictions for the regression functions that are mono-
tonic, monotonic convex or concave. Lenk (1999) considered related methods
in the case without shape restriction. Lenk and Choi (2017) showed that their
method is flexible for handling different kinds of shape restrictions and that it
enjoys good performance compared to other Bayesian methods in the literature,
for example, using spline smoothing (Shively, Sager and Walker, 2009; Meyer,
Hackstadt and Hoeting, 2011), Bernstein polynomials (Curtis and Ghosh, 2011),
and Gaussian processes (Lin and Dunson, 2014; Wang and Berger, 2016). The
comparisons in Lenk and Choi (2017) are restricted to the univariate setting.

However, the approach of Lenk and Choi (2017) has a disadvantage for han-
dling large data sets, mainly in requiring lengthy computation times for MCMC,
especially in regression models with shape constraints. This is despite the fact
that it is based on carefully designed MCMC algorithms resulting in method-
ology which is often faster than the alternative methods mentioned above, all
of which are based on generic MCMC methods. Further, an R package is avail-
able for practitioners, using compiled Fortran code to maximize computational
efficiency(Jo et al., 2017), but alternative numerical methods still need to be
developed for real-time applications or large data sets. Variational Bayes (VB)
methods are known to be fast deterministic alternatives to Markov chain Monte
Carlo (MCMC) for Bayesian computation, facilitating approximate posterior
inference for the parameters in complex statistical models (see, e.g., Water-
house, Mackay and Robinson (1996), Jordan et al. (1999) and Attias (2000) for
early developments of the method and Titterington (2004), Jordan (2004) and
Ormerod and Wand (2010) for nontechnical overviews). In the nonparametric
and semiparametric regression context, variational approximation schemes have
found increasing use; for instance, real-time semiparametric regression (Wand
and Ormerod, 2011), truncated power splines for partially linear additive mod-
els with variable selection (Zhao and Lian, 2014), penalized splines for mean
and quantile regression in geoadditive latent Gaussian regression (Waldmann
and Kneib, 2015), and sparse spectrum Gaussian process regression (Tan et al.,
2016).

The objective of the current study is to develop fast variational Bayes compu-
tation methods for the semiparametric regression model of (1.1) using Gaussian
process priors, which reduce computation time by an order of magnitude over the
MCMC methods of Lenk and Choi (2017). Specifically, we provide variational
Bayes approximation methods for spectral representations of one-dimensional
Gaussian processes via the cosine basis expansion of (1.2). Further, we explore
the possible use of the variational lower bound for model choice of a para-
metric regression model against a semiparametric alternative. In addition, we
develop a variational Bayes approximation scheme to solve the computational
challenges associated with MCMC with shape restrictions in a univariate non-
linear regression function, which is more challenging than the regression model
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without shape restriction because of the non-conjugacy of many factors associ-
ated with those shape restrictions. To the best of our knowledge, there exists no
variational Bayes approximation methods in the literature for shape-restricted
regression models, and thus, our work is the first variational Bayes approach
to the semiparametric regression with shape restrictions. This new approach is
limited to one-dimensional Gaussian processes and shape constraints of mono-
tonicity and convexity in the current work, but broadens the applicability of
variational Bayes approximation in the context of Gaussian process regression
modeling.

The rest of the paper is organized as follows. Section 2 provides a brief
overview of variational Bayes approximation methods and reviews the basic
model structure and the hierarchical prior specification proposed in Lenk and
Choi (2017). Then, we develop a variational Bayes algorithm for fitting the un-
restricted model, that is, BSAR without shape restriction. In Section 3, the
shape restricted models, that is, BSAR with shape restrictions, are considered
with monotonicity and convexity, and appropriate variational Bayes approxi-
mation schemes are developed. Section 4 illustrates the empirical performance
of the proposed variational Bayes methods with simulation studies and real ap-
plications. Since these variational methods are approximate, we explore some
of the trade-offs involved in using them in terms of speed, accuracy and au-
tomation of the implementation, in comparison with MCMC methods as well as
other existing variational Bayes approximations for semiparametric regression
in the literature. In Section 5, we discuss the potential and limitations of the
methodology along with concluding remarks.

2. A variational Bayes approximation for a Bayesian spectral
analysis regression model

2.1. An overview of variational Bayes methods

Consider a general Bayesian model with parameter vector 8, its prior density
function p(d), observation vector y, and its assumed probability density func-
tion p(y|d). We assume that y and § are continuous for simplicity. Then, the
posterior density function is given by

p(d)p(y|d)

p(dly) = @)

, ply) = /p(J)p(yI5)d5,

where p(y) is a marginal probability density function of y.

For Bayesian inference with the posterior density p(d|y), which is often math-
ematically intractable, variational approximation methods (e.g. Jordan (2004),
Titterington (2004), and Ormerod and Wand (2010)) can be employed. In these
variational approximations, the posterior density p(d|y) is approximated by a
density ¢(d) from some tractable family, and ¢(d) is chosen optimal in terms of
minimization of the Kullback-Leibler (KL) divergence between ¢(d) and p(d|y).
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It is easy to see that

lozp(u) = £la) + [ 1og L)q(5)as (2.1)
)p(Y19)

where L(q) = [log %q(&)d& is the wvariational lower bound (because it

forms a lower bound on logp(y)), and the second term in (2.1) is the KL di-
vergence between ¢(8) and p(d|y). The fact that £(q) is a lower bound clearly
follows from (2.1) and the non-negativity of the KL divergence. Clearly maxi-
mizing £(q) with respect to ¢(-) is equivalent to minimizing the KL divergence
term in (2.1).

The term variational Bayes(VB) is often used to denote variational inference
when some kind of product restriction is made on the approximating distri-
bution ¢(-) but where this distribution is otherwise arbitrary. This approach
is also sometimes known as mean field variational Bayes (MFVB). By a prod-
uct restriction we mean that we partition the parameter vector d into blocks,
8 = (61,...,0), and consider a density function ¢(-) that is assumed to fac-
torize as q(8) = []; ¢j(d;). In variational Bayes a coordinate ascent approach is
used to maximize £(q) by updating each term in ¢(8) = [[; ¢(8;) in turn with
all other terms fixed. The update for ¢;(d;) takes the form

4;(9;) o< exp (E—; (log p()p(y|d))) (2.2)

where E_;(-) denotes expectation with respect to [[;; ¢:(d;). If all the con-
ditional distributions have a conjugate-exponential structure, then g; takes the
parametric form of an exponential family, and the variational update procedures
are conveniently performed (Ghahramani and Beal, 2001).

A general algorithmic implementation of the procedure in this setting is given
by the variational message passing algorithm of Winn and Bishop (2005). When
there are nonconjugate factors in the model, one way to proceed is to use a gen-
eralization of variational message passing, namely the nonconjugate variational
message passing (NCVMP) algorithm (Knowles and Minka, 2011; Wand, 2014).
In NCVMP, for a factor ¢;(d;) having an intractable mean field update, it is
assumed to have the parametric form of a natural exponential family

q;(851p;) = exp (p; S;(8;) — hy(p;)) (2.3)

where p,; are the vector of the natural parameters, S;(d;) are sufficient statistics
of p;, and h;(p;) is a normalizing factor. A fixed-point updating procedure can
then be derived, which reduces to the variational message passing update in the
conjugate-exponential case. See Knowles and Minka (2011) and Wand (2014)
for further details.

2.2. Bayesian spectral analysis regression (BSAR)

As briefly discussed in Section 1, the Bayesian spectral analysis regression
(BSAR) model (Lenk, 1999; Lenk and Choi, 2017) expresses the Gaussian pro-
cess as an infinite series expansion (1.2) and uses the cosine basis function on
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[0, 1] as a choice of orthonormal system for the unknown nonparametric function
f. In the semiparametric regression model of (1.1), the parametric term w, 3
includes an intercept fy, confounded with 6y, and the basis function @g(x) is
dropped in the representation of f.

The infinite series in (1.2) is approximated by a finite sum Z;(z):

J
fla)=Z(z) = Zs(x) =Y 0505 (x), (2.4)
i=1

where J denotes the truncation point. The mean integrated squared error be-
tween Z and Z; decreases in J and can be made as small as desired be-
2

cause the sum of the variance is assumed to be finite, > > j—oV; < 00, where

fo fo s,t)p;(s)¢;(t)dsdt. Note that if the prior distribution of 6; is in-
hemted from Z by the spectral representation, then the choice of J does not
considerably affect the accuracy of estimating f for sufficiently large J (Lenk
(1999) and Lenk and Choi (2017)).
Using the approx1mat10n in (2. ) the BSAR model is expressed as y; =

w, B+ Z; 10i0;(x;) + €, i=1,...,n, and written in matrix notation,
y=WB+0)p,+e¢, (2.5)
where
y = (i, .., yn) and W = (wy,...,w,)"
x = (x1,...,2,) and €= (e1,...,€,)"
0; = (61,...,05)" and ;= (9ji) e, » Pii = ©5(i)-

Then, based on the BSAR model structure in (2.5), the following hierarchical
prior specification is considered for 6;, j > 1, where a conditionally independent
scale-invariant distribution is assigned to each of §;,

0jlo, 7,y ~ N (O o272 exp[fj'y]) for j > 1 and v > 0, (2.6)
™ ~ 1G <r0 T 802,7) and v ~ Exp(wo).

