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Abstract

Consider the Aldous–Pitman fragmentation process [7] of a Brownian continuum ran-
dom tree T br. The associated cut tree cut(T br), introduced by Bertoin and Miermont
[13], is defined in a measurable way from the fragmentation process, describing the
genealogy of the fragmentation, and is itself distributed as a Brownian CRT. In this
work, we introduce a shuffle transform, which can be considered as the reverse of the
map taking T br to cut(T br).
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1 Introduction

1.1 Motivation and literature

Let T br be Aldous’ Brownian continuum random tree (CRT). We consider the frag-
mentation process introduced by Aldous & Pitman [7]: informally, the process describes
the time evolution of the masses of the connected components of a forest Ft, t ≥ 0,
where Ft results from a logging of T br with cuts falling uniformly per unit of time
and length in T br. The Aldous–Pitman fragmentation is an instance of a self-similar
fragmentation such as studied in Bertoin’s book [9]. There is a natural genealogical
structure associated with the fragmentation process, and it is as a representation of
this genealogy that Bertoin and Miermont [13] constructed the so-called cut tree of T br,
hereafter denoted by cut(T br). A rather remarkable fact is that cut(T br) is itself also
distributed as the Brownian CRT. In this work, we are interested in defining the reverse
of the map T br 7→ cut(T br). This has been motivated by a seemingly natural question:
given the cut tree, can one reconstruct the initial tree? We will see that the cut tree does
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Reversing cut tree

not contain all the information necessary for such a reconstruction; this observation
leads us then to introduce a reverse transform. However, giving a proper meaning to the
reverse transform requires some explanation, which we postpone to Sections 1.2 and
1.3. For the time being, we provide some background on cut trees, which can be traced
back to some work in combinatorics dating from the seventies.

Random cutting of trees. The idea of cut trees is closely related to random cutting
of trees, a subject initiated by Meir and Moon [28], which has since then been largely
studied. The initial question concerns discrete trees, and we present here a version of
the random cutting problem where cuts happen at nodes (one can also define a version
where cuts happen at edges): take a rooted tree (random or not) on a finite vertex
set; at each step, sample a node uniformly at random and remove it along with all the
edges adjacent to it (the removed node is then referred to as a cut); this disconnects
the tree into connected components (maybe one, if we picked a leaf, for instance);
discard the components that are now disconnected from the root; keep going until
the root is finally picked. The main questions addressed by Meir and Moon and many
subsequent researchers concern mostly the number of cuts that are needed for the
process to terminate. This problem has been considered for a number of classical
models of deterministic and random trees, including random binary search trees [22, 23],
random recursive trees [24, 17, 11, 8] and Galton–Watson trees conditioned on the total
progeny [25, 4, 20, 30, 10, 13].

The CRT being the scaling limits of Galton–Watson trees with finite-variance offspring
distribution [6], the case of Galton–Watson trees is the most related to our matters,
and we now focus on that case: let Tn be a Galton–Watson tree conditioned to have n
nodes, and whose offspring distribution has variance σ2 <∞; denote by Nn the number
of cuts until the root V is picked in the above process. Then Janson [25] showed by
moment calculations that, as n→∞, Nn/(σ

√
n) converges in distribution to the Rayleigh

distribution. Incidentally, the Rayleigh distribution is also the limit law of (σHn/
√
n)n≥1,

where Hn denotes the height (distance to the root) of a randomly picked node in Tn. Thus,
Janson’s result can be rephrased as follows: the limit distribution of (Nn/(σ

√
n))n≥1

coincides with that of (σHn/
√
n)n≥1. It turns out that an even stronger statement holds

true in the case that Tn is a uniform labelled tree of n nodes (this is equivalent to take the
offspring distribution to be Poisson(1), and is sometimes referred to as the Cayley tree):
we have that Nn and Hn + 1 actually have exactly the same distribution. This result is
due to Addario-Berry, Broutin and Holmgren [4], and relies on the following bijective
method: one can construct another tree cut(Tn;V ) (on the same vertex set as Tn) which
encodes the isolation of V by the successive cuts (see Section 1.2 for the details) such
that (1) the node V lies at distance Nn − 1 from the root, and (2) cut(Tn;V ) has the same
distribution as Tn, while (3) V is a uniform node in cut(Tn;V ). The above distributional
identity then follows. We call cut(Tn;V ) the 1-partial cut tree, since it keeps track of
the way one node (here V ) was isolated. More generally, Addario-Berry, Broutin and
Holmgren [4] have considered cutting procedures resulting in the isolation of k nodes
and introduced the corresponding k-partial cut trees. For these cutting procedures, one
only discards the portions of the tree that do not contain any of the k marked nodes
to be isolated. Moreover, by first taking a uniform permutation of the vertex set, we
can define simultaneously all the k-isolation processes, so that letting k →∞ we obtain
the (complete) cut tree cut(Tn) of Tn, whose graph distance encodes the number of
cuts required to isolate every single one of the n nodes. In this case, since all the
nodes are marked, no portion of the tree is ever discarded, and the tree cut(Tn) actually
encodes the genealogy of a discrete fragmentation of the tree (we refer to Section 1.2 for
details). A similar notion appears in Bertoin [10] and Bertoin & Miermont [13], where
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Figure 1: An example of one-node isolation and the associated 1-partial cut tree. On
the left, the initial tree T and the sequence of cuts X(iv1), X(iv2), . . . , X(iv5), which are
responsible for the isolation of v = X(iv5). On the right, the corresponding cut tree. Note
that due to the cut at X(ivm), a small subtree of T is discarded; it then appears in cut(T ; v)

as the subtree above the path JX(iv1), X(iv5)K.

they define a (different) cut tree ĉut(Tn) for Tn directly as the genealogy tree of the
discrete fragmentation process induced by the cutting of Tn.

Random cutting of continuum trees and fragmentation processes. More re-
cently, such cutting processes have been considered for the Brownian CRT [4, 2, 13, 10].
The cutting on the Brownian CRT is of course closely related to the Aldous–Pitman
fragmentation mentioned in the first paragraph. Moreover, Bertoin and Miermont [13]
proved that if Tn is a Galton–Watson tree with a finite variance offspring distribution
and conditioned to have n nodes, then the pair (Tn, ĉut(Tn)), after suitable scaling in the
graph distance, converges in distribution in the sense of Gromov–Prokhorov, to a pair
(T br, cut(T br)) of continuum random trees; furthermore the tree cut(T br) can be defined
directly from the fragmentation process of T and indeed encodes its genealogy. A similar
result holds for (Tn, cut(Tn)) in the case where Tn is a uniform Cayley tree; see [15].

Let us also mention that cut trees have been introduced for other models of con-
tinuum random trees, including Lévy trees under excursion measures [1], stable trees
conditioned on the total masses [16], and inhomogeneous continuum random trees [15].

1.2 Reversing the cut trees of Cayley trees

Although our main concern is the case of the continuum tree, we think it will be
helpful to explain here the question we address and our approach to its solution in the
setting of discrete trees. The case of Cayley trees, for which the question has been
studied in [4] for partial reversals and then in [15] for the complete reversal, is especially
adapted to our presentation since many of the correspondences are then exact. We refer
to these two papers for proofs and further details.

Throughout this part, let Tn denote the set of rooted labelled trees on the vertex set
[n] := {1, 2, . . . , n} and let T ∈ Tn. For u, v ∈ [n], we write Ju, vK for the set of vertices
that lie on the shortest path joining u to v in T . Let X(1), X(2), . . . , X(n) be a uniform
permutation of the vertex set. We will use the sequence (X(i))1≤i≤n to define various
isolation processes on T .

EJP 22 (2017), paper 80.
Page 3/23

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP105
http://www.imstat.org/ejp/
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One-node isolation and the 1-partial cut tree. Let v be any node of T and consider
the following isolation process of v. Let F v0 = T and for 1 ≤ m ≤ n, let F vm be the
connected component of T \ {X(1), . . . , X(m)} containing v, with the convention that
F vm′ = ∅ for all m′ ≥ m if X(m) = v. We say that X(m) is a cut in this process if
X(m) ∈ F vm−1. Namely, the cuts are those elements of [n] whose removal have reduced
the size of the current connected component of v. Let X(v) := {X(ivm) : 1 ≤ m ≤
N(v), iv1 < iv2 < · · · < ivN(v)} be the sequence formed by the successive cuts. Observe in
particular that X(ivN(v)) = v. For 1 ≤ m ≤ N(v)− 1, we let Um be the unique neighbor of
X(ivm) which belongs to JX(ivm), vK. The following algorithm returns a tree denoted by
G(T, v,X(v)) as a function of T, v and X(v).

Algorithm 1. Construction of the 1-partial cut tree. Apply the following transforma-
tions to the tree T :
– for 1 ≤ m ≤ N(v)− 1, remove the edge {X(ivm), Um};
– for 1 ≤ m ≤ N(v)− 1, add the edge {X(ivm), X(ivm+1)};
– declare X(iv1) as the root.

Denote by cut(T ; v) = G(T, v,X(v)) the graph thereby obtained (see also Figure 1).
Then we have G(T, v,X(v)) ∈ Tn and it contains a path consisting of the sequence X(v).
Moreover, if we remove all the edges in that path, then each X(ivk) remains connected to
the subgraph Fivk−1 \ Fivk , namely the part discarded at step k due to the cut at X(ivk).

k-node isolation and the k-partial cut tree. The above isolation process can be
generalized to the case of multiple nodes. Let v = {v1, v2, . . . , vk} be k ≥ 1 vertices
of T (not necessarily distinct). For each vj and m ≥ 0, let F

vj
m denote the connected

component of T \ {X(i) : i ≤ m} containing vj ; then the sequence of cuts responsible for
the isolation of vj , namely, those Xm satisfying Xm ∈ F

vj
m−1, is denoted by {X(i

vj
m) : 1 ≤

m ≤ N(vj), i
vj
1 < i

vj
2 < · · · < i

vj
N(vj)

}.
To define the associated partial cut tree, we adopt a recursive approach. For 2 ≤ j ≤ k,

let mj = max{m : vj ∈ ∪1≤j′≤j−1F
vj′
m }. Then set X(v1) = {X(iv1m ) : 1 ≤ m ≤ N(v1)} and

for 2 ≤ j ≤ k, set X(vj) = {X(i
vj
m) : i

vj
m > mj ,m ≤ N(vj)}.

