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Abstract

We consider random polynomials whose coefficients are independent and identically
distributed on the integers. We prove that if the coefficient distribution has bounded
support and its probability to take any particular value is at most 1

2
, then the probability

of the polynomial to have a double root is dominated by the probability that either 0,
1, or −1 is a double root up to an error of o(n−2). We also show that if the support of
the coefficients’ distribution excludes 0, then the double root probability is O(n−2).
Our result generalizes a similar result of Peled, Sen and Zeitouni [13] for Littlewood
polynomials.
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1 Introduction

Let n ∈ N and let (ξj)0≤j be a sequence of independent and identically distributed
random variables taking values in Z. Define the random polynomial P = Pn by

P (z) :=

n∑
j=0

ξjz
j . (1.1)

In a previous paper, Peled, Sen and Zeitouni [13] showed that if the random variables
are supported on {−1, 0,+1} with maxx∈{−1,0,1}P(ξ0 = x) < 1√

3
, then the probability of

P to have a double root in the complex plane is same as having a double root at 0,±1 up
to an error of o(n−2). In this paper, we extend the result for more general integer-valued
random variables. Our main result is the following.

Theorem 1.1. Suppose the coefficient distribution satisfies the following conditions.

There exists constant M ≥ 1 such that P(|ξ0| ≤M) = 1. (1.2)
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Double roots of random polynomials

max
x∈Z

P
(
ξ0 = x

)
≤ 1

2
. (1.3)

Then we have

P
(
P has a double root

)
= P

(
P has a double root at either 0,−1 or 1

)
+ o(n−2), (1.4)

as n→∞. Moreover, if P(ξ0 = 0) = 0, then P
(
P has a double root

)
= O(n−2).

We make a few remarks about the above theorem.

(a) When P(ξ0 = 0) = 0, the upper bound in Theorem 1.1 is sharp. When ξi’s are i.i.d.
±1 symmetric Bernoulli and (n+ 1) is divisible by 4, then it was shown in [13] that
the probability of having a double root is Θ(n−2).

(b) We can have a better error bound if we allow the possibility of having double roots
at other low-degree roots of unity. More precisely, our proof can be modified to show
that for any fixed d ≥ 1,

P
(
P has a double root

)
= P

(
P has a double root at 0 or some roots of unity of degree at most d

)
+ o(n−2d).

(c) The bounded support Condition (1.2) can be weaken with minor modifications of our
arguments. We did not pursue that here for the sake of simplicity. On the other hand,
we do not know how to relax Condition (1.3) on the size of the maximum of atom and
it seems that the current bound 1

2 is a limitation of our proof. In fact, we believe
that both conditions are unnecessary and that the result (1.4) should hold for any
non-degenerate integer-valued coefficient distribution.

(d) Even though some parts of our proof closely follow the lines of arguments from the
paper of Peled, Sen and Zeitouni [13], extending the result to general integer-valued
coefficients, however, poses a few significant challenges. For example, to handle
high-degree double roots, we need a key anti-concentration estimate for P (±2)

given in the form of Theorem 1.2. When the coefficients are ±1-valued, the map
(a0, . . . , an) 7→

∑
i=1 ai2

i : {−1, 1}n+1 → Z is one-to-one, which immediately implies
the bound that

P(P (±2) = m) ≤
(

max
x=±1

P(ξ0 = x)
)n+1

.

The paper [13] made use of the above simple observation. But for more general
integer-valued coefficients, we lose such one-to-one property, which makes proving
Theorem 1.2 nontrivial. One consequence of this difficulty is that the result here
requires the maximal atom of the coefficient distribution to be at most 1

2 while in
[13] atoms up to 1√

3
could be handled.

Moreover, the argument used in [13] to deal with low degree roots does not carry
over either. In [13], P was always a monic polynomial and hence its roots were
algebraic integers. For algebraic integers, one can use some partial result (see,
e.g., Dobrowolski [5]) on Lehmer’s conjecture to show that any non-zero algebraic
integer is either a root of unity or has a conjugate which is a bit far (depending on its
degree) away from unit circle. In low degree case, [13] made use of this dichotomy
of algebraic integers. In contrast, in our case we also have to deal with non-monic P ,
so its roots are algebraic numbers in general. Such dichotomy is not available for
algebraic numbers. For example, there are algebraic numbers which are not a root
of unity and all of its conjugates lie on the unit circle. This requires new methods for
handling such roots which are given in sections 5 and 6.
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Double roots of random polynomials

A key instrument in the proof of the theorem, which may be of independent interest,
is the following anti-concentration bound.

Theorem 1.2. Under Condition (1.3) there exists ε > 0 such that for all n ∈ N large
enough we have

max
m∈Z

P
(
P (±2) = m

)
≤ 2−n( 1

2 +ε).

We proceed as follows. In Section 1.1 we provide some notation and reduce Theo-
rem 1.1 to several key lemmata. In Section 2 we prove Theorem 1.2. Each subsequent
section is then dedicated to the proof of one of the key lemmata stated in Section 1.1.

1.1 Proof overview

Preliminaries. Recall that a real number α is called algebraic if it is a root of a
polynomial with rational coefficients. Let A denote the set of algebraic numbers. The
minimal polynomial of α ∈ A is the unique least degree monic polynomial in Q[X] with
a root at α. The algebraic degree of α is the degree of the minimal polynomial of α,
which we denote by deg(α). A real number α is said to be an algebraic integer if all the
coefficients of its minimal polynomial are integers.

We define Λ(α), the house of α, by

Λ(α) = max
j∈{1,...,deg(α)}

|αj |,

where α1 = α, . . . , αdeg(α) are the conjugates of α, i.e., the roots of the minimal polyno-
mial of α.

We further define the associated minimal polynomial of α in Z[x] to be the unique
polynomial in Z[x] of degree deg(α) with a root at α, whose leading coefficient is positive
and whose coefficients are coprime.

Main lemmata. The proof of Theorem 1.1 breaks into several cases. In what follows in
this subsection, we let P be as in Theorem 1.1 with coefficient distribution satisfying
(1.2) and (1.3).

We first consider the probability of having a double root of algebraic degree and
prove the following result.

Lemma 1.3 (high degree). Given any B > 0, there exists a constant C0 > 0 such that

P(P has a double root α with deg(α) ≥ C0 log n) = O(n−B).

The proof of Lemma 1.3 follows the line of arguments given in [13], which, in turn,
was based on idea that appeared in a work of Filaseta and Konyagin [7]. However,
several modifications are needed when dealing with general integer-valued coefficients.
Most crucially, we need a new anti-concentration bound (Theorem 1.2) that consumes
the bulk of our effort. Let us point out here that Theorem 1.2 is the only place where
Assumption (1.3) is crucially used.

By virtue of Lemma 1.3, we now have to deal with potential double roots with low
algebraic degree, more precisely, with degree at most C0 log n. In the next lemma we
show that the probability that P has a root at an algebraic numbers of low degree such
that one of its conjugates lying at a distance of at least Ω((log n)−1) from the unit circle
is negligible.

Lemma 1.4 (low degree roots far away from the unit circle). For every B > 0 and C0 > 0,
there exists C1 > 0 such that

P
(
P has a root α : deg(α) ≤ C0 log n and Λ(α) > 1 + C1

logn

)
= O(e−

Bn
logn ).
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Double roots of random polynomials

For the proof, we use a simple sparsification of P to bound the root probability for
each fixed low-degree algebraic number lying far away from the unit circle and then
employ a rather crude union bound. After Lemma 1.4, we next deal with the low degree
double roots with small house (i.e. all of their conjugates lying close to the unit circle).
We break this into two cases. First we consider the case when the degree of the root is
at least 5 and we show that

Lemma 1.5 (low degree roots close to the unit circle). For every C0 > 0 and C1 > 0, we
have

P
(
P has a root α : 4 < deg(α) ≤ C0 log n and Λ(α) ≤ 1 + C1

logn

)
= o(n−2).

From a standard application of inverse Littlewood-Offord type results, it follows that
for any fixed algebraic number α of degree at least 5, P(P (α) = 0) = Oε(n

−5/2+ε), for any
ε > 0. This is shown in Lemma 5.1. More importantly, to prove Lemma 1.5, we need to
count the number of algebraic numbers α such that deg(α) ≤ C0 log n and Λ(α) ≤ 1+ C1

logn .
Towards this direction, we show in Lemma 5.2 that they are at most o(nε) in number for
any ε > 0. The counting estimate makes heavy use of a result of Dubickas [6].