The prior probability that 6; is in a neighborhood of zero increases with j
and ~, and it decays to zero exponentially fast as indicated in (2.6). Further, we
consider hyper priors on 7 and + in a hierarchical fashion (2.6), which allows the
data to select the optimal smoothness given the data and structure of the model
(Lenk and Choi, 2017). The prior specification is completed with a conjugate
prior distribution for 8, which is also scale-invariant, 8 ~ N (uf,0*%3), and for

%, 0% ~ 1G (TO = S%”). All the remaining hyperparameters are assumed to be
known.

2.3. A wvariational Bayes approximation for BSAR

In this subsection, we provide a variational Bayes approximation for the semi-
parametric regression model, BSAR, without any shape restriction on f. To be
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specific, a variational Bayes approximation algorithm, Algorithm 1, is given
based on the model structure of (2.5). The joint posterior distribution of (3,0,
02,72,4)) is approximated by a variational approximation with the product form
of

4(8,0,0°,7%,¢) = 1(8)2(01)q3(0°)qa(7) g5 (¥), ¥ = 7. (2.7)

In (2.7), we have introduced a new hyperparameter 1 instead of v by the
reparametrization of |¢)| = v, and the corresponding prior distribution of ¢
is given as the double exponential distribution, ¢¥» ~ DE(0,wq), with a den-
sity function p(v)) = 0.5wg exp(—wplep]), —00 < ¥ < oo. Note that such a
reparametrization in terms of 1 causes ¥ only to be identifiable up to a sign
change, but this is not a problem in practice as the variational optimization will
lock on to one of the equivalent local modes. The reparametrization allows us
to use a normal distribution for the variational approximation to the posterior
distribution of v in the corresponding NCVMP variational updates. Although
one could apply the NCVMP update directly to the parametrization of v with,
say, a gamma distribution, some unacceptable restrictions on the variational
parameters are necessary for the existence of all the moments in the variational
lower bound so that we avoid this approach here.

We use mean field variational updates for all the factors except for ¢s(¢).
That is, the mean field updates are based on the commonly used conjugate dis-
tributions for ¢1-qa; ¢1(8) is a normal distribution, parametrized as N(uf, ¥%),
q2(6) is also a normal distribution, denoted as N(ud,Xf), g3(0?) is an in-
verse gamma distribution, denoted as IG(rq /2, 84.,/2), and g4(7?) is an in-
verse gamma denoted as IG(rq,+/2, sq,+/2). These mean field updates are given
in the Appendix. Here and in the Appendix we use the following notation. If
f(z) x g(z) for two functions f(-) and g(-), we write log f(z) = log g(x) to show
that log f(x) and log g(z) differ by an additive constant not depending on z.
Note that all the expectations in the Appendix, denoted by E_, k = 1,2,3,4
are with respect to the marginal variational density for the parameters except
for the parameters in the kth block under consideration.

Since the update for ¥ is a non-standard one, we give some details here.
For updating g¢5(¢) we use an NCVMP update and assume g¢5(1)) normal,
N(ufb,aff). In the derivation of NCVMP updates for 3 below, all the ex-
pectations denoted as Ej5 are with respect to the full variational density. For
¥, applying the general procedures of the NCVMP algorithm, (Knowles and
Minka, 2011) to g5(¢), we first compute Sy (= Sk(ufp,012)), k = 1,2 as given
below:

Sy = Es(logp(v)) = —woEs(|¢)]
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SQ = E5(10gp(0<]|0-277—27w))

) 1 1 1 il q q 2 R
= 5B z)Bs| = (6,55 + Ho,5 @41y 0y7)
j=1

1 J(J+1)
+5Es([Y))—
J
e 2 2, J(J+1)
. ;(Eg,jj+“g,j )@y 07 = = =S

where the expression for @, (-) is given in the Appendix and ui and UZ} are then
updated by

1
g2, 1] 05 | 95 ¢, a, q2) 05 | 9%
T T 2{3012+ao;2 T B T g (-

In addition to deriving updates for the variational factors, we also require an
expression for the variational lower bound, £(g) in (2.1), which is specifically
given by

E(logp(y, 9))

E(log p(y|B,6.,0%)) 4+ E(log p(8|0?))

+E(log p(8.4]0%,7%,4))

+E(logp(¢)) + E(log p(6?)) + E(log p(7%)),  (2.8)
E(log ¢1(8)) + E(log ¢2(8.)) + E(log g3(c?))
+E(log q4(7%)) + E(log g5(¢)). (2.9)

The terms in the expressions above are given in the Appendix. The variational
lower bound L£(q) is used for two purposes, one being for defining the stopping
rule in the variational Bayes approximation algorithm and the other being for
model selection for choosing between two competing models. For the use of the
stopping rule, the variational Bayesian algorithm, as given in Algorithm 1 be-
low, is terminated when the increase of the lower bound of the log-likelihood
(2.1) is negligible. Further, we use the lower bound of the log-likelihood as an
approximation of the marginal likelihood for testing the adequacy of semipara-
metric regression model in the empirical analysis presented in Section 4.

Based on all the above development, we now provide the following variational
Bayes approximation algorithm for BSAR without restriction, Algorithm 1,
describing the updates of all the variational parameters ¥ in the approximate

E(logq(9))

N 2
distribution of (3,0,02,7%,1). Here, ¥ = {uqﬁ, X e 00 Tars 84,7 Tg,0 Sq,00

K, Eg} denotes the set of variational parameters in the approximate distribu-

tion of (B3,07,02,7%,1).

In implementing Algorithm 1, note that the update for 7 often results
in a numerically singular matrix because the shrinkage spectral coefficients 0 ;
essentially degenerate at zero. Thus, for numerical stability, we set such coeffi-
cients exactly to zero in implementing the scheme numerically, which effectively
corresponds to a change of the truncation point J.
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Algorithm 1

Input: Data y, tolerance tol, prior parameters;
Output: Optimized variational parameters ,uqﬂ, Z%, ,u?p, aiz, Tq,715q,m5 Tq,05 5¢,0) ,ug,
Zg and the corresponding lower bound value £(q).

Initialize 9:
ui(—O, 0‘3)2%0, rq7g<—7'o,o+<]+p+n, Tq,‘r<*"‘0,‘r+']7
Sq,0 < S0,0, Sq,7 < S0, /"‘% — /‘%7 Loig = —o0, dif =tol +1;

While dif > tol do

—1

T T T . _ rq,

od <—q’a cp:,rcpj + L2 97 diag (E(r 1))) T 27 Egcp}— (y — Wu%),
Sq,0 Sq,0 Sqr Sq,0

Tg. T . —
S04 50,0+ 2Tt (S + g ") ding(BIT ) +ex(WT W) +
q,T

-1

tr(e) e, 58) + (S5 S8 + (y — Wk — e nd) T (y — Wal — e ud) +
-1

(h — 1) "85S (ud — D),

T, . —
sqr < so,r + 22 tr ((Eg +,ug,ugT> diag(E(T" 1))) ,
Sq,0

Sq,0 T o-1\~1 Tq,0 0—1 0 T
S 2 (WIW e shT) e R0 (S5 g+ W - eund)

O’i2 <~ —% { 85(;12 65:122
8011; 80w
9S1 . 0Sy }
8;130 8;13} ’
Lnew = L(q), dif + Lnew — Lold,
Loig < Lnew;

-1
} , where S; = Sj(ufb,aiQL 7=1,2,

2
ot

end

3. Variational Bayes approximations for the shape-restricted models

In this section, we consider the shape restricted regression models, that is, BSAR
with shape restrictions of monotonicity and concavity, and develop appropriate
variational approximation schemes for them. As discussed in Section 1, there
have been several methods proposed on Bayesian shape-restricted regression,
all of which use MCMC methods (see, e.g, Shively, Sager and Walker (2009),
Meyer, Hackstadt and Hoeting (2011), Curtis and Ghosh (2011), Lenk and Choi
(2017), and the references therein), and no results have been discussed in the
context of variational approximation.

Here, we focus on the shape restricted regression models of Lenk and Choi
(2017), BSAR with shape restrictions, in which the derivatives of the regression
functions are modelled in terms of squares of Gaussian processes for shape con-
straints, based on their spectral representations. That is, the proposed approach
of Lenk and Choi (2017) enforces shape restrictions on the ¢th derivative of f
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as the square of a Gaussian process Z(z) in (1.2),
fO(x) = 62%(x) (3.1)

where § € {—1,1} and ¢ are given by the user. For example, when £ is 1 and ¢
is 1, f is non-decreasing, and f is a non-decreasing and convex function when
¢ is 2 and § is 1. The proposed method of Lenk and Choi (2017) based on
the characterization of (3.1) was shown to be flexible for handling different
kinds of shape restrictions and to have good performance compared to other
Bayesian methods in the literature. We provide fast and efficient variational
Bayes approximation methods for monotonic, monotonic convex or monotonic
concave regression models based on the framework of (3.1).

