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Abstract

We prove that Kendall’s Rank correlation matrix converges to the Marčenko Pastur
law, under the assumption that observations are i.i.d random vectors X1, . . . , Xn

with components that are independent and absolutely continuous with respect to the
Lebesgue measure. This is the first result on the empirical spectral distribution of a
multivariate U -statistic.
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1 Introduction

Estimating the association between two random variables Y,Z ∈ IR is a central
statistical problem. As such, many methods have been proposed, most notably Pearson’s
correlation coefficient. While this measure of association is well suited to the case
where (Y, Z) is Gaussian, it may be inaccurate in other cases. This observation has
led statisticians to consider other measures of association such as Spearman’s ρ and
Kendall’s τ that are proven to be more robust to heavy-tailed distributions (see, e.g.,
[11]). In a multivariate setting, covariance and correlation matrices are preponderant
tools to understand the interaction between variables. They are also used as building
blocks for more sophisticated statistical methods arising in principal component analysis
or graphical models for example.

The past decade has witnessed a fertile interaction between random matrix theory
and high-dimensional statistics (see [13] for a recent survey). Indeed, in high-dimensional
settings, traditional asymptotics where the sample size tends to infinity but the dimension
of the model is held fixed fail to capture a delicate interaction between sample size and
dimension. Random matrix theory has allowed statisticians and practitioners alike to
gain valuable insight on a variety of multivariate problems.

The terminology “Wishart matrices” is often, though sometimes abusively, used to
refer to p× p random matrices of the form X>X/n, where X is an n× p random matrix
with independent rows (throughout this paper we restrict our attention to real random
matrices). The simplest example arises where X has i.i.d standard Gaussian entries but
the main characteristics are shared by a much wider class of random matrices. This
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Marčenko-Pastur law for Kendall’s tau

universality phenomenon manifests itself in various aspects of the limit distribution, and
in particular in the limiting behavior of the empirical spectral distribution of the matrix.
Let W = X>X/n be a p× p Wishart matrix and let λ1, . . . , λp be its eigenvalues; then the
empirical spectral distribution µ̂W

p of W is the distribution on IR defined by the following
mixture of Dirac point masses at the λjs:

µ̂W
p =

1

p

p∑
k=1

δλk
.

Assuming that the entries of X are independent, centered and of unit variance, it can
be shown that µ̂W

p converges weakly to the Marčenko-Pastur distribution under weak
moment conditions (see for example [1, Theorem 3.10]).

While this development alone has led to important statistical advances, it fails
to capture more refined notions of correlation, notably more robust ones involving
dependent observations such as rank-based statistics. A first step in this direction was
made in [14], where the matrix X is assumed to have independent rows with isotropic
distribution. More recently, this result was extended in [2, 12] and covers the case of
Spearman’s ρ matrix which is based on ranks and is also a Wishart matrix of the form
X>X/n.

The main contribution of this paper is to derive the limiting distribution of Kendall’s
τ matrix, a cousin of Spearman’s ρ matrix which is not of the Wishart type but rather
is a matrix whose entries are U -statistics. The Kendall τ matrix is a popular surrogate
for correlation matrices but an understanding of the fluctuations of its eigenvalues is
still missing. Interestingly, the Marčenko-Pastur law has been used as a heuristic for
Kendall’s τ without justification in certain financial applications [3].

As it turns out, the limit of the empirical spectral distribution of τ , denoted by µ̂τ
p , is

not exactly the Marčenko-Pastur law, but rather an affine transformation of it. Our main
theorem below gives the precise form of this transformation.

Theorem 1.1. Let X1, . . . , Xn, be n independent random vectors in IRp whose com-
ponents Xi(k) are independent random variables that have a density with respect to
the Lebesgue measure on IR. Then as n → ∞ and p

n → γ > 0 the empirical spectral
distribution of τ converges in probability to

2

3
Y +

1

3
,

where Y is distributed according to the standard Marčenko-Pastur law with parameter γ
(see Theorem A.1 for the appropriate definition).

The proof of Theorem 1.1 combines standard tools from random matrix theory
and asymptotic theory of U -statistics. Specifically, we apply a multivariate version of
Hoeffding’s decomposition, also known as the ANOVA decomposition, to the matrix τ .
This allows us to represent τ as a sum of three terms. The first term is the deterministic
identity matrix coming from the diagonal of τ . The identity matrix only causes an additive
shift of the spectrum. The second term is a sum of independent identically distributed
rank-one matrices whose diagonals are set to 0. These terms cause the appearance of
the Marčenko-Pastur law by an application of Theorem A.1 once the missing diagonal
is accounted for. The last residual residual terms vanish in Frobenius norm, so by
Lemma A.2 they make no asymptotic contribution to the spectrum. Figure 1 illustrates
numerically the result of Theorem 1.1.