Finally, the next lemma takes care of the potential double roots that have degree at
most 4 (excluding 0,±1) and have small house.

Lemma 1.6 (roots with degree at most 4). For every C0 > 0 and C1 > 0, we have

P
(
P has a double root α 6= 0,±1 : deg(α) ≤ 4 and Λ(α) ≤ 1 + C1

logn

)
= o(n−2)

It is not hard to see that if α is a root of P for large enough n satisfying the conditions
that deg(α) = O(1) and Λ(α) = o(1), then it must be a unimodular root, i.e., all of the
conjugates of α must lie on the unit circle. Now if α is a root of unity, we closely follow
[13] to bound the probability of having a double root α which involves an application
of an anti-concentration bound due to Sárközi and Szemerédi [14]. However, when α is
unimodular but not a root of unity, we need a new argument to bound the probability of
having a double root at α. In fact, in Lemma 6.1 we show that P(P (α) = 0) = O(n−5/2).
The argument relies on a powerful anti-concentration bound by Halász [8].

Clearly, the first assertion of Theorem 1.1 is an immediate consequence of lem-
mata 1.3, 1.4, 1.5, 1.6. To prove the second assertion of Theorem 1.1, note that since
P (ξ0 = 0) = 0, with probability one, P can not have a root at 0. So, we need to show that

P(P has a double root at ± 1) = O(n−2).

The above bound follows from an application of an inverse Littlewood-Offord result from
[18, Theorem 2.5]. For details, see Lemma A.5 in [4] where the same has been proved
under the assumption that ξ0 has bounded (2 + ε) moment. This completes the proof of
Theorem 1.1.

2 Anti-concentration of P (±2)
In this section we prove Theorem 1.2. As an important first step, we will find a very

useful a characterization of integer-valued measures with max-atom bounded by 1
2 in

terms of mixture of two-point distributions.

2.1 Bernoulli mixture

A probability measure µ is said to be a (unbiased) Bernoulli measure if µ = 1
2δa + 1

2δb,

where a 6= b ∈ Z and δx is the Dirac measure at x. A countable mixture of unbiased
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Bernoulli measures is simply said to be a Bernoulli mixture. In other words, a probability
measure µ is a Bernoulli mixture if it can be written as

µ =
1

2

∞∑
i=1

ti(δai + δbi)

where ti ≥ 0 satisfy
∑
i ti = 1 and ai 6= bi ∈ Z for each i.

Note that if the distribution of a random variable ξ is a Bernoulli mixture, then there
exists a random vector (I,∆) on Z×N, such that

ξ
d
= I +B∆, (2.1)

where B is a Ber( 1
2 ) random variable, independent from both I and ∆. With a slight

abuse of notation, we will also call such a random variable ξ a Bernoulli mixture.

The following proposition gives a useful characterization for Bernoulli mixtures.

Proposition 2.1 (Bernoulli mixture). An integer-valued random variable ξ is a Bernoulli
mixture if and only if it satisfies maxx∈ZP

(
ξ = x

)
≤ 1/2.

Clearly, the necessary part of Proposition 2.1 is trivial. Most of the reminder of
Section 2 is dedicated to proving the sufficient part.

Let µ be a non-negative positive finite measure on Z. It induces a unique total order
(πµi )i∈N on Z such that wµi := µ(πµi ) are monotone non-increasing (i.e., wµi ≥ w

µ
j if i < j)

and πµi < πµj if wµi = wµj . Then µ can be expressed as

µ =
∑
i∈Z

wµi δπµi .

We writeM for the collection of non-negative finite measures µ on the integers (including
the null measure), which satisfy wµ1 ≤ µ(Z)/2. Also, for any non-null finite measure µ on
Z, we denote by µ̄ the normalized probability measure µ̄(·) := µ(·)/µ(Z).

To prove Proposition 2.1 we use the following couple of lemmata.

Lemma 2.2. If µ ∈M is non-null and µ is supported on at most 3 integers, then µ̄ is a
mixture of at most 3 Bernoulli measures.

Proof. We write

µ̄ = w1δπ1
+ w2δπ2

+ w3δπ3

where w1 ≥ w2 ≥ w3 and
∑3
i=1 wi = 1. We then give the explicit decomposition:

µ = (w1 + w2 − w3)
(

1
2δπ1

+ 1
2δπ2

)
+ (w1 + w3 − w2)

(
1
2δπ1

+ 1
2δπ3

)
+ (w2 + w3 − w1)

(
1
2δπ2

+ 1
2δπ3

)
.

It is now straightforward to check that each of the weights is non-negative and that
equality indeed holds.

Lemma 2.3. Let k ≥ 4 be an integer. Every µ ∈M can be written as

µ = ν + β,

where either β is the null measure or β̄ is a Bernoulli measure, and ν ∈M and satisfies
ν(πµk ) = 0.
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Proof. Set β := wµk δπµ1 +wµk δπµk and ν := µ− β. It only remains to check that ν ∈M, that
is, the fact that wν1 ≤ ν(Z)/2. To see this, observe that πν1 ∈ {π

µ
1 , π

µ
2 }. If πν1 = πµ1 , then,

since µ ∈M, we have

wν1 = wµ1 − w
µ
k ≤

µ(Z)

2
− wµk =

ν(Z)

2
.

On the other hand, if πν1 = πµ2 , we get that

wν1 = wµ2 ≤
wµ1 + wµ2 + wµ3 − w

µ
k

2
=
ν(πµ1 ) + ν(πµ2 ) + ν(πµ3 )

2
≤ ν(Z)

2
.

The lemma follows.

Proof of Proposition 2.1. Write µ1 for the distribution of ξ. Define a decreasing sequence
of finite measures (µi)i∈N on Z inductively as follows. Suppose µi has already been de-
fined and µi ∈M. An application of Lemma 2.3 to µi with k = 4 yields the decomposition
µi = βi + µi+1 with µi+1(πµi4 ) = 0 where βi is either the null measure or β̄i is a Bernoulli
measure and µi+1 ∈ M. This defines the measure µi+1. Since (µi)i∈N is a decreasing
sequence of finite measures, it has a limiting measure (possibly null) which we denote
by µ∞. Thus we write

µ =
∑
i∈N

βi + µ∞.

All that remains in order to prove the proposition is to show that µ∞ is supported on
at most 3 integers, and then apply Lemma 2.2.

To that end, assume, if possible that, there exists four distinct integers a1, a2, a3, a4

such that µ∞(ai) > 0 for all i. Set c := min{µ∞(ai) : 1 ≤ i ≤ 4} > 0. For each i ∈ N,
define the set

Li := {x ∈ Z : µi(x) ≥ c}.

Since µi ↓ µ∞, Li ⊇ Li+1 and a1, . . . , a4 ∈ Li for each i. Thus πµi4 ∈ Li and hence, by the
definition of the measure µi+1, we have Li ⊆ Li+1 \ {πµi4 }. This implies that |Li+1| < |Li|
for each i. Since |L1| <∞, this contradicts the fact that |Li| ≥ 4 for each i. Hence, µ∞ is
supported on at most 3 integers.

Using Proposition 2.1 we may reduce Theorem 1.2 to the following proposition.

Proposition 2.4. Let (Xi)1≤i≤n be i.i.d. random variables whose distribution is
a Bernoulli mixture. Then there exists ε > 0 such that for n ∈ N large enough and
every sign sequence (σi)1≤i≤n with σi = ±1, the following holds.

max
m∈Z

P
( n∑
i=1

2iσiXi = m
)
≤ 2−n( 1

2 +ε).

2.2 Proof of Proposition 2.4

In this section we prove Proposition 2.4. Throughout the section we fix a sign
sequence (σi)1≤i≤n with σi = ±1. In the course of the proof we shall make several claims
whose proofs are given in sections 2.2 and 2.3.