3.1. A Variational Bayes approximation for the monotone function

We first consider the shape-restricted model with monotone regression functions
and develop its variational approximation algorithm. The derivative represen-
tation in (3.1) for the monotone function with £ = 1 is rewritten in terms of the
regression function f(-) by integration

f(x)za{/: Z2(s)ds—/01 /OI Z2(s)dsdx] (3.2)

where 0 is 1 for a non-decreasing function and -1 for a non-increasing function,
and the last term is chosen to satisfy the mean-centering condition of f(-) (Lenk
and Choi, 2017). Then, using the spectral representation of Z(x) in (1.2), f(x)
is expanded as

fl@) = 6) 0 00007, () (3.3)
j=0 k=0

s

x 1 s
o2 u(r) = / 03(5)Pn(s)ds — / / o3(0)@r(t)dt ds for j,k > 0,

where @jk(x) using the cosine basis are specifically given as (Lenk and Choi,
2017):

¥oo(r) = x—05
©5;(®) = ¢jolz)= :{—f sin(mjz) — (;éi)Q [1— cos(mj)] for j > 1,
¢ (@) = Sm(;:?x) +2—0.5forj>1,
a _sin[n(j +k)z] | sin[n(j — k)]
Pip(r) = o w0 — )
~1—cos[r(j+k)] 1—cos[r(j— k)
[r(G +F)J [x(j — k)

for j # k and j,k > 1.
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Thus, the semiparametric model (1.1) with monotone restriction is written
in matrix notation as

y=WpB+60)0%x)0; +e€, (3.4)

where 87 = (0, ...,0;)" is the J+1 vector of spectral coefficients, and % (z) is
a J+1x J+1 matrix with (4, k) entry gp‘;k(x) The parameters in the model are
the same as in the case with the unrestricted model (3,80 7,0%,72,). Thus, we
adopt the same hierarchical prior specification of (2.6) in the case with BSAR
without shape restrictions in Section 2 except for the prior distributions of 6;,
Jj=0,

folo ~ N(0,003), and 0|0, 7,7 ~ N(0,07% exp[—j]) (3.5)

That is, in the prior on 6;, j > 0, to ensure scale-invariant prior specification as
discussed in Lenk and Choi (2017), o rather than o2 appears in the variance,
in contrast to the BSAR without restrictions. Note that we do not consider the
identifiability condition 6y > 0 of Lenk and Choi (2017) in the variational Bayes
approximation scheme. The optimization in the variational approximation in
general locks on to one of the two equivalent modes obtained by switching the
signs of all elements of 6 ;.

In the variational Bayes approximation to the joint posterior distribution for
the regression model with monotone restriction in (3.4), we use mean field up-
dates for 3,02 and 72 and an NCVMP update for 9 as before, but an NCVMP
update with a normal factor for 8, in contrast to the case of BSAR without
shape restrictions, because of the non-conjugacy for 8 ; with the characteriza-
tion of the squared Gaussian processes in (3.1) and the scale-invariant prior
specification of ¢ in (3.5).

The assumed form of the variational approximation in terms of the blocks
(8,80, 72%,1) is similar to BSAR without restrictions. ¢; (3) for 3 is parametrized
as N(uh, %), the factor g2(8;) for 0 is parametrized as N(ug,%j), the fac-

tor q4(72) for 72 is inverse gamma, IG(™%~,%47), and the factor g5(¢) for ¥
is parametrized as N (“Zw 032). Note that the factor g3(c?) for the mean field
update is not an inverse gamma but takes a different form because of the prior
specification in (3.5) as mentioned before, with details given below. The mean
field updates for 8 and 72 are described in the Appendix. Again we describe
the non-standard non-conjugate updates in some detail and again we note that
the expectations denoted by E_j are with respect to the marginal variational
density for the parameters except for the parameters in the kth block under
consideration, and the expectations denoted by Ej; are with respect to the full
variational density.

We provide the details of the updating procedures as follows:

e For 0 ;, the mean field update does not take the form of a standard dis-
tribution for monotone restrictions, and we use a multivariate normal
approximation with the parameters updated by the NCVMP algorithm
(Knowles and Minka, 2011; Wand, 2014). Specifically, define Sj(ug, X3),



k=12,
S1 (Mmzq) =
So (Neazq) =
where
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Eo (Y1)

E; (logp(84]0°,7°,4))
~582 (5 ) or (54 g7 dins(Ea(t 1))
Ey(logp(y|B,0,07))
1 1
55 () S {0l (e a0)

T a a a

=0y @5 (wi)pg)? + 2tr(pG (2:) g (2:)%5)
T a a

g1 () Th (b |

-
= (08, 72 exp(—7), ... T2 exp(—J’y)) ,
(1/0(2)a7"qn'/3q,7'E2(F71))'

Then it follows from Wand (2014) that the NCVMP update takes the form

q
Xg

2

a=1

{Zasgag,z >>} ,u3<—u3+23{zas(ﬂe’ >>}.

oug

a=1

Using standard rules of matrix differential calculus, we obtain the NCVMP
update for 6 given in Algorithm 2.

e For 02, the mean-field update is given as

log g3(c?) = E_
+ logp(y|ﬁ, 0.]» 02))7

3(log p(a?) +log p(8s|0*, 7°,4) + log p(B|o?)

where
2 = _(loe 2 _ 500
E_s(logp(c?)) = ( 5 +1) logo™ — 53
. J+1 1 . _
B_y(ogp(@s0% 72 0) =~ 100~ Lu 0T dine(1)0,)
B e ;r 1) log
1 . _
—5 b { (23 + uZuZT) diag(E_3(T 1))} ;
. p 1 -1
E_3(logp(Blo®)) = —Zlogo® - ﬁE«ﬁ—ug)ng (ﬁ—u%))

+tr(zg’1zg,)} ,
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. n 1
Bs(ogp(y18,0,0%) = —yloso” — 55 37 {(u —wis

a T a
—8tr(p% (2:)5]) — 0pg @G (wi)pud)?
o] Shw; + 2w () S (1) )

T a a
4y 5 (00 SR (i) |

Hence
J41
log g(0?) = — {TO’J —|—n—&2—p+ 2+ 1} log o
1 -1 -1
— 55 (00 + (= 3257 (uf — i) + (' 2)
- a T a
+ > { s — ] — el () TF) - 0 @ (i) 1)
i=1
+ 'wiTEqB'wi + 2tr (@ (z:) 2hpG () 25).
T a a
4 (@) S (@i} )
1 Ty 5. -
— 5ot { (5 + g ding(E_o(T71)) |
Thus,
2a
1 b c
2
= SN 3.6
q(a)o<(0> exp(g 02>7 (3.6)
where
gz oo tntp(JH/2
2
_ _l q q,9T7: T-1
b= 2tr (3§ + pgrg )diag(E_s( )¢

1 -1 -1
e =5 (500 +200(Z5 7 T8) + (uf — 1) =G (f - )

- a T a
37 [ = wl i — Sl (i) =) — o @ (i) i)
=1

a a T a a
+ 25 (20 s (20) T4) + 4 | 05 (20) Do () + w] S| )

e The NCVMP update for ¢5(¢) takes the same form as in Section 2.3, ex-
cept that the term 74,5/54,0 in Sa(4y,, 03)2) is replaced by Es(1/0).

Details of the lower bound calculation are given in the Appendix. Based
on all the above computations and notation, we provide the variational Bayes
algorithm for BSAR with monotone restriction in Algorithm 2.
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Algorithm 2

Input: Data y, tolerance tol, prior parameters;

Output: Optimized variational parameters ,uqﬂ, Eqﬁ, u?p, 0'3}2, Tq,718q,75 Tq,05 5¢,0) ug,
Eg and the corresponding lower bound value £(q).

