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Abstract

We prove that every random walk in a uniformly elliptic random environment satisfying
the cone-mixing condition and a non-effective polynomial ballisticity condition with
high enough degree has an asymptotic direction.
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1 Introduction

Random walk in random environment is a simple but powerful model for a vari-
ety of phenomena including homogenization in disordered materials [11], DNA chain
replication [3], crystal growth [21] and turbulent behavior in fluids [14]. Nevertheless,
challenging and fundamental questions about it remain open (see [23] for a general
overview). In the multidimensional setting a widely open question is to establish re-
lations between the environment at a local level and the long time behavior of the
random walk. Interesting progress has been achieved specially in the case in which
the movement takes place on the hypercubic lattice Zd and the environment is i.i.d.,
establishing relations between directional transience, ballisticity and the existence of an
asymptotic direction and the law of the environment in finite regions. To a great extent,
these arguments are no longer valid when the i.i.d. assumption is dropped.

In this article we focus on the problem of finding local conditions on the environment
which ensure the existence of a deterministic asymptotic direction for the random walk
model in contexts where the environment is not necessarily i.i.d. In [13], Simenhaus
proved that for i.i.d. elliptic environments, whenever the random walk is directionally
transient in a open set of directions, it has an asymptotic direction. As it will be shown
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Asymptotic direction for RWRE

in Section 3, there exist environments which are stationary and ergodic, but not i.i.d.,
and where the random walk is directionally transient in direction l for every l in an open
subset of Sd, and for which there does not exist a deterministic asymptotic direction.
Therefore, some kind of mixing condition or some condition stronger than directional
transience in an open subset of directions of Sd−1 should be imposed on the environment.
Here we will impose both a mixing condition and a transience condition related to the
polynomial ballisticity condition introduced in [1]. The polynomial ballisticity condition
of [1] is essentially defined as the requirement that the probability that the random
walk exits through the back and lateral sides of a box with lateral sides of a given
length L and width CL3, for some constant C, decays polynomially fast. This polynomial
condition is effective in the sense that it can in principle be verified on finite sets of Zd, as
opposed to non-effective ballisticity conditions which require information on infinite sets.
Here we establish the existence of an asymptotic direction for random walks in random
environments which are uniformly elliptic, are cone-mixing [5], and satisfy a uniform
non-effective version of the polynomial ballisticity condition introduced in [1] with high
enough degree of the decay. The term uniform means that a uniform polynomial decay
on the probability conditioned on the environment outside the finite box is required.
It will be also shown (see Section 3), that there exist environments almost satisfying
the above assumptions which are directionally transient and for which there exists at
least in a weak sense an asymptotic direction, but have a vanishing velocity. Here the
term almost is used because in these examples the uniform non-effective polynomial
ballisticity condition is satisfied with a low degree. This shows that somehow, while the
cone-mixing and uniform non-effective polynomial conditions we will impose do imply the
existence of an asymptotic direction, they might not necessarily imply the existence of a
non-vanishing velocity (this should be compared with the i.i.d. situation in dimensions
d ≥ 2, where it is known that the polynomial condition implies ballisticity [1], and that
transience in direction l for every l in an open subset of Sd−1 implies the existence of an
asymptotic direction [13]).

In [5], the existence of a strong law of large numbers is established for random walks
in cone-mixing environments which also satisfy a version of Kalikow condition, and under
an additional assumption of existence of certain moments of approximate regeneration
times (which are not stopping times). It is known that Kalikow condition is a strictly
stronger assumption than the polynomial condition we assume in this article [20, 1]. On
the other hand, the moment condition assumption of the approximate regeneration times
of [5] is unsatisfactory in the sense that it is in general difficult to verify if for a given
random environment it is true or not. Furthermore, as it will be shown in Section 3, there
exist examples of random walks in a random environment satisfying the cone-mixing
assumption for which the law of large numbers is not satisfied, while an asymptotic
direction exists. From this point of view, establishing the existence of an asymptotic
direction under mild ballisticity conditions, is also a first step in the direction of obtaining
scaling limit theorems for random walks in cone-mixing environments through ballisticity
conditions weaker than Kalikow condition, and without any kind of assumption on the
moments of approximate regeneration times or of the position of the random walk
at these times. On the other hand, in [12], a strong law of large numbers is proved
for random walks which satisfy Kalikow condition and Dobrushin-Shlosman’s strong
mixing assumption. The Dobrushin-Shlosman strong mixing assumption is stronger
than cone-mixing, both because it implies cone-mixing in every direction and because it
corresponds to a decay of correlations which is exponential.

In Section 2, we will introduce the main notations, assumptions and state the main
result of this article. In Section 3, we will present the two mentioned examples of random
walks in random environments which exhibit behavior which is not observed in the i.i.d.
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case, giving an idea of the kind of limitations imposed by the framework of Theorem
2.1. In Section 4, the meaning of the uniform non-effective polynomial condition and
its relation to other ballisticity conditions will be discussed. In Section 5, we will show
that the uniform non-effective polynomial condition implies that the probability that
the random walk never exits a cone is positive. This will be used in Section 6 to prove
that the position of the random walk at the approximate regeneration times have finite
moments of order two. In Section 7, Theorem 2.1 will be proved using coupling with i.i.d.
random variables. In Appendix A, three lemmas will be proved that are used in Section 6
to prove the finitness of the moment of order two of the position of the random walk
at the approximate regeneration times . In Appendix B, it will be shown that the cone
mixing condition together with stationarity, implies ergodicity.

2 Notations, assumptions and main result

Here we will introduce the main notations and assumptions in order to state the main
results of this article.

2.1 Notations

For x ∈ Rd, we denote by |x|1, |x|2 and |x|∞ its l1, l2 and l∞ norms, respectively.
For each integer d ≥ 1, we consider the 2d−dimensional simplex Pd := {z ∈ (R+)2d :∑2d
i=1 zi = 1} and U := {e ∈ Zd : |e|1 = 1} = {e1, . . . , ed,−e1, . . . ,−ed}. We define the

environmental space Ω := (Pd)Z
d

and endow it with its canonical σ-algebra. Now, for a
fixed ω = (ω(y) : y ∈ Zd) ∈ Ω, with ω(y) = (ω(y, e) : e ∈ U) ∈ Pd, and a fixed x ∈ Zd, we
consider the Markov chain {Xn : n ≥ 0} with state space Zd starting from x defined by
the transition probabilities

Px,ω[Xn+1 = Xn + e | Xn] = ω(Xn, e) for e ∈ U. (2.1)

We denote by Px,ω the law of this Markov chain and call it a random walk in the
environment ω. Consider a law P defined on Ω. We call Px,ω the quenched law of the
random walk starting from x. Furthermore, we define the semi-direct product probability
measure on Ω× (Zd)N by

Px[A×B] :=

∫

A

Px,ω[B]dP

for each Borel-measurable set A in Ω and B in (Zd)N, and call it the annealed or averaged
law of the random walk in random environment. We will also define for each x ∈ Zd the
canonical space-shift ϑx : Ω→ Ω as

ϑxω(y) := ω(x+ y). (2.2)

The law P of the environment is said to be i.i.d. if the random variables (ω(x) : x ∈ Zd)
are i.i.d. under P and stationary if for every finite subset B ⊂ Zd and y ∈ Zd the joint
law of (ω(x) : x ∈ B) is equal to the joint law of (ϑyω(x) : x ∈ B). We also say that it
is elliptic if for every x ∈ Zd and e ∈ U one has that P[ω(x, e) > 0] = 1 while uniformly
elliptic if there exists a κ > 0 such that P[ω(x, e) ≥ κ] = 1 for every x ∈ Zd and e ∈ U .

For each A ⊂ Zd we define

∂A := {z ∈ Zd : z 6∈ A, there exists some y ∈ A such that |y − z|1 = 1}.

Define the stopping time
TA := inf{n ≥ 0 : Xn 6∈ A}.

We will call the elements of the set Sd−1 directions. For a given direction l ∈ Sd−1 and
a ≥ 0 we also define
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T la := inf{n ≥ 0 : Xn · l ≥ a} (2.3)

T̄ la := inf{n ≥ 0 : Xn · l > a} (2.4)

T̂ la := inf{n ≥ 0 : Xn · l < −a} (2.5)

along with
T̃ l−a := inf{n ≥ 0 : Xn · l ≤ −a}. (2.6)

The following concepts will play an important role in this article:

1. (Directional transience) We say that a random walk in random environment is
transient in direction l if P0-a.s. one has that

lim
n→∞

Xn · l =∞.

If the random walk is transient in some direction l, we will say that the random
walk is directionally transient.

2. (Ballisticity) We say that a random walk in random environment is ballistic in
direction l if

lim inf
n→∞

Xn · l
n

> 0.

If the random walk is ballistic in some direction l, we will say that it is ballistic.

3. (Asymptotic direction) On the other hand, we say that a deterministic vector
v̂ ∈ Sd−1 is an asymptotic direction if P0-a.s. one has that

lim
n→∞

Xn

|Xn|2
= v̂.

In the case in which the environment is elliptic and i.i.d., it is known that whenever
a random walk is ballistic necessarily a law of large numbers is satisfied and in fact
limn→∞

Xn
n = v 6= 0 is deterministic [7]. Furthermore, in the uniformly elliptic i.i.d.

case, it is still an open question to establish whether or not in dimensions d ≥ 2, every
directionally transient random walk is ballistic (see [1]). As already mentioned, for
elliptic i.i.d. environments, Simenhaus established [13] the existence of an asymptotic
direction whenever the random walk is transient in direction l for every l in an open
subset of Sd−1.

Throughout the rest of this article, most constants will be denoted by c1, c2, . . . and
will be ordered according to their appearance.

2.2 Main assumptions

Here we discuss the three main assumptions throughout this article: uniform elliptic-
ity in a given direction, cone-mixing and the uniform non-effective polynomial ballisticity
condition.

Condition (UE). Let κ > 0. We say that P is uniformly elliptic with respect to l, denoted
by (UE)|l, if it is elliptic, and if the jump probabilities of the random walk are larger than
2κ in those directions which for which the projection of l is not zero. In other words if
P[ω(0, e) > 0] = 1 for e ∈ U and if

P

[
min
e∈E

ω(0, e) ≥ 2κ

]
= 1,

where
E := {sgn(li)ei : i = 1, . . . , d}\{0}, (2.7)

where (li : i = 1, . . . , d) are the coordinates of l and by convention sgn(0) = 0.

EJP 22 (2017), paper 92.
Page 4/41

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP93
http://www.imstat.org/ejp/


Asymptotic direction for RWRE

We will now introduce the cone-mixing condition for the environment P, as in [5]. We
fix a direction l ∈ Sd−1, x ∈ Rd and a number α > 0. Let R be a rotation such that

R(e1) = l. (2.8)

To define the cone, it will be useful to consider for each i ∈ {2, . . . , d},

l̄+i :=
l + αR(ei)

|l + αR(ei)|2
and l̄−i :=

l − αR(ei)

|l − αR(ei)|2
. (2.9)

The cone C(x, l, α) (with vertex x) is defined as

C(x, l, α) :=

d⋂

i=2

{
z ∈ Rd : (z − x) · l̄+i ≥ 0, (z − x) · l̄−i ≥ 0

}
. (2.10)

Let us now define Φ as the set of functions φ : [0,∞)→ [0,∞) such that limr→∞ φ(r) = 0.

Condition (CM). We say that a stationary probability measure P satisfies the cone-
mixing condition with respect to α > 0, l ∈ Sd−1 and φ ∈ Φ, denoted (CM)α,φ|l, if
for every r > 0 and pair of events A,B, where P[A] > 0, A ∈ σ{ω(z) : z · l ≤ 0}, and
B ∈ σ{ω(z) : z ∈ C(rl, l, α)}, it holds that

∣∣∣∣
P[A ∩B]

P[A]
− P[B]

∣∣∣∣ ≤ φ
(
r
|l|1
|l|2

)
.

We will see that every cone-mixing measure P is necessarily ergodic. On the other
hand, a cone-mixing environment can be such that the jump probabilities are highly
dependent along certain directions.

We now introduce an assumption which is closely related to the effective polynomial
ballisticity condition introduced in [1]. Given L,L′ > 0, x ∈ Zd and l ∈ Sd−1 we define
the boxes

BL,L′,l(x) := x+R
(

(−L,L)× (−L′, L′)d−1
)
∩Zd, (2.11)

where R is defined in (2.8). The positive boundary of BL,L′,l(x), denoted by ∂+BL,L′,l(x),
is

∂+BL,L′,l(x) := ∂BL,L′,l(x) ∩ {z : (z − x) · l ≥ L}, (2.12)

Define also the half-space

Hx,l := {y ∈ Zd : y · l < x · l}
and the corresponding σ-algebra of the environment on that half-space

Hx,l := σ{ω(y) : y ∈ Hx,l}.
Condition (UWP). For M ≥ 1 and c > 0, we say that the uniform non-effective polyno-
mial condition (UWP )M,c|l is satisfied if for all y ∈ H0,l one has that

lim
L→∞

LM ess supP0

[
XTBL,cL,l (0) 6∈ ∂+BL,cL,l(0), TBL,cL,l(0) < T ly·l|Hy,l

]
= 0, (2.13)

where the essential supremum is taken over all the coordinates (ω(x) : x · l ≤ y · l) under
the measure P.

It is possible to show that for i.i.d. environments, this condition is implied by Sznit-
man’s (T ′) condition [19], and it is equivalent to the polynomial condition introduced in
[1] (which is an effective version of the polynomial condition introduced above).

2.3 Main result and overview

Define Sd−1
q :=

{
l
|l|2 : l ∈ Zd\{0}

}
. We can now state our main result.

