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Abstract

We consider self-averaging sequences in which each term is a weighted average
over previous terms. For several sequences of this kind it is known that they do not
converge to a limit. These sequences share the property that nth term is mainly
based on terms around a fixed fraction of n. We give a probabilistic interpretation
to such sequences and give weak conditions under which it is natural to expect non-
convergence. Our methods are illustrated by application to the group Russian roulette
problem.
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1 Introduction

Suppose n ≥ 2 people want to select a loser by flipping coins: all of them flip their
coin and those that flip heads are winners. The others continue flipping until there is a
single loser. This problem and generalizations of it have been extensively studied, see
[2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13]. If at some stage all players flip heads before a loser is
selected, we say the process fails. It is known that the probability of failure does not
converge as n increases. This sequence of probabilities is what we call a self-averaging
sequence. A similar problem is the shooting problem or group Russian roulette problem,
as described by Winkler [15]. Here players do not flip coins, but fire a gun on another
player. Again one could ask for the probability on one survivor. Analysis of this problem is
harder, since survival of an individual depends on survival of the other players. Recently
van de Brug, Kager and Meester [14] rigorously showed that also here the sequence of
probabilities does not converge and they gave bounds for the liminf and limsup.

In this paper, we put such problems into a mild probabilistic framework and explain
why this phenomenon of non-convergence is not surprising. The fact that in each
round about the same fraction α of the players survives is the key ingredient to get
oscillation instead of convergence. In the loser selection problem and the shooting
problem the fluctuations around the fixed fraction are of order

√
n. We demonstrate that

non-convergence of a self-averaging sequence is natural to expect under a much weaker
condition: if the fluctuations are of order strictly less than n, the sequence should be
expected not to converge. Our main theorem gives a way to bound the limit inferior
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Self-averaging sequences which fail to converge

and limit superior of a self-averaging sequence. Particular details of the problem do not
really play a role in these bounds.

Oscillations on a log-periodic time scale occur in many other problems as well,
for example in random walks on fractal lattices and in various branches of statistical
mechanics [1, 11]. To illustrate our general results, we applied our methods to the group
Russian roulette problem. We obtain quite sharp upper and lower bounds on the liminf
and limsup of the sequence of probabilities. Non-convergence of the sequence follows
immediately from these bounds.

2 Problem formulation and running example

2.1 General setting

We will consider bounded sequences p(n), n ≥ 0 which are defined as follows. The
first term(s) are assumed to be given as starting values and then each next term is
obtained by taking some weighted average over previous terms. This is a deterministic
definition, but nevertheless we will adopt a natural probabilistic interpretation. The
weighted average can be seen as the expectation of some random variable. So we will
study a sequence p(n) which is given for 0 ≤ n ≤ n0 and satisfies

p(n) = E[p(Y (n))], n > n0, (2.1)

where Y (n) ∈ {0, 1, . . . , n− 1} are random variables depending on n. For convenience
we define Y (n) = n for n ≤ n0. Furthermore, we assume that the expectation of Y (n) is
close to a fixed fraction of n and that the variance around this fraction is of order n as
well.

More precisely, we assume that there exist constants 0 ≤ α < 1 and β, γ, δ ≥ 0 such
that for all n > n0 the random variable Y (n) satisfies

|E[Y (n)]− αn| ≤ β, and Var(Y (n)) ≤ γn+ δ. (2.2)

Sections 3 and 4 deal with this general problem. Section 5 discusses a specific example:
group Russian roulette, which is explained below. In Section 6 we show that the condition
on the variance can be weakened even further.

2.2 Running example: group Russian roulette

To demonstrate our methods, we apply them to the group Russian roulette problem.
Suppose in a group of n people, each is armed with a gun. They all uniformly at random
select one of the others to shoot at and they all shoot simultaneously. The survivors
continue playing this ‘game’ until either one or zero survivors are left. The probability
that in the end no survivor is left is called p(n). One characteristic of this problem is
that in each round about the same fraction survives. Indeed, the probability for an
individual to survive is (1 − 1

n−1 )
n−1 ≈ 1

e , so the expected number surviving the first
round is about n

e .