Initialize ¥:

/‘Z, « 0, U.Z,Q <0, rq,r < 10,7 +J, Sq,7 < S0,7, ;quB — ﬂ%y

1 1
E<—> - aO,cr7 E<—> <_a(ﬁl,o’7 Lnew = —00, dif = tol + 1;
o boyo- 0'2 bO,cr

While dif > tol do

28« —% {—%E (i) diag(E(Y™1))
38 (55) X o5 0mtute) + aesengug T (e

T a a -1
~20(yi — w] uh — o @G (eues ()]}

1y _ 1 1
g pg+33 {—E (;) diag(E(Y™1)ud — EE (;)

8 % (x:) g0l (wi)ug
i
a T a a
—4Y (yi —w] p = 5tr (S (i) — Sug LPJ(xi)Mg)‘PJ(M)MS] } ,

S+ 50,7+ (g) o (25" + g g ™) diag(B()))

1\t 1\ 1
q T 0
EBFE<—O_2> (W W + 3 ) ,

1 1 n
Wi« 1B (;) (zg 1043 wily: — btr((a)SE — wgwf}(xi)uz)) ,
=1
—1
1 oS 0 oS 0
od? = L+ QQQ sl pd 4+ 0l? —;Jriqg ;
2 80’3) Bafz) ¥ Opy, — Ouy,

Lnew = l:(CI), dlf < Lnew — Lold7
Loig < Lnew;

end

Note once again that in Algorithm 2, " is puf with the first component re-
moved, ¥7" is 5§ with the first row and column removed, and Q2 = Q- (ui, 03)2)
is the same as S (4, 03}2) with rq »/q,0 replaced by E_5 (1). How to compute
this last expectation is discussed in the Appendix. As in Algorithm 1, the up-
date for X} often results in a numerically singular matrix, and we set coefficients
with a prior degenerate on zero exactly to zero in implementation, which as we
mentioned earlier effectively corresponds to a change of the truncation point J.
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3.2. Variational Bayes approximations for the convex/concave
function

We next consider variational Bayes approximation methods for convex or con-
cave regression functions. When a twice-differentiable function is assumed to
be either monotonic convex or monotonic concave, then the first and second
derivatives of the function have the same sign. Then, from the shape-restricted
representation of (3.1), the second derivative of f is modeled as the square of a
Gaussian process Z(x). That is, when ¢ is 2, f is a non-decreasing and convex
function when § = 1 or non-increasing and concave function when § = —1, and
f is represented as (Lenk and Choi, 2017):

flz)=16 {/Oz/osZz(t)dtds/; /(f/o Zz(t)dtdsd:c} +alr—0.5). (3.7)

Notice that if we take the first and second derivatives of f(z) in (3.7), we get

fl(x) = 5/096 Z%(s)ds 4+ o and f"(z) = 6 Z%(x),

and that da > 0 ensures monotonicity. Similar to the monotone restriction, the
spectral representation of f(x) with monotone convexity or concavity in (3.7)
becomes

0 Z Z Qjekgos,k(x) + a(z —0.5) (3.8)

=0 k=0

/Ox /O w(t)cpk(t)dtds—/ol /Ox /O 0 () (t)dt ds da.

Then, the resulting basis, <pg’-’k, is obtained as (Lenk and Choi, 2017):

f(x)

‘6

Slo

B

—

g
Il

@870(96) = 39626_ !

eo () = @hox) = —% cos(mjx) for j > 1

ol i(x) = —CO(S;Z)];) - 3:526_ Liorj>1

@hrle) = —Co[jg(iz)ﬁ)f] - Co[jr[g(]_ _k)k])f] for j # k and j, k > 1.

In order to develop the variational Bayes approximation method, instead of
using the spectral representation of f(z) in (3.8), we replace o with 6a? as an
equivalent representation of f(z),

flx)y=94¢ i i Gjﬂkgog’k(x) +6a%(z —0.5), (3.9)

j=0 k=0
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in which the monotonicity and the convexity of f(x) are controlled by a single
parameter §. Then, we have the following model structure for monotonic con-
vex/concave regression functions, in which the variational Bayes approximation
method is explored:

yi = w] B+8(09)" 5" (2:)85 + e (3.10)

where 85 = (a, 00,01, ...,6,)T and ¢’ a (J +2) x (J 4 2) matrix with

@8’,3(1‘) = 2-05
b, b,a )
eo(x) = @ro(x)=0forj>1
b, )
Pk (x) = 902‘71,]@,1(!%) for j > 1.

By reformulating the model (3.10) with o? instead of o, we use a normal dis-
tribution for the variational approximation to the posterior distribution of «,
based on a normal prior o ~ N(0, aa&a), instead of a truncated normal prior
considered in Lenk and Choi (2017). For the remaining parameters, we adopt
the same priors as in the monotone case in Section 3.1. Thus, the unknown pa-
rameters in the model (3.10) are (3,09, 02, 7%,). Similar to the monotone case,
we use mean field updates for 3, 02, and 72, and NVCMP updates with normal
factors for ¢ and 6. That is, q1(8) for B is parametrized as N(uf, ¥3), the fac-
tor g3(0?) has the same form as for the monotone case, the factor g4(72) for 72
is an inverse gamma, IG(T“{, 8‘12" ), and the factor ¢5(¢) for v is parametrized
as N (p,, 05)2). The factor g2(07) for 875 is parameterized as N (uf, 4, X2 ). Note
that we use the same notations for all the expectations as those used in Sec-
tion 3.1. In addition, note that by replacing ¥f with X2 ,, pg with u? . % (2;)
with % (x;), and T with T = (03 s 08, T2 exp(—7), ..., 72 exp(—J7)) T, the
updates for 3, 85, 72 and ¢ follow the same form as the variational updates de-
rived in Section 3.1. Thus, the remaining ones are about the updating procedure
for 02 and the variational lower bound, whose details are as follows:

e For o2, the update is

log q(0?) = E(log p(c®) + log p(y|B, 05, 5°) + log p(85|0>,72,))
+ log p(Blo?),

where
« . J+2 1 o ] o N
Blogp(03lo?, 7v) = 5 o — 5 B(05) (1) 1)05)
. (J+2) logo
2
1 T . o —
gt { (Ei,a + 1l ot g ) diag(E((T%) 1))} 7

and E(logp(c?)), E(logp(y|B,05,0°)), and E(logp(Blo?)) are the same
as in the monotone case after replacing % (z;) with gaf)]’a (), T with T,
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¥§ with X3 o, and g with g, 5. Therefore, we have
1 b
log g(0?) = 2alog — + = — %,
c o o
where

)

_ To,a+n+p2+ (J+2)/2 1

b= —gtr {(S8, + ut gul, ding(B(X) 1))

an

1 -1
5( 0.0+ 260(59 7 S9) + (1 — 1) TG (1 — )
b (zi)zi,e) 5ﬂa 9 ‘P] (Ii)ﬂi,e)z

Z{ —w;, uBfétr(

=1

+2tr( " (2:) 52 g0 (2:)B2 )

.
+apd o @ ()2 g0y ()l 5 + w, Eﬁwz})

To derive the variational lower bound, the computations are the same as
in the monotone case if we replace 3¢ with X? o, pd with p? o, ¢%(2;) with
<plj,’a(33i)7 and T with T* = (03 ,,08,72exp(—7),..., 7> exp(—J7))", except
for the terms E(log p(05|0?,7%,%)) and E(log ¢(89)), which are given as

2 1 1
E(logp(05|0?, 72, 9)) = —%E(log 270) — 3 log op — 5 log og)a
J
- 5 {IOg(Sq,T/Q) - 7/’(%;/2)}

2
JJ+1) | 4 /2 /L?p
+T{U¢\/;exp<—2aq2
(U

q

Hy

4q _ __v

o (1 2@( Uqu))}

E (g) (50 + i ony ") diag(B((C) )}
J+2

10g27r— —10g|Z ol — 5

1
2

E(log ¢(6%)) = —

Hence, it follows that the variational Bayes algorithm for BSAR with mono-
tonic convex restriction is the same as Algorithm 2 but with the replacements

described above.
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4. Empirical analysis
4.1. Curve fitting with VB approximations

In this section, we compare the performance of the VB approximations of the
BSAR we proposed in Section 3 with some existing methods, based on simulation
studies. Specifically, we first consider fitting univariate nonparametric regression
models and compare the proposed VB approximation method of BSAR without
restrictions, referred to as the VBU (Variational Bayes for Unrestricted model),
with the three variational approximation approaches, VB-SSGP of Tan et al.
(2016), VB-Spline of Zhao and Lian (2014) and VB-Pspline of Waldmann and
Kneib (2015).

Our numerical implementation of all the VB approximations including VBU
is written in R. In the implementation, the tolerance value tol in VBU is set
to be 0.0001, and the hyperparameters for the priors in the VBU are set as
70,0 = 2(2 + m(%,o/VO,U)a ro,r = 2(2 + mg,T/VO,T)a 50,0 = mO,o(VO,a - 2)7 S0, =
mo,- (Yo, —2), Mo,e = 1, vy = 1000, mo» = 1, vy, = 100, wo = 2, u% =0,
Z% = 100, and 02 = 1002. The speed of convergence of the variational approach
is known to be sensitive to the starting values chosen for ,ui and pg, and we
choose ,u?p =1 and pf = (1,0, ..,0)T as our starting value for the VBU. For
numerical implementations of other methods, R codes were obtained for VB-
spline from the authors of Zhao and Lian (2014) and for VB-SSGP from the
authors of Tan et al. (2016) by personal communication, and for the VB-Pspline
method of Waldmann and Kneib (2015) the accompanying R package, VA, is used.

We simulate 50 datasets with two different sample sizes n = 100 and 200
based on the regression model y = f(x) 4+ € and use the root mean integrated
squared error (RMISE) between the true function f and the posterior mean
ffor performance evaluation. We consider N = 50 simulated datasets and by
writing f;(-) for the posterior mean obtained from dataset j, we define

RISE 1) = | ES{168) - Bt} =1

where x(] ) is the ith value of covariate x in dataset j. To compare different
methods, we consider the RM T SEj(fj, f) values averaged over the different
datasets 7 = 1,--- , N. The values of x are equally spaced on 0 to 1, and the
same values are used for each dataset with the same sample size.