Algorithm 2. Construction of the k-partial cut tree. Set G1 = G(T, v1,X(v1)), and
for 2 ≤ j ≤ k, do the following: if X(vj) = ∅, set Gj = Gj−1; otherwise,
– locate in Gj−1 the connected component of Gj−1\(X(v1)∪· · ·∪X(vj−1)) which contains
vj , denote it by Tj; let wj be the node of X(v1) ∪ · · · ∪X(vj−1) that is closest to vj in
Gj−1;

– replace in Gj−1 the subgraph Tj by G(Tj , vj ,X(vj)): to do so, remove the edge between
wj and Tj and add the edge {wj , X(mj + 1)} ; let Gj be the graph obtained, still rooted
at X(iv11 ).

Denote by cut(T ; v) = Gk the graph thereby obtained. Then cut(T ; v) ∈ Tn and the
subset of nodes X(v1) ∪ · · · ∪X(vk) forms a subtree that contains the root X(iv11 ) (See
Figure 2).

The complete cut tree. Let (Vi)i≥1 be a sequence of independent and uniform nodes
of T and write Vk = {V1, . . . , Vk}, k ≥ 1. Observe that almost surely the sequence
{cut(T ; Vk) : k ≥ 1} becomes stationary after some k. Denote by cut(T ) the limit of this
sequence; it has the following remarkable properties. First, for each vertex v, the path
in cut(T ) from the root to v consists of precisely the cuts responsible for the isolation of
v. Note there is at most one tree in Tn satisfying this property. We conclude that cut(T )

does not depend on (Vi)i≥1. Second, cut(T ) is uniformly distributed in Tn.
Note that we cannot recover T from cut(T ). To explain this, let us first introduce

the following notation. For T ∈ Tn and two vertices u 6= v, let S(T, u | v) denote the
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v1
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v2

v3
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T5

G4 G5

G(T5, v5,X(v5))

w5 w5
X(m5 + 1)

Figure 2: The recursive construction of partial cut trees. To obtain G5 from G4, we simply
replace the subtree T5 (the grey part on the left) by the 1-partial cut tree G(T5, v5,X(v5))

(the grey one on the right). The red paths on the left consist of X(v1) ∪ · · · ∪X(v4); the
ones on the right consist of X(v1) ∪ · · · ∪X(v5).

connected component of T \ {u} which contains v. If X(i
Vj
m ) is a cut in the isolation of Vj

as defined above, denote by U jm the neighbor of X(i
Vj
m ) that belongs to JVj , X(i

Vj
m )K. Then

one can show that U jm is uniformly random in S(cut(T ), X(i
Vj
m ) |Vj) (see also Figure 1). In

particular, this means that the information concerning the whereabouts of U jm is partially
lost in cut(T ); therefore we cannot know the initial tree just from its cut tree. On the
other hand, we know the distribution of (U jm) conditional on cut(T ). Relying on this, we
can “resample” the lost information, namely, take a random collection (Û jm) according to
the distribution of (U jm) conditional on cut(T ); we then “reconstruct” T from cut(T ) by
assuming (Û jm) are the actual (U jm). Of course, we will not obtain from this procedure
the actual T with probability 1, but instead a random tree which has the distribution of T
given cut(T ). This is the basic idea of our reverse transform for the mapping T 7→ cut(T ).
The following paragraphs explain how to proceed in the case of Cayley trees.

Reversing the 1-partial cut tree transform. Let v be a vertex of T . Suppose that
Xv

1 , . . . , X
v
L = v is the sequence of vertices along the path of T from the root to v. For

1 ≤ l ≤ L− 1, sample a random vertex Uvi uniformly in S(T,Xv
l | v). Write U(v) = {Uvi :

1 ≤ l ≤ L− 1}. Sample a uniform vertex ρ1 of T . The following algorithm returns a tree
H(T, v,U(v), ρ1) as a function of T , v, U(v) and ρ1.

Algorithm 3. 1-partial shuffle transform. Take T and do the following:

– for 1 ≤ l ≤ L− 1, remove the edge {Xv
l , X

v
l+1};

– for 1 ≤ l ≤ L− 1, add the edge {Xv
l , U

v
l };

– declare ρ1 as the root.

Denote by H = H(T, v,U(v), ρ1) the graph thereby obtained, which turns out to be
an element of Tn. Observe that the above algorithm is the exact reverse of Algorithm
1. Let us also make the following observation, which is useful for the generalization to
continuum trees. Let w,w′ be two distinct vertices of T and let x (resp. x′) be the vertex
among {Xv

l : 1 ≤ l ≤ L} which is closest to w (resp. w′). To simplify the discussion,
suppose that x, x′, v are all distinct; the path in H joining w to w′ contains a sub-collection
of (Xv

l )1≤l≤L ∪U(v) ∪ {w,w′}; we then match the elements of this sub-collection into
pairs: {(ai, pi) : 1 ≤ i ≤ m}, so that for each i, ai and pi are in the same connected
component after removing the edges {Xv

l , X
v
l+1}, 1 ≤ l ≤ L−1. See Fig. 3 for an example.

If we write respectively d for the graph distance in T and dH for that in H, then we have
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(see also Fig. 3)
dH(w,w′) =

∑
1≤i≤m

d(ai, pi) +m− 1. (1.1)

Reversing the cut tree transform. The above partial shuffle transform can be ex-
tended to several vertices. To explain this, let (Vi)i≥1 be a sequence of independent
uniform vertices of T and write Vk = {V1, . . . , Vk}, k ≥ 1. Let r denote the root of
T . Let Span(T,Vk) be the smallest connected subgraph of T containing Vk ∪ {r}. Let
T1 = T and for k ≥ 2, if Vk ∈ Span(T,Vk−1), set Tk = Uk = ρk = ∅; otherwise let Tk
be the connected component of T \ Span(T,Vk−1) which contains Vk. For each k ≥ 1

and Tk 6= ∅, sample a uniform vertex ρk in Tk; let {Xk
1 , . . . , X

k
Lk
} = Jr, VkK ∩ Tk, with the

Xk
i ordered by decreasing distances to Vk; then, for 1 ≤ l ≤ Lk − 1, sample a uniform

vertex Ukl among S(T,Xk
l |Vk); let Uk = {Ukl : 1 ≤ l ≤ Lk − 1}. Then, the following

algorithm returns a tree H(T,Vk, (Uj)1≤j≤k, (ρj)1≤j≤k) as a function of T,Vk, (Uj)1≤j≤k
and (ρj)1≤j≤k.

Algorithm 4. k-partial shuffle transform. Take T and do the following:
– Remove the edges of Span(T,Vk).
– For 1 ≤ j ≤ k and Tk 6= ∅, do the following: 1

– For 1 ≤ l ≤ Lj − 1, add an edge {Xj
l , U

j
l } for 1 ≤ l ≤ Lj − 1;

– add an edge {ρk, w}, where w is the vertex of Span(T,Vk−1) closest to Tk;2

– Declare ρ1 as the root.

Denote by Hk = H(T,Vk, (Uj)1≤j≤k, (ρj)1≤j≤k) the graph produced, which is an
element of Tn. Alternatively, Hk can be obtained in the following recursive way, which
can be seen as the dual of Algorithm 2. (See also Figure 2, from right to left.) Let k ≥ 2.

• If Tk = ∅, then Hk = Hk−1.

• Otherwise, replace in T the subgraph Tk by H(Tk,Uk, ρk) and denote by Rk the
resulting graph. Then we have Hk = H(Rk,Vk−1, (Uj)1≤j≤k−1, (ρ1)1≤j≤k−1).

Note that we have Span(Rk,Vk−1) = Span(T,Vk−1) (with obvious notation); therefore
Algorithm 4 can still be applied to define H(Rk,Vk−1, (Uj)1≤j≤k−1, (ρ1)1≤j≤k−1). It is
not difficult to see that the sequence (Hk)k≥1 is eventually stationary, and denote by
shuff(T ) its limit. If T is distributed uniformly in Tn, then we have(

T, shuff(T )
) d

=
(

cut(T ), T
)
.

Thanks to this identity in distribution, we can consider the shuffle transform as the
reverse of the transform T 7→ cut(T ). Let us also keep in mind that in the definition of
shuff(T ), we have sampled the following random variables for each k ≥ 1: i) a uniform
vertex ρk in Tk which “serves” as the initial root of the subtree containing Vk; ii) for
each vertex Xk

l on the path of Tk from its root to Vk, a uniform vertex Ukl in S(T,Xk
l |Vk)

which “serves” as a neighbor of Xk
l in the initial tree.

1.3 An overview of the paper

The aim of the paper is to introduce the shuffle transform for real trees, and
more specifically for the Brownian continuum random tree: for a rooted real tree

1The formulation here is slightly different from the one in [15], which is stated as follows: replace each
edge (x,w) of Span(T,Vk) by (x, Uw), where x is the one closer to the root than w and Uw is a uniform node
sampled in the subtree of T above (x,w), and then root the obtained tree at ρ1. It is not difficult to see that
this gives the same transform as Algorithm 4.