This problem was recently studied by Van de Brug, Kager and Meester [14], who
showed that limn→∞ p(n) does not exist. In the current paper we will show that this
phenomenon is a natural thing to expect under the quite general conditions of (2.1) and
(2.2).

ECP 22 (2017), paper 16.
Page 2/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP48
http://www.imstat.org/ecp/


Self-averaging sequences which fail to converge

3 Analysis for fixed n: recursions in terms of expectation and
variance

Fix n and define a sequence of random variables by

Xk =

{
n if k = 0

Y (Xk−1) otherwise
. (3.1)

In the setting of group Russian roulette, this means that the starting population has size
n and that Xk is the number of survivors after k rounds of shooting. When we condition
on Xk, the number of survivors after the (k + 1)st round is expected to be close to Xk/e

and the variance is of order Xk as well (the precise constants will be derived in Section
5). One might therefore expect that the number of survivors after k rounds is about
X0/e

k. The next lemma shows that this guess is correct for the general case if (2.1) and
(2.2) hold.

Lemma 3.1. Suppose we have a constant X0 > 0, random variables X1, X2, . . . and
constants 0 < α < 1 and β ≥ 0 such that for k ≥ 0

|E[Xk+1 | Xk]− αXk| ≤ β a.s. (3.2)

Then for all k ≥ 0

|E[Xk]− αkX0| ≤
β

1− α
. (3.3)

Proof. For k = 0, the statement (3.3) is trivial. For k ≥ 1 we will prove by induction the
following stronger statement:

|E[Xk]− αkX0| ≤ β
k−1∑
i=0

αi. (3.4)

For k = 1, (3.4) is true as it is a special case of the assumption (3.2). Now suppose it
holds for some k ≥ 1. Then

|E[Xk+1]− αk+1X0| = |E[E[Xk+1 | Xk]]− αk+1X0|
≤ |E[E[Xk+1 | Xk]− αXk] + α(E[Xk]− αkX0)|

≤ β + α(β

k−1∑
i=0

αi) = β

k∑
i=0

αi.

To get further grip on the sequence (Xk)k≥0, we also investigate the variance of the
terms. It turns out that also the variance basically scales down with a factor α in each
round.

Lemma 3.2. Suppose we have a constant X0 > 0, random variables X1, X2, . . . and
constants 0 < α < 1 and β, γ, δ ≥ 0 such that for k ≥ 0

|E[Xk+1 | Xk]− αXk| ≤ β a.s. (3.5)

Var(Xk+1 | Xk) ≤ γXk + δ a.s. (3.6)

Then there exist constants C and D, independent of X0, such that for all k ≥ 0

Var(Xk) ≤ CαkX0 +D. (3.7)

Proof. First we split the variance into two terms:

Var(Xk+1) = E[Var(Xk+1 | Xk)] + Var(E[Xk+1 | Xk]). (3.8)
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For the first term, we use (3.6) and Lemma 3.1:

E[Var(Xk+1 | Xk)] ≤ γE[Xk] + δ

≤ γαkX0 +
γβ

1− α
+ δ. (3.9)

For the second term, we use that (3.5) implies

Var(E[Xk+1 | Xk]− αXk) ≤ E[(E[Xk+1 | Xk]− αXk)
2] ≤ β2. (3.10)

This gives

Var(E[Xk+1 | Xk]) = Var(E[Xk+1 | Xk]− αXk + αXk)

= Var(E[Xk+1 | Xk]− αXk) + α2Var(Xk) + 2Cov(E[Xk+1 | Xk]− αXk, αXk)

≤ β2 + α2Var(Xk) + 2αβ
√

Var(Xk) = α2

(√
Var(Xk) +

β

α

)2

. (3.11)

By elementary calculations, one can show that for all x ≥ 0

(√
x+ c

)2 ≤ K

K − c2
x+K, (3.12)

whenever c is positive and K > c2. This means that

Var(E[Xk+1 | Xk]) ≤
α2K

K − β2

α2

Var(Xk) + α2K =
α4K

α2K − β2
Var(Xk) + α2K, (3.13)

if K > β2/α2. Now fix k and assume that (3.7) holds true for this k. Using the bounds
(3.9) and (3.13), we obtain

Var(Xk+1) ≤
(
γ

α
+ C

α3K

α2K − β2

)
αk+1X0 +

(
γβ

1− α
+ δ + α2K +D

α4K

α2K − β2

)
. (3.14)

We want the constants in between brackets to be smaller than C and D respectively, i.e.