In the first simulation study, we consider the following nonlinear regression
models:

y = sin(2(4z —2)) + 2exp((—16%)(z — 0.5)) + ¢
y = 2—5zx+exp{b(z—0.6)}+e,
y = xz+cos(4x) + €,

exp[15(x — 0.4)]

= 10 ,
Y exp[15(z — 04 +1 €
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where € ~ N(0,1). Figure 1 displays the simulated data and the true mean
curve, respectively. The average RMISE values for the four methods, VBU, VB-
SSGP, VB-spline and VB-Pspline are summarized in Table 1 with the standard
errors (s.e.) and computing time (time) in seconds within parentheses.

s f2

Fi1G 1. Simulated data (black circle) and the true mean curves (red solid line) for fi—fa

It appears that no method dominates and that the four methods have equiv-
alent performance based on the standard errors. VBU has the best average
RMISE in two functions f; and f; while other methods have the best average
RMISE in f5 and f3. Overall, the simulation results indicate that the VBU is
competitive with other variational methods in terms of RMISE as well as com-
puting time. In terms of computational speed, VBU and VB-Pspline are the two
best variational methods, which have the shortest computing times in all cases.

In the second simulation study, we consider the following monotone regression
models:

Sigmoid : Y = J5exp(l0x —5)/[1 + exp(10z — 5)] + ¢,
Sinusoid : Y = 27x +sin(27x) + e,
Expo : Y = exp(6z—3)+e,
LogX : Y = log(1+10z)+e¢,
Const : Y= ¢

where e ~ N (0, 1). Figure 2 displays the simulated data and the true mean curve,
respectively. Since there are no existing VB approximation methods for shape-
restricted regression models, we compare the performance of the proposed VB
approximation method of BSAR with shape restrictions, referred to as the VBM
(variational Bayes for the monotone model) with the BSARM for monotone
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TABLE 1
Average RMISE and computing time (seconds) for nonlinear functions over 50 repetitions

4277

Function n VBU VB-SSGP VB-Spline VB-Pspline
f1 100 0.33 0.4 0.42 0.35
(s.e./time) || (0.060/0.020) | (0.122/0.308) | (0.047/2.922) | (0.066/0.017)
200 0.26 0.36 0.38 0.27
(s.e./time) || (0.034/0.022) | (0.047/0.757) | (0.027/3.617) | (0.039/0.017)
f2 100 0.30 0.27 0.22 0.23
(s.e./time) || (0.06/0.019) | (0.06/0.294) | (0.06/3.142) | (0.07/0.020)
200 0.2162 0.2073 0.1647 0.1690
(s.e./time) || (0.0367/0.020) | (0.0361/0.728) | (0.0380/3.773) | (0.0403/0.020)
f3 100 0.23 0.16 0.17 0.22
(s-e./time) || (0.061/0.017) | (0.052/0.274) | (0.050/1.629) | (0.043/0.029)
200 0.17 0.13 0.13 0.17
(s.e./time) || (0.048/0.016) | (0.042/0.615) | (0.042/2.247) | (0.044/0.027)
fa 100 0.24 0.30 0.29 0.25
(s.e./time) || (0.059/0.014) | (0.076/1.116) | (0.050/1.418) | (0.056,/0.009)
200 0.18 0.22 0.24 0.18
(s.e./time) || (0.048/0.013) | (0.055/1.961) | (0.037/1.751) | (0.050/0.012)
regression model of Lenk and Choi (2017) and Bayesian regression splines with

monotone restrictions, BRSM of Meyer, Hackstadt and Hoeting (2011), with the
latter two methods implemented using MCMC. Our numerical implementation
of the VBM approach is written in R, and the entire setup, including initial values
and the tolerance value, are the same as in VBU. For numerical implementations
of other methods, an R package, bsamGP(Jo et al., 2017) is used for BSARM,
and BRSM is implemented by the R code available from the author’s website as

given in Meyer, Hackstadt and Hoeting (2011).

Sigmoid

Sinusoid

T T
04 06
QuadCos

FiG 2. Simulated data and the true mean curve for monotone and/or convexr regression models
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Table 2 summarizes the RMISE’s, the standard errors and computing time
in seconds. Overall, the simulation results indicate that VBM is slightly worse
than the two other MCMC methods for the shape-restricted regression models
in terms of RMISE. The worse performance of VBM compared to the MCMC
methods is, we believe, due to two factors. The first is the posterior independence
assumptions that are inherent to the VB approximation, and which can cause
both underestimation of variability as well as bias in point estimates of variance
parameters and smoothing parameters. These drawbacks are not confined to
this application only but apply to VB approaches more generally (see, e.g.,
Wang and Titterington (2004) and Turner and Sahani (2011)). The second,
less important factor that may explain the poorer performance of the VBM
approach is the adaptive truncation of the number of basis functions used to
avoid numerical singularities as described in the remark following Algorithm 2.
As expected, in all cases, VBM has an advantage over BSARM and BRSM in
terms of computational speed.

TABLE 2
Average RMISE and computing time (seconds) for monotone functions over 50 repetitions
Function n VBM BSARM BRSM
Sigmoid 100 0.3 0.21 0.21
(s.e./time) (0.120/1.569) (0.070/21.75) | (0.086/49.54)
200 0.23 0.15 0.13
(s.e./time) (0.058/3.853) (0.043/34.95) | (0.046/53.43)
500 0.20 0.11 0.098
(s.e./time) (0.025/8.605) (0.030/56.85) | (0.026/64.50)
Sinusoid 100 0.21 0.23 0.25
(s.e./time) (0.097/1.692) (0.068/27.61) | (0.067/49.69)
200 0.20 0.16 0.19
(s.e./time) (0.067/4.214) (0.041/35.65) | (0.048/53.53)
500 0.18 0.10 0.11
(s.e./time) (0.025/9.117) (0.029/55.91) | (0.037/64.53)
Expo 100 0.45 0.26 0.25
(s.e./time) || (0.057/2.002) | (0.074/27.34) | (0.074/50.01)
200 0.3 0.19 0.17
(s.e./time) (0.116/4.789) (0.042/35.39) | (0.051/53.71)
500 0.37 0.13 0.11
(s.e./time) (0.021/8.907) (0.028/57.85) | (0.027/64.53)
LogX 100 0.17 0.16 0.22
(s.e./time) (0.049/1.754) (0.055/28.06) | (0.048/49.84)
200 0.14 0.13 0.15
(s.e./time) || (0.0350/4.201) | (0.040/25.94) | (0.043/53.49)
500 0.11 0.087 0.11
(s.e./time) || (0.025/9.576) | (0.029/55.86) | (0.030/64.42)
Const 100 0.14 0.14 0.086
(s.e./time) (0.039/1.634) (0.051/28.20) | (0.057/49.78)
200 0.12 0.094 0.060
(s.e./time) (0.065/3.667) (0.036/26.52) | (0.038/53.42)
500 0.15 0.066 0.036
(s.e./time) (0.131/7.806) (0.028/58.49) | (0.029/64.29)

Next, consider the following three regression models with monotonicity and

convexity,
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Expo : Y =exp(6x —3) + ¢ (4.1)
4 1
QuadCos : Y = 1622 — — cos(2mx) — — cos(4mx) (4.2)
32

32 365
~on2 cos(3mx) — = cos(mx) + o2 +e

LogX : Y =log(l+10x) + ¢ (4.3)

where € ~ N (0, 1). Both the Expo and QuadCos models are increasing and convex
on [0, 1] while the LogX model is increasing and concave on [0, 1], as also shown
in Figure 2.

Similarly to the previous simulation study, results from VBMC (VB for the
monotone and convex model) and its MCMC counterpart BSARMC (BSAR for
the monotone and convex model) from the R package, bsamGP are compared.
For the VBMC procedure, we assign starting values of ufp = 0.5 and ui,g =
(0.5,1,0,...,0) for n = 50 and p, = 1 and p? 4, = (1,1,0,...,0)" for n = 100
and 200. Table 3 presents the average RMISE of VBMC and BSARMC with
the standard error of each average RMISE as before.

As summarized in Table 3, the average RMISE of VBMC is slightly larger
than for the MCMC method BSARMC for the monotonic and convex/concave
functions. We believe the worse performance of VBMC compared to BSARMC is
for reasons similar to those discussed earlier for the case of monotone constraints.
We do note, however, that the performance gap compared to MCMC seems to be
reduced for the case of concave/convex constraints compared to monotone con-
straints. We believe this occurs because with more stringent shape constraints
the fit becomes less sensitive to smoothing parameters and to any bias in estima-
tion of them. A comparison of computation times for the algorithms is given in
Table 4. For both monotone and convex/concave shape constraints, the VB al-
gorithms are an order of magnitude faster, which justifies some loss of statistical
performance in cases where computation time is an important consideration.