2Observe that this step amounts to rooting the subgraph replacing Tk at ρk.
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l2
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Uv
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Xv
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Figure 3: The 1-partial shuffle transform as viewed from two points w,w′. In the upper
line is illustrated the tree T ; the straight line represents the path {Xv

l : 1 ≤ l ≤ L} joining
the root to v. Removing the edges {Xv

l , X
v
l+1}, 1 ≤ l ≤ L − 1, T falls into L subtrees

(blocks in white and in gray in above). For l < L, the point Uvl is located in one of these
subtrees right to Xv

l . By adding an edge between Xv
l and Uvl (represented by the red

arrows in above), we shuffle these subtrees and make them into a new graph H. Observe
that the path of H joining w to w′ only crosses a sub-collection of these subtrees. In the
example above, they correspond to the white subtrees. In the line below is depicted
this path. Observe that it consists of m blue segments and m− 1 red segments, where
m is the number of subtrees it crosses (m = 5 in the example above). Each of the red
segments has length one; they are the edges added between Xv

l and Uvl . Each of the
blue segments was contained in a white subtree; so that its length is the same in H as
in T . This explains Equation (1.1). The pair (ai, pi) consists of the endpoints of the i-th
blue segment. Their relative positions (which one is on the left) are in fact unimportant.
Here, we have followed a choice convenient for generalization. In this example, their
respective values in (Xv

l )1≤l≤L ∪U(v) ∪ {w,w′} are given by the labels below.

(T , d, ρ) equipped with a finite measure µ, we define a random symmetric matrix
Γ∞ = (γ∞(i, j))1≤i,j<∞ whose entries take values in R+ ∪ {∞}, such that when (T , d, ρ)

is distributed according to the distribution of the Brownian CRT, which we denote by
P, almost surely Γ∞ is well-defined and characterizes a random measured and rooted
real tree shuff(T ) = (H, dH, µH, ρH); moreover, the law under P of the pair (H, T ) seen
as measured real trees is the same as that of (T , cut(T )) under P.

This shuffle transform can be viewed as an extension to the Brownian CRT of the
construction in Section 1.2 for Cayley trees. As we have already mentioned, for a
discrete tree T , the associated cut tree does not contain all the information necessary to
reconstruct T . This is also true for continuum trees. Therefore, in defining the shuffle
transform, we begin by sampling a collection of random points of T referred to as the
marks which replaces the lost information in the cut tree. We then construct a real tree
which corresponds to the initial tree, if the “resampled” information corresponds to the
actual one. Recall that for discrete trees, we have used an approximation procedure: we
first consider the reversals of the partial cut trees and then define the shuffle transform
as the limit of the partial reversals. The advantage of this approach lies in that the partial
cut trees retain some unmodified portions of the initial tree, therefore their reversals
are easier to handle. This is even more important in the continuum tree setting. In that
case, the reconstruction consists in roughly three steps:
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– Define the 1-partial shuffle transform for the CRT. This has been done in [15]. Let
us briefly explain the idea there. Algorithm 3 does not generalize directly to the
CRT, but Equation (1.1) does. Indeed, if η, η′ are two independent uniform points of
the Brownian CRT, then during the one-node isolation process, there is only a finite
number of cuts falling on the geodesic of the CRT which joins η to η′ (see Lemma 2.5
below for a precise statement). This suggests that the number of summands in (1.1)
remains bounded for the CRTs and we can “recover” the distance between η and η′ by
a generalization of (1.1).

– Define the k-partial shuffle transform for the CRT, for k ≥ 2. We use a recursive
procedure, similar to the one for Cayley trees. In particular, the recursive construction
provides a natural coupling between the different partial reversals, which is convenient
for the proof of convergence in the next step.

– The convergence of k-partial shuffle transforms as k → ∞. Contrary to the case of
discrete trees, for CRTs, this convergence is non trivial, and a significant part of the
paper is devoted to its proof. Note that our proof relies crucially on some specific
properties of the Brownian CRT, especially the scaling property.

The rest of the paper is organized as follows. In Section 2, we introduce the necessary
notation and recall from [13] the definition of the cut tree of the Brownian CRT. We
also collect some results from [15] that are useful later on. In Section 3, we give the
formal definition of the shuffle transform, which is defined as the limit of partial reversal
transforms and state our main result (Theorem 3.2). The proof for the convergence of
the partial reversals is found in Section 4.

2 Notation and preliminaries

2.1 Notation and background on continuum random trees

We only give here a short overview, the interested reader may consult [6], [27] or
[19] for more details.

Pointed measured metric spaces. A pointed measured metric space is a quadruple
(X, d, µ, ρ) where (X, d) is a compact metric space equipped with a finite Borel measure
µ, and ρ is a distinguished point that is usually referred to as being the root. Two pointed
measured metric spaces (X, d, µ, ρ) and (X ′, d′, µ′, ρ′) are equivalent if there exists an
isometry f : (X, d)→ (X ′, d′) satisfying µ′ = f∗µ and f(ρ) = ρ′. Let M denote the set of
equivalence classes of pointed measured metric spaces. Then M is a Polish space when
endowed with the pointed Gromov–Hausdorff–Prokhorov topology ([19, 29]).

The following functional defined on M is useful in our treatment. Let (X, d, µ, ρ) be
a pointed measured metric space where µ is a probability measure and has X as its
support. Let (ηi, i ≥ 1) be a sequence of i.i.d. points of X with common distribution µ

and set η0 = ρ. We define a random symmetric and semi-infinite matrix

M(X, d, µ, ρ) = (d(ηi, ηj) : 0 ≤ i, j <∞).

Note that the distribution of M(X, d, µ, ρ) only depends on the equivalence class of
(X, d, µ, ρ). Thanks to the Gromov reconstruction theorem ([21, Section 3 1

2 .5]), the matrix
M(X, d, µ, ρ) characterizes this equivalence class. In the rest of the paper and when no
confusion arises, we often use the short-hand notation X = (X, d, µ, ρ) to indicate that X

stands for the whole equivalence class of (X, d, µ, ρ).
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Real trees. The metric spaces of interest here are real trees. A compact metric
space (X, d) is a real tree if for any two points u, v ∈ X, the following two properties
hold. First, there exists a unique isometry ϕ : [0, d(u, v)] → X such that ϕ(0) = u and
ϕ(d(u, v)) = v; in this case, we denote by Ju, vKX := ϕ([0, d(u, v)]) or sometimes simply
by Ju, vK if the underlined metric space (X, d) is clear from the context. Second, if
f : [0, 1] → X is an injective continuous map satisfying f(0) = u and f(1) = v, then
necessarily f([0, 1]) = Ju, vKX . A rooted real tree (T, d, ρ) is a real tree (T, d) with a
distinguished point called the root.

Let (T, d, ρ) be a rooted real tree. The degree of a point u ∈ T , which we denote by
deg(u, T ), is the number of connected components of T \{u}. We let

Lf(T ) = {u ∈ T : deg(u, T ) = 1}, Br(T ) = {u ∈ T : deg(u, T ) ≥ 3} and Sk(T ) = T \Lf(T )

denote the set of the leaves, the set of branch points and the skeleton of T , respectively.
Note that the distance d induces a sigma-finite measure ` on T satisfying `(Ju, vK) =

d(u, v), for any u, v ∈ T . We refer to ` as the length measure of T . A subtree S of T is a
closed and connected nonempty subset of T . Observe that (S, d) is itself a real tree. We
often root S at the point root(S), which is defined to be the unique point of S minimising
the distance to ρ ; in that case, we say that S is a rooted subtree.

Let (T, d, ρ) be a rooted real tree and let u, v ∈ T be two distinct points. We denote by
S(T, u | v) the connected component of T \{u} which contains v. Namely,

S(T, u | v) = {w ∈ T : u /∈ Jw, vK}. (2.1)

Now let v = {v1, . . . , vk} be a set of k points of T . We write

Span(T,v) = ∪1≤i≤kJρ, viK

for the subtree of T spanning v1, . . . , vk. Next, observe that there is at most countably
infinite collection of the connected components of T \Span(T,v), since (T, d) is compact.
Let {C◦i : i ≥ 1} be this collection. For each i ≥ 1, let Ci be the closure of C◦i in T . Then
one can check that Ci is a subtree and there exists a unique bi ∈ Br(T )∩ Span(T,v) such
that Ci = C◦i ∪ {bi} and bi = root(Ci). Set hi = d(ρ, bi). If T is further equipped with a
finite (Borel) measure µ, then each Ci is also equipped with a finite (Borel) measure
which is the restriction of µ to Ci; by a slight abuse of notation we still denote this
measure by µ. In that case, we denote by Ci = (Ci, d, µ, bi) for the (equivalence class of)
pointed measured metric space, i ≥ 1; then the k-spine decomposition of T with respect
to v is the point measure on R+ ×M defined as

Decomp(T,v) =
∑
i≥1

δ(hi,Ci) (2.2)

A measured real tree is a pointed measured metric space (T, d, µ, ρ) where (T, d) is a
real tree. For instance, each Ci in (2.2) is a measured real tree.

The Brownian continuum random tree. One way to obtain a measured real tree
starts from an excursion: a continuous nonnegative function e : R+ → R+ is said to be
an excursion if e has compact support and satisfies that e0 = 0, ζe := sup{s > 0 : es >

0} ∈ (0,∞) and es > 0, ∀s ∈ (0, ζe). Let e be an excursion. For s, t ∈ [0, ζe], let

1
2 de(s, t) := es + et − 2 inf

u∈[s∧t, s∨t]
eu. (2.3)

The factor 1/2 in the above definition is unconventional but suits our purpose here.
Define s ∼e t if de(s, t) = 0. Then de induces a metric on the quotient space [0, ζe]/∼e,

EJP 22 (2017), paper 80.
Page 9/23

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/17-EJP105
http://www.imstat.org/ejp/


Reversing cut tree

which we still denote by de. Moreover, the metric space (Te := [0, ζe]/∼, de) is a real
tree (see e.g. Theorem 2.1 of [18]). Write pe : [0, ζe] → Te for the canonical projection.
We denote by µe the push-forward of the Lebesgue measure on [0, ζe] by pe and set
ρe := pe(0). Then (Te, de, µe, ρe) is a measured real tree as defined previously. Moreover,
it follows from the above construction that the support of µe is Te and that µe(Te) = ζe.