EJP 22 (2017), paper 92.
Page 5/41

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP93
http://www.imstat.org/ejp/


Asymptotic direction for RWRE

Theorem 2.1. Let l ∈ Sd−1
q , M > 6d, c > 0, 0 < α ≤ min{ 1

9 ,
1
3c} and φ ∈ Φ. If a random

walk in a random environment with stationary law satisfies the uniform ellipticity
condition (UE)|l, the cone-mixing condition (CM)α,φ|l and the uniform non-effective
polynomial condition (UWP )M,c|l (the three conditions defined in Subsection 2.2), then
P0-a.s. there exists a deterministic asymptotic direction. In other words, there exists a
v̂ ∈ Sd−1 such that P0-a.s. one has that

lim
n→∞

Xn

|Xn|2
= v̂.

In a way, Theorem 2.1 shows that if the i.i.d. assumption of Simenhaus [13] is weak-
ened to cone-mixing, while the directional transience condition of [13] is strengthened
to the uniform non-effective polynomial condition, we still can guarantee the existence
of an asymptotic direction.

A key step to prove Theorem 1.1 will be to establish that the probability that the
random walk never exits a cone is positive through the use of renormalization type ideas,
and only assuming the uniform non-effective polynomial condition and uniform ellipticity.
Using this fact, we will define approximate regeneration times as in [5], showing that
they have finite moments of order larger than one when we also assume cone-mixing.
This part of the proof will require careful and tedious computations. Once this is done,
the existence of an asymptotic direction can be deduced using for example the coupling
approach of [5].

3 Examples of directionally transient random walks without an
asymptotic direction or with a vanishing velocity

We will present two examples of random walks in random environment which exhibit
the framework of validity of the hypothesis of Theorem 2.1. In both examples the
environment is not i.i.d. (see [2], for an example showing that the 0− 1 law conjecture
for i.i.d. environments is not satisfied if this assumption is dropped).

The first example indicates that the hypothesis of Theorem 2.1 might not necessarily
imply a strong law of large numbers with a non-vanishing velocity. The second example
will show that one cannot prove the existence of an asymptotic direction without either
some kind of mixing hypothesis on the environment or some ballisticity condition.

Throughout, p will be a non-deterministic random variable taking values in (0, 1) such
that there exists a unique κ ∈ (1/2, 1) with the property that

E[ρκ ] = 1 and E[ρκ ln+ ρ] <∞, (3.1)

where ρ := (1− p)/p.

3.1 Random walk with a vanishing velocity but with an asymptotic direction

Let {pi : i ∈ Z} be i.i.d. copies of p. Define an i.i.d. sequence of random variables
{ωi : i ∈ Z} with ωi = {ωi(e1), ωi(−e1), ωi(e2), ωi(−e2)}, by

ωi(e2) = ωi(−e2) =
1

4
,

ωi(e1) =
pi
2

and ωi(−e1) =
1− pi

2
.

Now consider the random environment ω = {ω((i, j)) : (i, j) ∈ Z2} defined by

ω((i, j)) := ωi for all i, j ∈ Z.
We will call P1 the law of the above environment and Q1 the annealed law of the
corresponding random walk starting from (0, 0).
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Theorem 3.1. Consider a random walk in a random environment with law P1 on Z2.
Then, the following are satisfied:

(i) Q1-a.s.
lim
n→∞

Xn · e1 =∞.

(ii) Q1-a.s.

lim
n→∞

Xn

n
= 0.

(iii) In Q1-probability

lim
n→∞

Xn

|Xn|2
= e1.

(iv) The law Q1 satisfies the uniform polynomial condition (UWP )M,c with M = κ− 1
2−ε

and c = 1, where ε is an arbitrary number in the interval (0, 2− 1
κ ).

Proof. Part (i). Note that

P0,ω[Yn+1 = Yn + e | Yn] = ω̃(Yn, e),

where e = e1,−e1 or e = (0, 0), and for x ∈ Z we define

ω̃(x, e) :=





px
2 if e = e1

1−px
2 if e = −e1

1
2 if e = 0.

By (3.1) and the fact that p is non-deterministic, it follows that Ẽ1[ln[ρ̃0]] < 0, where
ρ̃0 := ω̃(0,−e1)/ω̃(0, e1) and Ẽ1 denotes the corresponding expectation. Now, from the
transience condition in [23] Theorem 2.1.2 (which is a generalization of Solomon’s [15]
result for random walks with holding times) one has that Q1-a.s.

lim
n→∞

Xn · e1 =∞.

Part (ii). Note that
Xn

n
=
Yne1 + (Xn · e2)e2

n
,

where {Yn : n ≥ 0} is the projection of the random walk in the direction e1 defined in part
(i). Now, using the strong law of large numbers for this projection ([23], Theorem 2.1.9),
and the fact that (Xn · e2) is a random walk which moves with the same probability in
both directions, we conclude that Q1-a.s.

lim
n→∞

Xn

n
= 0.

Part (iii). For each n ≥ 0, we define the random variables N1(n) and N2(n) as horizontal
and vertical steps performed by the walk {Xm : m ≥ 0} up to time n, respectively. Under
the quenched law, both of them are Binomial-distributed with parameters n and 1/2. In
what follows, whenever there is no risk of confusion, we will remove in the writing the
dependence on n and write N1 and N2 in place of N1(n) and N2(n). For each ε > 0, we
have to estimate the probability

Q1

[∣∣∣∣
Xn

|Xn|2
− e1

∣∣∣∣
2

> ε

]
= Q1




∣∣∣∣∣∣

(Xn·e1)
nκ e1 + (Xn·e2)

nκ e2√
(Xn·e1)2

n2κ + (Xn·e2)2

n2κ

− e1

∣∣∣∣∣∣
2

> ε


 . (3.2)

Clearly, Xn · e2 under the annealed law has the same law of a one-dimensional simple
symmetric random walk {Zm : m ≥ 0} at time m = N2(n), whose law we call P̃ . Note
that P̃ -a.s. N2/n→ 1/2 as n→∞. Therefore, since κ > 1/2 we see that
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Q1

[
lim
n→∞

Xn · e2

nκ
= 0

]
= P̃

[
lim
n→∞

ZN2

Nκ
2

1

2κ
= 0

]
= 1.

On the other hand, by Theorem 1.1 of [8] (see also [10]), we see that

lim
n→∞

Xn · e1√
(Xn · e1)2

= 1

in distribution, and hence also in Q1- probability. It follows that for each ε > 0, the left
hand-side of (3.2) tends to 0 as n→∞.

Part (iv). Notice that

Q1[XTBL,L,l (0) 6∈ ∂+BL,L,l(0)] ≤ Q1[T̃ e1−L < T e1L ] +Q1[T e2L ∧ T̃ e2−L < T e1L ]. (3.3)

The first probability in the right-most side of (3.3) has an exponential bound in L. Observe
that the second probability in the right-hand side of (3.3) is less than or equal to

Q1[T e2L ∧ T̃ e2−L ≤ L2−ε] +Q1[L2−ε < T e1L ]. (3.4)

Now, for the first term in the above decomposition we have that

Q1[T e2L ∧ T̃ e2−L ≤ L2−ε] ≤ Q1[T e2L ≤ L2−ε] +Q1[T̃ e2−L ≤ L2−ε].

Now

Q1[T e2L ≤ L2−ε] ≤
[L2−ε]∑

n=L

P̂ [Sn ≥ L], (3.5)

where we denote by P̂ the law of the one-dimensional random walk {Sn : n ≥ 0} starting
from 0 which at each step jumps to the right with probability 1/4, the the left with
probability 1/4 and does not move with probability 1/2. Thus {Sn : n ≥ 0} is a martingale
with respect to its canonical filtration with increments bounded by 1. Therefore, using
Azuma-Hoeffding inequality (see for example [22, (E14.2)]) for each term in (3.5) we get
that

Q1[T e2L ≤ L2−ε] ≤ 1

c1
exp{−c1Lε},

for some constant c1 > 0 (which does not depend on L). An analogue bound holds for
Q1[T̃ e2−L ≤ L2−ε]. We end up concluding that there is a constant c′1 such that for all L ≥ 1

Q1[T e2L ∧ T̃ e2−L ≤ L2−ε] ≤ 1

c′1
exp{−c′1Lε}. (3.6)

For the second term in the right-hand side of (3.4), we use [8, Theorem 1.3]. To this end,
we denote by P̂ the law of underlying one-dimensional random walk corresponding to
the annealed law of {Xn · e1 : n ≥ 0}. One has that there exists a positive constant c′′1
such that

Q1[L2−ε < T e1L ] ≤ Q1[X[L2−ε] · e1 < L] ≤ P̂ [Y[L2−ε] < L] ≤ c′′1L−(κ−1/(2−ε)). (3.7)

Observe now that in view of inequality (3.3), the estimates (3.6) and the right-most
bound of (3.7), the proof is complete.

3.2 Directionally transient random walk without an asymptotic direction

Let {pi : i ∈ Z} and {p′j : j ∈ Z} be two independent i.i.d. copies of p. Following a
similar procedure as in the previous example, we consider in the lattice Z2 the canonical
vectors e1 and e2, and define the random environment ω = {ω((i, j)) : (i, j) ∈ Z2} by
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ω(i,j)(e1) =
pi
2

and ω(i,j)(−e1) =
1

2
− pi

2

together with

ω(i,j)(e2) =
p′j
2

and ω(i,j)(−e2) =
1

2
−
p′j
2
.

We call P2 the law of the above environment and Q2 the annealed law of the correspond-
ing random walk starting from (0, 0).

The following theorem shows that in dimension d = 2, there exist directionally
transient random walks, with vanishing velocity, having a random asymptotic direction
in the distributional sense and satisfying condition (T ). It should be pointed out that
the example could be easily generalized to dimensions d ≥ 2, but for the sake of being
concise and clear we have written it only for d = 2. On the other hand, it should also be
pointed out that the environment in this example is ergodic, but it is not cone-mixing.

Theorem 3.2. Consider a random walk in a random environment with law P2 on Z2.
Then, the following are satisfied.

(i) Let l ∈ Sd−1. Then l · e1 ≥ 0 and l · e2 ≥ 0 if and only if Q2-a.s.

lim
n→∞

Xn · l =∞.

(ii) Q2-a.s.

lim
n→∞

Xn

n
= 0.

(iii) There exists a non-deterministic v̂ such that

Xn

|Xn|2
→ v̂.

in distribution.

(iv) We have that

limL→∞L
−1 logQ2[XTBL,2L,l (0) 6∈ ∂+BL,2L,l(0)] < 0, (3.8)

where l = (1/
√

2, 1/
√

2). Thus, condition (T )|l of [18] is satisfied.

Proof. Part (i). It is enough to prove that Q2-a.s.

lim
n→∞

Xn · e1 =∞ and lim
n→∞

Xn · e2 =∞.

Both assertions follow from an argument similar to the one used in part (i) of Theorem
3.1, [23, Theorem 2.1.2] and (3.1).

Part (ii). This proof is similar to part (ii) of Theorem 3.1 .

Part (iii). For j = 1, 2 we define T0,j := 0,

T1,j := inf{n ≥ 0 : (Xn −X0) · ej > 0 or (Xn −X0) · ej < 0}

and recursively for i ≥ 2

Ti,j := T1,j ◦ θTi−1,j
+ Ti−1,j ,

where for each n ≥ 0, θn denotes the canonical time-shift on (Zd)N. Define for each
n ≥ 0, Yn,j := XTn,j · ej . Now note that {Yn,1 : n ≥ 0} and {Yn,2 : n ≥ 0} are independent
with their transition probabilities at each site (i, j) ∈ Zd determined by the random
variables {pi : i ∈ Z} and {pj : j ∈ Z}, respectively. Furthermore, for j ∈ {1, 2}, the
strong law of large numbers implies that Q2-a.s.

lim
n→∞

Tn,j
n

= 2. (3.9)
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Now by [8, Theorem 1.1] (see also [10]) we know that there exist constants K3 and K4

such that (
Yn,1
nκ

,
Yn,2
nκ

)
→
((

K3

S1

)κ
,

(
K4

S2

)κ)

in distribution, where S1 and S2 stand for two independent completely asymmetric stable
laws of index κ, which are positive. Using (3.9) we can see that

Xn

|Xn|2
=

(Xn·e1)
nκ e1 + (Xn·e2)

nκ e2√
(Xn·e1)2

n2κ + (Xn·e2)2

n2κ

→

(
K3

S1

)κ
e1 +

(
K4

S2

)κ
e2

√(
K3

S1

)2κ
+
(
K4

S2

)2κ

in distribution, which shows that the limit v̂ is random.

Part (iv). We will first prove that

lim
L→∞

L−1 logQ2[T̃
ej
−c̃L < T

ej
cL] < 0

for arbitrary positive cnumber c1 and c2 [cf. (2.3) and (2.6)]. We will prove this only in
the case j = 1 since the case j = 2 is similar. Following the notation introduced in part
(i) of Theorem 3.1 and denoting the greatest integer function by [·], we see that it is
sufficient to prove that there exists a positive constant K5 such that

Q2[Yn hits − [c1L] + 1 before [c2L] + 1] ≤ 1

Ĉ
exp{−K5L}. (3.10)

To this end, for a fixed random environment ω, define

VL := Pi,ω[Yn hits − [c1L] + 1 before [c2L] + 1].

It is a standard fact that (see for example [4, Section 12 of Chapter 1])

VL =
exp{∑−[c1L+1],0}+ . . .+ exp{∑−[c1L]+1,[c2L]}

1 + exp{∑−[c1L]+1,−[c1L]+2}+ . . .+ exp{∑−[c1L]+1,[c2L]}
,

where we have adopted the notation
∑
z<m≤z′ :=

∑
z<m≤z′ log ρ(m) and ρ(m) := (1 −

pm)/pm. A slight variation of the argument in page 744 of [18] completes the proof of
claim (3.10). Now note that (see Figure 1)

Q2[XTBL,2L,l (0) 6∈ ∂+BL,2L,l(0)] ≤ Q2[T̃ e1
−
√

2
2 L

< T e13√
2
L

] +Q2[T̃ e2
−
√

2
2 L

< T e23√
2
L

].