γ

α
+ C

α3K

α2K − β2
≤ C, γβ

1− α
+ δ + α2K +D

α4K

α2K − β2
≤ D (3.15)

This can only be true if

α3K

α2K − β2
< 1 and

α4K

α2K − β2
< 1. (3.16)

Since α < 1, the corresponding restriction on K is K > β2

α2−α3 . If K satisfies this
inequality, then K also exceeds β2/α2 and (3.15) can be fulfilled by choosing C and D
large enough. The minimal solutions are given by

C =
γα2K − γβ2

α3K − α4K − αβ2
, D =

(
γβ +

(
δ + α2K

)
(1− α)

) (
α2K − β2

)
(1− α) (α2K − β2 − α4K)

. (3.17)

These solutions are both positive, so with this choice (3.7) holds for k = 0. The inequali-
ties (3.14) and (3.15) complete a full inductive proof.

ECP 22 (2017), paper 16.
Page 4/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/17-ECP48
http://www.imstat.org/ecp/


Self-averaging sequences which fail to converge

4 Bounds for subseqences of p

The previous section focussed on the random variables Xk as defined in (3.1). Now
we will use these results to study subsequences of p. For all k ≥ 1 we obtain

E[p(Xk)] = E[E[p(Y (Xk−1)) | Xk−1]] = E[p(Xk−1)], (4.1)

and hence for all k ≥ 0

E[p(Xk)] = E[p(X0)] = p(X0) = p(n). (4.2)

Since Xk is expected to be close to αkn, we might hope that p([αkn]) is close to p(n) if p
is smooth enough (where [x] := round(x) = bx+ 1

2c). We are interested in the limiting
behavior if n increases, so we will blow up X0 by powers of α−1 and investigate the
subsequence that emerges. Our main theorem is the following:

Theorem 4.1. Let (p(n))n∈N be a sequence satisfying (2.1) and (2.2). Choose x ∈ R, x >
0 arbitrary and let (Ni)i≥0 be an increasing integer sequence defined by Ni = [α−ix]. Let

K > β2

α2−α3 , choose C,D as in (3.17) and define the positive constants

τ =

√
C
(
x+

α

2

)
+D, t = τ +

β

1− α
+

1

2
.

Define intervals I0 ⊂ I1 ⊂ I2 . . ., centered at x by

Ik = [x− (t+ k + 1), x+ (t+ k + 1)].

Then for all i ≥ 0, the value of p(Ni) is bounded by

∞∑
k=0

qk min
n∈N∩Ik

p(n) ≤ p(Ni) ≤
∞∑
k=0

qk max
n∈N∩Ik

p(n), (4.3)

where the weights (qk)k∈N are a positive decreasing sequence for which
∑∞
k=0 qk = 1,

given by

qk =
τ2

(τ + k)2
− τ2

(τ + k + 1)2
.

Informally speaking, the idea of this theorem is that the values of p(n) close to n = x

can be used to bound a whole subsequence of p. The problem setting suggests that p(n)
is roughly f(log(n)), where f is some periodic function with period log(α). The scale on
which the “periodic” fluctuations occur in p grows with the same speed as n. On the other
hand, as x increases the intervals Ik grow like

√
Cx, which is less than the scale of the

fluctuations. So if x is large, we might expect p(n) to vary only a little bit around p([x])
for n ∈ Ik. This would imply that the subsequence p(Ni) stays close to p([x]). Taking x in
a local maximum of the sequence p(n), we can use (4.3) to bound lim supn→∞ p(n) from
below. Similarly, we will construct an upper bound for lim infn→∞ p(n).

Proof of Theorem 4.1. Let Xk be defined as before by Xk = Y (Xk−1) for k ≥ 1. We will
consider these random variables for X0 = Ni, i ≥ 0. Define Zi to be the conditioned
random variable Xi|(X0 = Ni) and let

µi = E[Zi], σ2
i = Var(Zi).