Let e denote the canonical process of C(R+,R). For a ∈ (0,∞), let P(a) be the
probability distribution on C(R+,R) of the normalized Brownian excursion of length a,
namely, e under P(a) is distributed as a Brownian excursion conditioned on ζe = a. The
following scaling property of Brownian excursions plays a crucial role in our treatment:
for each a > 0, (

1√
a
eat, t ≥ 0

)
under P(a) d

= e under P(1). (2.4)

Recall the measured real tree (Te, de, µe, ρe) from the paragraph above. We view (the
equivalence class of) (Te, de, µe, ρe) under P(a) as a random variable taking values in
M, whose distribution we still denote as P(a). In particular, P := P(1) is the law of
the Brownian continuum random tree. A real-valued random variable R is a Rayleigh
random variable if R has density 1{x>0}xe−x

2/2. The following well-known fact will be
used implicitly at various places: let η ∈ Te be a random point of distribution µe and let
η′ be either another independent point of distribution µe or the root ρ; then, under P, in
both cases de(η, η′) is a Rayleigh random variable.

In this work, we study stochastic processes defined on random measured real trees.
In a general way, we construct these processes first for the canonical process e, or
equivalently the real tree (Te, de, µe, ρe); we then consider the ensemble under the law
P(a), for a > 0. See e.g. [3] for a construction of the Aldous–Pitman fragmentation in
this manner. In the rest of the paper, (T , d, µ, ρ) stands for (Te, de, µe, ρe) and T the
corresponding measured real tree.

2.2 Cut tree of the Brownian continuum random tree

Let T = (T , d, µ, ρ) be as defined above, where T is further equipped with the length
measure `. Recall that P is the law of the Brownian CRT. We define the cut tree for T ,
following Bertoin and Miermont [13]. To that end, let P be a Poisson point process on
R+ × T of intensity measure dt ⊗ `(dx). Every point (t, x) ∈ P is seen as a cut on T
at location x and arriving at time t. Given (T , d, µ, ρ), let (Vi)i≥1 be a sequence of i.i.d.
points of T with common distribution µ(·)/µ(T ). Then for each i ≥ 1 and t ≥ 0, let Ti(t)
be the set of those points in T which are still connected to Vi at time t, that is

Ti(t) := {u ∈ T : P ∩ ([0, t]× JVi, uK) = ∅}. (2.5)

For i 6= j, set tij = inf{t ≥ 0 : P ∩ ([0, t] × JVi, VjK) 6= ∅} ∈ [0,∞]. Define a symmetric
function δ : Z2

+ → R+ by setting δ(i, i) = 0 for i ≥ 0 and

δ(0, i) =

∫ ∞
0

µ
(
Ti(s)

)
ds, δ(i, j) =

∫ ∞
tij

{
µ
(
Ti(s)

)
+ µ

(
Tj(s)

)}
ds, i, j ≥ 1, i 6= j. (2.6)

Proposition 2.1 ([13]). Under P, the following statements (I-II) hold almost surely.
I. For all i, j ≥ 1 and i 6= j, δ(0, i) ∈ (0,∞), tij ∈ (0,∞), and δ(i, j) ∈ (0,∞).

II. There exists a measured real tree cut(T ) = (G, dG , µG , ρG) and a sequence of its
points (V ′i )i≥0 with V ′0 = ρG such that

dG(V ′i , V
′
j ) = δ(i, j), ∀ 0 ≤ i, j <∞.

Also, conditional on µG , (V ′i )i≥1 has the distribution of a sequence of i.i.d. points
with common probability distribution µG .
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Moreover, cut(T ) under P has the same distribution as T under P.

Part of the above Proposition says that (G, dG , µG , ρG) is uniquely determined by
(δ(i, j) : 0 ≤ i, j <∞) (up to measure-preserving isometry), by Gromov’s reconstruction
theorem. Therefore, the measured real tree cut(T ) is well-defined, P-a.s. It also follows
from the above construction that the mapping (T ,P) 7→ cut(T ) is measurable; see a
related discussion in [13].

If, for t ≥ 0, we write i ∼t j if and only if Ti(t) = Tj(t), then∼t defines an exchangeable
random partition of N. Moreover, the family of partitions {∼t: t ≥ 0} has a natural
genealogical structure, which is described by cut(T ); we refer to [13, 9] for more details.
Note that the root of T is irrelevant in the above cutting process, whereas the root of
cut(T ) is meaningful for the genealogy it describes.

2.3 Partial cut trees as an approximation of cut(T )

We recall here the definition of the k-partial cut tree of the measured real tree
T = (T , d, µ, ρ), as well as some of its properties, which will be useful for the proof
later. These properties are mostly proven in [4] and [15] for k = 1, but the case k > 1 in
general also follows from the arguments there.

For i, j ≥ 1 and t ≥ 0, recall Ti(t) from (2.5) and ti,j just below. Observe that
Ti(t) ⊆ Ti(t′) if t ≥ t′. We then denote Ti(t−) = ∩s<tTi(s), for t > 0. Set t∗i = max1≤j<i ti,j
for i ≥ 2 and t∗1 = 0. For each i ≥ 1, let {t(i)m : m ∈ N} be the set of discontinuity
points of the mapping t ∈ (t∗i ,∞) 7→ µ(Ti(t)). Then for each m ∈ N, almost surely
there exists a unique point x(i)

m ∈ Ti(t(i)m−) such that (t(i)m , x
(i)
m ) ∈ P. It follows that

∆◦,(i)m := Ti(t(i)m−) \ Ti(t(i)m ) is non empty and x(i)
m ∈ ∆◦,(i)m . Let ∆(i)

m be the closure of ∆◦,(i)m

and let ∆(i)
m = (∆(i)

m , d, µ, x
(i)
m ) be the (equivalence class of) measured real tree induced.

Note in particular that µ(∆(i)
m ) = µ(∆◦,(i)m ). We also define h(i)

m :=
∫
[0, t

(i)
m ]

µ(Ti(s))ds for

each m ∈ N, i ≥ 1. Let us recall from (2.2) the k-spine decomposition of a real tree.

Proposition 2.2 ([15]). Under P, the following holds almost surely: for each k ≥ 1,
there exists a measured real tree cut(T ;V1, . . . , Vk) = (Gk, dGk , µGk , ρGk) and k points
V ′1 , . . . , V

′
k ∈ Gk such that

Span(Gk, {V ′1 , . . . , V ′k}) is isometric to Span(G, {V ′1 , . . . , V ′k}) ,

Decomp(Gk, {V ′1 , . . . , V ′k}) =
∑

1≤i≤k

∑
m∈N

δ
(h

(i)
m ,∆

(i)
m )

,

where the real tree (G, dG) is defined in Proposition 2.1; conditional on µGk , (V ′1 , . . . , V
′
k)

are distributed as k independent points of common probability distribution µGk . Moreover
for each k, cut(T ;V1, . . . , Vk) under P has the same distribution as T under P.

The case k = 1 of Proposition 2.2 corresponds to Theorem 1.7 of [4] (see also Theorem
3.2 of [15]). The arguments there can be straightforwardly adapted to yield a proof
of the general case k ≥ 1. Now recall from page 9 the probability measure P(a) for
the measured real tree encoded by a Brownian excursion of length a. Recall also (2.4),
the scaling property of Brownian excursions. The following is a direct consequence of
Proposition 2.2 and a multi-point version of the Bismut decomposition for the Brownian
CRT ([26, Theorem 3]).

Corollary 2.3 (Scaling property). Let k ≥ 1. For 1 ≤ i ≤ k and m ∈ N, denote by
µi,m = µ(∆(i)

m ). Then under P, conditional on the collection {µi,m : 1 ≤ i ≤ k,m ∈ N}, the
measured real trees {∆(i)

m : 1 ≤ i ≤ k,m ∈ N} are independent and ∆(i)
m has distribution

P(µi,m).

The following is the analog of Algorithm 2 for the continuum trees.
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Lemma 2.4 (Recurrence relation for (Gk)). Let k ≥ 2. Let ik = min{i ∈ {1, . . . , k − 1} :

∃m ∈ N such that Vk ∈ ∆(i)
m } and let mk ∈ N be the index such that Vk ∈ ∆

(ik)

mk . Then
under P, we have a.s.

Decomp(Gk, {V ′1 , . . . , V ′k−1}) =
∑

1≤i≤k:
i 6=ik

∑
m∈N

δ(
h
(i)
m ,∆

(i)
m

) +
∑
m∈N:
m6=mk

δ(
h
(ik)
m ,∆

(ik)
m

)
+ δ(

h
(ik)
mk

, cut(∆
(ik)
mk

;Vk)
).

Note that in the above formula, cut(∆
(ik)
mk ;Vk) is well-defined under P thanks to

Corollary 2.3. Lemma 2.4 is easily seen to hold true by comparing the definitions of Gk
and Gk−1.

The following observation constitutes the foundations of our partial reconstructions.

Lemma 2.5. Let k ≥ 1 and let η, η′ be two independent points of T sampled according
to the distribution µ(·)/µ(T ). We have the following.

a) Set Ik(η, η′) = {(i,m) : 1 ≤ i ≤ k,m ∈ N,∆◦,(i)m ∩ Jη, η′KT 6= ∅}. Then E(|Ik(η, η′)|) <
∞.

b) For (i,m) ∈ Ik(η, η′), set R′i,m = µ(∆(i)
m )−

1
2 ·`(∆◦,(i)m ∩Jη, η′KT ). Under P, conditional on

the set Ik(η, η′), {R′i,m : (i,m) ∈ Ik(η, η′)} are independent Rayleigh random variables
which are independent of the collection {µ(∆(i)

m ) : 1 ≤ i ≤ k,m ∈ N}.