For k ∈ Z we write L(k) for the leading power of 2 in the factorization of k, i.e., L(k) =

max{l ∈ Z+ : 2l divides k}. Since (Xi)1≤i≤n are i.i.d. Bernoulli mixtures, following the
representation (2.1), we can express Xi as

Xi = Ii +Bi∆i,
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where (Ii,∆i)1≤i≤n are i.i.d. random vectors in Z × N and (Bi)1≤i≤n are i.i.d. Ber( 1
2 )

random variables, which are independent from (Ii,∆i)1≤i≤n. Define

pmax := max
m∈Z

P
( n∑
i=1

2iσiXi = m
)
.

The following claim yields an useful upper bound on pmax.

Claim 2.5. Let (Bi)1≤i≤n be i.i.d. Ber( 1
2 ) random variables and let (bi)1≤i≤n and (di)1≤i≤n

be any two sequences of integers. Then

max
m∈Z

P
( n∑
i=1

bi + diBi = m
)
≤ 2−|{L(di) : 1≤i≤n}|.

Proof of Claim 2.5. Let k := |{L(di) : 1 ≤ i ≤ n}|. Let us assume, without loss of
generality, that the values of L(d1), L(d2), . . . , L(dk) are distinct and moreover, L(d1) <

L(d2) < · · · < L(dk). Now, by conditioning on the random variables Bk+1, Bk+2, . . . , Bn,
we have

max
m∈Z

P
( n∑
i=1

bi + diBi = m
)

= max
m∈Z

P
( n∑
i=1

diBi = m
)
≤ max

m∈Z
P
( k∑
i=1

diBi = m
)
.

It would now suffice to show that for all m ∈ Z we have

P
( k∑
i=1

diBi = m
)
≤ 2−k.

To see this, it would be enough to show that
∑k
i=1 diBi takes distinct values for every

choice of values of (Bi)1≤i≤k in {0, 1}k. Indeed, let (ai)1≤i≤k and (a′i)1≤i≤k be two distinct
vectors of {0, 1}k, and let r = min{i ∈ N : ai 6= a′i}. By definition,

k∑
i=1

diai 6≡
k∑
i=1

dia
′
i (mod 2L(dr)+1),

and therefore the corresponding sums are distinct.

Applying Claim 2.5 we have,

pmax ≤
n∑
s=1

P
(∣∣{L(2iσi∆i) : 1 ≤ i ≤ n}

∣∣ = s
)

2−s.

Observing that L(2iσi∆i) = L(2i∆i) for all i, it would suffice to show that for large
enough n we have,

n∑
s=1

P
(∣∣{L(2i∆i) : 1 ≤ i ≤ n}

∣∣ = s
)

2−s ≤ 2−n(1/2+ε).

Here and in the rest of the proof we let ε be a small positive constant, chosen to satisfy
various constraints which are specified along the proof.

Taking wi := L(∆i) for 1 ≤ i ≤ n, and W := |{i + wi : 1 ≤ i ≤ n}|, we may rewrite
the above inequality as

n∑
s=1

P
(
W = s

)
2−s ≤ 2−n(1/2+ε). (2.2)

EJP 22 (2017), paper 10.
Page 7/23

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP24
http://www.imstat.org/ejp/


Double roots of random polynomials

By rewriting the LHS of (2.2) as∑
1≤s<n(1/2+ε)

P
(
W = s

)
2−s +

∑
n(1/2+ε)≤s≤n

P
(
W = s)2−s,

we observe that

n∑
s=1

P
(
W = s

)
2−s < n

(
max

α∈(0,1/2+ε)
P
(
W = αn

)
2−αn + 2−n(1/2+ε)

)
. (2.3)

Plugging (2.3) into (2.2) we get that it would be enough to show the existence of ε > 0

such that for large enough n,

max
α∈(0,1/2+ε)

P
(
W = αn

)
2−αn ≤ 2−n(1/2+ε).

Multiplying both sides by 2n/2 it reduces to showing that for n sufficiently large,

max
α∈(0,1/2+ε)

P
(
W = αn

)
2n(1/2−α) ≤ 2−εn. (2.4)

In order to show (2.4), we use the following lemma.

Lemma 2.6. Let (wi)1≤i≤n be i.i.d. non-negative integer-valued random variables, and
define W = |{i+ wi : 1 ≤ i ≤ n}|. Then the following holds.

(a) For any α ∈ (0, 1) with αn ∈ N, we have

P
(
W = αn

)
≤
(
n

αn

)
αn ≤

(
α

1− α

)n(1−α)

.

(b) Furthermore, there exists δ′, ε′ > 0 depending on α and the law of w1 such that if
α ∈ (1/2− δ′, 1/2 + δ′), then

P
(
W = αn

)
≤ e−ε

′n

(
α

1− α

)n(1−α)

.

Proving Lemma 2.6 is the main technical step in the proof of Proposition 2.4, and we
devote Section 2.3 to its proof.

The following claim captures two technical properties of the bound obtained in
Lemma 2.6.

Claim 2.7. For n ∈ N, we define a function fn : (0, 1)→ R+ as

fn(α) :=

(
α

1− α

)n(1−α)

2n(1/2−α).

Then the following hold.

(a) There exists c0 > 1/2 such that fn(α) is strictly monotone increasing in (0, c0).

(b) Let c0 be as in part (a). Then for any c > 0 there exists 0 < δ < c0 − 1
2 such that

fn( 1
2 + δ) < 2cn.

Proof of Claim 2.7. Notice that fn(α) = f1(α)n, and f1(α) > 0 for all α ∈ (0, 1). For
Part (a) it is therefore enough to show that

f1(α) :=

(
α

1− α

)(1−α)

2(1/2−α)
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is strictly monotone increasing. Taking logarithm it is enough to show that

g(α) := log f1(α) = (1− α)(logα− log(1− α)) + (
1

2
− α) log 2,

is strictly monotone increasing. Differentiate g to get

g′(α) = − logα+ log(1− α) +
1

α
− log 2.

For α ≤ 1
2 , log(1 − α) > logα and 1

α > log 2, and thus g′(α) > 0. By continuity of g′ at
α = 1

2 , there exists c0 >
1
2 such that f ′(α) > 0 also for α ∈ [ 1

2 , c0), as required.
For part (b), notice that f1( 1

2 ) = 1. Let c > 0 be given. By continuity of f1, there exists
δ ∈ (0, c0 − 1/2) such that

f1

(
1
2 + δ

)
< 2c.

Thus, for all n ∈ N we have fn( 1
2 + δ) = f1( 1

2 + δ)n < 2cn, as required.

Finally we are fully equipped to demonstrate the existence of ε > 0 such that (2.4)
holds. Let δ′, ε′ be as in part (b) of Lemma 2.6 and let c0 be as in part (a) of Claim 2.7.
By part (b) of Claim 2.7, applied to c = ε′/2, there exists δ ∈ (0, c0 − 1

2 ) such that

fn
(

1
2 + δ

)
< 2

ε′n
2 . We take ε := min(c0 − 1

2 , δ
′, δ, ε

′

2 ). We are thus left with verifying (2.4).
Applying Part (a) of Lemma 2.6 and part (a) of Claim 2.7, we obtain

I1 := max
α∈(0,1/2−ε]

P
(
W = αn

)
2n(1/2−α) ≤ max

α∈(0,1/2−ε]
fn(α) = fn

(
1
2 − ε

)
=2

n

(
( 1
2 +ε) log2

(
1
2
−ε

1
2
+ε

)
+ε

)
< 2

n

(
( 1
2 +ε) log2

(
1− 2ε

1
2
+ε

)
+ε

)
< 2−( 2

log 2−1)εn < 2−εn, (2.5)

using the inequality log2(1− x) < − x
log 2 for x > 0. From part (b) of Lemma 2.6 we obtain

I2 := max
α∈(1/2−ε,1/2+ε)

P
(
Wn = αn

)
2n(1/2−α) ≤ 2−ε

′n max
α∈(1/2−ε,1/2+ε)

fn(α) = 2−ε
′nfn

(
1
2 + ε

)
≤ 2−ε

′nfn
(

1
2 + δ

)
≤ 2−ε

′n2
ε′n
2 = 2−

ε′n
2 ≤ 2−εn.

Therefore max(I1, I2) < 2−εn and we obtain (2.4), as required.

We remark that if our interest was limited to obtaining the theorem for the case ε = 0,
it would have been possible to use only the first part of Lemma 2.6, which is, as will
become evident, easier to obtain.

2.3 Proof of Lemma 2.6

In this section we prove Lemma 2.6. In the proof we keep using the notation
introduced in the previous section. We assume αn ∈ N. Let Zn := {0, 1, 2, . . . , n− 1}.