Then for all i ≥ 1, using Lemma 3.1 and Lemma 3.2, and incorporating the rounding
error

|µi − x| ≤ |µi − αiNi|+ |αiNi − x| ≤
β

1− α
+

1

2
(4.4)

σ2
i ≤ CαiNi +D ≤ C(x+

α

2
) +D = τ2. (4.5)
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Self-averaging sequences which fail to converge

So all Zi have expectation close to x and by (4.2) we have p(Ni) = E[p(Zi)].
Our main tool to control the subsequence (p(Ni))

∞
i=1 will be the following version of

Chebyshev’s inequality:

P(|X − µ| ≤ t) ≥ 1− σ2

t2
, t > 0, (4.6)

where X is a random variable with expectation µ and variance σ2. Applying this to the
random variables Zi leads to

P(|Zi − x| ≤ t) ≥ P
(
|Zi − µi| ≤ t−

β

1− α
− 1

2

)
≥ 1− τ2

(t− β
1−α −

1
2 )

2

Choosing t = τ + β
1−α + 1

2 gives for all i, k ≥ 1

P(|Zi − x| ≤ t+ k) ≥ 1− τ2

(τ + k)2
. (4.7)

Now we are ready to bound p(Ni) = E[p(Zi)] as follows:

p(Ni) =E[p(Zi) | |Zi − x| ≤ t+ 1] · P(|Zi − x| ≤ t+ 1)

+

∞∑
k=1

E[p(Zi) | t+ k < |Zi − x| ≤ t+ k + 1] · P(t+ k < |Zi − x| ≤ t+ k + 1)

≥
(

min
|n−x|≤t+1

p(n)

)
· P(|Zi − x| ≤ t+ 1) (4.8)

+

∞∑
k=1

(
min

|n−x|≤t+k+1
p(n)

)
· P(t+ k < |Zi − x| ≤ t+ k + 1)

= min
|n−x|≤t+1

p(n) · P(|Zi − x| ≤ t) +
∞∑
k=0

(
min

|n−x|≤t+k+1
p(n)

)
· qk

+

∞∑
k=0

(
min

|n−x|≤t+k+1
p(n)

)
· (P(t+ k < |Zi − x| ≤ t+ k + 1)− qk) , (4.9)

where the minima are taken over N. Now observe that

0 ≤ P(|Zi − x| ≤ t+ k)− 1 +
τ2

(τ + k)2
≤ τ2

(τ + k)2

by (4.7). Since the right hand side is summable, the last sum S in (4.9) can be written as

S =

∞∑
k=0

(
min

|n−x|≤t+k+1
p(n)

)
·
(
P(|Zi − x| ≤ t+ k + 1)− 1 +

τ2

(τ + k + 1)2

)

−
∞∑
k=0

(
min

|n−x|≤t+k+1
p(n)

)
·
(
P(|Zi − x| ≤ t+ k)− 1 +

τ2

(τ + k)2

)
=− min

|n−x|≤t+1
p(n) · P(|Zi − x| ≤ t)+

∞∑
k=1

(
min

|n−x|≤t+k
p(n)− min

|n−x|≤t+k+1
p(n)

)
·
(
P(|Zi − x| ≤ t+ k)− 1 +

τ2

(τ + k)2

)
≥− min

|n−x|≤t+1
p(n) · P(|Zi − x| ≤ t). (4.10)
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It follows that

p(Ni) ≥
∞∑
k=0

(
min

|n−x|≤t+k+1
p(n)

)
·
(

τ2

(τ + k)2
− τ2

(τ + k + 1)2

)
. (4.11)

Replacing all minima by maxima in the preceding calculations and reversing the corre-
sponding inequalities in (4.8), (4.10) and (4.11) gives an upper bound for p(Ni). With Ik
and qk defined as in the theorem, these bounds are equal to those in (4.3), proving the
result.