In virtue of the claim (3.10) the last expression has an exponential bound and this
finishes the proof.

4 Preliminary discussion

In this section we will derive some important relations that are satisfied between the
uniform non-effective polynomial condition and other ballisticity conditions, including
Kalikow condition. In Subsection 4.1 we will show that the uniform non-effective
polynomial condition is weaker than the conditional form of Kalikow condition introduced
in [6]. In Subsection 4.2, we will prove that the uniform non-effective polynomial
condition in a given direction l implies the uniform non-effective polynomial condition in
a open subset of Sd−1 containing l, with a lower degree.

4.1 Uniform non-effective polynomial condition and its relation with other di-
rectional transience conditions

Here we will discuss the relationship between the uniform non-effective polynomial
condition and other transience conditions. Furthermore we will show that the uniform
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(
1√
2
, 1√

2

)

L

2L

Slab H1

S
la
b
H

2

Figure 1: A geometric sketch of the bound for Q2[XTBL,2L,l (0) /∈ ∂+BL,2L,l(0)].

non-effective polynomial condition is weaker than the conditional version of Kalikow
condition introduced by Comets-Zeitouni in [5].

For reasons that will become clear in the next section, the following definition, which
is actually weaker than the uniform non-effective polynomial condition introduce in
Subsection 2.2 and to the polynomial condition of [1], will be useful.

Condition (WP). Let l ∈ Sd−1, M ≥ 1 and c > 0. We say that the non-effective polynomial
condition or the weak polynomial condition (WP )M,c|l is satisfied if

limL→∞L
MP0[XTBL,cL,l (0) 6∈ ∂+BL,cL,l(0)] = 0.

It is straightforward to see that (UWP )M,c|l implies (WP )M,c|l. Also, it should be
pointed out, that for a fixed γ ∈ (0, 1), if both in the uniform and non-uniform non-
effective polynomial conditions the polynomial decay is replaced by a stronger stretched
exponential decay of the form e−L

γ

, one would obtain a condition defined on rectangles
equivalent to condition (T )γ introduced by Sznitman in [19], and also a conditional
version of it. On the other hand, as we will see now, the uniform non-effective polynomial
condition is implied by Kalikow condition as defined in [5] for environments which are
not necessarily i.i.d. Let us recall this definition. For V a finite, connected subset of Zd,
with 0 ∈ V , we let

FV c = σ{ω(z, ·) : z 6∈ V }.
The Kalikow random walk is the Markov chain {Xn : n ≥ 0} with state space in V ∪ ∂V
defined by the transition probabilities

P̂V (x, x+ e) :=





E0[
∑TV c
n=0 1{Xn=x}ω(x,e)|FV c ]

E0[
∑TV c
n=0 1{Xn=x}|FV c ]

for x ∈ V and e ∈ U,
1 for x ∈ ∂V and e = 0.

We denote by P̂y,V the law of this random walk starting from y ∈ V ∪ ∂V , and by Êy,V
the corresponding expectation. The importance of Kalikow random walk stems from the
fact that

XTV has the same law under P̂0,V and under P0[·|FV c ] (4.1)

(see ([9])). Let l ∈ Sd−1. We say that Kalikow condition with respect to the direction l is
satisfied if there exists a positive constant δ such that P-a.s.

inf
V,x∈V

d̂V (x) · l ≥ δ,
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where

d̂V (x) := Êx,V [X1 −X0] =
∑

e∈U
eP̂V (x, x+ e) (4.2)

denotes the drift of Kalikow random walk at x, and the infimum runs over all finite
connected subsets V of Zd such that 0 ∈ V . The following result shows that Kalikow
condition is indeed stronger than the uniform non-effective polynomial criterion.

Proposition 4.1. Let l ∈ Sd−1. Assume Kalikow condition with respect to l. Then there
exists an c > 0 such that for all y ∈ H0,l one has that

limL→∞L
−1 ess sup logP0[XTBL,cL,l (0) 6∈ ∂+BL,cL,l(0), TBL,cL,l(0) < T ly·l|Hy,l] < 0, (4.3)

where the supremum is taken in the same sense as in (2.13). In particular, Kalikow
condition with respect to direction l implies (UWP )M,c|l for all M > 0.

Proof. Suppose that Kalikow condition is satisfied with a constant δ > 0. We will first
assume that y · l ∈ (−L, 0). Let r > 1. For y ∈ H0,l and L ≥ 1 consider the box

V := R

(
[y · l, L]×

(
− r

δ
L,

r

δ
L
)d−1

)
∩Zd.

Using (4.1) we find that

P0[XTB
L, r
δ
L,l

(0) 6∈ ∂+BL, rδL,l(0), TBL, r
δ
L,l(0) < T ly·l|FV c ]

≤ P0

[
max

j:2≤j≤d
XTV ·R(ej) ≥

r

δ
L, |XTV · l| < L

∣∣∣∣FV c
]

= P̂0,V

[
max

j:2≤j≤d
XTV ·R(ej) ≥

c

δ
L, |XTV · l| < L

]
.

(4.4)

Notice that on the set
{
XTV ·R(ej) ≥

r

δ
L for some j

}
∩ {|XTV · l| < L} ,

one has P̂0,V -a.s. that

TV ≥
[
rL

δ

]
.

Thus, by means of the martingale {MV
n : n ≥ 0} defined by

MV
n := Xn −X0 −

n−1∑

j=0

d̂V (Xj),

(where d̂V (x) is defined in (4.2)) which has bounded increments (indeed bounded by 2)
we can see that on {TV ≥

[
cL
δ ]
}

, by Kalikow condition, we have that for L large enough

that P̂0,V -a.s.

MV
[ rLδ ]
· l < L−

(
rL

δ
− 1

)
δ <

(1− r)L

2
. (4.5)

Now, using Azuma-Hoeffding inequality [22, (E14.2)] and (4.5) we obtain that

P̂0,V [XTV ·R(ej) >
r

δ
L for some j,XTV · l ≤ L] ≤ P̂0,V

[
TV >

rL

δ

]

≤P̂0,V

[
MV

[ rLδ ]
· (−l) > (r− 1)L/2

]
≤ exp{−c2L},

(4.6)

EJP 22 (2017), paper 92.
Page 12/41

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP93
http://www.imstat.org/ejp/


Asymptotic direction for RWRE

for a suitable c2 > 0. Finally, coming back to (4.4), we can then conclude that

limL→∞L
−1 ess sup logP0[XTBL,cL,l (0) 6∈ ∂+BL,cL,l(0), TBL,cL,l(0) < T ly·l|Hy,l] < 0,

where c = r
δ . Let us now assume that y · l ≤ −L. By Lemma 1.1 in [17] we know that

there exists a positive constant ψ depending on δ such that for every finite connected
subset V of Zd with 0 ∈ V

e−ψXn·l

is a supermartingale with respect to the canonical filtration of the walk under Kalikow
law P̂0,V . Thus, we have that

P̂0,V [XTV · l ≤ −L] ≤ exp{−ψL}

by means of the stopping time theorem applied at time TV . By an argument similar to
the one developed for the case y · l ∈ (−L, 0), we can finish the estimate in the case
y · l ≤ −L.

4.2 Polynomial decay implies polynomial decay in an open set of directions

In this subsection we prove that whenever (WP )M,c|l holds, for prescribed positive
numbers M and c, then there is a set an open subset O of Sd−1 containing l such that for
every l′ ∈ O the polynomial condition (WP )M ′,c′ |l′ is satisfied for some M ′ and c′. More
precisely, we will prove the following.

Proposition 4.2. Let c > 0 and M > 6(d − 1). Assume that condition (WP )M,c|l is
satisfied. Then there exists an open subset O of Sd−1 containing l such that for all l′ ∈ O
we have that (WP )N,2c|l′ is satisfied with N = M

3 − 1.

Proof of Proposition 4.2. Note that it will be enough to prove the result for l′ ∈ {l±i : i ∈
{2, . . . , d}} [cf. (2.9)]. We will just give the proof for direction l−2, the other cases being
analogous. Throughout the proof we pick α ∈ (0, 1) and we define the angle

β := arctan(α). (4.7)

Consider the rotation A on Rd, whose plane of rotation is the one generated by e1 and
e2, and whose axis of rotation is the line perpendicular to this plane passing through the
origin. Define

A′ := AR.

Consider now the box

CL := A′
(

[−λ1L, λ2L]× [−λ3L, λ3L]
d−1
)
∩Zd

where

λ1 := 2 cosβ − | cosβ − c sinβ|,
λ2 := | cosβ − c sinβ|

and

λ3 := sinβ + c cosβ.

The dimensions of the box CL are chosen exactly so that as shown in Figure 2, we have
that

XTCL
6∈ ∂+CL ⇒ XTBL,cL,l(0)

6∈ ∂+BL,cL,l(0), (4.8)

where the positive boundary ∂+CL is defined in (2.12). Now, since by assumption the
weak polynomial condition (WP )M,c|l is satisfied, we know that there is a constant c3
such that for all L > 0 one has that

EJP 22 (2017), paper 92.
Page 13/41

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP93
http://www.imstat.org/ejp/


Asymptotic direction for RWRE

l

B̃L(0)

BL,cL,l(0)

Figure 2: The choice of boxes.

P0[XTBL,cL,l(0)
6∈ ∂+BL,cL,l(0)] ≤ c3L−M . (4.9)

Now, (4.8) and (4.9) imply that for all L > 0 it is true that

P0[XTCL
6∈ ∂+CL] ≤ c3L−M . (4.10)

Also, note that although the origin is equidistant from oposite sides of the box CL which
are not perpendicular to l, it is not its center. Therefore, inequality (4.10) does not a
priori imply the polynomial condition (WP )M,c|l. To obtain it, we will need to consider
the following box,

C ′L := A′
(

[−λ1L, λ1L]× [−mλ3L,mλ3L]
d−1
)
∩Zd,

where

m :=

[
λ1

λ2

]
.

Note that now the origin is the center of C ′L. Furthermore, m is the proportion between
the distance to the right and to the left of the origin in the box CL. We will derive now
a polynomial decay for the probability to exit the box C ′L through sides different from
∂+C

′
L, starting from 0. The general strategy to follow will be to stack translations of the

box CL up inside of C ′L, and then the Markov property along for the quenched law of
the random walk, ensuring that the walk exits from the successive translations of the
smaller boxes through the front sides. Introduce recursively the sequence of stopping
times

T1 = TCL ,

and for i > 1

Ti = Ti−1 + T1 ◦ θTi−1
.

Now, note that to ensure that the random walk exits at time TC′L through ∂+C ′L, it is
enough that it exits through the corresponding positive boundaries of translations of the
box CL, m successive times. To be precise, defining for x ∈ Zd the box CL(x) := CL + x,
we have that
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P0[XTC′
L

∈ ∂+C ′L] ≥ P0

[
XT1

∈ ∂+CL(0),
(
XT1

∈ ∂+CL(XT1
)
)
◦ θT1

,
(
XT1

∈ ∂+CL(XT2
)
)
◦ θT2

, . . . ,
(
XT1

∈ ∂+CL(XTm−1
)
)
◦ θTm−1

]
.

(4.11)

To estimate the right-hand side of (4.11), we define the set

F1 := ∂+CL(0),

and for i > 1 recursively the sets

Fi :=
⋃

y∈F1

∂+CL(y).

Define also G0 := Ω and for i ≥ 1 the events

Gi :=
{
ω ∈ Ω : Py,ω

[
XT1

∈ ∂+CL(y)
]
≥ 1− L−M2 , for each y ∈ Fi

}
.

Note that (4.11) implies that

P0[XTC′
L

∈ ∂+C ′L] ≥ P0

[
XT1

∈ ∂+CL(0),
(
XT1

∈ ∂+CL(XT1
)
)
◦ θT1

,
(
XT1

∈ ∂+CL(XT2
)
)
◦ θT2

, . . . ,
(
XT1

∈ ∂+CL(XTm−1
)
)
◦ θTm−1

1Gm−1

]
.

(4.12)

By the Markov property applied at time Tm−1 and the definition of Gm−1, we get that
the right-hand side of (4.12) is equal to

∑

y∈F3

E
[
P0,ω

[
XT1

∈ ∂+CL(0),
(
XT1

∈ ∂+CL(XT1
)
)
◦ θT1

, . . . ,

. . . ,
(
XT1 ∈ ∂+CL(XTm−2)

)
◦ θTm−2

]

× Py,ω[XTCL(y)
∈ ∂+CL(y)]1Gm−1

1Am−1(y)

]

≥ (1− L−M2 )
(
P0

[
XT1

∈ ∂+CL(0),
(
XT1

∈ ∂+CL(XT1
)
)
◦ θT1

, . . .

. . . ,
(
XT1

∈ ∂+CL(XTm−2
)
)
◦ θTm−2

]
− P[(Gm−1)c]

)
,

(4.13)

where Am−1(y) := {XTm−1
= y}. Repeating the above argument, we conclude from

(4.12) and (4.13) that

P0[XTC′
L

∈ ∂+C ′L] ≥ (1− L−M2 )m −
m−1∑

i=1

(1− L−M2 )m−iP[(Gi)
c]. (4.14)

To this end, we observe that Chebyshev’s inequality and our hypothesis imply that for
each 1 ≤ i ≤ m it is true that

P[(Gi)
c] ≤

∑

y∈F1

P[Py,ω[XTCL(y)
/∈ ∂+CL(y)] > L−

M
2 ] ≤ |Fi|L−

M
2 ≤ (2icL)

d−1
L−

M
2 ,

(4.15)
where in the last inequality we have the fact that |Fi| ≤ (2icL)

d−1. Combining the
estimates in (4.14) with (4.15) and using the assumption M ≥ 6(d− 1) we see that there
is a constant c4 > 0 such that for all L > 0 it is true that

P0[XTC′
L

6∈ ∂+C ′L] ≤ c4L−
M
3 .