TABLE 3
Average RMISE (s.e) for monotonic and convex/concave functions over 50 repetitions
Function n VBMC BSARMC

Expo 50 || 0.339 (0.006) | 0.31 (0.011)
100 || 0.255 (0.006) | 0.219 (0.007)
200 || 0.210 (0.003) | 0.163 (0.003)
QuadCos | 50 || 0.27 (0.013) | 0.25 (0.011)
100 || 0.213 (0.006) | 0.198 (0.005)
200 || 0.167 (0.003) | 0.160 (0.002)
LogX 50 || 0.22 (0.014) | 0.20 (0.011)
100 || 0.151 (0.006) | 0.142 (0.005)
200 || 0.112 (0.003) | 0.114 (0.003)

Figure 3 shows the boxplots of the ratios of the individual RMISE values
between the BSARMC and VBMC for different sample sizes n = 50, 100, and
200. Ratios less than one indicate that BSARMC has better performance than
VBMC does for point estimation in terms of RMISE. It seems that the RMISE’s
of the VBMC and BSARMC approaches are similar for each of the three models.
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BSARMC / vVBMC

.
=E Expo
E3 Logx

ES Quadcos

RMISE

n=50 n=100 n=200

F1G 3. Bozplots of ratios of two estimated RMISE’s: RMISE;(BSARMC)/RMISE; (VBMC), j =

1,...,N = 50. The ratio less than 1 implies that BSARMC outperforms VBMC in terms of
RMISE.
TABLE 4
Average computation time (in seconds) over 5 repetitions.
n = 100, J =40 n = 200, J =50 n = 500, J = 100
Function | VBMC BSARMC | VBMC BSARMC | VBMC BSARMC
Expo 1.07 18.64 3.91 58.80 9.13 603.7
QuadCos 1.43 18.92 3.76 59.89 8.96 606.0
LogX 1.19 18.63 3.65 60.93 10.3 606.4

Table 4 presents the average computation time of VBMC and BSARMC for
the above examples. As expected, the variational Bayes approach has a much
lower average computation time compared to the MCMC approach. The differ-
ences become increasingly significant as the sample size increases. For example,
when n = 500 and J = 100, the amount of time required for the variational
approach to converge is a small fraction of the time (less than 2%) required to
run an MCMC analysis.

4.2. Credible interval estimation and model selection with
application to electricity demand data

In this example, we use the electricity demand data in Yatchew (2003) to com-
pare between the VB and MCMC algorithm based on BSAR. The data contains
288 quarterly observations of Ontario’s electricity demand from 1971 to 1994.
Following Yatchew (2003), Lenk and Choi (2017) use the log of the electricity
demand to GDP as the dependent variable and log price ratio of electricity to
natural gas as a covariate in W. The choice of dependent variable is intentional
as Yatchew (2003) found that the demand for electricity is co-integrated with
the gross domestic product. Similar to Lenk and Choi (2017), we use “Tem-
perature”, which is the number of heating and cooling degree days relative to
68°F, as the independent variable x. We consider all three models, namely un-
restricted, monotone, and monotonic convex in our application.
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The hyperparameters for the priors in the variational Bayes approach are set
up as follows. We use u% = (0,0)7 and Z% = 1001, as hyperparameters for
the prior of 3. For all other hyperparameters for the priors, we set them to be
exactly the same as discussed in the previous sections. Similar to the simulation
studies, our choice of starting points is determined by trial and error. For the
unrestricted fit, we use ,ui = 1. For the non-increasing shape-restricted fit, we
use py =5 and pg = (5,5, ..,5)T" as the starting point. Finally, for the non-
increasing convex fit, we use ,ufp =1 and pg = (0.5,0.5, ...,0.5)T. Further, our
choice of the initial truncation point J is set to 60.

In addition to curve fitting for point estimation, we consider credible inter-
val estimation. One advantage of the variational procedure is that we are able
to simulate independent samples directly from the variational posterior distri-
bution, which facilitates computations. For example, if we want to estimate a
credible interval for 50?903(:3)0 s in the monotone case, we first simulate a suf-
ficiently large number of 6; from Ny(ug,X¢) and then for each of these points
we plug 8 into the function 605 p%(x)0,;. A credible interval of 685 % ()8,
can then be obtained from the corresponding sample quantiles of these plug-in
values. The procedure is similar to the one followed for constructing credible
intervals from the MCMC output, except that in the case of MCMC, the ap-
proximate posterior samples are dependent.

l Residual - - BSAR — VB 95% CI (BSAR) 95% CI (VB)
(a) Unrestricted (b) Monotone
g =7 g =7
g g
&£ < 7 &£ < 7
—800 -600 —400  —200 o 200 800 -600 -400  —200 o 200

Temperature Temperature

(c) Monotone Convex/Concave

Parametric Residual

<03 -02 <01 00 01 02 03

-800 -600 —400  —200 o 200

Temperature

F1G 4. Estimated fit and credible interval for electricity demand. The dots are the residual, while
the solid and dashed lines are the posterior means for the wvariational procedure and BSAR,
respectively.

Figure 4 shows the estimated posterior mean of f for all three models against
temperature and the 95% credible intervals using both VB and MCMC based on
BSAR. In particular, Figure 4 (a), (b) and (c) shows the fit of the unrestricted,
non-increasing and non-increasing convex models respectively. We observe that
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in all three models, the variational Bayes fit follows quite closely the MCMC fit.
We also observe that other than the unrestricted case, it seems that the width of
the 95% credible interval is similar in both VB and MCMC for both the mono-
tone and monotonic convex case. This result is not always what is expected
when using a variational Bayes approximation, since such approximations are
known to underestimate variability in some situations. Our findings show that
the estimated posterior mean of 7 by the VB procedures is much larger than
that of the BSAR but this does not seem to result in any corresponding inaccu-
racy in estimation of mean functions or credible intervals. Computation times
for the unrestricted, decreasing, and decreasing convex case were (in seconds)
1.65, 26.21 and 25.94 respectively for MCMC, and 0.02, 12.39, and 4.08 seconds
respectively, for VB.

Furthermore, we test the adequacy of the parametric against the semipara-
metric model for fitting the electricity demand data, by computing the marginal
likelihoods of competing models. In particular, we compare a parametric model
without “Temperature” (Hg) to a semiparametric model with “Temperature”
(H1) in our application,

Hy : y:wT,B+e versus Hp : y:wT,B+f(m)+e,

where x denotes “Temperature” as mentioned before. As summarized in Table
5, the semiparametric models H; with “Temperature” have larger marginal like-
lihoods, log p(y), than for the parametric model Hy and they also have better in
sample fits with smaller root mean squared error (RMSE) between the observed
Y and estimated regression function than for the parametric model, based on
VB as well as MCMC procedures. Here, the marginal likelihood is computed
using the Gelfand and Dey approximation (Gelfand and Dey, 1994) for MCMC
methods in exactly the same way as described in Lenk (1999) and Lenk and
Choi (2017) for BSAR and BSARM. Specifically, let ¥; be a set of unknown
parameters involved in BSAR and BSARM for model Hj;; let p;(9;) be a prior
density of 9;, p;(y|?;) be the likelihood function of y given ¥; under H;, and
h;j(¥;) be an auxiliary distribution on the support of 9;. Then the Gelfand and
Dey approximation p;(y) used for the marginal likelihood under Hj is given by

B (u)
1 hj(’ﬁj )
piy) =5 . .
B = pi(y|98")p; (94

where 19§-u) is the uth value of ¥; generated from the MCMC algorithm, and B
denotes the total number of poster samples after burn-in period. As the auxiliary
distribution h;, we take the same distributions as priors for 3, 02,0, 72 and 6y,
while we use the truncated normal distribution for . In comparison with BSAR
and BSARM, we evaluate the lower bound £(g) in the VB approximation for
marginal likelihood computation.

Further, as shown in Table 5, the marginal likelihoods based on VBM and
BSARM are larger than those from VBU and BSAR, which indicates that in
the semiparametric models H;, the shape-restricted model with monotonicity
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is favored over the unrestricted model in terms of the marginal likelihoods for
both VB and MCMC procedures and that the VB lower bounds could be used
for model selection purposes in addition to point estimation and credible in-
terval construction. However, the variational lower bound can have errors of
very different magnitudes for the shape restricted and unrestricted cases, which
suggests that it should be used with caution in model choice in this setting.

Alternatively, we consider two information criteria in the context of the varia-
tional Bayes approach, namely VAIC (Variational AIC) and VBIC (Variational
BIC),

VAIC = 2logp(y | E4(6)) — 4Eqlogp(y | d)
VBIC = -—2L(q)+ 2E,logp(6),

proposed by You, Ormerod and Miiller (2014), in particular for the Bayesian
linear model and certain diffuse priors. We also speculate that these VAIC and
VBIC approaches would be applicable to our problems and that they would
ameliorate such a limitation with normalizing constants and diffuse priors we
employed, in addition to aforementioned concerns in the variational lower bound
for model section. In computing VAIC and VBIC, we need to additionally eval-
uate E,(log o), and details about this are given in the Appendix. The results
summarized in Table 5 also indicate that VBM is still favored over VBU in terms
of VAIC, the same as the VB lower bounds, whereas VBU is favored with VBIC
as in RMSE. Note that VBIC still relies on the lower bound directly and hence
has the same problem as the lower bound for model choice purposes. However,
it seems VAIC does not depend directly on the lower bound and hence may
be more reliable. Although the two VB information criteria do not agree, it is
evident that semiparametric models in H; provide adequate descriptions of the
electricity demand data, compared to the parametric model Hy as also shown
in RMSE and £L(q) values.