Proof. Proof of a). For i ≥ 1, let bi be the unique point of T satisfying Jbi, ViK =

Jη, ViK ∩ Jη′, ViK, and let τi = inf{t > 0 : P ∩ ([0, t]× Jb, ViK) 6= ∅}, the time of the first cut
on Jbi, ViK. Observe that τi is an exponential random variable of parameter d(Vi, bi). Let
τ = max1≤i≤k τi, which has finite expectation under P. Denote by N the cardinality of
P ∩ ([0, τ ]× Jη, η′K); then N is distributed as a Poisson random variable of rate τ · d(η, η′).
Note that |Ik(η, η′)| is stochastically dominated by N , since for all t > τ , Jη, η′K∩Ti(t) = ∅
for all i = 1, . . . , k. This yields E(|Ik(η, η′)|) <∞.

Proof of b). The case k = 1 is a consequence of Theorem 5.1 in [4]. The general case
follows by adapting the arguments there and we omit the formal proof.

Lemma 2.5 says that Jη, η′K only intersects a finite sub-collection of {∆(i)
m : 1 ≤

i ≤ k,m ∈ N}. This suggests that to reverse the mapping of the k-partial cut tree
T 7→ cut(T ;V1, . . . , Vk), which boils down to “reconstructing” the distance d(η, η′) from

the partial cut tree, we should first sample the collection {∆(i)
m : (i,m) ∈ Ik(η, η′)} from

the k-spine decomposition of Gk. In the next section, we develop this idea into a definition
of the partial shuffle transforms.

3 The shuffle transform

In this section, we give the definition of the shuffle transform by generalizing the
construction in Section 1.2. Recall that T = (T , d, µ, ρ) is a measured real tree and P is
the law of the Brownian CRT. We aim at defining for each k ≥ 1, a (random) semi-infinite
matrix Γk = (γk(i, j) : 1 ≤ i, j <∞) which will play the role of the k-partial reversal for
T . Indeed, γk(i, j) will represent the distance between two independent uniform points
ηi, ηj obtained from the k-partial reversal. The main theorem (Theorem 3.2) then states
that under P, the sequence (γk(i, j))k≥1 converges almost surely to a limit γ∞(i, j), for
all (i, j). Moreover, the limit (γ∞(i, j) : 1 ≤ i, j <∞) characterizes a measured real tree
which will be the image of T by the shuffle transform.

To define Γk, we do the following. First, for each k, we sample a collection of random
points or marks, in an analogous way as we have done for Cayley trees. We then explain
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how to build a path between two independent points in the 1-partial reversal using these
marks, based on an intuitive idea illustrated in Fig. 3. Relying on a recursive procedure,
this construction is then extended to more general partial reversals, which gives us the
definition of Γk.

Sampling the marks. Let (Vi)i≥1 be a sequence of i.i.d. points of T whose common
distribution is µ(·)/µ(T ). For k ≥ 1, write Vk = {V1, . . . , Vk} and then Sk = Span(T ,Vk).
Recall from (2.1) the notation S(T , u | v). Set T1 = T . For k ≥ 2, with probability 1, there
is a unique connected component of T \ Sk−1 containing Vk; set Tk to be the smallest
rooted subtree of T containing that connected component. We define the sequences
(ρk)k≥1 and (Mk)k≥1 as follows:

• For each k ≥ 1, let ρk ∈ Tk be a random point having the following distribution

∀ Borel set B ⊂ T : P(ρk ∈ B) = µ|Tk(B), where µ|A :=
µ(· ∩A)

µ(A)
, A ⊂ T . (3.1)

• For each k ≥ 1, let {C◦k,i : i ∈ N} be the collection of the connected components
of Tk \ Span(Tk, {Vk}) and let Ck,i be the smallest rooted subtree of T containing
C◦k,i. Note that bk,i := root(Ck,i) is the only element of Sk ∩ Ck,i. For each i ≥ 1,
let Uk,i ∈ S(Tk, bk,i |Vk) be a random point with distribution µ|S(Tk, bk,i |Vk). Observe
that {Ck,i : i ≥ 1} is a collection of disjoint rooted subtrees of Tk and almost surely
Ui ∈ Ck,i′ for some i′ 6= i. We defineMk to be the collection

Mk = {(Ck,i, Uk,i) : i ∈ N}. (3.2)

Building paths from the marks. Suppose that we have a collection

N = {(Ci, ui) : i ≥ 1},

where {Ci : i ≥ 1} is a collection of disjoint rooted subtrees of T and ui ∈ Ci′ for some
i′ 6= i, for all i ≥ 1. Then for each u ∈ ∪i≥1Ci, we introduce the following sequence

χu(T ,N ) =
{

(Cuj , a
u
j , p

u
j ) : j ≥ 1

}
,

which is defined in the following inductive way: au1 = u and for each j ≥ 1,

let ij be the index s.t. auj ∈ Cij , then Cuj = Cij , p
u
j = root(Cij ) and auj+1 = uij . (3.3)

Note that such an ij exists since u and all ui belong to ∪iCi and ij is unique as the Ci’s
are disjoint. Next, let u, u′ ∈ ∪iCi be two distinct points; set

I(u, u′; T ,N ) = inf
{
j ≥ 1 : Cuj ∈ {Cu

′

j′ : j′ ≥ 1}
}
, (3.4)

with the convention that inf ∅ = ∞. Observe that I(u, u′; T ,N ) < ∞ if and only if
I(u′, u; T ,N ) < ∞; in that case, CuI(u,u′;T ,N ) = Cu

′

I(u′,u;T ,N ). Let χ̃(u, u′; T ,N ) be a
(possibly infinite) collection

χ̃(u, u′; T ,N ) =
{(
Cu,u

′

m , au,u
′

m , pu,u
′

m

)
: m ∈ N,m ≤ Nu,u′

}
, (3.5)

where Nu,u′ = |χ̃(u, u′; T ,N )| ∈ N ∪ {∞} and {Cu,u′m : m ∈ N,m ≤ Nu,u′} consists
of disjoint rooted subtrees. We further requires χ̃(u, u′; T ,N ) to satisfy the following
conditions:{
Cu,u

′

m : m ∈ N,m ≤ Nu,u′
}

(3.6)

=
{
Cuj : 1 ≤ j < I(u, u′; T ,N )} ∪ {Cu

′

j : 1 ≤ j < I(u′, u; T ,N )
}
∪ {CuI(u,u′;T ,N )},
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where the last term is taken to be ∅ if I(u, u′; T ,N ) =∞; and

case 1: if Cu,u
′

m = Cuj with 1 ≤ j < I(u, u′; T ,N ), then au,u
′

m = auj and pu,u
′

m = puj ;

case 2: if Cu,u
′

m = Cu
′

j with 1 ≤ j < I(u′, u; T ,N ), then au,u
′

m = au
′

j and pu,u
′

m = pu
′

j ;

case 3: if I(u, u′; T ,N ) <∞ and Cu,u
′

m = CuI(u,u′;T ,N ), then au,u
′

m = auI(u,u′;T ,N )

and pu,u
′

m = au
′

I(u′,u;T ,N ).

For the sake of definiteness, we can require the elements of χ̃(u, u′; T ,N ) to be ranked in
decreasing order according to µ(Cu,u

′

m ), say, but the order of χ̃(u, u′; T ,N ) is irrelevant
for the rest of the construction. The above definition can be seen as an analog of the
1-partial shuffle transform for Cayley trees, which has been illustrated in Figure 3.
Indeed, each Ci in the collection N can be understood as a subtree isolated from the
rest of the tree due to the cutting at its root and the point ui represents the neighbor
of this cut in the original tree. Next, we choose a subcollection of subtrees (Cu,u

′

m )m≥1
which contain a portion of the path between u to u′ in the original tree (i.e. the white
trees in Figure 3). The subcollection is chosen by following this path: we start from
u = au1 and look for the nearest cut to u (i.e. pu1 ) on the path; the subtree rooted at pu1
is then Cu1 and the neighbor of pu1 is au2 , etc. Proceeding in the same way from u′ yields
another sequence χu

′
(T ,N ). Merging the two sequences up to the point where they

coincide gives χ̃(u, u′; T ,N ).

Defining partial reversals. Let (ρk)k≥1 and (Mk)k≥1 be as defined in (3.1) and (3.2).
Let (ηi)i≥2 be an independent sequence of i.i.d. points of common distribution µ|T and
set η1 = ρ1. Recall the definition of χ̃(u, u′; T ,N ) from (3.5). Recall Tk is a rooted subtree
containing Vk. For all i, i′ ≥ 1 such that i 6= i′, we define

χi,i
′

k =
{

(Ci,i
′

k,m, a
i,i′

k,m, p
i,i′

k,m) : m ∈ N,m ≤ N i,i′

k

}
, k ≥ 1, (3.7)

in the following inductive way. Let χi,i
′

1 = χ̃(ηi, ηi′ ; T ,M1), which is well-defined since
almost surely we have ηi, ηi′ ∈ T \S1 ⊂ ∪iCk,i. Suppose that χi,i

′

k has been defined. If
Tk+1 /∈ {Ci,i′

k,m : m ∈ N,m ≤ N i,i′

k }, then we set χi,i
′

k+1 = χi,i
′

k . Otherwise, let mk be the

index such that Tk+1 = Ci,i′

k,mk
; then we define χi,i

′

k+1 to be the collection

χi,i
′

k+1 =
{

(Ci,i
′

k,m, a
i,i′

k,m, p
i,i′

k,m) : m ∈ N\{mk},m ≤ N i,i′

k

}
∪ χ̃(ai,i

′

k,mk
, ρk+1; Tk+1,Mk+1). (3.8)

Note that χ̃(ai,i
′

k,mk
, ρk+1; Tk+1,Mk+1) is well-defined, since Tk+1 is a rescaled version of T

and almost surely ai,i
′

k,mk
, ρk+1 ∈ Tk \ Sk. Moreover, the role of ρk+1 could be understood

as follows: analogously to the discrete construction (Algorithm 4), the “replacement” of
Tk+1 will be rooted at ρk+1.