This proof can be finished by choosing α > 0 as any number such that mλ3/λ1 ≤ 2.
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5 Exit probability of the random walk out of a cone

Here we will provide a uniform control on the probability that a random walk starting
form the vertex of a cone stays inside the cone forever. This will trun out to be one of the
key steps in the proof of Theorem 2.1. It will be useful to this end to define for l ∈ Sd−1

and α > 0,
D′ := inf{n ≥ 0 : Xn 6∈ C(X0, l, α)}. (5.1)

Proposition 5.1. Let l ∈ Sd−1, c > 0 and M > 6d − 3. Suppose that (WP )M,c|l holds.
Then there exists a positive constant c5(d) > 0 such that P0[D′ =∞] > c5(d).

During the rest of this section we will prove this proposition. We will first need to
introduce some notation in Subsection 5.1. In Subsection 5.2, we will prove an auxiliary
lemma, while Subsection 5.3, we will finish the proof of Proposition 5.1.

5.1 Notations

Let l′ ∈ Sd−1 and choose a rotation R′ on Rd with the property

R′(e1) = l′.

For each x ∈ Zd, real numbers m > 0, c > 0 and integer i ≥ 0 we define the box

Bi(x) := B2m+i,2c2m+i,l′(x)

[cf. (2.11)]. We also need slabs perpendicular to direction l′. Set

V0(x) := x+R′
(
[−2m, 2m]×Rd−1

)
∩Zd

and for i ≥ 1,

Vi(x) := x+R′




−2m,

i∑

j=0

2m+j


×Rd−1


 ∩Zd.

The positive part of the boundary for this set is defined as

∂+Vi(x) := ∂Vi(x) ∩



x+R′






i∑

j=0

2m+j ,∞


×Rd−1





 .

Furthermore, we will define recursively a sequence of stopping times as follows. First,
let

T0 := TB0(X0).

and for i ≥ 1

Ti := TBi(XTi−1
) ◦ θTi−1

+ Ti−1.

We define also the first time of entrance of the random walk to the hyperplane
R′
(
(−∞, 0)×Rd−1

)
by

Dl′ := inf{n ≥ 0 : Xn · l′ < 0}.

5.2 Auxiliary lemma

Here we will prove the following lemma which will be the first step in the proof of
Proposition 5.1.

Lemma 5.2. Let c > 0 and N > 2(d− 1). Assume that (WP )N,2c|l′ is satisfied. Then, for
all m ∈ N and x ∈ {z ∈ Zd : z · l′ ≥ 2m}, we have that

Px[Dl′ =∞] ≥ y(m)

where y(m) does not depend on l′ and satisfies

lim
m→∞

y(m) = 1. (5.2)
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Proof. From the fact that (WP )N,2c|l′ holds, we can assume that there exists a constant
c6 such that for all positive integers i and m one has that

P0[XTBi(0)
∈ ∂+Bi(0)] ≥ 1− c62−N(m+i). (5.3)

By stationarity, we have for x ∈ Zd:

Px[XTBi(x)
∈ ∂+Bi(x)] ≥ 1− c62−N(m+i). (5.4)

Throughout this proof, let us choose x ∈ {z ∈ Zd : z · l′ ≥ 2m}. As it will become clear
soon, it will be useful to estimate for i ≥ 1 the following probability

Ii := Px[XTVi(x)
∈ ∂+Vi(x)]. (5.5)

In view of (5.4), we have

I0 ≥ Px[XTB0(x)
∈ ∂+B0(x)] ≥ 1− c62−Nm ≥ 1− c62−N

m
2 .

We will estimate Ii for i ≥ 1 recursively. Let us first estimate I1. Note that

I1 ≥ Px[XT0
∈ ∂+B0(X0), (XTB1(X0)

∈ ∂+B1(X0)) ◦ θT0 ]. (5.6)

Using the strong Markov property at time T0 we then see that

I1 ≥
∑

y∈∂+B0(x)

E
[
Px,ω[XT0 ∈ ∂+B0(X0), XT0 = y] × Py,ω[XTB1(y)

∈ ∂+B1(y)]1G0

]
, (5.7)

where

G0 := {w ∈ Ω : Py,ω[XTB1(y)
∈ ∂+B1(y)] > 1− 2−N

m
2 , for all y ∈ ∂+B0(x)}.

Thus, it is clear that

I1 ≥
(
1− 2−N

m
2

) (
Px[XT0 ∈ ∂+B0(X0)]− P[(G0)c]

)
. (5.8)

Notice that by (5.4) and Chebyshev’s inequality

P[(G0)c] ≤
∑

y∈∂+B0(x)

P[Py,ω[XTB1(y)
6∈ ∂+B1(y)] ≥ 2−N

m
2 ]

≤
∑

y∈∂+B0(x)

Py[XTB1(y)
6∈ ∂+B1(y)]2N

m
2

= |∂+B0(x)|2N m
2 ]P0[XTB1(0)

6∈ ∂+B1(0)]

≤ c6(2c2m+1)d−12N(m2 −(m+1))

≤ c6(2c2m+1)d−12−N
m
2 . (5.9)

Plugging the bound (5.9) into (5.8) we see that

I1 ≥ (1− 2−N
m
2 )(1− 2−N

m
2 − c6(2c2m+1)d−12−N

m
2 ). (5.10)

Hereafter we can do the general recursive procedure. For this end, we define for i ≥ 1,

Ji := P0[XT0
∈ ∂+B0(X0), (XTB1(X0)

∈ ∂+B1(X0))◦θT0
, . . . , (XTBi(X0)

∈ ∂+Bi(X0))◦θTi−1 ].

(5.11)
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It is straightforward that Ii ≥ Ji. Furthermore, through induction on i ≥ 1, we will
establish that

Ji ≥ (1− 2−N
(m+i−1)

2 )




Ji−1 − 2−N

(m+i−1)
2



i−1∑

j=0

2c2(m+j)+1



d−1



. (5.12)

To prove this, we first define extended boundary of the pile of boxes at a given step as

F0 := ∂+B0(x),

and for i ≥ 2

Fi−1 := ∂
{
∪y∈Fi−2

Bi−1(y)
}
∩ {x+R′((2m+i−1,∞)×Rd−1))}.

Using these notations, we can apply the strong Markov property to (5.11) at time Ti−1,
to get that

Ji =
∑
y∈Fi−1

E [Px,ω[XT0 ∈ ∂+B0(X0), . . .

. . . , (XTBi−1(X0)
∈ ∂+Bi−1(X0)) ◦ θTi−2

, XTi−1
= y]Py,ω[XTBi(y)

∈ ∂+Bi(y)]
]
.

Following the same strategy used to deduce (5.10), it will be convenient to introduce for
each i ≥ 2 the event

Gi−1 := {ω ∈ Ω : Py,ω[XTBi(y)
∈ ∂+Bi(y)] > 1− 2−N

(m+i−1)
2 , for all y ∈ Fi−1}.

Inserting the indicator function of the event Gi−1 into (5.11) we get that

Ji ≥
∑

y∈Fi−1

E
[
Px,ω[XT0

∈ ∂+B0(X0), . . . (XTBi−1(X0)
∈ ∂+Bi−1(X0)) ◦ θTi−2

, XTi−1
= y]

× Py,ω[XTBi(y)
∈ ∂+Bi(y)]1Gi−1

]
.

By the same kind of estimation as in (5.8), we have

Ji ≥ (1− 2−N
(m+i−1)

2 ) (Ji−1 − P[(Gi−1)c]) . (5.13)

We need to get an estimate for P[(Gi−1)c]. We do it repeating the argument given in
(5.9). Let us first remark that

|Fi−1| ≤



i−1∑

j=0

2c2(m+j)+1



d−1

. (5.14)

Indeed, the case in which l′ = e1 gives the maximum number for |Fi−1|. Keeping (5.14)
and (5.4) in mind we get that

Px[(Gi−1)c] ≤∑y∈Fi−1
P
[
Py,ω

[
XTBi(y)

6∈ ∂+Bi(y)
]
≥ 2−N

(m+i−1)
2

]

≤∑y∈Fi−1
Py[XTBi(y)

6∈ ∂+Bi(y)]2N
(m+i−1)

2

≤
(∑i−1

j=0 2c2(m+j)+1
)d−1

c62−N
(m+i−1)

2 . (5.15)

Therefore, combining (5.15) and (5.13) we prove claim (5.12). Iterating (5.12) backward,
from a given integer i, we have got

Ji ≥ J1

[
i−1∏

h=1

(1− 2−N
(m+h)

2 )

]
−

i−1∑

j=1

aj2
−N m+j

2

i−1∏

k=j

(1− 2−N
(m+k)

2 ), (5.16)
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where we have used for short

aj := c6

(
j∑

i=0

c2(m+i)+1

)d−1

≤ c6(2c)d−12(m+j+2)(d−1).

The same argument used to derive (5.10) can be repeated to conclude that

J1 ≥ (1− 2−N
m
2 )(1− 2−N

m
2 − c6(2c2m+1)d−12−N

m
2 ). (5.17)

Replacing the right hand side of (5.17) into (5.16), and together with the fact Ii ≥ Ji, we
see that

Ii ≥
[
i−1∏

h=0

(1− 2−N
m+h

2 )

]
(1− 2−N

m
2 )−

i−1∑

j=0

c6aj2
−N (m+j)

2

i−1∏

k=j

(1− 2−N
(m+k)

2 ). (5.18)

Now we can finish the proof. First, observe that

Px[Dl′ =∞] ≥ I∞,

where as a matter of definition
I∞ := lim

i→∞
Ii

(this limit exists, because it is the limit of a decreasing sequence of real numbers bounded
from below). By the condition N > 2(d− 1), we get that for each m ≥ 1 one has that for
all j ≥ 1,

aj 2−
N(m+j)

2 ≤ c6(8c)d−12−ϑ
(m+j)

2 ,

where ϑ stands for the positive number so that N = 2(d− 1) + ϑ. Thus all the products
and series in (5.18) converge and we have that for all m ≥ 1 and x ∈ {z ∈ Zd : z · l′ ≥ 2m}

Px[Dl′ =∞] ≥ y(m),

where

y(m) :=

[ ∞∏

h=0

(1− 2−N
(m+h)

2 )

]
(1− 2−N

m
2 )−

∞∑

j=0

aj2
−N (m+j)

2

∞∏

k=j

(1− 2−N
(m+k)

2 ). (5.19)

Clearly for each m ≥ 1, y(m) does not depend on the direction l′ and limm→∞ y(m) = 1,
which completes the proof.

5.3 Proof of Proposition 5.1

We will now prove Proposition 5.1 using Lemma 5.2. Before this, we need a definition
of geometric nature. We will say that a sequence (x0, . . . , xn) of lattice points is a path if
for every 1 ≤ i ≤ n− 1, one has that xi and xi−1 are nearest neighbors. Furthermore, we
say that this path is admissible if for every 1 ≤ i ≤ n− 1 one has that

(xi − xi−1) · l 6= 0.

Now, assume (WP )M,c|l, where M > 6(d− 1) + 3 which is the condition of the statement
of Proposition 5.1. We appeal to Proposition 4.2 and assumption (WP )M,c|l to choose an
α > 0 such that for all i ∈ {2, . . . , d}

(WP )N,2c|l±i

is satisfied with

N :=
M

3
− 1 > 2(d− 1). (5.20)
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From now on, let m be any natural number satisfying

y(m) > 1− 1

2(d− 1)
, (5.21)

where y(m) is the function given in Lemma 5.2 (we now by (5.2) of Lemma 5.2 that this
is possible). Note that there exists a constant

c7 = c7(d) (5.22)

such that for all x ∈ Zd contained in C(R(2me1), l, α) and such that |R(2me1) − x|1 ≤ 1

one has that there exists an admissible path with at most c72m lattice points joining 0

and x. We denote this path by
(0, y1, . . . , yn = x)

noting that n ≤ c72m.
The general idea to finish the proof is to push forward the walk up to site x with

the help of uniform ellipticity in direction l and then make use of Lemma 5.2 to ensure
that the walk remains inside the cone. More precisely, by (5.20) and Lemma 5.2 we can
conclude that for all 2 ≤ i ≤ d one has that

Px[Dli+ =∞] ≥ y(m), (5.23)

along with
Px[Dli− =∞] ≥ y(m). (5.24)

Define the event
An := {(X0, . . . , Xn) = (0, y1, . . . , yn)}.

Notice that

P0[D′ =∞] ≥ P0

[
An, (Dli− =∞) ◦ θn, (Dli+ =∞) ◦ θn for 2 ≤ i ≤ d

]
. (5.25)

On the other hand, by definition of the annealed law, together with the strong Markov
property we have that

P0[An, (Dli− =∞) ◦ θn, ( Dli+ =∞) ◦ θn for 2 ≤ i ≤ d]

= E
[
P0,ω[An], Px,ω[Dli− =∞, Dli+ =∞ for 2 ≤ i ≤ d]

]
.

(5.26)

Using the uniform ellipticity condition (UE)|l, along with (5.23) and (5.24), we can see
that (5.26) is bounded from below by

(2κ)c72m (1− 2(d− 1)(1− y(m))) , (5.27)

where c7 is defined in (5.22). By virtue of our choice of m in (5.21), we see then that

c8 := (2κ)c72m (1− 2(d− 1)(1− y(m))) > 0. (5.28)

Finally, in view of the inequalities (5.25), (5.26) the bound (5.27) and (5.21), it follows
that

P0[D′ =∞] ≥ c8.