2.3.1 Proof of item (a)

In order to bound P
(
W = αn

)
, we use

P
(
W = αn

)
≤ P

(∣∣{i+ wi (mod n) : 1 ≤ i ≤ n}
∣∣ ≤ αn) (2.6)

For a set A ⊂ Zn, we write

U(A) := P
(
{i+ wi (mod n) : 1 ≤ i ≤ n} ⊂ A

)
. (2.7)
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Double roots of random polynomials

We then intend to show the following.

For every A ⊂ Zn of size |A| = αn, we have U(A) ≤ αn. (2.8)

Part (a) of Lemma 2.6 would follow from (2.8) since

P
(
W = αn

)
≤

∑
A:|A|=αn

U(A) ≤
(
n

αn

)
αn ≤

(
α

1− α

)n(1−α)

, (2.9)

where the leftmost inequality uses (2.6), the middle one uses (2.8) and a union bound,
and the rightmost one follows from the well-known inequality of the binomial coefficient(
n
k

)
≤ nn

kk(n−k)n−k
.

Towards showing (2.8), let A ⊂ Zn be a set of size |A| = αn. Observe that, by the fact
that wi’s are i.i.d., we have

P
(
{i+ wi (mod n) : 1 ≤ i ≤ n} ⊂ A

)
=

n∏
i=1

P
(
i+ wi (mod n) ∈ A

)
.

We further observe that for every a ∈ A, we have

n∑
i=1

P
(
i+ wi ≡ a (mod n)

)
=

n∑
i=1

P
(
wi ≡ a− i (mod n)

)
=

n∑
i=1

P
(
w1 ≡ a− i (mod n)

)
= 1.

Writing

ui = ui(A) := P
(
i+ wi (mod n) ∈ A

)
, (2.10)

we get that
n∑
i=1

ui =
∑
a∈A

(
n∑
i=1

P
(
i+ wi ≡ a (mod n)

))
= |A| = αn. (2.11)

We now solve the following maximization problem:

maximize U(A) :=

n∏
i=1

ui, under the constraints ui ∈ [0, 1],

n∑
i=1

ui = αn. (2.12)

By applying Jensen’s inequality to the log function, we get

logU(A) =

n∑
i=1

log ui ≤ n · log

(∑n
i=1 ui
n

)
≤ n logα,

and so

U(A) ≤ αn, (2.13)

as required.

2.3.2 Proof of item (b)

To show part (b) of Lemma 2.6 it would suffice to show that

∃δ, ε > 0, ∃n0 ∈ N s.t. every α ∈ (1/2− δ, 1/2 + δ), n > n0 satisfy P
(
W = αn) < e−εn.

(2.14)
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Double roots of random polynomials

To do so we shall use concentration arguments. We begin by showing that

E[W ] ≥ ( 1
2 + η)n (2.15)

for some η > 0. To this end write

W =

n∑
i=1

1I{∀j < i : wi + i 6= wj + j},

and observe that

P
(
∀j < i : wi + i 6= wj + j

)
=
∑
k∈Z+

P(wi = k)

i−1∏
j=1

P(wj 6= k + i− j)

≥
∑
k∈Z+

P(w1 = k)

∞∏
j=1

P(w1 6= k + j).

Letting pi := P(w1 = i), we have

E[W ] ≥ n
∑
k∈Z+

P(w1 = k)
∞∏
j=1

P(w1 6= k + j) ≥ n
∑
k∈Z+

pk

(
1−

∑
j∈N

pk+j

)
= n

(
1−

∑
k<`∈Z+

pkp`

)
=
n

2

(
1 +

∑
k∈Z+

p2
k

)
. (2.16)

Thus (2.15) is satisfied with η := 1
2

∑
k∈N p

2
k.

Next, we show that W is concentrated around its expectation. To this end we use the
concentration properties of self-bounding functions of independent variables. We write
f(w1, . . . , wn) := W , gi(w1, . . . , wi−1, wi+1, . . . , wn) := |{wj + j : 1 ≤ j ≤ n, j 6= i}|, and
observe that for all i ≤ n we have,

f(w1, . . . , wn)− gi(w1, . . . , wi−1, wi+1, . . . , wn) ≤ 1.

n∑
i=1

(
f(w1, . . . , wn)− gi(w1, . . . , wi−1, wi+1, . . . , wn)

)
≤ f(w1, . . . , wn).

We then apply [3, Theorem 1 & 7], to obtain that for every β > 0

P
(
W ≤ E[W ]− nβ

)
≤ e−β

2 n2

2E[W ] ≤ e−n
β2

2 .

Setting δ = η
2 and ε = η2

8 and using (2.15) we observe that for every α < 1
2 +δ ≤ E[W ]

n − η
2 ,

we have

P
(
W = αn

)
< P

(
W ≤ E[W ]− ηn

2

)
≤ e−n

η2

8 ≤ 2−εn.

This proves (2.14) and hence completes the proof of part (b) of Lemma 2.6.

3 High algebraic degree

This section is dedicated to the proof of the following proposition, of which Lemma 1.3
is a straightforward consequence.

Proposition 3.1. For any constant B > 0, there exist constants c, C,C ′ > 0, depending
on M , such that for any 1 ≤ d ≤ n,

P(P has a double root α with deg(α) ≥ d) ≤ CnC
′
exp(−cd) + Cn−B .
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The proof of the proposition relies on the following consequence of Theorem 1.2.

Lemma 3.2. Let P be the random polynomial as in (1.1). Then there exist constants
C, ε > 0 such that for any positive integer k and for a ∈ {−2, 2} we have

P
(
P (a) is divisible by k2

)
≤ Ck−(1+ε).

Proof. Fix a ∈ {−2, 2}. Let k ≥ 1 be an integer and let r be the integer satisfying
M2r ≤ k2 < M2r+1. By conditioning on ξr, ξr+1, . . . , ξn we have

P
(
P (a) mod k2 = 0

)
≤ max

m∈Z
P

r−1∑
j=0

ξja
j mod k2 = m

 = max
m∈Z

P

r−1∑
j=0

ξja
j = m

 , (3.1)

where the last equality follows from the fact that
∣∣∣∑r−1

j=0 ξja
j
∣∣∣ ≤M(2r − 1) deterministi-

cally and k2 ≥M2r by the definition of r. From Theorem 1.2, it follows that there exists
a constant ε ∈ (0, 1) such that

max
m∈Z

P

r−1∑
j=0

ξja
j = m

 ≤ ( 1√
2

)r(1+ε)

. (3.2)

Combining (3.1) and (3.2) with the fact that r > 2 log2 k − log2M − 1, we conclude that

P
(
P (a) mod k2 = 0

)
≤ 21+log2M

(
1√
2

)2(1+ε) log2 k

= 21+log2Mk−(1+ε).

We shall also use the following bound on the probability that P has a root in close
proximity to ±2, whose proof we postpone to Section 3.1.

Denote by B(z0, r) the closed ball in C with center at z0 and radius r.

Lemma 3.3. For any constant B > 0, there exists K > 0 such that

P
(
P has a zero in B(2, n−K) ∪B(−2, n−K)

)
= O(n−B).

Finally, we need a preliminary claim, bounding the number of roots far away from
the unit circle.

Claim 3.4. Let M ∈ N. For any n ≥ 1 and any non-zero polynomial f in Z[x] of the form
f(z) =

∑n
i=0 aiz

i with |ai| ≤M for all 0 ≤ i ≤ n, the number of zeros of f with modulus
at least 3

2 is at most 64M .

Proof. Assume, without loss of generality, that |an| 6= 0. Let f̃(z) = znf(z−1) =∑n
i=0 aiz

n−i be the reciprocal polynomial of f . Denote by N(f) the number of z ∈ C for
which f(z) = 0 and |z| ≥ 3

2 . Then N(f) is also the number of z ∈ C for which f̃(z) = 0

and |z| ≤ 2
3 . Noting that |f̃(0)| = |an| ≥ 1 we may apply Jensen’s formula (see, e.g., [1,

Chapter 5.3.1]) and obtain for any r > 2
3 that

max
0≤θ≤2π

log |f̃(reiθ)| ≥ 1

2π

∫ 2π

0

log |f̃(reiθ)|dθ

= log |f̃(0)|+
∑

z : f̃(z)=0,
|z|≤r

log

(
r

|z|

)
≥ N(f) log

(
r

2/3

)
.