TABLE 5
Summary results of model selection for electricity demand data

Model Hy H; Hp H;
Approach Linear VB | VBU VBM Linear MCMC | BSAR | BSARM
RMSE 0.120 0.052 0.054 0.120 0.053 0.053
L(q) (logp(w)) 1416 1439 | 182.7 142.0 1550 | 2345
VAIC -195.6 -781.8 | -2419 - - -
VBIC -361.8 -554.9 | -467.2 - - -

4.3. A large data set with stock price

The last empirical analysis is for an illustration of the merit of the VB approach
for dealing with a large data set, specifically, a stock price data set from the
London Stock Exchange in the United Kingdom. A similar data set was also
analyzed in Luts, Broderick and Wand (2014).
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TABLE 6
Summary of Stock Price data
Source Google Finance (www.google.com/finance)
Model HSBC; = f (BARC;) +¢;
## of obs 2906
Date Jan/01/2005 ~ Jan/21/2016

The data set is based on London Stock Exchange data during its opening
hours, collected through the R package quantmod setting the time interval from
January 1st of 2005 to July 21st of 2016. The source of the data is Google
Finance, https://www.google.com/finance. The predictor (z) and response
variable (y) consist of the stock prices of two financial institutions: The Barclays
PLC and The Hongkong and Shanghai Banking Corporation(HSBC), as sum-
marized in Table 6. Although this data set is moderately large, it is also chosen
to be small enough that MCMC implementations of shape restricted regression
are still feasible for comparison.

We consider six different approaches, VB and MCMC for three models, un-
restricted, monotone, and monotonic concave, to analyze the data set. Figure 5
presents the estimated fits for VBU and VBM with 95 % credible intervals for
stock price data, and Table 7 summarizes additional information about the fits,
including RMSE and computing time in seconds. As summarized in Table 7,
the unrestricted model (VBU/BSAR) has the largest marginal likelihood and
the smallest RMSE among the three models, and in terms of RMSE, VB ap-
proaches provide competitive fits compared to MCMC. The VB approach has
computational demands less than for the MCMC approaches by several orders
of magnitude.

TABLE 7
Summary results of analysis of Stock Price data

Approach VBU | VBM | VBMC || BSAR | BSARM | BSARMC
RMSE 57.60 | 58.14 | 59.19 || 57.11 58.43 59.31
Time 045 | 4222 | 4959 | 42.42 2265 2297

£(q) (logp(y)) || -16003 | -17473 | -17469 || -16028 | -16069 -16216

5. Conclusion

In this paper, we presented a variational Bayes approach to a semiparamet-
ric regression model based on a spectral analysis of Gaussian process priors.
In particular, we developed fast variational Bayes methods for semiparametric
regression models with monotone and convex/concave restrictions for the regres-
sion function by modeling its derivatives with squared Gaussian processes. The
variational approximation schemes we developed were shown to fit the semipara-
metric regression models based on the framework of Lenk and Choi (2017) com-
parable to MCMC methods and to reduce computation time relative to MCMC
methods. In addition, the variational Bayes methods could provide reasonable
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F1G 5. Estimated fits with VBU and VBM for stock price data. The dots are observations while
different lines are the posterior means for the VBU (left panel) and VBM (right panel) with 95
% credible intervals, respectively.

credible intervals and marginal likelihoods useful for uncertainty quantification
and model selection based on real data applications.

There are several issues that could be considered in future work. In our exper-
iments with the variational algorithm, we found that the convergence rate of the
variational approach can be quite sensitive to the starting point. In particular
the variational algorithm may become stuck in local modes in certain models
or exhibit slow convergence. In the current work, suitable starting points were
determined by trial and error, and more systematic methods for this are needed.
Further, the use of variational methods to obtain better MCMC proposals could
be explored. There are also other shape restrictions considered in Lenk and Choi
(2017), such as U-Shaped and S-Shaped restrictions, and it would be interest-
ing to attempt to implement a variational Bayes approach in these models.
Variational approaches in these and other semiparametric models, for example,
functional regression, quantile regression and spatial data analysis, and non-
Gaussian data (see, e.g., Goldsmith, Wand and Crainiceanu (2011), Luts and
Wand (2015) and Waldmann and Kneib (2015)), may be particularly challeng-
ing and important in dealing with high-dimensional problems in the context of
Gaussian process priors and shape restrictions. Alternatively, stochastic gradi-
ent approaches to variational inference (Ji, Shen and West, 2010; Nott et al.,
2012; Paisley, Blei and Jordan, 2012) could be considered in these settings. Fur-
ther, we plan to adapt the proposed VB methods for shape restrictions into the
mean field VB of Neville, Ormerod and Wand (2014) for sparse signal shrinkage
and the linear response VB of Giordano, Broderick and Jordan (2015) for over-
coming the limitations of mean field variational Bayes in underestimating the
variability, incurring bias and posterior dependence (see, e.g., Wang and Tit-
terington (2004), Turner and Sahani (2011) and Neville, Ormerod and Wand
(2014)).

Moreover, the proposed VB approach to Fourier series with shape restric-
tions could be extended to multivariate predictors. Most simply, a multivariate
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nonparametric component with an assumed additive structure could be used,
with shape constraints on the additive terms. However, the additive assump-
tion is limiting and the more general problem of handling multivariate shape
constraints is complex, with a much smaller existing literature than for univari-
ate shape constraints. Expanding the BSAR methods to handle multivariate
shape constraints is not easy; the number of basis terms needed grows exponen-
tially with respect to the dimensions. Existing methods for handling multivariate
shape constraints include methods using Gaussian processes (Riithiméki and Ve-
htari, 2010; Lin and Dunson, 2014), as well as methods using multivariate basis
functions with shape restrictions such as multivariate splines (e.g., Cai and Dun-
son (2007)), tensor product bases (e.g. Hofner, Kneib and Hothorn (2016)) and
radial basis functions (e.g. Chakraborty, Ghosh and Mallick (2012) and Zhang
et al. (2014)). It is fair to say, however, that most of these methods either do
not scale well with the dimension or with the sample size. An exception is the
recent work of Riihiméki and Vehtari (2010) for monotone Gaussian Process re-
gression and classification using virtual derivative observations. That approach
is able to handle genuinely multivariate shape constraints, and they implement
their methods using a scalable approximate inference algorithm, expectation
propagation.

Appendix

Conjugate variational updates and lower bound for model without
shape restriction

We provide details of the updates for ¢;—q4 as follows:
e For B3, the mean field update ¢1(3) takes the form

log ¢1(8) = E_1(log p(B|0?)) + E_1(log p(y|B3,6,07)),

where

Boi(ogp(8let) = —5E2(8—u) 5 (B i)
q,o

5B (22 Bl - wa - 0,007
X(y—WpB—¢,;0,))

- _lrge T q
= 2%, {tr(py0s%5)

+Hy = WB—,u0") (y - WB - ¢,1)}
- _17ee {ﬁTWTW,g

254,05

E_i(logp(y|B,0,,0%))

28" W (y— )}
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Thus, we have

log q1(8) = —5 -4 {6T (2%1 + Tq—"’WTW> B

2 54,0 S¢,0
-1 T
—287 (Z% Hg+ Wy - SDJMZ)) } :
q,0

from which we deduce that ¢1(8) is multivariate normal, N(uf, 3%) with
the expressions for X% and uj given in Algorithm 1.
e For 6, the mean field update g2(6 ;) has the form

log 42(87) = E_s(log p(0 5|0, 7%, 4)) + E_s(log p(y|B3,6.5,07%)),
where

i 1 1 1 . _
B (log (8,10, 72, ) = ~LE_, (U—) B, (?) 0] diag(E_»(T")0,

. 1740 7qr : -
= 22 979 diag(E_o(I'"1))8,

2 84,6 Sq,7
P | 1 -
E_s(logp(y[B,0,,07)) = —§E72 P E_o((y—WpB — b))

X (y—WpB—¢,0))
1lao {ew W)

254,05

+(y—Wuh -0, (y - Wuj - <PJHJ)}
. lrg,
= —5% {9;¢;¢J9J —20;¢] (y - Wu%)} :
q,o
Here, E_5 (I‘_l) indicates a J-dimensional vector with elements Qj(uf/),

qupz)’ j=1,...,J, where

Q; (1é,08?) = B_a(exp(jlv]))
P
q2 ;2 q
Oy J . H .
P
q2 .2 q
Oy J . K, )

j=1,...,J,
It = (exp(|¢]), exp(2|¥]), ..., exp(J[]) " (5.1)