6 Polynomial control of positions at the approximate regenera-
tion times

In this section, we define approximate regeneration times which will depend on a
distance parameter L > 0 as done in [5]. We will then show that these times, assuming
the polynomial condition (UWP )M,c|l for M large enough, and the cone-mixing condition,
when scaled by κL, define positions which have a finite second moment.
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6.1 Preliminaries

We recall the definition of the approximate regeneration times given in [5]. Let
W := E ∪ {0} [cf. (2.7)] and endow the space WN with the canonical σ-algebra W
generated by the cylinder sets. For fixed ω ∈ Ω and ε = (ε0, ε1, . . .) ∈ WN, we denote
by Pω,ε the law of the Markov chain {Xn} on (Zd)N, so that X0 = 0 and with transition
probabilities defined for z ∈ Zd, e, |e| = 1 as

Pω,ε[Xn+1 = z + e|Xn = z] = 1{εn=e} +
1{εn=0}
1− κ|E| [ω(z, e)− κ1{e∈E}].

Call Eω,ε the corresponding expectation. Define also the product measure Q, which to
each sequence of the form ε ∈WN assigns the probability Q(ε1 = e) := κ, if e ∈ E , while
Q(ε1 = 0) = 1− κ|E|, and denote by EQ the corresponding expectation. Here, without
loss of generality we choose the ellipticity constant κ so that κ|E| < 1.

Now let G be the σ-algebra on (Zd)N generated by cylinder sets, while F be the
σ-algebra on Ω generated by cylinder sets. Then, we can define for fixed ω the measure

P 0,ω := Q⊗ Pω,ε

on the space (WN × (Zd)N,W ×G), and also

P 0 := P⊗Q⊗ Pω,ε

on (Ω×WN×(Zd)N,F×W×G), denoting by Ē0,ω and Ē0 the corresponding expectations.
A straightforward computation makes us conclude that the law of {Xn} under P̄0,ω

coincides with its law under P0,ω and that its law under P 0 coincides with its law under
P0.

Let q be a positive real number such that for all 1 ≤ i ≤ d,

ui := liq

is an integer. Define now the vector u := (u1, . . . , ud). From now on, we fix a particular
sequence ε in E of length p := |u|1,

ε := (ε1, . . . , εp),

whose components are defined as

ε1 = ε2 = · · · = ε|u1| := sgn(u1)e1,

ε|u1|+1 = ε|u1|+2 = · · · = ε|u1|+|u2| := sgn(u2)e2

...

εp−|ud|+1 = · · · = εp := sgn(ud)ed.

Without loss of generality we can assume that l1 6= 0. And by taking α small enough that

ε1, ε1 + ε2, . . . , ε1 + · · ·+ εp = u

are inside the cone C(0, l, α). For L ∈ pN consider the sequence ε̄(L) of length L, defined
as the concatenation L/p times with itself of the sequence ε̄, so that

ε(L) = (ε̄1, . . . , ε̄p, . . . , ε̄1, . . . , ε̄p).

Consider the filtration G := {Gn : n ≥ 0} where

Gn := σ{(εi, Xi) : i ≤ n}.
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Define S0 := 0,

S1 := inf{n ≥ L : Xn−L · u > max{Xm · u : m < n− L},
(εn−L, . . . , εn−1) = ε(L)}

together with
R1 := D′ ◦ θS1

+ S1.

We can now recursively define for k ≥ 1,

Sk+1 := inf{n ≥ Rk : Xn−L · u > max{Xm · u : m < n− L},
(εn−L, . . . , εn−1) = ε(L)}

and
Rk+1 := D′ ◦ θSk+1

+ Sk+1.

Clearly,
0 = S0 ≤ S1 ≤ R1 ≤ · · ·∞,

the inequalities are strict if the left member of the corresponding inequality is finite, and
the sequences {Sk : k ≥ 0} and {Rk : k ≥ 0} are G-stopping times. On the other hand, we
can check that P̄0-a.s. one has that S1 <∞ along with the fact that P̄0-a.s. it is true that

{limXn · l =∞} ∩ {Rk <∞} =⇒ Sk+1 <∞. (6.1)

Put
K := inf{k ≥ 1 : Sk <∞, Rk =∞}

and define the approximate regeneration time

τ (L) := SK . (6.2)

The random variable τ (L) is the first time n such that: at time n− L it reached a record
in direction l; then it moves L steps in the direction l by means of the action of ε(L); and
finally after time n, never exits the cone C(Xn, l, α).

The following lemma is required to show that the approximate renewal times are
P̄0-a.s. finite.

Lemma 6.1. Let l ∈ Sd−1
q , M ≥ d+ 1 and c > 0 and assume that (UWP )M,c|l is satisfied.

Then the random walk is transient in direction l.

Proof. The proof can be obtained following for example the argument presented in page
517 of [19], through the use of Borel-Cantelli and the fact that for any M > 0 we have
that

P0[limn→∞Xn · l =∞] = 1.

We can now prove the following stronger version of Lemma 2.2 of [5].

Lemma 6.2. Let M > 6d− 3, c > 0, α > 0 and φ ∈ Φ. Assume that (CM)α,φ|l and (UE)|l
are satisfied. Then there exists a positive L0 ∈ |u|1N, such that for all L ≥ L0 with
L ∈ |u|1N one has that P0-a.s.

τ (L) <∞. (6.3)

Proof. Following the arguments in the proof of Lemma 2.2. of [5], we know that for all
L ∈ |u|1N it is true that

P̄0[Rk <∞] ≤ (φ(L) + P0[D′ <∞])k. (6.4)
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From the assumption (CM)α,φ|l, we have φ(L) → 0 as L → ∞. On the other hand, by
Lemma 5.1,

P0[D′ <∞] < 1.

Therefore, we can find an L0 with the property

φ(L) + P0[D′ <∞] < 1,

for all L ≥ L0, L ∈ N|u|1. Then, by Borel-Cantelli Lemma, one has that P̄0-a.s.

inf{n ≥ 1 : Rn =∞} <∞. (6.5)

Now, observe that P̄0-a.s.

inf{n ≥ 1 : Rn =∞} = inf{n ≥ 1 : Rn−1 <∞ Rn =∞}. (6.6)

In turn, using (6.1), which is satisfied in view of Lemma 6.1, and also by (6.5) and (6.6),
we have that

inf{n ≥ 1 : Sn <∞ Rn =∞} = K <∞
P̄0-a.s., which finishes the proof of (6.3).

Finally, we can state the following proposition, which gives a control on the second
moment of the position of the random walk at the first approximate regeneration time.
Define for x ∈ Zd and L > 0 the σ-algebra

Fx,L := σ

{
ω(y, ·) : y · u ≤ x · u− L

|u|1
|u|2
}
. (6.7)

Proposition 6.3. Let c > 0, l ∈ Sd−1
q , M > 0, φ ∈ Φ and 0 < α ≤ min{ 1

9 ,
1
3c}. Assume that

(CM)α,φ|l, (UE)|l and (UWP )M,c|l hold. Then, there exists a constant c9 = c9(d, κ, l) > 0,
such that for all L ∈ N|u|1 we have that

Ē0[(κLXτ(L) · l)2|F0,L] ≤ c9. (6.8)

In the next subsection we will prove Proposition 6.3.

6.2 Proof of Proposition 6.3

Before we prove Proposition 6.3, we will need to state three lemmas. In order to
make the reading of the proof of Proposition 6.3 more direct, the proof of these lemmas
is postponed to Appendix A.

Lemma 6.4. Let α > 0 and φ ∈ Φ. Assume that (CM)α,φ|l holds. Then, for each x ∈ Zd
one has that for all L ∈ N|u|1, P-a.s.

|E[Px,ω[D′ =∞]|Fx,L]− P0[D′ =∞]| ≤ φ(L).

We will now state the second lemma that will be needed to prove Proposition 6.3. To
state it define

M := sup
0≤n≤D′

(Xn −X0) · u.

Lemma 6.5. Let M > 4d+ 1 and

3c ≤ 1

α
. (6.9)

Assume that (UWP )M,c|l is satisfied. Then, there exists c10 = c10(d) > 0 such that P-a.s.
one has that

E0[M2, D′ <∞|F0,L] ≤ c10.
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Finally, to state the third lemma, we define

b = b(L) := P0[D′ <∞] + φ(L),

b′ = b′(L) := P0[D′ =∞] + φ(L)

and EP⊗Q := EEQ. Note that b and b′ are uniformly bounded in L. Furthermore, it will
be necessary to define for each j ≥ 0 and n ≥ L+ j the events

Dj,n := {ε ∈WN : (εm, . . . , εm+L−1) 6= ε(L) for all j ≤ m ≤ j + n− L+ 1}.

Lemma 6.6. There exists a constant c11 such that for all n ≥ L2 one has that

Q[D0,n] ≤ (1− c11L2κL)[
n
L2 ].

We now present the proof of Proposition 6.3, divided in several steps. For the sake of
simplicity, we will write τ instead of τ (L).

Step 0. We first note that

Ē0[(Xτ · u)2 | F0,L]

=

∞∑

k=1

k−1∑

k′=0

Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk <∞, D′ ◦ θSk =∞ | F0,L].

(6.10)

Throughout the subsequent steps of the proof we will estimate the right-hand side of
(6.10).

Step 1. Here we will prove the following estimate valid for all k ≥ 1 and 0 ≤ k′ < k.

Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk <∞, D′ ◦ θSk =∞ | F0,L]

≤ b′bk−k′−1Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk′+1 <∞ | F0,L].

(6.11)

Define the set

HL :=

{
y ∈ Zd : y · u ≥ L|u|2|u|1

}
.

Then, for each 0 ≤ k′ < k, one has that

Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk <∞, D′ ◦ θSk =∞ | F0,L]

=
∑

n≥1,x∈HL
EP⊗Q[Eω,ε[(XSk′+1

· u)2 − (XSk′ · u)2, Sk = n,

XSk = x,D′ ◦ θn =∞ | F0,L]

=
∑

n≥1,x∈HL
EP⊗Q[Eω,ε[(XSk′+1

· u)2 − (XSk′ · u)2, Sk = n,Xn = x]

× Pϑxω, θnε[D′ =∞] | F0,L]

=
∑

x∈HL
E[Ē0,ω[(XSk′+1

· u)2 − (XSk′ · u)2, Sk <∞, XSk = x]

× Px,ω[D′ =∞] | F0,L],

(6.12)

where here for each x ∈ Zd, ϑx is the canonical space-shift in Ω defined in (2.2), while for
each n ≥ 0, θn denotes the canonical time-shift in the space WN so that (θnε)m = εn+m,
and where in the first equality we have used the fact that the value of XSk · u ≥ XS1 · u,
in the second equality the Markov property and in the last equality we have used the
independence of the coordinates of ε and the fact that the law of the random walk is the
same under Px,ω as under EQPϑxω,θnε.
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Moreover, by the fact that the first factor inside the expectation of the right-most
expression of (6.12) is Fx,L-measurable, it is equal to

∑

x∈HL
E[Ē0,ω[(XSk′+1

· u)2 − (XSk′ · u)2, Sk <∞, XSk = x]

× E[Px,ω[D′ =∞] | Fx,L] | F0,L].

(6.13)

Applying next Lemma 6.4 to (6.13), we see that

∑

x∈HL
E[Ē0,ω[(XSk′+1

· u)2 − (XSk′ · u)2, Sk <∞, XSk = x]× E[Px,ω[D′ =∞] | Fx,L] | F0,L]

≤ b′Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk <∞ | F0,L].

(6.14)

Next, observe that for k′ < k one has that

Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk <∞ | F0,L]

=Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Rk−1 <∞ | F0,L]

=
∑

x∈HL
E[Ē0,ω[(XSk′+1

· u)2 − (XSk′ · u)2, Sk−1 <∞, XSk−1
= x,D′ ◦ θSk−1

<∞] | F0,L]

=
∑

x∈HL
E[Ē0,ω[(XSk′+1

· u)2 − (XSk′ · u)2, Sk−1 <∞, XSk−1
= x]Px,ω[D′ <∞] | F0,L]

=
∑

x∈HL
E[Ē0,ω[(XSk′+1

· u)2 − (XSk′ · u)2, Sk−1 <∞, XSk−1
= x]

× E[Px,ω[D′ <∞] | Fx,L] | F0,L].

(6.15)

Again, by Lemma 6.4, we have that E[Px,ω[D′ < ∞] | Fx,L] ≤ b = P0[D′ < ∞] + φ(L).
Using this inequality to estimate the last factor inside the conditional expectation of the
right-most hand side of (6.15), we see that

Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk <∞ | F0,L]

≤ bĒ0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk−1 <∞ | F0,L].

By induction on k we get that

Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk <∞ | F0,L]

≤ bk−k′−1Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk′+1 <∞ | F0,L].

(6.16)

Combining (6.16) with (6.14) we obtain (6.11).

Step 2. For k ≥ 1 we define

Mk := sup
0≤n≤Rk

Xn · u. (6.17)

Define also the sets parametrized by k and n ≥ 0

An,k :=
{
ε ∈WN :

(
ε
t
(n)
k

, ε
t
(n)
k +1

, . . . , ε
t
(n)
k +L−1

)
= ε(L)

}
(6.18)

and

Bn,k :=
{
ε ∈WN :

(
ε
t
(j)
k

, ε
t
(j)
k +1

, . . . , ε
t
(j)
k +L−1

)
6= ε(L) for all 0 ≤ j ≤ n− 1

}
, (6.19)
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where we define the sequence of stopping times [cf. (2.4)] parameterized by k and
recursively on n ≥ 0 by

t
(0)
k := T̄ lMk

and the successive times where a record value of the projection of the random walk on l
is achieved by

t
(n+1)
k := T̄ lX

t
(n)
k

·u.