For each k ≥ 1, let us define a symmetric matrix Γk = (γk(i, i′) : 1 ≤ i, i′ <∞
)

where

γk(i, i) = 0 and γk(i, i′) =
∑

m∈N:m≤Ni,i′k

d(ai,i
′

k,m, p
i,i′

k,m), i 6= i′. (3.9)

Lemma 3.1. Let k ≥ 1, i, i′ ≥ 1 and γk(i, i′) be defined as in (3.9). Then under P, we
have γk(i, i′) <∞ almost surely.

Theorem 3.2. Under P, the following statements hold almost surely.

a) The sequence of matrices {Γk = (γk(i, j))1≤i,j<∞ : k ≥ 1} converges almost surely in
the product topology of RZ+×Z+ . Denote by Γ∞ = (γ∞(i, j))1≤i,j<∞ the almost sure
limit.
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b) There exists a measured real tree shuff(T ) = (H, dH, µH, ρH) and a sequence of its
points (ςi)i≥1 with ς1 = ρH such that

dH(ςi, ςj) = γ∞(i, j), ∀ 1 ≤ i, j <∞.

Moreover, conditional on H, (ςi)i≥2 is distributed as a sequence of i.i.d. points with
common probability distribution µH.

c) Set η0 = ρ. Recall from (2.6) the matrix (δ(i, j))0≤i,j<∞. We have(
d(ηi, ηj), γ∞(i+ 1, j + 1)

)
0≤i,j<∞ under P

d
=
(
δ(i, j), d(Vi+1, Vj+1)

)
0≤i,j<∞ under P.

(3.10)
In particular, this implies that the pair (T , shuff(T )) under P has the same distribution
as (cut(T ),T ) under P.

The mapping T 7→ shuff(T ) is measurable. Indeed, in the above construction, we
have performed a sequence of measurable operations on T with respect to the Gromov–
Prokhorov topology. These operations can be seen as compositions of the following basic
ones:
– sample two independent random points V and V ′ according to the mass measure µ

and output the distances d(ρ, V ), d(V, V ′);
– denote by b the branch point of V and V ′, that is, the element of JV, V ′K minimising the

distance to the root ρ; for an independent point ξ of law µ|T , determine if ξ ∈ S(T , b |V ′),
which is the same as seeing if d(ξ, V ′) < d(ξ, b) + d(b, V ′);

– output µ(S(T , b |V ′)), which a.s. equals limk→∞ 1
k

∑
1≤i≤k 1{ξi∈S(T ,b |V ′)}, where (ξi)i≥1

are independent points of common law µ|T ;
– determine if two rooted subtrees C and C ′ are identical, which reduces to comparing

the two matrices M(C, d, µ|C , root(C)) and M(C ′, d, µ|C′ , root(C ′)).

Remark. As suggested by the discrete construction, the random points (Uk,i)k,i≥1 and
(ρk)k≥2 are the “traces” of the cuts left in cut(T ). After completing an earlier version of
this work, we have learned of the approach of Addario-Berry, Dieuleveut & Goldschmidt
[5], who have made a rigorous statement out of this intuition. In their work, they enrich
T with a collection of points formed by the cuts and a sequence of i.i.d. leaves (ξi)i≥1;
similarly, cut(T ) is enriched with the images of the cuts and (ξi)i≥1 by the cut tree
transform; then they give a reconstruction procedure (different from ours) which allows
them to reconstruct almost surely the enriched T from the enriched cut(T ). Let us also
remark that we can sample the randomness of the marks prior to the choice of (Vi)i≥1.
For this, simply sample for each branch point b of T a pair of independent points (rb0, r

b
1),

each uniformly distributed in one of the two subtrees above b. After taking (Vi)i≥1, we
can define the sequence (ρk) and (Uk,i)k,i≥1 from {rbi : b ∈ Br(T ), i = 0, 1} as a function of
(Vi). For example, ρk = rbi where b is the root of Tk and rbi is the random point associated
to b which belongs to Tk (since Tk is a subtree above b, there must exist one). The choice
of (Uk,i)k,i≥1 is more tedious to put down; we omit it. This construction bears some
resemblance to the one given in [5].

4 Partial reversals and their convergence

In this section, we give the proofs of Lemma 3.1 and Theorem 3.2.

4.1 Preliminary and proof of Lemma 3.1

Recall from (3.4) the notation I(u, u′; T ,N ). We first recall the following result,
obtained in [15].
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Lemma 4.1 ([15], Theorem 6.1). If η, η′ are two independent points of T with com-
mon distribution µ|T , and if M1 is the collection in (3.2), then E[I(η, η′; T ,M1) +

I(η′, η ; T ,M1)] <∞.

Lemma 4.2. Let k ≥ 1 and i, i′ ≥ 1, i 6= i′. Let χi,i
′

k be as defined in (3.7). For each

m ∈ N,m ≤ N i,i′

k , denote νk,m = µ(Ci,i′

k,m). Then E[N i,i′

k ] < ∞. Moreover under P,

conditional on the collection {νk,m : 1 ≤ m ≤ N i,i′

k }, the collection χi,i
′

k consists of
independent elements which are distributed as follows:
(a) Ci,i′

k,m has the law P(νk,m); and given Ci,i′

k,m:

(b) ai,i
′

k,m is an independent point of law µ|
Ci,i

′
k,m

,

(c) pi,i
′

k,m is either the root of Ci,i′

k,m or another independent point of law µ|
Ci,i

′
k,m

.

Proof. We proceed by induction on k. For k = 1, by definition, χi,i
′

1 = χ̃(ηi, ηi′ ; T ,M1);

then by the definition of the latter, N i,i′

1 = I(ηi, ηi′ ; T ,M1) + I(ηi′ , ηi ; T ,M1) − 1. It

follows from Lemma 4.1 that E(N i,i′

1 ) <∞. Recall from (2.2) the 1-spine decomposition

of T with respect to V1. By construction, {Ci,i′

k,m : 1 ≤ m ≤ N i,i′

1 } is a sub-collection of
{C1,i : i ≥ 1}, the closures of the connected components of T \Jρ, V1K. Moreover, from
the definition of (U1,i) and the definition in (3.3) we see that the event that C1,i belongs
to this sub-collection only depends on its µ-mass. We then deduce from Corollary 2.3

that conditional on their masses, Ci,i′

k,m, 1 ≤ m ≤ N
i,i′

1 , are independent, each one being

a rescaled Brownian CRT. We next check that each ai,i
′

k,m is a µ-random point restricted

to Ci,i′

k,m. But this follows from the definition of (U1,i), (3.3) and the definition of au,u
′

k,m on

page 14. On the other hand, pi,i
′

k,m is either the root of Ci,i′

k,m (case 1 & 2 on page 14) or

another point independent of ai,i
′

k,m with distribution µ|
C
i,i′
k,m

(case 3 on page 14). In this

way, we verify the statements of the lemma for k = 1.
Now we assume that the lemma holds up to k − 1, for some k ≥ 2. Let us show

that it also holds for k. Recall that Tk is the closure of the connected component of
T \ Sk−1 which contains Vk. If Tk /∈ {Ci,i′

k−1,m : 1 ≤ m ≤ N i,i′

k−1}, then the statement

for k follows trivially from the induction hypothesis. If instead, Tk = Ci,i′

k−1,mk−1
with

1 ≤ mk−1 ≤ N i,i′

k−1, then by the inductive hypothesis, Tk is a rescaled Brownian CRT with
total mass µ(Tk) and ak := ai,i

′

k−1,mk−1
is a point of Tk with distribution µ|Tk ; moreover,

ρk is another independent point of the same distribution, by (3.1). We can then apply
the statements for the case k = 1 to χ̃(ak, ρk; Tk,Mk) and find that (i) E[Nak,ρk ] <∞; (ii)
conditional on their masses, Cak,ρkm , 1 ≤ m ≤ Nak,ρk , are independent and distributed
as rescaled Brownian CRT; (iii) for each 1 ≤ m ≤ Nak,ρk , aak,ρkm is a µ-random point
restricted to Cak,ρkm and pak,ρkm is either its root or another independent point. Combined
with (3.8) and the induction hypothesis, this leads to the statements for k.

Proof of Lemma 3.1. It follows from Lemma 4.2 that the number of summands in (3.9)
is finite. Then γk(i, j) <∞, a.s.

4.2 Convergence of (Γk)k≥1

This subsection is devoted to proving the almost sure convergence of the sequence
{Γk = (γk(i, j))1≤i,j<∞ : k ≥ 1} in the product topology. Note that since (ηi)i≥1 is an
i.i.d. sequence, it suffices to prove the convergence for the sequence {γk(1, 2) : k ≥ 1}.

4.2.1 A Markov chain representation of (γk(1, 2))k≥1

Let S↓ = {x = (x1, x2, . . . ) : x1 ≥ x2 ≥ · · · ≥ 0 and
∑
i≥1 xi ≤ 1}. For x ∈ S↓, its `1-norm

is ‖x‖1 =
∑
i xi. Let S↓f be the subset of S↓ which consists of those x ∈ S↓ for which
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there exists some n ∈ N such that xi = 0 for all i ≥ n.

For each k ≥ 1, recall the collection χ1,2
k from (3.7) and recall that Nk := N1,2

k = |χ1,2
k |

is finite P-a.s. according to Lemma 4.2. Then let mk = (mk,n : n ≥ 1) be the sequence

obtained from {µ(C1,2
k,m) : 1 ≤ m ≤ N i,i′

k } by a re-ordering in decreasing order and

completed with infinitely many 0. Observe that mk ∈ S↓f since mk,n = 0 for all n > Nk.

Proposition 4.3. For k ≥ 1, let mk = (mk,n)n≥1 be defined as above. Under P, the
sequence (mk)k≥1 is a Markov chain taking values in S↓f which evolves in the following
way: for each k ≥ 1,

– with probability 1− ‖mk‖1 , mk+1 = mk , and
– for 1 ≤ n ≤ Nk , with probability mk,n , mk+1 is obtained by replacing in mk the

element mk,n by mk,n · m̃, where m̃ is an independent copy of m1 , and then sorting
the sequence thereby obtained in decreasing order.