Observe that when r < 1 we have |f̃(reiθ)| ≤ M
1−r for all θ. Thus

N(f) ≤ M

(1− r) log(3r/2)
,

2

3
< r < 1

and substituting r = 0.8, say, we obtain that N(f) ≤ 64M , as required.
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Proof of Proposition 3.1. Fix 1 ≤ d ≤ n. Let α be an algebraic number of degree
deg(α) = d and let fα be the associated minimal polynomial of α in Z[x]. Suppose that
α is a double root of P . Note that α cannot be a multiple root of fα, since, otherwise,
α is also a root of the polynomial f ′α whose degree is strictly smaller than d, violating
the definition of deg(α). This implies that f2

α divides P in Z[x] (by Gauss’s lemma). In
particular,

the integer P (a) is divisible by fα(a)2, for a = ±2. (3.3)

Next we obtain a suitable lower bound for max{|fα(2)|, |fα(−2)|}. Denote by C(α) the
set of algebraic conjugates of α (i.e., the set of roots of fα). Each of these conjugates of
α must also be a root of P . So, by Claim 3.4, all but at most 64M of the β ∈ C(α) satisfy
|β| ≥ 3

2 . Therefore, we have

|fα(−2)| · |fα(2)| =
∏

β∈C(α)

|β + 2| · |β − 2|

≥

 ∏
β∈C(α),|β|≤3/2

|β2 − 4|

( min
β∈C(α)

|β + 2| ∧ 1

)64M (
min

β∈C(α)
|β − 2| ∧ 1

)64M

.

Let B > 0 be given as in Proposition 3.1 and let K = K(B) > 0 be as given by Lemma 3.3.
Let E be the event that there is at least one root of P within a distance of n−K from
either −2 or 2. Note that the event E does not depend on α. On the event Ec,

min
β∈C(α)

|β − a| ≥ min
z:P (z)=0

|z − a| ≥ n−K for any a ∈ {−2, 2}.

On the other hand, |β2 − 4| ≥ 7
4 for any |β| ≤ 3

2 . Putting these ingredients together, we
conclude that on the event Ec,

|fα(−2)| · |fα(2)| ≥
(

7
4

)d−64M
n−128KM .

Consequently, we obtain the following lower bound

max
{
|fα(2)|, |fα(−2)|

}
≥ c1 exp(c2d)n−C1 , on Ec, (3.4)

where c1 := (7
4 )−32M > 0, c2 := 1

2 log( 7
4 ) and C1 := 64KM . From (3.3) and (3.4), we

arrive at the inclusion of events

{α is a double root of P} ⊆ E ∪G2 ∪G−2,

where Ga =
{
P (a) is divisible by k2 for some integer k ≥ c1ec2dn−C1

}
for a = −2 or 2.

By Lemma 3.3, P(E) = O(n−B). On other hand, by Lemma 3.2, we deduce that

P(Ga) ≤ C2(ec2dn−C1)−ε = C2e
−c3dnC3 ,

for suitable constants c3, C2, C3 > 0. Proposition 3.1 follows.

3.1 Roots near ±2

In this section we prove Lemma 3.3. We shall require the following.

Lemma 3.5. For any constant B > 0, there exists C > 0 such that for a ∈ {−2, 2},

P(|P (a)| ≤ n−C2n) = O(n−B).

Proof. We prove the lemma for the case a = 2, as the argument for the case a = −2 is
nearly identical. Set C1 = dlog3Me. Define a subset of indices J as

J = {j ∈ {0, 1, . . . , n} : j ≥ n− C1 log2 n, and j is divisible by dlog2(2M + 1)e}.
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By conditioning on the random variables ξj , j 6∈ J , we deduce that

P(|P (2)| ≤ n−C2n) ≤ sup
z∈R

P

∣∣∑
j∈J

ξj2
j − z

∣∣ ≤ n−C2n

 .

Note that for any two different values of the random vector (ξj)j∈J in {0,±1, . . . ,±M}|J|,
the values of the sum

∑
j∈J ξj2

j differ by at least 1
22n−C1 log2 n = 1

2n
−C12n. Thus if we

choose C = C1 + 1, then for any fixed z ∈ R, there exists at most one value of the
random vector (ξj)j∈J in {0,±1, . . . ,±M}|J| such that |

∑
j∈J ξj2

j − z| ≤ n−C2n. Now by
Assumption 1.3, we conclude that

P

∣∣∑
j∈J

ξj2
j − z

∣∣ ≤ n−C2n

 ≤ 2−|J| ≤ 2−b(4M)−1C1 log2 n−1c = O(n−B).

Proof of Lemma 3.3. By Lemma 3.5, there exists a constant C > 0 such that

P(|P (±2)| ≥ n−C2n) = 1−O(n−B). (3.5)

By the Mean Value Theorem and the triangle inequality, for any z ∈ C such that |z| ≤ n−1,

|P (2 + z)| ≥ |P (2)| − sup
w∈B(2,n−1)

|P ′(w)| · |z|. (3.6)

We can now bound the derivative of the polynomial P ′ in B(2, n−1) by

sup
w∈B(2,n−1)

|P ′(w)| ≤
n∑
i=0

Mi(2 + n−1)i−1 ≤ 3Mn2n. (3.7)

Plugging in the bound (3.5) and (3.7) in (3.6), we deduce that, for any |z| ≤ n−(C+2) and
for sufficiently large n,

|P (2 + z)| ≥ n−C2n − 3Mn2n · n−(C+2) > 0,

with probability 1−O(n−B). The lemma is then obtained by taking K = C + 2.

4 Roots far from the unit circle

In this section we prove Lemma 1.4. We begin by obtaining the following bound on
the probability that P has a particular root α far from the unit circle.

Lemma 4.1. For each algebraic number α ∈ A, we have

P
(
P (α) = 0

)
≤ exp

(
− n log 2

dlog(M + 1)/| log |α||e

)
.

Proof. Assume that |α| > 1. Let ` be the minimal positive integer for which

|α|` > M + 1. (4.1)

Write P (z) = P1(z) + P2(z) with

P1(z) :=

bn/`c∑
k=0

ξk`z
k` and P2(z) := P (z)− P1(z).

Since |ξi| ≤M for all i, the map(
ξ0, ξ`, ξ2`, . . . , ξbn/`c`

)
7→ P1(α) : {−M, . . . ,M}bn/`c+1 → C
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is one-to-one. Thus, as P1(α) and P2(α) are independent, we have

P
(
P (α) = 0

)
= E

[
P
(
P (α) = 0

)
| P2(α))

]
=

= E
[
P
(
P1(α) = −P2(α) | P2(α)

)]
≤
(

max
x∈{−M,...,M}

P
(
ξ0 = x

))bn/`c+1

.

Assumption (1.3) and the definition of ` imply that

P
(
P (α) = 0

)
<
(

1
2

)bn/`c+1 ≤ e−
n log 2
` = e−

n log 2
dlog(M+1)/ log |α|e .

The case when |α| < 1 can be handled similarly. This proves the lemma.

We also make the following simple observation.

Observation 4.1. Let α be a root of P . Then

1. The leading coefficient of the associated minimal polynomial of α in Z[x] is at most
M ,

2. Λ(α) ≤M + 1.

Proof. Write fα for the associated minimal polynomial of α in Z[x] and denote the leading
coefficient of fα by mα. By Gauss’s lemma (see, e.g., [2, Proposition 11.3.4]), fα|P in
Z[x] and, in particular, mα, the leading coefficient of P , divides ξn. Since |ξn| ≤M, we
get that mα ≤M .

The fact that Λ(α) ≤M + 1 is a direct consequence of Rouché Theorem.

Proof of Lemma 1.4. Let us first estimate the number of algebraic numbers α such that
α is a root of some random polynomial P of degree n and deg(α) ≤ C0 log n. Write fα
for the associated minimal polynomial of α in Z[x] and denote, as usual, the leading
coefficient of fα by mα. If α1 = α, α2, · · · , αdeg(α) are conjugates of α, we can express fα
as

fα(x) = mα(x− α1) · · · (x− αdeg(α)) =

deg(α)∑
j=0

ajx
n−j .