This theorem can be used to find upper and lower bounds for the liminf and limsup of
the sequence p(n):

Lemma 4.2. For x ∈ R+, choose a lower bound l(x) and upper bound u(x) for the
sequence (p([α−ix]))i≥0. Then for all x

lim inf
n→∞

p(n) ≤ u(x), lim sup
n→∞

p(n) ≥ l(x). (4.12)

Furthermore, if x0 > 0, then

lim inf
n→∞

p(n) ≥ inf
x∈[x0,α−1x0]

l(x), lim sup
n→∞

p(n) ≤ sup
x∈[x0,α−1x0]

u(x). (4.13)

Proof. For x ∈ R+ and Ni = [α−ix], we have l(x) ≤ p(Ni) ≤ u(x) for all i. This im-
mediately gives the bounds in (4.12). For the second statement, choose n > α−1x0
arbitrary. Then there exists an integer k ≥ 1 such that αkn ∈ [x0, α

−1x0]. By definition
l(αkn) ≤ p(n) ≤ u(αkn). So for all n > α−1x0, we have

inf
x∈[x0,α−1x0]

l(x) ≤ p(n) ≤ sup
x∈[x0,α−1x0]

u(x),

which implies (4.13).

The bounds l(x) and u(x) in this lemma can be found by applying Theorem 4.1. We
will use finitely many values of p(n) with n close to [x] to approximate the sums in (4.3).
The tails of these sums will be bounded by uniform bounds on p(n).

5 Non-convergence in group Russian roulette

In this section we will apply our methods to the group Russian roulette problem, as
introduced in Section 2. We will see that it is quite straightforward to prove that the
probability p(n) to have no survivor in the end does not converge as the group size n
increases.

We start by checking that the group Russian roulette problem indeed fits into our
general framework (2.1) and (2.2). The starting values are p(0) = 1 and p(1) = 0. Let
Y (n) be the number of survivors in a group of n people after one round of shooting (with
degenerate random variables Y (0) = 0 and Y (1) = 1). Then

p(n) =

n−1∑
k=0

P(Y (n) = k) · p(k) = E[p(Y (n))].

For i = 1, . . . , n, we define Ii to be the indicator of the event that individual i survives
the first round. We will calculate the expectation νn and variance τ2n of Y (n) for n ≥ 2.

νn = E

[
n∑
i=1

Ii

]
=

n∑
i=1

P(Ii = 1) = n

(
1− 1

n− 1

)n−1
.
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Next, we calculate the second moment of Y (n).

E
[
Y (n)2

]
=

n∑
i=1

E[I2i ] +

n∑
i=1

n∑
j=1,j 6=i

E[IiIj ] = n

(
1− 1

n− 1

)n−1
+ (n2 − n)P(I1 = I2 = 1)

= n

(
1− 1

n− 1

)n−1
+ (n2 − n)

(
1− 1

n− 1

)2(
1− 2

n− 1

)n−2
This gives

τ2n = νn − ν2n + (n2 − n)
(
1− 1

n− 1

)2(
1− 2

n− 1

)n−2
.

It can be shown that for all n ≥ 0,∣∣∣νn − n

e

∣∣∣ ≤ 2

e
and τ2n ≤

e− 2

e2
· n+

3− e
2e2

,

which means that we can choose the following constants in (2.2):

α =
1

e
, β =

2

e
, γ =

e− 2

e2
, δ =

3− e
2e2

. (5.1)

Now we will compute the bounds of Lemma 4.2. An expression for l(x) is given in (4.11).
To (approximately) calculate this function, we first need to find the constants t, τ and a
range of values of p(n). Values of p(n) satisfy a recursive relation.

40 50 60 70 80 90 100
0.44

0.46

0.48

0.5

0.52

0.54

Figure 1: The values of p(n) in one ‘period’ (blue). For given x, the subsequence
p([α−ix]), i ≥ 0 stays between l(x) and u(x) (red).

Suppose we start with n ≥ 1 people. Fix a subset of size 1 ≤ k ≤ n and denote the
probability that exactly this subset is killed in the first round by qn,k. Then qn,1 = 0 and
for 2 ≤ k ≤ n,

qn,k =

(
k − 1

n− 1

)k (
k

n− 1

)n−k
−
k−1∑
i=1

(
k

i

)
qn,i.