Moreover for each k ≥ 1, there exists a sequence of positive real numbers (Rk,n)1≤n≤Nk
such that

γk(1, 2) =
∑

1≤n≤Nk

√
mk,n Rk,n . (4.1)

Under P and given that Nk = p ∈ N, (Rk
n)1≤n≤Nk consists of p independent Rayleigh

random variables which are independent of mk .

Proof. By the definition (3.8) of χ1,2
k , mk+1 = mk iff Vk+1 ∈ {C1,2

k,m : 1 ≤ m ≤ Nk}. We

can readily check by an induction on k that {C1,2
k,m : 1 ≤ m ≤ Nk} is a sub-collection of

{C1,i : i ∈ N}, the closures of the connected components of T \ Span(T ,Vk). On the
other hand, Vk+1 is a point independent of Vk with the law µ|T . Thus, under P, the
event Vk+1 ∈ {C1,2

k,m : 1 ≤ m ≤ Nk} takes place with probability 1−
∑

1≤m≤Nk µ(C1,2
k,m) =

1− ‖mk‖1. Next, suppose that Vk+1 ∈ C1,2
k,mk

for some index 1 ≤ mk ≤ Nk, which takes

place with probability µ(C1,2
k,mk

). In that case, we have Tk+1 = C1,2
k,mk

. We have seen in

Lemma 4.2 that Tk+1 = C1,2
k,mk

is a rescaled Brownian CRT and that the points a1,2k,mk , ρk+1

are independent and distributed according to µ|Tk+1
. We then deduce from (3.8) the

distribution of mk+1 in this case. In this way, we have checked the transition probabilities
of (mk)k≥1. The expression (4.1) is a direct consequence of (3.9) and the statements
(a-c) in Lemma 4.2.

4.2.2 Polynomial decay of a self-similar fragmentation chain

The dynamic of (mk)k≥1 as described in Proposition 4.3 is that of a discrete-time self-
similar fragmentation chain with index of self-similarity 1. Self-similar fragmentation
chains are studied in Bertoin [9, Chapter 1] and a series of papers including Bertoin and
Gnedin [12]. Here, we apply their results on the asymptotic behavior of fragmentation
chains in order to obtain the following.

Lemma 4.4. Let (mk)k≥1 be as in Proposition 4.3. There exists some α ∈ (0, 1) such that

lim
k→∞

kα‖mk‖1 = 0, P-almost surely .

The proof of Lemma 4.4 will occupy the rest of this part. Note that Chapter 1 of [9]
studies the continuous-time version of self-similar fragmentation chains, which can be
related to the discrete-time version by a time-change. Let us first recall some terminology
from there.
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Continuous-time fragmentation chain. Let $ denote the law of m1 under P. We
consider a self-similar fragmentation chain {Z̃(t) = (Z̃i(t)i≥1 : t ≥ 0} with index of
self-similarity 1 and dislocation measure $ starting from the initial state (1, 0, 0, · · · ) as
defined in [9, Definition 1.1], which is a continuous-time Markov chain taking values in
S↓ whose total jump rate at time t is ‖Z̃(t)‖1 ∈ [0, 1]. Using standard facts about Poisson
processes and the construction of fragmentation chains in [9], we can construct on some
probability space (Ω,F ,P) the following processes:

• a Poisson process of rate 1 which jumps at times τ1 < τ2 < · · · < τi < · · · ;
• a process (Z(t))t≥0 having the same distribution as (Z̃(t))t≥0 such that the set of

discontinuities of t 7→ Z̃(t) is a subset of (τi : i ≥ 1).
Then by Proposition 4.3, we have

(Z(τk))k≥1 under P
d
= (mk)k≥1 under P . (4.2)

Note that, in particular, we have Z(τ1)
d
= m1 = (m1,n)n≥1.

Let p∗ be the Malthusian exponent associated with $, namely, p∗ ∈ [0, 1] is such that

E

[ ∑
1≤n≤N1

mp∗

1,n

]
= 1

(see [9, Section 1.2.2]). The following is a consequence of Theorem 1 of [12].

Lemma 4.5. Let {Z(t) = (Zi(t)i≥1 : t ≥ 0} be a self-similar fragmentation chain with
index of self-similarity 1 and dislocation measure $ which is defined on (Ω,F ,P) as
above. Then p∗ ∈ (0, 1) and for any δ ∈ (0, 1),

lim sup
t→∞

t δ(1−p
∗)
∑
i≥1

Zi(t) = 0 P-almost surely . (4.3)

Proof. First, let us show that p∗ ∈ (0, 1). Recall N1 is the number of non zero elements
of m1, which is also equal to I(η1, η2; T ,M1) + I(η2, η1; T ,M1) − 1 by our previous
definitions. Then Lemma 4.1 tells that N1 <∞, P-a.s. On the other hand, m1 is a sub-
collection of the µ-masses of the connected components of T \Span(T , {V1}). Therefore,
we must have ‖m1‖1 < 1, P-a.s. This shows p∗ < 1. To see why p∗ > 0, note that N1 = 1

if and only if η1 and η2 are found in the same component of T \Span(T , {V1}), which
occurs with probability strictly smaller than 1. Then on the event N1 ≥ 2, we have
limp→0+

∑
1≤n≤N1

mp
1,n ≥ 2. This shows p∗ > 0.

We introduce
Y (t) :=

∑
i≥1

Zp
∗

i (t), (4.4)

which is a strictly positive martingale by the choice of p∗. Denote by Y (∞) ∈ [0,∞) its
almost sure limit. Next, we check that the hypothesis of Theorem 1 in [12] are fulfilled:
with the notation there, we see that β∗ = p∗, βa ≤ 0 (since E[N1] < ∞ by Lemma 4.1),
σ = $ is diffuse and the conditions (1) on page 577 all hold for $. Then, by the above
mentioned theorem, for every k ≥ 1, there exists a constant Ck ∈ (0,∞) such that

sup
t≥0

tk · E

[∑
i≥1

Zp
∗+k
i (t)

]
≤ Ck,

from which it follows immediately that supt≥0 t
k · EZp

∗+k
1 (t) ≤ Ck. Now, for any δ ∈ (0, 1)

and ε > 0, by Markov’s inequality, we obtain that at time m > 0,

P
(
Z1(m) ≥ εm−δ

)
≤ mk · E[Zp

∗+k
1 (m)]

εp∗+km(1−δ)k−δp∗ ≤
Ck

εp∗+km(1−δ)k−δp∗ . (4.5)
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Choosing k large enough so that k > (1 + δp∗)/(1− δ), one sees that (4.5) implies that∑
m≥1P(Z1(m) ≥ εm−δ) <∞ and lim supm→∞mδZ1(m) ≤ ε almost surely, by the Borel–

Cantelli lemma. As ε was chosen arbitrary, we then obtain that mδZ1(m) → 0 a.s. as
m→∞, and tδZ1(t)→ 0 a.s. as t→∞ as well by monotonicity. Now note that for any
t ≥ 0, ∑

i≥1
Zi(t) =

∑
i≥1

Z1−p∗
i (t) · Zp

∗

i (t) ≤ Z1−p∗
1 (t) · Y (t).

Then, for any δ ∈ (0, 1),

lim sup
t→∞

tδ(1−p
∗)
∑
i≥1

Zi(t) ≤ Y (∞) · lim sup
t→∞

(tδZ1(t))1−p
∗

= 0,

almost surely, since p∗ ∈ (0, 1). This completes the proof of the lemma.

Proof of Lemma 4.4. We work on a probability space where the equality in (4.2) holds
almost surely. By the strong law of large numbers, we have τk/k → 1 almost surely as
k →∞. Therefore, we obtain that for any δ ∈ (0, 1),

lim sup
k→∞

k δ(1−p
∗)‖mk‖1 = lim sup

k→∞
k δ(1−p

∗)
∑
i≥1

Zi(τk) = 0, almost surely,

by (4.3). This proves Lemma 4.4 by taking α = δ(1− p∗).

4.2.3 Concentration around the conditional expectations

In this part, we rely on Lemma 4.4 and the exponential tail of a Rayleigh random variable
to show the following result.

Lemma 4.6. P-almost surely, γk(1, 2)−E[γk(1, 2) |mk]→ 0 as k →∞.

Let R be a Rayleigh random variable defined on some probability space (Ω,F ,P),
namely, R has density xe−x

2/21{x>0}. Then, one readily verifies that R − E[R] is sub-
Gaussian in the sense that there exists a constant v such that for every λ ∈ R, one
has

logE[eλ(R−E[R])] ≤ 1
2 λ

2v.

(See [14, Theorem 2.1, p. 25].) We may thus apply concentration results for sub-Gaussian
random variables such as the ones presented in Section 2.3 of [14]. To that end, we set
for each k ≥ 1,

σk := γk(1, 2)−E[γk(1, 2) |mk] =
∑

1≤n≤Nk

√
mk,n

(
Rk,n −E[Rk,n]

)
,

by (4.1), where according to Proposition 4.3, conditional on mk, (Rk,n, 1 ≤ n ≤ Nk) are
i.i.d. copies of R. Therefore, by the above mentioned concentration results, we find

P(|σk| ≥ ε |mk) ≤ 2 exp
(
− ε2

2v‖mk‖1

)
, ∀ ε > 0. (4.6)

If (Ak, Bk, Ck)k≥1 are sequence of events satisfying that Ak ⊂ Bk ∪ Ck for each k ≥ 1,
then it is elementary that P(lim supk Ak) ≤ P(lim supk Bk) + P(lim supk Ck). Here, we
take

Ak = {|σk| ≥ ε}, Bk = Ak ∩ {‖mk‖1 ≤ k−α}, Ck = {‖mk‖1 > k−α}

with the same α as in Lemma 4.4. Then P(lim supk Ck) = 0 by Lemma 4.4. On the other
hand, we deduce from (4.6) that∑

k≥1
P(Bk) =

∑
k≥1

E
[
P
(
|σk| ≥ ε |mk

)
· 1{‖mk‖1≤k−α}

]
≤
∑
k≥1

2e−ε
2kα/(2v) <∞,
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which entails that P(lim supk Bk) = 0 by the Borel–Cantelli lemma. It follows that
P(lim supk Ak) = 0, which means lim supk |σk| < ε almost surely. Since ε > 0 was
arbitrary, the proof of Lemma 4.6 is now complete.