In this step we will show that for all k ≥ 0 one has that

Ē0[(XSk+1
· u)2 − (XSk · u)2, Sk+1 <∞|F0,L]

≤
L2−1∑

n=0

Ē0[(XSk+1
· u)2 − (XSk · u)2, t

(n)
k <∞, An,k | F0,L]

+

∞∑

n=L2

Ē0[(XSk+1
· u)2 − (XSk · u)2, t

(n)
k <∞, Bn,k, An,k | F0,L],

(6.20)

Indeed, note that on the event An,k ∩Bn,k one has that

Sk+1 = t
(n)
k + L.

Thus, as a consequence of the definition of Sk+1, one has that P̄0-a.s.

{Sk+1 <∞} ⊂
⋃

n≥0

{t(n)
k <∞, Bn,k, An,k}. (6.21)

Display (6.20) now follows directly from (6.21).

Step 3. Here we will derive an upper bound for the two sums appearing in the right-hand
side in (6.20). In fact, we will prove that there is a constant c12 such that for all k ≥ 0

one has that

L2−1∑

n=0

Ē0[(XSk+1
· u)2 − (XSk · u)2, t

(n)
k <∞, An,k | F0,L]

≤ c12κ
L (L4bk−1 + L2Ē0[XSk · u, Sk <∞|F0,L]

)
(6.22)

and
∞∑

n=L2

Ē0[(XSk+1
· u)2 − (XSk · u)2, t

(n)
k <∞, Bn,k, An.k | F0,L]

≤ c12

∞∑

n=L2

κL(1− c11κ
L)[

n
L2 ] ((n+ L)2bk−1 + (n+ L)Ē0[XSk · u, Sk <∞|F0,L]

)
.

(6.23)

Note that for all n ≥ 0 one has that

X
t
(n+1)
k

· u ≤ X
t
(n)
k

· u+ |u|∞,

and hence by induction on n we get that

X
t
(n)
k

· u ≤Mk + (n+ 1)|u|∞.

Therefore, if we set

L′ :=
L|u|2
|u|1

+ |u|∞ ≤ c13L, (6.24)

where c13 is a constant depending only l and d, we can see that P0-a.s on the event
{t(n)
k <∞, An,k} one has that

XSk+1
· u ≤ Nk,n := Mk + n|u|∞ + L′. (6.25)
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Therefore, for all 0 ≤ n ≤ L2 − 1 one has that (with the convention that R0 := 0)

Ē0[(XSk+1
· u)2 − (XSk · u)2, t

(n)
k <∞, An,k | F0,L]

≤ Ē0[N2
k,n − (XSk · u)2, t

(n)
k <∞, An,k | F0,L]

=

∞∑

j=0

∑

x∈Zd
EP⊗Q[Eω,ε[N

2
k,n − (XSk · u)2, t

(n)
k = j,Xj = x]1{(εj ,...,εj+L−1)=ε(L)} | F0,L]

≤ κLĒ0[N2
k,n − (XSk · u)2, Rk <∞ | F0,L],

(6.26)

where in the first inequality we have used (6.25), in the equality we have applied the
Markov property and in the second inequality the fact that Q is a product measure and
that Rk ≤ t(n)

k . Similarly for all n ≥ L2 one has that

Ē0[(XSk+1
· u)2 − (XSk · u)2, t

(n)
k <∞, Bn,k, An,k | F0,L]

≤ Ē0[N2
k,n − (XSk · u)2, t

(n)
k <∞, Bn,k, An,k | F0,L]

≤
∞∑

j=0

∞∑

j′=j+n

∑

y∈Zd
EP⊗Q [Eω,ε[N

2
k,n − (XSk · u)2, X

t
(0)
k

= y,

t
(0)
k = j]Pθyω,θjε[Dj,n, t

(n)
k = j′]1{(εj′ ,...,εj′+L−1)=ε(L)}] | F0,L]

≤ κLQ[D0,n]Ē0[N2
k,n − (XSk · u)2, Rk <∞ | F0,L]

≤ κL(1− c11L2κL)[
n
L ]Ē0[N2

k,n − (XSk · u)2, Rk <∞ | F0,L],

(6.27)

where in the first inequality we have used again (6.25), in the second one the Markov
property, in the third one the fact that Rk ≤ t(0)

k and in the last one Lemma 6.6.
Now, by displays (6.26) and (6.27), to finish the proof of inequalities (6.22) and (6.23)

it is enough to prove that there is a constant c14 such that

Ē0[N2
k,n − (XSk · u)2, Rk <∞ | F0,L]

≤ c14

(
(n+ L)2bk−1 + (n+ L)Ē0[XSk · u, Sk <∞|F0,L]

)
,

(6.28)

using the fact that n ≤ L2 − 1 in the left-hand side of inequality (6.22). To prove (6.28),
the following identity will be useful

N2
k,n − (XSk · u)2 = (Mk −XSk · u)2 + 2(n|u|∞ + L′)(Mk −XSk · u)

+ 2(n|u|∞ + L′)XSk · u+ 2(Mk −XSk · u)XSk · u+ (n|u|∞ + L′)2.
(6.29)

We will now insert this decomposition in the left-hand side of (6.28) and bound the
corresponding expectations of each term. Let us begin with the expectation of the last
term. Note that by an argument similar to the one developed in Step 1 we know that
there is some constant c15 such that

Ē0[(n|u|∞ + L′)2, Rk <∞|F0,L] ≤ c15(n+ L)2bk. (6.30)

Similarly, the expectation of the first term of the right-hand side of display (6.29) can be
bounded using Lemma 6.5, so that

Ē0[(Mk −XSk · u)2, Rk <∞ | F0,L]

=
∑

x∈HL
E[P̄0,ω[Sk <∞, XSk = x]Ex[M2, D′ <∞ | Fx,L] | F0,L] ≤ c10b

k−1. (6.31)

Again, for the expectation of the second term of the right-hand side of display (6.29), we
have that

Ē0[2(n|u|∞ + L′)(Mk −XSk · u), Rk <∞ | F0,L] ≤ c16b
k−1(n+ L), (6.32)
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for some suitable positive constant c16. For the expectation of the fourth term of the
right-hand side of (6.29), we see by Lemma 6.5 that

Ē0[2(Mk −XSk · u)XSk · u,Rk <∞ | F0,L] ≤ 2
√
c10Ē0[XSk · u, Sk <∞ | F0,L]. (6.33)

Finally, for the expectation of the third term of the right-hand side of (6.29) we have that

Ē0[2(n|u|∞ + L′)XSk · u,Rk <∞ | F0,L]

≤ c16b(n+ L)Ē0[XSk · u, Sk <∞ | F0,L].
(6.34)

Using the bounds (6.34), (6.33), (6.32), (6.31) and (6.30) we obtain inequality (6.28).

Step 4. Here we will derive for all k ≥ 1 the inequality

Ē0[XSk · u, Sk <∞|F0,L]

≤
k−1∑

k′=0

bk−k
′−1



L2−1∑

n=0

Ē0[Nk′,n −XSk′ · u, t
(n)
k′ <∞, An,k′ | F0,L]

+

∞∑

n=L2

Ē0[Nk′,n −XSk′ · u, t
(n)
k′ <∞, Bn,k′ , An,k′ | F0,L]

)
.

(6.35)

Note that

Ē0[XSk · u, Sk <∞ | F0,L] =

k−1∑

k′=0

Ē0[(XSk′+1
−XSk′ ) · u, Sk <∞ | F0,L]. (6.36)

By an argument similar to the one used in Step 1 we see that for k′ < k one has that

Ē0[(XSk′+1
−XS′k

) · u, Sk <∞ | F0,L]

≤ bk−k′−1Ē0[(XSk′+1
−XS′k

) · u, Sk′+1 <∞ | F0,L].
(6.37)

Now, we can use inclusion (6.21) of Step 2 in order to get that

Ē0[(XSk′+1
−XS′k

) · u, Sk′+1 <∞ | F0,L]

≤
L2−1∑

n=0

Ē0[(XSk′+1
−XS′k

) · u, t(n)
k′ <∞, Bn,k′ , An,k′ | F0,L]

+

∞∑

n=L2

Ē0[(XSk′+1
−XS′k

) · u, t(n)
k′ <∞, Bn,k′ , An,k′ | F0,L],

(6.38)

where the events An,k′ and Bn,k′ are defined in (6.18) and (6.19). Using the fact that on

the event {t(n)
k′ <∞, Bn,k′ , An,k′} one has that P0-a.s.

(XSk′+1
−XSk′ ) · u ≤ Nk′,n −XS′k

· u,

and the inequalities (6.36), (6.37) and (6.38) we finish the proof of (6.35).

Step 5. Here we will obtain an upper bound for first summation inside the parenthesis in
(6.35). Indeed, note that on Rk′ ≤ t(n)

k′ , by an argument similar to the one used to derive
inequality (6.26), we have that for all 0 ≤ n ≤ L2 and 0 ≤ k′ ≤ k − 1

Ē0[Nk′,n −XSk′ · u, t
(n)
k′ <∞, An,k′ | F0,L] ≤ κLĒ0[Nk′,n −XSk′ · u,Rk′ <∞ | F0,L].

Step 6. Here we will obtain an upper bound for the second summation inside the
parenthesis in (6.35), showing that for all n ≥ L2 and 0 ≤ k′ ≤ k − 1,

E0[Nk′,n −XSk′ · u, t
(n)
k′ <∞, Bn,k′ , An,k′ | F0,L]

≤ κL
(
1− c11L2κL

)[ nL ]
Ē0[Nk′,n −XSk′ · u,Rk′ <∞ | F0,L].

(6.39)
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Inequality (6.39) follows from the fact that

E0[Nk′,n −XSk′ · u, t
(n)
k′ <∞, Bn,k′ , An,k′ | F0,L]

≤
∞∑

j=0

∑

j′≥j+n

∑

y∈Zd
EP⊗Q [Eω,ε[Nk′,n −XSk′ · u,Xt

(0)

k′
= y, t

(0)
k′ = j]

× Pθyω,θjε[Dj,n, t
(n)
k′ = j′]1{(εj′ ,...,εj′+L−1)=ε(L)}] | F0,L]

= κLQ[D0,n]E[Ē0,ω[Nk′,n −XSk′ · u, t
(0)
k′ <∞] | F0,L],

and then Lemma 6.6 to estimate Q[D0,n] in the right-most hand side of this development.

Step 7. Here we will show that there exist constants c17 and c18 such that

L2−1∑

n=0

Ē0[Nk′,n −XSk′ · u, t
(n)
k′ <∞, An,k′ | F0,L] ≤ c17κ

LL4bk
′−1 (6.40)

and
∞∑

n=L2

Ē0[Nk′,n −XSk′ · u, t
(n)
k′ <∞, An,k′ , Bn,k′ | F0,L] ≤ 4c18κ

−Lbk
′−1. (6.41)

Let us first note that by an argument similar to the one used to derive the bound in Step
1 (through Lemmas 6.4 and 6.5), we have that

Ē0[Nk′,n −XS′k
· u,Rk′ <∞] ≤ (n|u|∞ + L′ + c19)bk

′−1, (6.42)

where c19 :=
√
c10. Let us now prove (6.40). Note that by Step 5 and (6.42) we have that

L2−1∑

n=0

Ē0[Nk′,n −XSk′ · u, t
(n)
k′ <∞, An,k′ | F0,L]

≤ κL
L2−1∑

n=0

Ē0[Nk′,n −XSk′ · u,Rk′ <∞ | F0,L]

≤ c20 L4 κLbk
′−1,

(6.43)

for some suitable constant c20. Let us now prove (6.41). First note that
∞∑

n=L2

Ē0[Nk′,n −XSk′ · u, t
(n)
k′ <∞, An,k′ , Bn,k′ | F0,L]

≤
∞∑

n=L2

κL(1− c11L2κL)[
n
L ]Ē0[Nk′,n −XSk′ · u,Rk′ <∞ | F0,L]

≤ bk′−1
∞∑

n=L2

κL(1− c11L2κL)[
n
L ](n|u|∞ + L′ + c19)

≤ c21b
k′−1

∞∑

n=L2

nκL(1− c33L2κL)[ n
L2

],

(6.44)

for some constant c21, where in the first inequality we have used Step 6 and in the
second we have used inequality (6.42). Finally notice that using the fact that for n ≥ L2

one has that n ≤ 2L2
[
n
L2

]
, we get that

∑∞
n=L2 nκL(1− c11L2κL)[

n
L2 ] ≤ 2κLL2

∑∞
n=L2

[
n
L2

]
(1− c11L2κL)[

n
L2 ]

= 2L4κL
∑∞
m=1m(1− c11L2κL)m ≤ 2

(c11)2κ
−L.

Using this estimate in (6.44) we obtain (6.41).
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Step 8. Here we finish the proof of Proposition 6.3 combining the previous steps we
have already developed. Using inequality (6.35) proved in Step 4 with inequalities (6.40)
and (6.41) proved in Step 7, we see that there is a constant c22 such that for all k ≥ 0,

Ē0[XSk · u, Sk <∞ | F0,L] ≤ c22kb
k−2κ−L. (6.45)

Thus, by inequality (6.22) proved in Step 3, for all k ≥ 0 we have that

L2−1∑

n=0

Ē0[(XSk+1
· u)2 − (XSk · u)2, t

(n)
k <∞, An,k | F0,L] ≤ c23L4(k + 1)bk−2, (6.46)

for certain constant c23 > 0. On the other hand, combining inequality (6.23) proved in
Step 3 with (6.45), we see that there exists a constant c24 such that

∞∑

n=L2

Ē0[(XSk+1
· u)2 − (XSk · u)2, t

(n)
k <∞, Bn,k, An,k | F0,L]

≤ c24

∞∑

n=L2

κL(1− c11L2κL)[
n
L2 ] ((n+ L)2bk−1 + (n+ L)kbk−2κ−L

)
.