Thus, we have

.1 Tqo Tgo Tqr 1 _
log02(07) = ~5 {67 ("% T o, + 2 T ding(o(01) ) 0,
q9,0 9,0 °4q,T

T [ea
—22%0 0] (y - Wu%)} ,

q,0
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from which we deduce that ¢2(6;) is a multivariate normal distribution,
N(pd, ¥3) with the expressions for £} and pj given in Algorithm 1.
e For 02, the mean field update g3(0?) has the form

log g2(0®) = E_3 [log p(c®) + log p(y|B,6.,0°)
+logp(0|0%, 7%, 9) + log p(Blo?)]

where
. 0,0 50,0
E,g(logp(JQ)) = — (07 + 1) logo? — 2(;27
.oon 1
E73(10gp(y‘/379k]70—2)) = _5 10g02 - FE((:’J - W,B — QOJGJ)T

X (y—Wp—9;0;))

. n 1 T T
=3 logo? — 357 {tr(W WEE) + tr(py e,55)

+Hy = Wuh —oud) " (y - Waj — wuZ)} :

1 1
B-allogp(0,lo%, 72,0)) = 5 logo® — 515E-a (- ) B0 ding(T)0,)
g T

2
£—§10g02
1 rgr P —
~ 552 ETtr((35 + pgug )diag(E—s(71)),
02 sq.r
oy - D 2 1 g _  0\Ts0—1c g 0
E-s(logp(Bl0?)) = ~E1ogo® — — { (uf — ) TS5 (8 — u§)

-1
(5 E%)} .
Thus, we have

o, +n+p+J

10%Q3(02)i—< 5

+ 1) log o2

1
~ 553 {so,g + tr(WTWE%) +tr(py e, 28)

—1 T T T . _
(D) + (5 + pgpg ) diag(Es(T71)))
q,T

+y — Wuh — @ ud) " (y — Wih — @)

1
Huh —pg) TSy (ud — u%)} ,

from which we deduce that g3(o?) is an inverse gamma, I1G(7q.5/2, $4.0/2)
with the expressions for rq , and s4 ., given in Algorithm 1.
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e For 72, the mean field udpate q4(72) has the form

log q4(7%) = E_4 [log p(7?) + log p(0 s |0, 7°,9)] ,

where
2 - To,r 2 S0,
E_4(logp(r%)) = - (T + 1) log 7% — 52
J
E_s(logp(8,]0%, 7%, ¢)) = —Tlogr”
1 (1 T
QﬁE(ﬂ>E4wﬂng@ )6,)
J
= —§log7'2
1 T TN 3: —
52 LTtr((Bf + pgug )diag(E—a(T7H)).
72 Sq,r
Thus, we have
r+J
log q4(7%) = — (—ro’ 2+ + 1) log 72

1 Tor . _
-——»{5&74 0T (5 4 it )diag(B(T 1»)},

2
2T q,7

from which we deduce that g4(72) is an inverse gamma, IG(rq.+/2, 8¢.+/2)
with the expressions for r4 - and s, given in Algorithm 1.

Each term in (2.8) is evaluated as

E(log p(y|8,8,,0%)) = — 7 log 2 — 7 {log(s4,0/2) = ¥(re.0/2)}

~ a0 {tr(WTWEqB) +tr(p pX)

2840
+y = Wuh —opd) " (y — Wph — WZ)} 7

where 1(-) denotes the digamma function,

E(logp(Blo?)) = —%log2r — © log{log(s4.0/2) — ¥(ry/2)}
1 of_ 1740 01y
3 los 2| - 572 {tr(zﬁ %)
-1
(uh — 1) TS5 — ) }
J
E(logp(0J|0277'27¢)) = _5{10327T+10g(5q,0/2) —Y(rq,0/2)

+ log(sq,r/2) — ¥(re,r/2)}
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J(J+1) {
+— 1 fexp

g
e 2))}

q

Hp
o2
Ty

~5 S T (5 + i ) ling(E(T)),
E(logp(¥)) = logwo/2 — wosl(lt?/,afff)a
E(logp(aQ)) = (ro0/2)1og(s0,0/2) —logI(ro,+/2)
~(r00/2-+ 1) {108(s00/2) = 0(r0/2)} = =57 27,
E(logp(r?)) = 7r0.+/2log(s0,+/2) —logT(ro.-/2)
~(r0,r/2+ 1) {log 301/2 = V(g /2)} = 5 1.
Further, each term in (2.9) is given by
Elogai(8) = —2log2r— 3 log|s| ~ 2,
Blog0:(0,)) = —i log 27— log [S4] — 7,
E(log q3(02)) = rq7a/210g(sq7g/2) —logT(r4,0/2)
~(r4.0/2+1) {log(s4./2) = ¥(rq/2)} — 27,
E(log Q4(T2)) = Tgr/2 log(sq,7/2) —logI'(rq,7/2)
~(r4ur /24 1) {108(54,0/2) = (1.0 /2)} = 757
Elogas(t) = —glog2r— 3 logol® |

Conjugate variational updates and lower bound for model with
monotone shape restriction

e For 3, the mean field update ¢;(3) takes the form

log q1(8) = E_1(logp(B8)) + E_1(log p(y|B,8,0%)),

where

Boallogp(B) = 5B (55 ) (B m)TEy 8- )
E_1(logp(y|B,07,0%)) >

Il
|
N |
&=
A
A~
2
[\v}
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X (Z( w! B - stoJ(xz)eJ)Q)

=1
.1 1)y
= ——E_; — Z{(yz_w;rﬁ
2 7/ =
a T a
—otr( (i) 3) — o @5 (i) ug)?
+2tr (@ (z;) Zhe(2:)7)
T a a
+Apf w(ffi)Eg‘PJ(xi)“g}’

which is from well-known results about a quadratic form of a multivariate
normal random vector. Thus, we have

log a1 (8) = {ﬁT (2%‘1 +E-y <012) Zwiwi> G
-2 (2%1 0 ( ) sz Yi — dtr cpJ(xz)Eq)
—6u3%f3(m»u3>)ﬁ} ,

which implies that ¢1(8) is normal, N(uf,¥3), with pf and ¥} as given
in Algorithm 2.

e For 72, the derivation of the update for g4(72) is the same as in Section 2.3,
except that v ,/sq - is replaced by E_4(1/0).

To derive the variational lower bound, £(g), we need to compute the following
terms:

E(log p(y|8,0,.0%)) = — 3 log 27 — S E(log 0?)

1 T, .
—E <02> {Z(yz - w:u% —Sud Y (i)l — otr(e%(z)S))* + w;I'Equ

+2m(p0 () S0 (20)55) + 411 0 (20) S0 ()i}
E(logp(Bl0?)) = —% log 27 — LE(log0?) — log 9|
~58 (%) {tr(z%*z;g) = )T )}
(J+1)

1
E(logp(8|0%,72,¢)) = —TE(IOgQWU)—EbgUS

7; {log(sq,7/2) — (rq,+/2)}



4292 V. M. H. Ong et al.

()

7%E (i) tr { (zg + MgugT) diag(E(T’l))} :

w, 2
E(logp(¢)) = log?o 7w051(u’(ql)’0’3j )a
E(logp(c?)) = 00 log 500 _ log (TO—J> — (r0,0/2 +1)E(log o%)

2 2 2 ’

S0.0 1

_0ep( =
2 ((72> ’

E(logq(c?)) = —logl, + aE(logo?) +bE(1/0) — cE(1/0?),

where I; is the normalizing constant of q(c?), and E (%) and E (#) are the

marginal expectations with respect to ¢(o?). In particular, I; is given as

PG o (3-s)e
2 {(2c)—(a—1)r(2a —2)exp (g—i) D 2412 <\;—2%> } (5.2)

where D, (+) denotes the parabolic cylinder function of order v (Neville, Ormerod
and Wand, 2014). Then, it follows from Neville, Ormerod and Wand (2014) that
additional algebra reduces E (%) and E (%) to
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_15T(2a—1) —b
= (2)71/2 Roq_ () 5.3
2 raa o)\ (5:3)
1 1 T'(2a) —b —b
E(— = (2007 ' —"—"—Roy9 | —= | Roa—s | — | , 5.4
(02> (2e) F(2a—2)"" 2<v2c> ’ 3(v20> (54)
respectively, where R,(z) = g:%ﬁg;. Note that due to the numerical un-

derflow when directly evaluating R, (x), Neville, Ormerod and Wand (2014)
implement continued fraction approach to obtain both exact and numerically
stable result. In addition to these “exact” results in (5.2)-(5.4), the Laplace
approximation could be considered for an alternative method, which may ac-
count for the lower limit of zero in the integral by fitting an unnormalized trun-
cated normal distribution to the integrand. Further, in computing VAIC and
VBIC for VBM, we evaluate E,(log o) by approximating E,(log o) ~ logE4(o)
with the first order Taylor series approximation of log o about E,(c), namely,
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logo ~ logEq(0) + E; (0 — Ey(0)), where

. %) 1 2a—1 b c )
E(o)=1; — exp| —— — | do
o \o o o

— (20)!/2 {(m — 3)Rou_4 <__2bc>} -
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