Notation: For any integer k ≥ 1 we write [k] = {1, . . . , k}. We denote by Ip the identity
matrix of IRp. For a vector x ∈ IRp, we denote by x(j) it’s jth coordinate. For any
p× p matrix M , we denote by diag(M) the p× p diagonal matrix with the same diagonal
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Figure 1: Histogram of the eigenvalues the Kendall τ matrix for n = 2, 000, p = 1, 000.
The superimposed red line is the probability density function of 2

3Y + 1
3 , where Y is

distributed according to the standard Marčenko-Pastur law with parameter γ = 1/2.

elements as M and we define D0(M) = M − diag(M). In other words, the operator D0

replaces each diagonal element of a matrix by zero. We denote sign(x) the sign of x ∈ IR

with convention that sign(0) = 1. The Frobenius norm of a p × p matrix H is denoted
by ‖H‖F and we recall that ‖H‖2F := Tr(H>H). Finally, we define Unif([a, b]) to be the
uniform distribution on the interval [a, b].

2 Kendall’s tau

The (univariate) Kendall τ statistic [5, 9, 10, 7] is defined as follows. Let (Y1, Z1), . . . ,

(Yn, Zn) be n independent samples of a pair (Y,Z) ∈ IR × IR of real-valued random
variables. Then the (empirical) Kendall τ between Y and Z is defined as

τ(Y,Z) =
1(
n
2

) ∑
1≤i<j≤n

sign(Yi − Yj) · sign(Zi − Zj) .

The statistic τ takes values in [−1, 1] and it can be expressed as

τ =
1(
n
2

) (# {concordant pairs} −# {discordant pairs}) ,

where a pair (i, j) is said to be concordant if Yi − Yj and Zi − Zj have the same sign and
discordant otherwise.

It is known that the Kendall τ statistic is asymptotically Gaussian [7]. Specifically, if
Y and Z are independent, then as n→∞,

√
nτ(Y,Z) N

(
0,

4

9

)
. (2.1)

This property has been central to construct independence tests between two random
variables X and Y (see, e.g., [8]).

Kendall’s τ statistic can be extended to the multivariate case. Let X1, . . . , Xn, be n
independent copies of a random vector X ∈ IRp, with coordinates X(1), . . . , X(p). The
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(empirical) Kendall τ matrix of X is defined to be the p× p matrix whose entries τ kl are
given by

τ kl := τ(X(k), X(l)) =
1(
n
2

) ∑
1≤i<j≤n

sign
(
Xi(k)−Xj(k)

)
·sign

(
Xi(l)−Xj(l)

)
1 ≤ k, l ≤ p .

(2.2)
Note that τ can be written as the sum of

(
n
2

)
rank-one random matrices:

τ =
1(
n
2

) ∑
1≤i<j≤n

sign
(
Xi −Xj

)
⊗ sign

(
Xi −Xj

)
, (2.3)

where the sign function is taken entrywise. Our goal is to describe aspects of the
asymptotic behavior of τ when the coordinates of X are independent. This case is often
referred to as the null case in statistics to emphasize the absence of a signal.

It is easy to see that τ ii = 1 for all i. Together with (2.1), it implies that the matrix

τ̄ =
3

2
τ − 1

2
Ip

is such that IE[
√
n(τ̄ − Ip)]→ 0 and Var[

√
n(τ̄ − Ip)]→ 1, if i 6= j as n→∞. This suggests

that if the empirical spectral distribution of τ̄ converges to a Marčenko-Pastur distri-
bution, it should be a standard Marčenko-Pastur distribution. This heuristic argument
supports the affine transformation arising in Theorem 1.1. However, the matrix τ is not
Wishart and the Marčenko-Pastur limit distribution does not follow from standard argu-
ments. Nevertheless, Kendall’s τ is a U -statistic which are known to satisfy the weakest
form of universality, namely a Central Limit Theorem under general conditions [6, 4]. In
this paper, we show that in the case of the Kendall τ matrix, this universality phenomenon
extends to the empirical spectral distribution.