Therefore, by Observation 4.1, we have the following crude bound on the coefficients of
fα,

|aj | = |mα

∑
i1<···<ij

αi1 · · ·αij | ≤
∣∣∣∣mα

(
deg(α)

j

)
Λ(α)j

∣∣∣∣ ≤ eC′ logn

for some C ′ > 0 depending on C0 and M . Since aj has to be an integer, there are at most

eC log2 n possibilities for fα(x) for some constant C > 0.

Now, by Lemma 4.1, if α ∈ A with Λ(α) > 1 + C1

logn , then

max
α∈A

P
(
P (α) = 0

)
= e−Ω(n/ logn), (4.2)

A simple union bound over such α (or, more precisely, over the minimal polynomials fα)
yields the lemma.
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5 Roots near the unit circle

In this section we prove Lemma 1.5. Recall that for α ∈ A, mα denotes the leading
coefficient of the associated minimal polynomial of α in Z[x]. Fix C0, C1 > 0. By
Observation 4.1, we need to consider for Lemma 1.5 the following set of potential roots
of P .

A :=
{
α ∈ A : 4 < deg(α) ≤ C0 log n and Λ(α) ≤ 1 + C1

logn and mα ≤M
}
.

To prove Lemma 1.5, we employ the following union bound

P
(
∃α ∈ A : P (α) = 0

)
≤ |A| ·max

α∈A
P
(
P (α) = 0

)
(5.1)

and then proceed to provide upper bounds on maxα∈AP
(
P (α) = 0

)
and on the cardinality

of the set A. This is done using Lemma 5.1 and Lemma 5.2 below, whose proofs are
presented in Sections 5.1 and 5.2 respectively.

Lemma 5.1. Let α be an algebraic number of degree at least 5. Then for every ε > 0

there exists C > 0 such that

P(P (α) = 0) ≤ Cn− 5
2 +ε. (5.2)

For any polynomial f ∈ Z[x], let Λ(f) be the maximum moduli of the roots of f .

Lemma 5.2 (counting integral polynomials with small houses). Let b > 0 and let a ∈ N.
Then, for all d sufficiently large, the number of polynomials f ∈ Z[x] of degree d with
leading coefficient a such that

Λ(f) < 1 +
b log d

ad

is less than exp((ad)2/3+b).

Note that for every algebraic number α ∈ A, its associated minimal polynomial in
Z[x] has degree at most C0 log n and its leading coefficient is bounded by M . Applying
Lemma 5.2 to each a ∈ {1, 2, . . . ,M} and each degree 1 ≤ d ≤ C1 log n with b = 1

6 , we
obtain that for every ε > 0,

|A| = o(nε). (5.3)

Plugging (5.2) and (5.3) into (5.1), the Lemma 1.5 follows.

5.1 Each root of low degree is unlikely

In this section we prove Lemma 5.1. The proof follows closely the proof of [10,
Lemma 1] adapted for our case (that is, when the random variables ξi’s are not Bernoulli
random variables). The main ingredient of the proof is the ‘inverse Littlewood-Offord
type theorem” of Tao and Vu [15, Theorem 1.9], whose specialization for our case is the
following.

Theorem 5.3 (Tao and Vu (2010)). Let (ηi)0≤i≤n be i.i.d. Ber( 1
2 ) random variables. Let

A, δ > 0 and let (zi)0≤i≤n be complex numbers such that

max
z∈C

P
( n∑
i=0

ηizi = z
)
≥ n−A.

Then there exists a symmetric generalized arithmetic progression (GAP), all of whose
elements are distinct, of rank r ≤ 2A which contains all but OA,δ(n1−δ) of zi’s (counting
multiplicities).

EJP 22 (2017), paper 10.
Page 16/23

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP24
http://www.imstat.org/ejp/


Double roots of random polynomials

Recall that in our context a symmetric GAP Q of rank r is a set of the form

Q =

{
r∑
i=1

niui : ni ∈ [−Ni, Ni] ∩Z, ∀i = 1, . . . , r

}
, (5.4)

where the dimensions N = (N1, N2, . . . , Nr) are r-tuple of positive integers and the
steps u = (u1, u2, . . . , ur) are r-tuple of elements in C. In particular, if v1 . . . , vr+1 are
elements of a GAP of rank r, then there exist nontrivial integer coefficients (q1, . . . , qr+1) ∈
Zr+1, (q1, . . . , qr+1) 6= 0 such that q1v1 + q2v2 + . . .+ qr+1vr+1 = 0.

Proof of Lemma 5.1. Let α be an algebraic number of degree d ≥ 5 and let ε > 0. Assume
towards obtaining a contradiction that

P
(
P (α) = 0

)
> n−

5
2 +ε. (5.5)

Proposition 2.1 allows us to represent the random variable ξj as ξj = Ij + ∆jηj where
(Ij ,∆j)0≤j≤n are i.i.d. random vectors taking values in Z × N and (ηj)0≤j≤n are i.i.d.
Ber( 1

2 ), independent of (Ij ,∆j)0≤j≤n. Conditioning on (Ij ,∆j)0≤j≤n yields

P(P (α) = 0) = EP
( n∑
j=0

∆jα
jηj = −

n∑
j=0

Ijα
j |(Ij ,∆j)0≤j≤n

)
≤ E sup

z∈C
P
( n∑
j=0

∆jα
jηj = z|(∆j)0≤j≤n

)
. (5.6)

From (5.5) and (5.6), it follows that there exists a vector (d0, d1, . . . , dn) ∈ Nn+1 such that

sup
z∈C

P
( n∑
j=0

djα
jηj = z

)
> n−

5
2 +ε.

We now apply Theorem 5.3 with A = 5
2 − ε and δ = 1

2 and zj = djα
j to obtain a symmetric

GAPQ of rank B ≤ 2A < 5 such that all but O(
√
n) many of the coefficients djαj belong to

Q. Therefore, for large enough n, there exists j0 ∈ {0, 1, . . . , n} for which dj0+kα
j0+k ∈ Q

for all k = 0, 1, . . . , 4. Since the rank of Q is at most 4, there exists a nontrivial integer
linear combination that annihilates the vector (dj0+kα

j0+k)0≤k≤4. Hence the algebraic
degree of α is at most 4, in contradiction with our assumption. Hence, the lemma
follows.

5.2 There are not many low degree polynomials with small house

This section is dedicated to the proof of Lemma 5.2.

Proof of Lemma 5.2. The proof of the lemma is an adaptation of the proof of [6, Theorem
1] of Dubickas to the case of non-monic polynomials. Fix b > 0, and write Fa,d for the
collection of polynomials f ∈ Z[x] of degree d with leading coefficient a which satisfy

Λ(f) < 1 +
b log d

ad
.

In the proof we also make use of the classical Newton identities, known also as
Newton—Girard formulae (See [9] for a modern proof). Let f(x) =

∑d
i=0 aix

d−i be a
polynomial of degree d in Z[x] with roots α1(f), α2(f), . . . , αd(f). Define, for k ≥ 1,

Sk = Sk(f) =

d∑
j=1

αj(f)k.
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Lemma 5.4 (Girard, 1629). for each 1 ≤ k ≤ d,

a0Sk + a1Sk−1 + ...+ ak−1S1 + kak = 0. (5.7)

We further observe that if g(x) =
∑k−1
i=0 aix

d−k +
∑d
i=k bix

d−i with bk 6= ak then for all
i < k we have Si(f) = Si(g) while

|Sk(f)− Sk(g)| = k|ak − bk|
a0

≥ k

a0
. (5.8)

With a slight abuse of notation we write Sk(w) = wk1 +wk2 +· · ·+wkd , for w = (w1, . . . , wd) ∈
Cd.

Let b > 0 be given. We say that a set W ⊂ Cd is (a, d) admissible if the following two
conditions are satisfied:

• (Boundedness) We have max1≤i≤d |wi| < 1 + b log d
ad for all w ∈W .

• (Separation) For any two distinct u, v ∈W we have

max
1≤k≤d

a

k

∣∣∣Re(Sk(u))− Re(Sk(v))
∣∣∣ ≥ 1.

Let

S = {(α1(f), . . . , αd(f)) : f ∈ Fa,d}.