(6.47)

Now, note that for some constant c25 one has that

∑∞
n=L2(n+ L)2(1− c11L2κL)[ n

L2
] ≤ c25 κ

−3L (6.48)

and

∑∞
n=L2(n+ L)(1− c11L2κL)[ n

L2
] ≤ c25 κ

−2L. (6.49)

Substituting (6.48) and (6.49) into (6.47) we see that

∞∑

n=L2

Ē0[(XSk+1
·u)2− (XSk ·u)2, t

(n)
k <∞, Bn,k, An,k | F0,L] ≤ c26κ

−2Lbk−2(k+ 1), (6.50)

for some suitable positive constant c26. Substituting (6.47) and (6.50) into inequality
(6.20) of Step 2, we then conclude that there is a constant c27 such that

Ē0[(XSk+1
· u)2 − (XSk · u)2, Sk+1 <∞|F0,L] ≤ c27κ

−2Lbk−2(k + 1). (6.51)

Substituting (6.51) into (6.11) of Step 1, we get that

Ē0[(XSk′+1
· u)2 − (XSk′ · u)2, Sk <∞, D′ ◦ θSk =∞ | F0,L] ≤ b′bk+1(k′ + 1). (6.52)

From the fact that
∑∞
k=1

∑k−1
k′=0 b

k+1k′ is convergent and bounded by a constant that does
not depend on L (see the definition of b and b′ in (6.10)), together with (6.52) and (6.10)
of Step 0, we conclude that

Ē0[(Xτ · u)2|F0,L] ≤ c28κ
−2L,

for some constant c28 > 0, which proves the proposition.

7 Proof of Theorem 2.1

In this section we will prove Theorem 2.1 using Proposition 6.3 of Section 6. First
in Subsection 7.1, we will define an approximate sequence of regeneration times. In
Subsection 7.2, we will see how we can use this approximate regeneration time sequence,
to prove the existence of an approximate asymptotic direction. In Subsection 7.3, we
will use the approximate asymptotic direction to prove Theorem 2.1.
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7.1 Approximate regeneration time sequence

As in [5], we define approximate regeneration times recursively by τ (L)
1 := τ [cf. (6.2)]

and for i ≥ 2,
τ

(L)
i := τ

(L)
1 ◦ θ

τ
(L)
i−1

+ τ
(L)
i−1.

Whenever there is no risk of confusion, we will drop the dependence of L on τ (L)
1 , using

the notation τi instead τ (L)
i . Let us define σ-algebras corresponding to the information of

the random walk and the ε process up to the first approximate regeneration time and of
the environment ω at a distance of order L in the direction l (recall that τ1 [cf. (6.2)] and
hence the sequence of approximate regeneration times depend on the fixed direction l)
of the position of the random walk at this approximate regeneration time as

H1 := σ{τ (L)
1 , X0, ε0, . . . , ετ(L)

1 −1
, X

τ
(L)
1
, {ω(y, ·) : y · u < u ·X

τ
(L)
1
− L|u|/|u|1}}.

Similarly define for k ≥ 2

Hk := σ{τ (L)
1 , . . . , τ

(L)
k , X0, ε0, . . . , ετ(L)

k −1
, X

τ
(L)
k

, {ω(y, ·) : y · u < u ·X
τ
(L)
k

− L|u|/|u|1}}.
(7.1)

Let us now recall Lemma 2.3 of [5], stated here under the condition P0[D′ =∞] > 0 [cf.
(5.1)] instead of Kalikow condition.

Lemma 7.1. Let l ∈ Sd−1
q , α > 0 and φ ∈ Φ. Consider a random walk in a random

environment satisfying the cone-mixing condition (CM)α,φ|l and the uniform ellipticity
condition (UE)|l. Assume that L is such that

φ(L) < P0[D′ =∞].

Then, P-a.s. one has that

∣∣P̄0[{Xτk+· −Xτk} ∈ A | Hk]− P̄0[{X·} ∈ A|D′ =∞]
∣∣ ≤ φ′(L),

for all measurable sets A ⊂ (Zd)N, where

φ′(L) :=
2φ(L)

(P0[D′ =∞]− φ(L))
.

Proof. The argument given in page 890 in ([5, Lemma 2.3]) is still valid here, so we omit
it.

7.2 Approximate asymptotic direction

We will show that a random walk satisfying the cone-mixing, uniform ellipticity
condition and the uniform non-effective polynomial condition with high enough degree
has an approximate asymptotic direction. The exact statement is given below. It will also
be shown that the order with which the random variable Xτ1 grows as a function of L is
κ−L.

Proposition 7.2. Let l ∈ Sd−1
q , φ ∈ Φ, c > 0, M > 6d and 0 < α ≤ min{ 1

9 ,
1
3c}. Consider

a random walk in a random environment satisfying (CM)α,φ|l, (UE)|l, and (UWP )M,c|l.
Then, there exists a sequence ηL such that

lim
L→∞

ηL = 0 (7.2)

and P̄0-a.s.

limn→∞

∣∣∣∣
κLXτn

n
− λL

∣∣∣∣ < ηL, (7.3)
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where for all L ≥ 1,
λL := Ē0[κLXτ1 | D′ =∞]. (7.4)

Furthermore, there is a constant c29 = c29(κ, l, d) > 0 such that

|λL|2 ≥ c29. (7.5)

We first prove inequality (7.3) of Proposition 7.2. We will follow the argument
presented in the proof of Lemma 3.3 of [5]. For each integer i ≥ 1 define the sequence

Xi := κL(Xτi −Xτi−1
),

with the convention τ0 = 0. Using Lemma 7.1 and Lemma 3.2 of [5], we can enlarge the
probability space where the sequence {X̄i : i ≥ 1} is defined so that there we have the
following properties:

(1) There exist an i.i.d. sequence {(X̃i,∆i) : i ≥ 2} of random vectors with values in
(κLZd, {0, 1}), such that X̃2 has the same distribution as X1 under the measure
P̄0[·|D′ =∞] while ∆2 has a Bernoulli distribution on {0, 1} with P̄0[∆2 = 1] = φ′(L).

(2) There exists a sequence {Zi : i ≥ 2} of random variables such that for all i ≥ 2 one
has that

Xi = (1−∆i)X̃i + ∆iZi (7.6)

and ∆i is independent of Zi and of

Gi := σ{Xj : j ≤ i− 1}.

We will call P the common probability distribution of the sequences {Xi : i ≥ 2},
{X̃i : i ≥ 2}, {Zi : i ≥ 2} and {∆i : i ≥ 2}, and E the corresponding expectation. From
(7.6) note that

1

n

n∑

i=1

Xi =
X1

n
+

1

n

n∑

i=2

X̃i −
1

n

n∑

i=2

∆iX̃i +
1

n

n∑

i=1

∆iZi. (7.7)

Let us now examine the behavior as n→∞ of each of the four terms in the right-hand
side of (7.7). Clearly, the first term tends to 0 as n → ∞. For the second term, note
that on the event {D′ = ∞}, one has that | X1 |22≤ c30(X1 · l)2 for some constant c30.
Therefore, by Proposition 6.3, and the fact that X̃2 has the same distribution as X1 under
P̄0[·|D′ =∞], we see that

E[|X̃2|22] = Ē0[|X1|22|D′ =∞] ≤ c30Ē0[(X1 · l)2|D′ =∞] < c31, (7.8)

for a suitable constant c31. Hence, by the strong law of large numbers, we actually have
that P -a.s.

lim
n→∞

1

n

n∑

i=2

X̃i = λL. (7.9)

For the third term in the right-hand side of (7.7) we have by Cauchy-Schwarz inequality
that ∣∣∣∣∣

1

n

n∑

i=2

∆iX̃i

∣∣∣∣∣
2

≤
(

1

n

n∑

i=2

|X̃i|2
) 1

2
(

1

n

n∑

i=2

∆i

) 1
2

. (7.10)

Again by (7.8) and Proposition 6.3, we know that there is a constant c32 such that P -a.s.

lim
n→∞

1

n

n∑

i=2

|X̃i|22 = Ē0[|X1|22|D′ =∞] ≤ c32.
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As a result, from (7.10) we see that

limn→∞

∣∣∣∣∣
1

n

n∑

i=2

∆iX̃i

∣∣∣∣∣
2

≤
√
c32φ′(L). (7.11)

For the fourth term of the right-hand side of (7.7), we note setting Z
(L)

i := E[Zi | Gi] that

M j
n :=

n∑

i=2

∆i(Zi − Zi) · ej
i

for n ≥ 2, j ∈ {1, 2, . . . , n}

is a martingale with mean zero with respect to the filtration {Gi : i ≥ 1}. Thus, from
the Burkholder-Gundy inequality [22, page 151, Chapter 14], we know that there is a
constant c33 such that for all j ∈ {1, 2, . . . , d}

E

[(
sup
n
M j
n

)2
]
≤ c33E

[ ∞∑

i=2

|∆i(Zi − Zi)|22
i2

]
. (7.12)

Now, from (7.6), note that for all i ≥ 2, |∆iZi| ≤ |X̄i|. It follows that there exists a
constant c34 such that

E[|Zi|22|Gi] ≤
1

φ′(L)
E0[|X1|22, D′ =∞|F0,L] ≤ 1

φ′(L)
c34, (7.13)

where we have used Proposition 6.3 and Lemma 6.4 in the second inequality. So that
by (7.12) we see that the martingale {M j

n : n ≥ 1} converges P -a.s. to a random
variable for any j ∈ {1, 2, . . . , d}. Thus, by Kronecker’s lemma applied to each component
j ∈ {1, 2, . . . , d}, we conclude that P -a.s.

lim
n→∞

1

n

n∑

i=2

∆i(Zi − Zi) = 0. (7.14)

Now, note from (7.13) that there is a constant c35 such that

|Zi|2 ≤ E[|Zi|22 | Gi]
1
2 ≤ c35φ

′(L)−
1
2 . (7.15)

Therefore, P -a.s. we have that

limn→∞

∣∣∣∣∣
1

n

n∑

i=2

∆iZi

∣∣∣∣∣
2

≤ c35φ
′(L)−

1
2 limn→∞

1

n

n∑

i=1

∆i ≤ c35φ
′(L)

1
2 . (7.16)

Substituting the right-most hand side of (7.16), (7.11) and (7.9) into (7.7), we conclude
the proof of inequality (7.3) provided we set ηL = c36φ

′(L)
1
2 for some constant c36.

Let us now prove the inequality (7.5). By an argument similar to the one presented in
[5, page 892] to show that the random variable τ1 has a lower bound of order κ−L, we
can show that Xτ1 · l is bounded from below by a sum of i.i.d. random variables

∑N
i=1 Ui,

where {Ui : i ≥ 1} take values in {1, 2, . . .} with law P [Ui = n] = (1− κ)κn for 1 ≤ n <∞,
while N := min{i ≥ 1 : Ui = L}. We then have that

|E0[Xτ1 , D
′ =∞]|2 ≥ E0[Xτ1 · l,D′ =∞] ≥ c37E[N ] = c37κ

−L,

for some constant c37.

7.3 Proof of Theorem 2.1

It will be enough to prove that there is a constant c38 such that for all L ≥ 1 one has
that

limn→∞

∣∣∣∣
Xn

|Xn|2
− λL
|λL|2

∣∣∣∣
2

< c38
ηL
|λL|2

. (7.17)
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Indeed, let us assume for the moment that (7.17) holds. By compactness, we know that
we can choose a sequence {Lm,m ≥ 1} such that

lim
m→∞

λLm
|λLm |2

= v̂, (7.18)

exists. On the other hand, by (7.2) and the inequality (7.5) of Proposition 7.2, we know
that limm→∞

ηLm
|λLm |2 = 0. Now note that by the triangle inequality and (7.17), for every

m ≥ 1 one has that

limn→∞

∣∣∣∣
Xn

|Xn|2
− v̂
∣∣∣∣
2

≤ c38
ηLm
|λLm |2

+

∣∣∣∣
λLm
|λLm |2

− v̂
∣∣∣∣
2

. (7.19)

Taking the limit m→∞ in (7.19) using (7.18) we prove Theorem 2.1.
Let us hence prove inequality (7.17). Choose a nondecreasing sequence {kn : n ≥ 1},

P -a.s. tending to +∞ so that for all n ≥ 1 one has that

τkn ≤ n < τkn+1.

Notice that
Xn

|Xn|2
=

(
Xn −Xτkn

|Xn|2

)
+

(
Xτkn

kn

kn
|Xn|2

)
. (7.20)

On the other hand, we assume for the time being, that for large enough L we have
proved that

limn→∞
|Xn −Xτkn

|2
kn

= 0. (7.21)

Note first that (7.21) implies that

limn→∞
|Xn −Xτkn

|2
|Xn|2

= 0. (7.22)

Indeed, note that |Xn|2 ≥ Xn · l ≥ Xτkn
· l ≥ knL |l|2|l|1 , which in combination with (7.21)

implies (7.22). Also, from (7.21) and the fact that

|Xτkn
|2

kn
− |Xn −Xτkn

|2
kn

≤ |Xn|2
kn

≤ |Xτkn
|2

kn
+
|Xn −Xτkn

|2
kn

, (7.23)

we see that

limn→∞

∣∣∣∣
κL|Xn|2
kn

− |λL|2
∣∣∣∣
2

≤ ηL. (7.24)

Combining (7.22) and (7.24) with (7.20) we get (7.17). Thus, it is enough to prove the
claim in (7.21). To this end, note that

|Xn −Xτkn
|2

kn
≤ sup

j≥0

|X(τkn+j)∧τkn+1
−Xτkn

|2
kn

. (7.25)

We now consider the sequence

{X̂ : k ≥ 1} :=

{
κL sup

j≥0
|X(τk+j)∧(τk+1) −Xτk | : k ≥ 1

}
.