3 Proof of Theorem 1.1

For any pair (i, j) such that 1 ≤ i, j ≤ n and i 6= j, let A(i,j) ∈ IRp be the vector

A(i,j) := sign
(
Xi −Xj

)
,

and recall from (2.3) that

τ =
1(
n
2

) ∑
1≤i<j≤n

A(i,j) ⊗A(i,j) .

Akin to most asymptotic results on U -statistics, we utilize a variant of Hoeffding’s
(a.k.a. Efron-Stein, a.k.a ANOVA) decomposition [6]:

A(i,j) = Ā(i,j) + Ā(i,·) + Ā(·,j) (3.1)

where

Ā(i,·) := IE
[
A(i,j)

∣∣Xi

]
, Ā(·,j) := IE

[
A(i,j)

∣∣Xj

]
and Ā(i,j) := A(i,j) − Ā(·,j) − Ā(i,·) .

It is easy to check that each of the random vectors in the right-hand side of (3.1) are
centered and are orthogonal to each other with respect to the inner product IE[V >W ]

where V,W ∈ IRp. These random vectors can be expressed conveniently thanks to the
following Lemma.

Lemma 3.1. For k ∈ [p], let Fk denote the cumulative distribution function of X(k).
Fix i ∈ [n] and let Ui ∈ IRp be a random vector with kth coordinate given by Ui(k) =

2Fk(Xi(k))− 1 ∼ Unif([−1, 1]). Then

Ā(i,·) = −Ā(·,i) = Ui .
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Proof. For any i ∈ [n], observe that since the components of X have a density, then
IP
(
Xi(k) = Xj(k)

∣∣Xi

)
= 0 so that

IE
[

sign
(
Xi(k)−Xj(k)

)∣∣Xi

]
= IP

(
Xi(k) > Xj(k))

∣∣Xi

)
− IP

(
Xi(k) < Xj(k))

∣∣Xi

)
= 2Fk(Xi(k))− 1 .

The observation that Ā(i,·) = −Ā(·,i) follows from the fact that A(i,j) = −A(j,i).

Using (3.1) we obtain the representation:

A(i,j) ⊗A(i,j) = M
(1)
(i,j) + M

(2)
(i,j) +

(
M

(2)
(i,j)

)>
+ M

(3)
(i,j), (3.2)

where

M
(1)
(i,j) := Ip + D0[{Ā(i,·) + Ā(·,j)} ⊗ {Ā(i,·) + Ā(·,j)}],

M
(2)
(i,j) := D0[Ā(i,j) ⊗ {Ā(i,·) + Ā(·,j)}],

M
(3)
(i,j) := D0[Ā(i,j) ⊗ Ā(i,j)].

By the relation Ā(i,·) = −Ā(·,i) from Lemma 3.1 we have

∑
1≤i<j≤n

{Ā(i,·)+Ā(·,j)}⊗{Ā(i,·)+Ā(·,j)} = (n−1)

n∑
i=1

Ā(i,·)⊗Ā(i,·)−
n∑

(i,j)∈[n]2:i 6=j

Ā(i,·)⊗Ā(j,·) .

Using Lemma 3.1 yields:

1(
n
2

) ∑
1≤i<j≤n

M
(1)
(i,j) = Ip +

2

n

n∑
i=1

D0[Ui ⊗ Ui]−
1(
n
2

)D0

[ ∑
(i,j)∈[n]2:i 6=j

Ui ⊗ Uj

]
. (3.3)

Next, note that, the coordinates of each Ui, i = 1, . . . , n are mutually independent and
IE[Ui] = 0 so that

IE
[
Ui ⊗ Ui

]
= IE[T 2]Ip =

1

3
Ip , (3.4)

where T ∼ Unif([−1, 1]). Theorem A.1 implies that as n → ∞ and p
n → γ > 0, the

empirical spectral distribution of
2

n

n∑
i=1

Ui ⊗ Ui

converges in probability to (2/3)Y , where Y is distributed according to the standard
Marčenko-Pastur law with parameter γ. Moreover,

1

p
IE

∥∥∥∥∥ 2

n

n∑
i=1

diag
(
Ui ⊗ Ui

)
− 2

3
Ip

∥∥∥∥∥
2

F

=
4

pn2

p∑
k=1

IE

(
n∑
i=1

{
Ui(k)2 − IE

[
Ui(k)2

]})2

≤ C

n
→ 0 ,

1

p
IE

∥∥∥∥∥∥ 1(
n
2

)D0

[ ∑
(i,j)∈[n]2:i 6=j

Ui ⊗ Uj

]∥∥∥∥∥∥
2

F

=
1

p
(
n
2

)2 ∑
(k,l)∈[p]2:k 6=l

IE

{ ∑
(i,j)∈[n]2:i 6=j

Ui(k)Uj(l)