From (5.8) and from the definition of Fa,d, we deduce that the set S is (a, d) admissible.
To conclude the proof we bound the maximal size of any (a, d) admissible set. In [6,
Theorem 2], Dubickas obtained such a bound for the special case when a = 1 using
an elementary but clever application of volume formulas of polytopes, and classical
estimates on the number of Gauss integers in a circle.

Theorem 5.5 (Dubickas, 1999). The size of any (1, `) admissible set is Ob(exp(`2/3+b)).

We now use Dubickas’ result as a blackbox to bound the cardinality of (a, d) admissible
set. Let W be an (a, d) admissible set, and write Ŵ for the image of W in Cad under the
repetition map

w ∈ Cd 7→ ŵ := (w,w, . . . , w︸ ︷︷ ︸
a times

) ∈ Cad.

Clearly, ||ŵ||∞ = ||w||∞ < 1 + b log d
ad ≤ 1 + b log(ad)

ad for all w ∈W . Furthermore, for every

distinct û, v̂ ∈ Ŵ we have

max
1≤k≤ad

1

k

∣∣Re(Sk(û))− Re(Sk(v̂))
∣∣ ≥ max

1≤k≤d

1

k

∣∣Re(Sk(û))− Re(Sk(v̂))
∣∣

= max
1≤k≤d

a

k

∣∣Re(Sk(u))− Re(Sk(v))| ≥ 1,

where the last inequality follows from the fact u 6= v ∈W and W is an (a, d) admissible
set. Hence Ŵ is (1, ad) admissible. Therefore applying Theorem 5.5 with ` = ad implies

|Fa,d| = |S| = Ob(exp((ad)2/3+b)),

as required.
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6 Unimodular roots with bounded degree

In this section we will prove Lemma 1.6. Note that there are only finitely many
irreducible polynomials in Z[x] of degree at most 4 with leading coefficients bounded
by M in absolute value whose roots are all within distance M + 1 from the origin. In
particular, for large enough n, all such polynomials whose roots are in distance 1 + C1

logn

from the origin, have, in fact, all roots on the unit circle. Thus to prove the lemma it
would suffice to show that for any fixed α ∈ A on the unit circle such that deg(α) ≤ 4 and
α 6= ±1,

P(α is a double root of P ) = o(n−2), (6.1)

Lemma 1.6 will then follow by applying a simple union bound. If α is an algebraic
integer, then it has to be a root of unity if α and all of its conjugates lie on the unit circle.
However, in general, there are examples of algebraic numbers such that all of their
conjugates are on the unit circle yet they are not roots of unity. For example, consider
the quadratic polynomial 3x2 − x+ 3 whose roots are 1±

√
−35

6 . In fact, any polynomial∑m
i=0 bix

i in Z[x] that is self-reciprocal (i.e., bi = bm−i ∀ i) which satisfies the condition
|bm| > 1

2

∑m−1
k=1 |bk| has all its root on the unit circle [16]. Thus, first begin by addressing

roots which lie on the unit circle but which are not root of unity.

Lemma 6.1 (unimodular roots that are not roots of unity). Let α ∈ A be such that |α| = 1

but α is not a root of unity (i.e., αm 6= 1 for all m ∈ N). Then under Assumption 1.3,

P
(
P (α) = 0

)
= O(n−5/2).

The proof of Lemma 6.1 is a straightforward application of the following well-known
result due to Halász (see [17, Corollary 7.16], [19, Corllary 6.3 and Remark 3.5]).

Lemma 6.2 (Halász). Let G be an infinite Abelian group. Let m ≥ 1 and a1, a2, . . . , am ∈
G and let ε1, ε2, . . . , εm be i.i.d. with P(εj = 1) = P(εj = 0) = 1/2. Fix ` ∈ N and let R` be
the number of solutions of the equation ai1 + ai2 + · · ·+ ai` = aj1 + aj2 + · · ·+ aj` . Then

sup
x
P
( m∑
i=1

aiεi = x
)

= O(n−2`− 1
2R`).

Proof of Lemma 6.1. By Proposition 2.1, the random variables (ξj)0≤j≤n can be repre-
sented as ξj = Ij + ∆jεj where (Ij ,∆j)0≤j≤n are i.i.d. random vectors taking values in
Z×N and (εj)0≤j≤n’s are i.i.d. Ber( 1

2 ), independent of (Ij ,∆j)0≤j≤n. Now by conditioning
on Ij and ∆j ’s, we have

P
( n∑
j=0

ξjα
j = 0

)
≤ max

x
EP
( n∑
j=0

(Ij + ∆jεj)α
j = x

∣∣∣(Ij ,∆j)0≤j≤n

)
≤ Emax

x
P
( n∑
j=0

∆jεjα
j = x

∣∣∣(∆j)0≤j≤n

)
,

where expectations are taken on the vector (Ij ,∆j)0≤j≤n. Fix an integer q in the support
of the random variable ∆j and let η := P(∆j = q) > 0. Let T denote the random set of
indices defined by T = {0 ≤ j ≤ n : ∆j = q}. Again, conditioning on (εj)j 6∈T , write

Emax
x
P
( n∑
j=0

∆jεjα
j = x

∣∣∣(∆j)0≤j≤n

)
≤ Emax

x
P
(∑
j∈T

∆jεjα
j = x

∣∣∣T)
≤ Emax

x
P
(∑
j∈T

εjα
j = x

∣∣∣T).
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We are left with showing that for any deterministic set of indices T ⊆ {0, 1, . . . , n}, we
have

max
x
P
(∑
j∈T

εjα
j = x

)
= O(|T |−5/2).

Applying Halász’s result (Lemma 6.2) with coefficients (αj)j∈T in C and ` = 2, we count
the number of solutions of the equation

αi + αj = αk + αl, (6.2)

where i, j, k, l are arbitrary indices in T . Taking the absolute value on the both sides
of (6.2) and using the fact that |α| = 1, we have |1 + αj−i| = |1 + αl−k|, which implies
that either αj−i = αl−k or αj−i = αk−l, or equivalently j − i = ±(l − k). In case that
j − i = l − k, we may write (6.2) as αi(1 + αj−i) = αk(1 + αj−i), or equivalently as
(αi − αk)(1 + αj−i) = 0. Since α is not a root of unity, then 1 + αj−1 6= 0. So, we
deduce that αi = αk which implies that i = k. Plugging it in back in j − i = l − k,
we also have j = l. Similarly, for the case j − i = k − l, we end up with the equation
(αi − αl)(1 + αj−i) = 0, which, in turn, implies that i = l and j = k. Hence, we conclude
that R2 ≤ 2|T |2 and the claim follows.

From the claim, we obtain that

Emax
x
P
(∑
j∈T

εjα
j = x

∣∣∣T) ≤ Emin
(

1,
C

|T |5/2
)

= O(n−5/2) + P
(
|T | ≤ η

2n
)
.

Note that |T | has a binomial distribution corresponding to n + 1 trials and success
probability η. From the standard result on the concentration of binomial random variable,

we know that there exists a constant c > 0, depending on η, such that P
(
|T | ≤ η

2n
)
≤

e−c(n+1). This completes the proof of the lemma.

Next, we consider roots of unity.

Lemma 6.3 (roots of unity). Suppose Assumption 1.3 holds. Then there exist constants
c, C > 0 such that if α satisfies αk = 1 for some positive integer k, then

P
(
P ′(α) = 0

)
≤
(
C

bnk c

) 3 deg(α)
2

+ k exp(−cbnk c).

The proof of the above lemma is very similar to that of Lemma 1.4 in [13] where
the similar bound holds without the additional k exp(−cbnk c) term for any non-constant
coefficient distribution supported on {−1, 0, 1}. However, for the sake of completeness
we include here a proof of Lemma 6.3. The proof of Lemma 6.3 relies heavily on the
following classical anti-concentration bound of Sárközi and Szemerédi [14].

Theorem 6.4 (Sárközi and Szemerédi). Let (εj)1≤j≤N be i.i.d. Ber( 1
2 ) random variables.

There exists a constant C > 0 such that for any distinct integers (aj), 1 ≤ j ≤ N , we
have

max
m∈Z

P

 N∑
j=1

εjaj = m

 ≤ C

N3/2
.