4.2.4 A coupling via partial cut trees

Thanks to Lemma 4.6, the last step to show the convergence of (γk(1, 2))k≥1 consists in
proving that under P, E[γk(1, 2) |mk] converges almost surely as k → ∞. For this, we
rely on a coupling of (mk)k≥1 with a sequence of masses defined on the partial cut trees.

Let k ≥ 1. We recall the following notation in Lemma 2.5: η, η′ are two independent
points of T with distribution µ|T ; the collection {∆(i)

m : (i,m) ∈ Ik(η, η′)} consists of
the subsets of Gk (the k-partial cut tree of T ) which intersect the geodesic Jη, η′KT .
Denote N ′k = |Ik(η, η′)|. Let {(m′k,n,R′k,n) : 1 ≤ n ≤ N ′k} be the sequence obtained from

{(µ(∆(i)
m ),Ri,m) : (i,m) ∈ Ik(η, η′)} by arranging the first coordinates in decreasing order.

It follows from Lemma 2.5 that

D := d(η, η′) =
∑

1≤n≤N ′k

√
m′k,n R′k,n , (4.7)

where, given N ′k = p ∈ N, (R′k,n : 1 ≤ n ≤ N ′k) are p independent Rayleigh random
variables which are independent of m′k := (m′k,n)n≥1 with m′k,n = 0 for n > N ′k.

Lemma 4.7. Under P, (m′k)k≥1 has the same distribution as the Markov chain (mk)k≥1.

Proof. We first show that m1
d
= m′1. Recall from (3.2) the collection M1. For i = 1, 2,

recall from (3.3) the definition of χηi(T ,M1). Note that it tells that the sequence
(µ(Cηij ) : j ≥ 1) has the following distribution. Conditional on (T , V1), µ(Cηi1 ) is a random
element of {µ(C1,m) : m ∈ N} chosen by size-biased sampling, that is, for m ∈ N,

P
(
µ(Cηi1 ) = µ(C1,m) |T , V1

)
= P(ηi ∈ C1,m) = µ(C1,m),

since P-a.s, the µ-masses of C1,m,m ∈ N, are all distinct. More generally for j ≥ 1, given
d(ρ, pηij−1), µ(Cηij ) is chosen from {µ(C1,m) : m ∈ N, d(ρ, root(C1,m)) > d(ρ, pηij−1)} by size-
biased sampling. Moreover, conditional on T and V1, the two sequences (µ(Cη1j ) : j ∈ Z+)

and (µ(Cη2j ) : j ∈ Z+) are independent, since η1 and η2 are independent. Note that
we also have I(η1, η2; T ,M1) = inf{j ∈ N : ∃ j′ ∈ N s.t. µ(Cη1

j ) = µ(Cη2

j′ )}, by the fact
that µ(C1,m),m ≥ 1, are a.s. distinct. It follows that we can write m1 = F (T , V1; η1, η2)

for some measurable function F , outside a P-null set. Next, we show that a.s. m′1 =

F (G1, V ′1 ; η, η′). But this is a consequence of Theorem 5.1 in [4]. Indeed, recall from
Proposition 2.2 the spinal decomposition Decomp(G1, {V ′1}). Denote by {∆̃mj : j ∈ Z+}
the sequence of those ∆(1)

m ,m ≥ 1, which satisfy ∆(1)
m ∩ Jη, V1K 6= ∅ such that h(1)

m1 < h(1)
m2 <

· · · . Then the above mentioned theorem identifies the distribution of {∆̃mj : j ∈ Z+} as
that of {µ(Cη1j ) : j ∈ N}. This then entails that m′1 can be written as F (G1, V ′1 ; η, η′) with

the same F as before. Then we have m1
d
= m′1, since (G1, V ′1)

d
= (T , V1) by Proposition

2.2.
The rest of the proof is very similar to that of Proposition 4.3. The main differences

lie in that we use Corollary 2.3 and Lemma 2.4 instead of Lemma 4.2 and (3.8). We omit
the details.

As (m′k)k≥1 has the same distribution as (mk)k≥1, Lemma 4.4 also holds for (m′k)k≥1.
Furthermore, combined with Lemma 4.7, the concentration arguments already used in
the course of the proof of Lemma 4.6 imply that, a.s.,

D −E[D |m′k] =
∑

1≤n≤N ′k

√
m′k,n ·

(
R′k,n −E[R′k,n]

) k→∞−−−−→ 0, P-a.s. .
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This entails that
E[D |m′k] = E[R′1,1] ·

∑
1≤n≤N ′k

√
m′k,n , k ≥ 1,

converges almost surely to D. Since the sequence (E[γk(1, 2) |mk])k≥1 has the same
distribution by Lemma 4.7, it also converges almost surely to some random variable
that has the same distribution as D. Combined with Lemma 4.6, we have shown the
following.

Proposition 4.8. Under P, there exists a Rayleigh random variable γ∞(1, 2) such that
γk(1, 2)→ γ∞(1, 2) almost surely.

4.3 Proof of Theorem 3.2

By exchangeability and by Proposition 4.8, for all i, i′ ≥ 1, i 6= i′, there exists a
Rayleigh random variable γ∞(i, j) such that limk→∞ γk(i, j) = γ∞(i, j) P-almost surely.
This proves the point a) of Theorem 3.2. For the rest of the statement, let us begin with
the proof of (3.10).

We start with a distributional identity for Γk. Let (ξi)i≥1 be an independent sequence
of i.i.d. points of T with common distribution µ|T and set ξ0 = ρ. Then Equation (6.7)
and Equation (6.1) in [15] entail that(
d(ηi, ηj), γk(i+ 1, j + 1)

)
0≤i,j<∞ under P

d
=
(
dGk(ξi, ξj), d(ξi+1, ξj+1)

)
0≤i,j<∞ under P,

(4.8)
in the case where k = 1. However, the arguments in [15, Section 6] can be readily
adapted to a general proof for k ≥ 1. Therefore, (4.8) holds for any k ≥ 1. On the
other hand, for k ≥ 1, recall from Proposition 2.2 that conditional on µGk , the points
V ′i , 1 ≤ i ≤ k, of Gk are distributed as k independent points with common distribution
µGk . Then,((

dGk(ξi, ξj)
)
0≤i,j≤k ,

(
d(ξi, ξj)

)
i,j≥0

)
d
=
(
dGk(V ′i , V

′
j )0≤i,j≤k ,

(
d(Vi, Vj)

)
i,j≥0

)
. (4.9)

Now let n ≥ 1 and let G,H : RZ+×Z+ → R be two continuous bounded functions with
respect to the product topology which are supported on Rn×n. Set V ′0 to be the root of Gk.
We have used the same sequence (V ′i )i≥0 for different Gk; this will not cause confusion,
since by Proposition 2.2, Span(Gk; {V ′1 , . . . , V ′k}) is isometric to Span(G; {V ′1 , . . . , V ′k}). In
particular, we have the fact that dGk(V ′i , V

′
j ) = δ(i, j), 0 ≤ i, j ≤ k, for all k. We then

obtain from the convergence of (Γk)k≥1, Equations (4.8), (4.9) and this fact that

E
[
G
(
(d(ηi, ηj))0≤i,j<∞

)
H
(
(γ∞(i, j))1≤i,j<∞

)]
= lim
k→∞

E
[
G
(
(d(ηi, ηj))0≤i,j<∞

)
H
(
(γk(i, j))1≤i,j<∞

)]
= E

[
G
(
(δ(i, j))0≤i,j<∞

)
H
(
(d(Vi, Vj))1≤i,j<∞

)]
,

which proves (3.10), as n is arbitrary.
Next, we follow Aldous [6] to construct the measured real tree shuff(T ); see also

[13, Section 1.4]. First, we observe that we can construct a family of rooted real trees
(Rk, dH), k ≥ 1, such that 1) R1 ⊆ R2 ⊆ · · · as metric spaces; 2) each Rk has exactly
k + 1 leaves which we denote as ς0, ς1, . . . , ςk and a common root ρH = ς0; 3) for each
k ≥ 1, the distance between ςi and ςj is given by γ∞(i + 1, j + 1), 0 ≤ i, j ≤ k. On
the other hand, note that (3.10) entail that (γ∞(i, j))1≤i,j<∞ under P has the same
distribution as (d(Vi, Vj))1≤i,j<∞. Since T satisfied the so-called leaf-tight property, we
deduce this also holds for (Rk)k≥1, namely, infj≥1 dH(ς0, ςj) = 0, P-a.s. Note that all
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this still holds if we have first conditioned on T . Then by Theorem 3 in [6], given T ,
(Rk)k≥1 under P allows for a representation as a measured real tree, which we denote
as shuff(T ) = (H, dH, µH, ρH). Moreover, if (ζi)i≥1 is a sequence of i.i.d. points of H with
common distribution µH and ζ0 = ρH, then (dH(ζi, ζj))0≤i,j<∞ has the same distribution
as (dH(ςi, ςj))0≤i,j<∞. For this reason, we can then view (ςi)i≥1 as an i.i.d. sequence

of common law µH. As Γ∞ characterizes shuff(T ), (3.10) entails that (T , shuff(T ))
d
=

(cut(T ),T ). The proof of Theorem 3.2 is now complete.
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