}2

≤ Cp

n2
→ 0 ,

for some constant C > 0 independent of n. By Lemma A.2, together with (3.3) and the
triangle inequality, we get the following result.
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Proposition 3.2. As n→∞ and p
n → γ > 0, the empirical spectral distribution µ̃p of

1(
n
2

) ∑
1≤i<j≤n

M
(1)
(i,j)

converges in probability to the law of 2
3Y + 1

3 , where Y is distributed according to the
standard Marčenko-Pastur law with parameter γ.

Using Lemma A.2 once more, we show that the Lévy distance between µ̂τ
p and µ̃p

converges to zero. This implies Theorem 1.1 by Proposition 3.2. To that end, observe
that by (3.2) and the triangle inequality:

1

p
IE

∥∥∥∥τ − 1(
n
2

) ∑
1≤i<j≤n

M
(1)
(i,j)

∥∥∥∥2
F

≤ 2

p
IE

∥∥∥∥ 1(
n
2

) ∑
1≤i<j≤n

M
(2)
(i,j)

∥∥∥∥2
F

+
1

p
IE

∥∥∥∥ 1(
n
2

) ∑
1≤i<j≤n

M
(3)
(i,j)

∥∥∥∥2
F

.

(3.5)
To show that (3.5) vanishes asymptotically, notice that the collection of matrices{

M
(3)
(i,j)

}
1≤i<j≤n satisfies

IE Tr
{(

M
(3)
(i,j)

)>
M

(3)
(i′,j′)

}
=

{
IE‖M(3)

(i,j)‖
2
F for (i, j) = (i′, j′)

0 otherwise .
(3.6)

To see this, expand

IE Tr
{(

M
(3)
(i,j)

)>
M

(3)
(i′,j′)

}
=∑

(k,l)∈[p]2:k 6=l

(
IE[{A(i,j)(k)− Ui(k) + Uj(k)}{A(i′,j′)(k)− Ui′(k) + Uj′(k)}]

× IE[{A(i,j)(l)− Ui(l) + Uj(l)}{A(i′,j′)(l)− Ui′(l) + Uj′(l)}]
)
, (3.7)

and notice that each expectation is zero unless (i, j) = (i′, j′) by Tower property and
Lemma 3.1. Note that when (i, j) = (i′, j′), the expression (3.7) is bounded by Cp2 for

some C > 0. The equation (3.6) also holds for the collection of matrices
{
M

(2)
(i,j)

}
1≤i<j≤n

and we also have IE‖M(2)
(i,j)‖

2 ≤ Cp2 by a similar argument. Therefore the right side
of (3.5) is bounded by:

Cp(
n
2

)2 × card
{

(i, j, i′, j′) ∈ [n]4 : (i, j) = (i′, j′)
}
≤ Cp

n2
,

for some constant C > 0, which vanishes as n→∞. This concludes the proof of Theorem
1.1.

A The standard Marčenko-Pastur law

We include here the definition of the standard Marčenko-Pastur law and a bound on
the distance between empirical spectral distributions of two matrices.

Theorem A.1 (Marčenko-Pastur law [1, Theorem 3.6]). Let X1, . . . , Xn be independent
copies of a random vector X ∈ IRp whose components X(k), k = 1, . . . , p are i.i.d
and satisfy IE[X(k) = 0],Var[X(k)] = 1. Suppose that n → ∞, pn → γ > 0 and define
a = (1−√γ)2, and b = (1 +

√
γ)2. Then the empirical spectral distribution of the matrix

1

n

n∑
i=1

Xi ⊗Xi,
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converges almost surely to the standard Marčenko-Pastur law which has density:

pγ(x) =


1

2πxγ

√
(b− x)(x− a), if a ≤ x ≤ b,

0, otherwise,

and has a point mass 1− 1
γ at the origin if γ > 1.

Lemma A.2 ([1, Corollary A.41]). Let A and B be two p × p normal matrices, with
empirical spectral distributions µ̂A and µ̂B. Then

L(µ̂A, µ̂B)3 ≤ 1

p
‖A−B‖2F,

where L(µ̂A, µ̂B) is the Lévy distance between the distribution functions µ̂A and µ̂B.
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