Proof of Lemma 6.3. Since ξj is a mixture of Bernoulli distribution, we can proceed
along the same way as in the proof of Lemma 6.1 to obtain

P
(
P ′(α) = 0

)
≤ Emax

x
P
( n∑
j=1

εjj∆jα
j−1 = x

∣∣∣(∆j)1≤j≤n

)
, (6.3)
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where (εj)1≤j≤n are i.i.d. Ber( 1
2 ) and (∆j)1≤j≤n are i.i.d. on N.

Observe that necessarily deg(α) ≤ k. Set

J := {j : 1 ≤ j ≤ n and 0 ≤ (j − 1) mod k ≤ deg(α)− 1},
J̄ := {1, . . . , n} \ J.

Conditionally on (∆j)1≤j≤n, define the random variables (Sr), 0 ≤ r ≤ deg(α)− 1, by

Sr :=
∑

j−1 mod k=r

εjj∆jα
j−1 = αr

∑
j−1 mod k=r

εjj∆j

and
S̄ :=

∑
j∈J̄

εjj∆jα
j−1.

Observe that
n∑
j=1

εjj∆jα
j−1 =

n∑
j=1

ξjjα
j−1 =

deg(α)−1∑
r=0

Sr + S̄.

Now, conditionally on (∆j)1≤j≤n, S0, S1, . . . Sdeg(α)−1 and S̄ are independent. In addition,
(αr), 0 ≤ r ≤ deg(α)−1, are linearly independent over the rational numbers, and therefore

the equation
∑deg(α)−1
i=0 aiα

i = z has at most one integral solution (a0, . . . , adeg(α)−1) for a
given z ∈ C. Hence, for any given values of (∆j)1≤j≤n and any given x ∈ C,

P
( n∑
j=1

εjj∆jα
j−1 = x

)
= ES̄P

deg(α)−1∑
r=0

Sr = x− S̄
∣∣∣ S̄
 ≤ max

z∈C
P

deg(α)−1∑
r=0

Sr = z


=

deg(α)−1∏
r=0

max
z∈C

P(Sr = z) =

deg(α)−1∏
r=0

max
m∈Z

P

( ∑
j−1 mod k=r

εjj∆j = m

)
.

(6.4)

Let q be a point in the support of ∆j and let η := P(∆j = q) > 0. Define for 0 ≤ r ≤
deg(α)− 1, Tr := {1 ≤ j ≤ n : ∆j = q and j − 1 mod k = r}. Then

max
m∈Z

P

( ∑
j−1 mod k=r

εjj∆j = m

)
≤ max
m′∈Z

P

( ∑
j∈Tr

εjj = m′

)
≤ C|Tr|−3/2, (6.5)

where in the last step we apply the Sárközi-Szemerédi bound (Theorem 6.4). Combining
(6.3), (6.4) and (6.5), we finally arrive at the inequality,

P
(
P ′(α) = 0

)
≤ E

deg(α)−1∏
r=0

min(1, C|Tr|−3/2) ≤
(

C
η
2 b

n
k c

) 3 deg(α)
2

+

deg(α)−1∑
r=0

P
(
|Tr| ≤ η

2 b
n
k c
)
.

(6.6)
Observe that Tr is a binomial random variable with number of trials at least bnk c and
success probability η. This gives us the following bound for the left tail of Tr. There

exists a constant c > 0 such that P
(
|Tr| ≤ η

2 b
n
k c
)
≤ e−cb

n
k c. The lemma now follows from

(6.6) and the fact that deg(α) ≤ k.

It remains to show (6.1). Let α ∈ A such that |α| = 1, α 6∈ {−1, 1} and deg(α) ≤ 4.
First assume that α is a primitive kth root of unity, that is, αk = 1 and αl 6= 1 for all
positive integer l < k. Recall that deg(α) = ϕ(k) where ϕ is Euler’s totient function, i.e.,
ϕ(k) = |{1 ≤ j ≤ k : gcd(j, k) = 1}| (see, for example, Lemma 7.6 and Theorem 7.7 of
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[12]). By standard estimates (see [11, Theorem 2.9]) there exists some constant c1 > 0

for which

ϕ(k) ≥ c1k

log log(k + 2)
.

The above bound along with the fact that deg(α) ≤ 4 implies the bound k ≤ C2 for some
absolute constant C2. On the other hand, since α 6= ±1, we have deg(α) ≥ 2. Thus, by
Lemma 6.3, we deduce that P(α is a double root of P ) = O(n−3).

Now assume that α is not a root of unity. As a direct consequence of Lemma 6.1,
we also have that P(α is a double root of P ) = O(n−5/2). This finishes the proof of the
bound (6.1) and hence the proof of Lemma 1.6.

7 Open problems

We conclude the paper with a couple of open problems.

(a) Define pn+1 := maxa∈ZP
(
Pn(2) = a

)
. Then

pn+m = max
a∈Z

P
(
Pn+m−1(2) = a

)
≥ max

a∈Z
P
(m−1∑
j=0

ξj2
j = a

)
max
a∈Z

P
(m+n−1∑

j=m

ξj2
j = a

)
= pmpn.

So, it follows from the subadditive property that there exists some λ > 0, depending
on the law of ξ0, such that pn = e−λn(1+o(1)). However, the exact value of λ is
completely unknown. In the special case when the maximum of atom of ξ0 is at
most 1

2 , our Theorem 1.2 only gives a one-sided bound λ > 1
2 log 2. It would be very

interesting to investigate the dependence of value of λ on the law of ξ0 or, say, on
the maximum atom of ξ0.

(b) It would be very interesting to investigate the minimum distance between adjacent
complex roots of a random polynomial. Note that this problem makes sense even
if the coefficient distribution is continuous. To best of our knowledge, precise
quantitive bounds on the minimum gap are not available even for the i.i.d. Gaussian
polynomials.

References

[1] L.V. Ahlfors, Complex analysis (third edition), International Series in Pure and Applied
Mathematics, McGraw-Hill Book Co., New York, 1978. MR-0510197

[2] M. Artin, Algebra, Prentice Hall, NJ, 1991. . MR-1129886

[3] S. Boucheron, G. Lugosi, P. Massart, A sharp concentration inequality with applications,
Random Structure and Algorithms 16(3) (2000), 277–292. MR-1749290

[4] Y. Do, H. Nguyen, and V. Vu. Real roots of random polynomials: expectation and repulsion.
Proceedings of the London Mathematical Society 111(6) (2015), 1231–1260. MR-3447793

[5] E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polyno-
mial, Acta Arithmetica 34(4) (1979), 391–401. MR-0543210

[6] A. Dubickas, On the number of polynomials of small house, Lithuanian Mathematical Journal
39(2) (1999), 168–172.

[7] M. Filaseta and S. Konyagin, Squarefree values of polynomials all of whose coefficients are 0

and 1, Acta Arithmetica 74(3) (1996), 191–205.

[8] G. Halász. Estimates for the concentration function of combinatorial number theory and
probability. Periodica Mathematica Hungarica 8(3-4)(1977), 197–211. MR-0494478

[9] D. Kalman, A matrix proof of Newton’s identities, Mathematics Magazine 73 (2000), 313–315.

EJP 22 (2017), paper 10.
Page 22/23

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=0510197
http://www.ams.org/mathscinet-getitem?mr=1129886
http://www.ams.org/mathscinet-getitem?mr=1749290
http://www.ams.org/mathscinet-getitem?mr=3447793
http://www.ams.org/mathscinet-getitem?mr=0543210
http://www.ams.org/mathscinet-getitem?mr=0494478
http://dx.doi.org/10.1214/17-EJP24
http://www.imstat.org/ejp/


Double roots of random polynomials

[10] G. Kozma, O. Zeitouni, On common roots of Bernoulli polynomials, International Mathematics
Research Notices 18 (2013), 4334–4347. MR-3106890

[11] H.L. Montgomery and R.C. Vaughan, Multiplicative number theory. I. Classical theory, Cam-
bridge Studies in Advanced Mathematics. Vol. 97, Cambridge University Press, 2007.

[12] P. Morandi, Field and Galois theory. Graduate Texts in Mathematics, 167, Springer-Verlag,
New York, 1996.

[13] R. Peled, A. Sen and O. Zeitouni, Double roots of random Littlewood polynomials, Israel
Journal of Mathematics 213(1) (2016), 55–77.

[14] A. Sárközi and E. Szemerédi, Über ein Problem von Erdős und Moser, Acta Arithmetica 11(2)
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