A coupling decomposition as in the proof of Proposition 7.2, enables us to define these
random variables in an enlarged probability space with a probability measure P, where
there exist two i.i.d. sequences (Xk)k≥1 , (∆k)k≥1 and a sequence (Yk)k≥1, such that the
following is satisfied:

• For k ≥ 1, the common law of Xk is the same as the law of X̂1 under P̄ [· | D′ =∞],
and one has that ∆k has a Bernoulli law with values in the set {0, 1} independent
of Gk and P[∆k = 1] = φ′(L).
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• P-a.s. for k ≥ 1, we have that

X̂k = (1−∆k)Xk + ∆kYk.

Furthermore, quite similar arguments as the ones given in the proof of Proposition 7.2
allow us to conclude that

lim
n→∞

n∑

j=1

|Xj |
n

= E[|X̂1| | D′ =∞] <∞,

lim
n→∞

n∑

j=1

∆j(Yj − Ỹj)
n

= 0

and for all n ≥ 0 that
n∑

j=1

|∆j Ỹj |
n

≤ c39φ
′(L)

1
2 , (7.26)

for some constant c39, where Ỹj := E[Yj | Gj ]. Therefore, using the equality

X̂k

k
=

Xk

k
+

∆k(Yk − Ỹk)

k
+

∆kỸk
k

, (7.27)

we see that

lim
k→∞

Xk

k
= 0, (7.28)

which finishes the proof.

A Proof of the auxiliary lemmas

A.1 Proof of Lemma 6.4

For each A ∈ Fx,L [cf. (6.7)], we define

ν[A] := E[Px,ω[D′ =∞]1A] (A.1)

and
µ[A] := (P0[D′ =∞] + φ(L))P[A]− ν[A]. (A.2)

Clearly (A.1) defines a measure on (Ω,Fx,L). We will show that (A.2) does too. Indeed,
take an A ∈ Fx,L and note that Px,ω[D = ∞] is σ{ω(y) : y ∈ C(x, l, α)}-measurable.
Therefore, by the cone-mixing condition (CM)α,φ|l one has that

ν[A] ≤ (P0[D′ =∞] + φ(L))P[A],

and hence (A.2) defines a measure µ on (Ω,Fx,L). Consider the increasing sequence
{An : n ≥ 1} of Fx,L-measurable sets defined by

An :=

{
ω ∈ Ω : E[Px,ω[D′ =∞]|Fx,L] > P0[D′ =∞] + φ(L) +

1

n

}

and define
A :=

⋃

n≥1

An.

Observe that for each n ≥ 1 we have that

0 ≤ µ(An) = (P0[D =∞] + φ(L))P[An]− E[E[Px,ω[D′ =∞]|Fx,L]1An ] ≤ − 1

n
P[An].

Therefore, one has that for each n ≥ 1, P[An] = 0 and consequently P[A] = 0. Observing
that

A = {ω ∈ Ω : E[Px,ω[D′ =∞]|Fx,L] > P0[D′ =∞] + φ(L)},
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we see that
E[Px,ω[D′ =∞]|Fx,L]− P0[D′ =∞] ≤ φ(L). (A.3)

Following the same argument used to show (A.3), but changing the event {D′ =∞} by
{D′ <∞}, one can prove that

−φ(L) ≤ E[Px,ω[D′ =∞]|Fx,L]− P0[D′ =∞],

which finished the proof.

A.2 Proof of Lemma 6.5

To simplify the proof, we will show that the second moment of

M′ := sup
0≤n≤D′

(Xn −X0) · l

is bounded from above. Note that

E0[M′
2
, D′ <∞|F0,L] ≤ P0[D′ <∞ | F0,L]

+
∑

m≥0

22(m+1)P0[2m ≤M′ < 2m+1, D′ <∞ | F0,L]. (A.4)

Therefore, it is enough to obtain an appropriate upper bound of the probability

P0[2m ≤M′ < 2m+1, D′ <∞ | F0,L]

when m is large. Defining

D′(0) := inf{n ≥ 0 : Xn 6∈ C(0, l, α)},
note that,

P0[2m ≤M′ < 2m+1, D′ <∞ | F0,L]

≤ P0[T l2m < D′ <∞, T l2m+1 ◦ θT l
2m

> D′(0) ◦ θT l
2m
| F0,L]

≤ P0[XT l
2m
6∈ ∂+B2m,c2m,l(0), T l2m < D′ <∞ | F0,L]

+ P0[XT l
2m
∈ ∂+B2m,c2m,l(0), T l2m+1 ◦ θT l

2m
> D′(0) ◦ θT l

2m
| F0,L].

(A.5)

From (UWP )M,c|l, we know that there is a constant c40 such that the first term of the
right-most hand side in (A.5) is bounded by

P0[XTB2m,c2m,l(0)
6∈ ∂+B2m,c2m,l(0), TB2m,c2m,l(0) < T̂ l0|H0,l] ≤ c402−Mm, (A.6)

where¯̄T l0 is defined in (2.5). As for the second term in the right-most hand side of (A.5),
it will be useful to introduce the set

Fm := ∂+B2m,c2m,l(0).

By the strong Markov property we have the bound

P0[XTB2m,c2m,l
(0) ∈ ∂+B2m,c2m,l(0), T l2m+1 ◦ θT l

2m
> D′(0) ◦ θT l

2m
| F0,L]

≤
∑

y∈Fm
Py[T l2m+1 > D′(0) | F0,L]. (A.7)

In order to estimate this last conditional probability, we will obtain a lower bound for its
complement. To simplify the computations which follow, for each x ∈ Zd we introduce
the notation

Bx := B2m−1,c2m−1,l(x).

Now, note that under the assumption (6.9) we have that

c
(
2m + 2m−1

)
≤ 1

α
2m−1,
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which implies that the boxes By and Bz, for all y ∈ Fm and z ∈ ∂+By, are inside the cone
C(0, l, α) (see Figure 3).

C(0, l, α)

π
2 − β

B2m,c2m,l(0)

By

Bz

Figure 3: The boxes By and Bz are inside of C(0, l, α).

Therefore, fixing y ∈ Fm, it follows that

Py[T l2m+1 < D′(0) | F0,L] ≥
∑

z∈∂+By

E[Py,ω[XTBy
∈ ∂+By, XTBy

= z, (XTBz
∈ ∂+Bz) ◦ θTBy ]|F0,L]. (A.8)

To estimate the right-hand side of the above inequality, it will be convenient to introduce
the set

F̄m := ∂[∪y∈FmBy] ∩ {R([2m−1 + 2m,∞)×Rd−1)},
and the event

GF̄m := {ω ∈ Ω : Pz,ω[XTBz
∈ ∂+Bz] > 1− 2−

M(m−1)
2 , for all z ∈ F̄m}.

Using the strong Markov property, we can now bound from below the right-hand side of
inequality (A.8) by

(1− 2−
M(m−1)

2 )
(
Py[XTBy

∈ ∂+By|F0,L]− Py[(GF̄m)c|F0,L]
)
. (A.9)

In turn, by means of the polynomial condition and the fact that the boxes By and Bz are
inside the cone C(0, l, α) we see that (A.9) is greater than or equal to

(1− 2−
M(m−1)

2 )
(

1− c402−M(m−1) − Py[(GF̄m)c|F0,L]
)
. (A.10)

Now, note that

Py[(GF̄m)c|F0,L] ≤
∑

x∈F̄m

2
M(m−1)

2 Px[XTBx
6∈ ∂+Bx|F0,L]

≤ c40|F̄m|2−
M(m−1)

2 ≤ c40(4c)d−12m(d−1)2−
M(m−1)

2 ,

(A.11)
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where in the first inequality we have used Chebyshev’s inequality, in the second one
the assumption that (UWP )M,c|l is satisfied and in the third one the bound |F̄2m| ≤
(4c)d−12m(d−1).

Consequently, inserting the estimates (A.11) into (A.10) and combining this with
inequality (A.8) we conclude that

Py[T l2m+1 ≤ D′(0) | F0,L] ≥ (1− 2−
M(m−1)

2 )(1− c402−
M(m−1)

2 − c35(4c)d−12m(d−1)2−
M(m−1)

2 )

≥ 1− c403(4c)d−12m(d−1)2−
M(m−1)

2 .

(A.12)

Using the bound (A.12) in (A.7), together with the estimate |Fm| ≤ (2c)d−12m(d−1), we
see that

P0[XTB2m,c2m,l
(0) ∈ ∂+B2m,c2m,l(0), T l2m+1 ◦ θT l

2m
> D′(0) ◦ θT l

2m
| F0,L]

≤ 3c40(4c)2(d−1)22m(d−1)2−
M(m−1)

2 . (A.13)

Combining the estimates (A.13), (A.6), (A.5) with (A.4) we conclude that

E0[M′
2
, D′ <∞|F0,L]

≤ 1 + 4c40(4c)2(d−1)
∑

m≥0

22(m+1)22m(d−1)2−
M(m−1)

2

≤ 1 + 4c40(4c)2(d−1)
∑

m≥0

2−m ≤ c41,

where in the second to last inequality we have used the fact that M > 4d+ 1 and c41 is a
constant that does not depend on L. This completes the proof of the lemma.

A.3 Proof of Lemma 6.6

Here we will prove Lemma 6.6. Let us first remark that it will be enough to show that
there exists a constant c42 > 0 such that for all L ∈ |u|1N

Q[D0,L2 ] ≤ 1− c42L2κL. (A.14)

Indeed, using this inequality and the product structure of Q, for all n ≥ L2 one has that

Q[D0,n] ≤ (1− c11L2κL)[
n
L2 ].

In order to prove (A.14), for j = L2 − L and i = 0, 1, . . . , j consider the events

Ai = {ε : (εi, . . . , εi+L−1) = ε(L)}.

Then, by the inclusion-exclusion principle we have that

Q[(D0,L2)c] ≥
∑

0≤j1≤j
Q[Aj1 ]−

∑

0≤j1<j2≤j
Q[Aj1 ∩Aj2 ]. (A.15)

Now, note that
∑

0≤j1<j2≤j
Q[Aj1 ∩Aj2 ] ≤ jκL+1 + (j − 1)κL+2 + . . .

. . .+ (j − L+ 1)κ2L + (j − L)κ2L + . . .+ (j − (j − 1))κ2L

≤ jκL
L∑

n=1

κn + κ2L(j − L)2 ≤ L2κL
1− κL+1

1− κ + L4κ2L

≤ c43L2κL, (A.16)
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for some constant c43. Since Q[Ai] = κL for all 1 ≤ i ≤ j, we conclude from (A.15) and
the bound (A.16) that there is a constant c44 such that

Q[D0,L2 ] = 1−Q[(D0,L2)c] ≤ 1− c44L2κL.

This finishes the proof.

B Cone-mixing and ergodicity

The main objective of this appendix is to establish that any stationary probability
measure P defined on the canonical σ-algebra F, which satisfies property (CM)α,φ|l [cf.
Subsection2.2] is ergodic with respect to space-shifts. We do not claim any originality
about such an implication, but we have decided to included the proof of it here for
completeness.

Let us recall that a set E ∈ F is an invariant set if

ϑ−1
x E := E

for all x ∈ Zd [cf. (2.2)].

Theorem B.1. Let α > 0 and φ ∈ Φ. Consider the probability space (Ω,F,P) and assume
that P is stationary and that it satisfies (CM)α,φ|l. Then the probability measure P is
ergodic, i.e. for any invariant set E ∈ F we have that

P[E] ∈ {0, 1}.

Proof. Let E ∈ F be an invariant set. Note that for each ε > 0 there exists a cylinder
measurable set A ∈ F such that

P[A4E] < ε.

Since A is a cylinder measurable set, there exists a finite subset F ⊂ Zd such that

A = {ω ∈ Ω : (ω(x) : x ∈ F ) ∈ B(PFd )}, (B.1)

where B(PFd ) stands for the Borel σ-algebra on the subset PFd . Therefore, we can find an
L > 0 and y ∈ Zd such that

A ∈ σ{ω(z, ·) : z · l ≤ y · l − L}

along with
ϑxA ∈ σ{ω(z, ·) : z ∈ C(y, l, α)}.

Without loss of generality we will also assume that

φ(L) < ε.

We can suppose that P[E] > 0, otherwise there is nothing to prove. So as to complete the
proof we have to show that P[E] = 1. Therefore taking ε small enough we can suppose
that P[A] > 0. Thus, using the cone-mixing property, we get that

− P[A]φ(L) ≤ P[A ∩ (ϑxA)c]− P[A]P[Ac] ≤ P[A]φ(L). (B.2)

On the other hand, since E is an invariant set, we see that for every x ∈ Zd we have

P[ϑxA4E] = P[ϑxA4ϑxE] = P[A4E] < ε, (B.3)

which implies
P[A4ϑxA] ≤ P[(A4E) ∪ (ϑxA4ϑxE)] < 2ε. (B.4)
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In turn, from inequality (B.4), it is clear that P[A∩(ϑxA)c] < 2ε. Now, using the inequality
(B.2) one has that

P[A]P[Ω−A] ≤ 2ε+ P[A]φ(L).

As a result, we see that

P[E]P[Ec] < (P[A] + ε)(P[Ac] + ε) = P[A]P[Ac] + ε+ ε2 < 4ε+ φ(L) ≤ 5ε.

Hence, since ε > 0 is arbitrary we conclude that P[E]P[Ec] = 0. Therefore if P[E] > 0,
this implies P[E] = 1.
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