The recursion for p(n) is the following:

p(n) =

n−2∑
k=0

(
n

k

)
qn,n−kp(k). (5.2)
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Calculating this requires careful handling of very large binomial coefficients and very
small probabilities, avoiding accumulation of rounding errors. Therefore we gratefully
make use of the values for p(n) as calculated by Van de Brug, Kager and Meester [14]
who rigorously computed the first couple of digits of p(n). As a last ingredient, we
calculate the constants C and D of Lemma 3.2 by equation (3.17). Note that there is
still the free parameter K in the expressions for these constants, which should satisfy

K > β2

α2−α3 = 4e
e−1 ≈ 6.33. This constant can be used for fine-tuning of C and D:

increasing K gives a smaller C but a larger D. We will choose K = 138, because this
appears to give the sharpest bounds in Lemma 4.2. For given x, the terms in the sum in
(4.3) can now be calculated explicitly, since t and τ are determined by constants already
known. A numerical lower bound for (p(Ni))i≥0 is then obtained by performing this
calculation for the first terms in the sum and bounding the tail by the uniform bound
p(n) ≥ 0 for all n. An upper bound for (p(Ni))i≥0 is calculated in an analogous way.

As an illustration, we plotted l(x) and u(x) in Figure 1 for x ∈ [40, 40e], which is
one ‘period’. The sequence p(n) itself is only defined on integers, but l(x) and u(x) are
functions of a continuous variable. The discontinuities in these bounds are caused by a
shifting window over which minima and maxima are taken in (4.3).

To find bounds for the liminf and limsup of p(n), we used the values of p(n) as
calculated by the recursion (5.2) in the range 0 ≤ n ≤ 6000. This results in the following
theorem:

Theorem 5.1. Let p(n) be the probability that there are no survivors in the group
Russian roulette problem with n people. Then limn→∞ p(n) does not exist. Moreover

0.4702 < lim inf
n→∞

p(n) < 0.4714 and 0.5227 < lim sup
n→∞

p(n) < 0.5237. (5.3)

Figure 2 illustrates this result. The blue curve gives values of p(n). The red curves
are the bounds l(x) and u(x). For a fixed value of x, we approximated the bounds of
Theorem 4.1 by using all p(n), 0 ≤ n ≤ 6000 and bounding the tails of the sums by
0 ≤ p(n) ≤ 1. So for fixed x, these curves give an interval containing all terms of
the sequence (p([α−ix]))i≥0. In particular, lim supn→∞ p(n) is bounded from below by
the maximum of the lower red curve (l(x) ≈ 0.5228, attained at x ≈ 2796). Also each
local maximum of the upper red curve is an upper bound for lim supn→∞ p(n), as is
proved in Lemma 4.2. Similar statements hold for lim infn→∞ p(n) (minimum of u(x)
is about 0.4714, attained at x ≈ 4609). The two horizontal lines indicate a band which
will be left infinitely many times on both sides by values of p(n). In [14], it was shown
that lim infn→∞ p(n) ≤ 0.477487 and lim supn→∞ p(n) ≥ 0.515383. So our bounds are an
improvement over the results in [14], despite the fact that our method does not rely on
particular details of the group Russian roulette problem.

6 Changing the order of the variance

In the setting of our problem, we assumed that the variance of Y (n) is of order
at most n, see (2.2). In fact, the phenomenon of non-convergence can even occur if
the variance is of order np with p < 2 as the following generalization of Lemma 3.2
shows. That the ideas still work is not really surprising, since for p < 2 the scale of
the fluctuations in Y (n) is still smaller than the scale of the periodic fluctuations in
the sequence (p(n))n≥0. If the power p gets closer to 2, the constants get worse, but
the whole idea of subsequences which might have different limits essentially does not
change.

Lemma 6.1. Suppose we have a constant X0 > 0, random variables X1, X2, . . . and
constants 0 < α < 1 and β, γ, δ ≥ 0 such that for k ≥ 0
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Figure 2: Plot of p(n). Each vertical interval between the red curves contains an infinite
subsequence. Horizontal lines indicate a minimal gap between lim supn→∞ p(n) and
lim infn→∞ p(n).

|E[Xk+1 | Xk]− αXk| ≤ β a.s. (6.1)

Var(Xk+1 | Xk) ≤ γXp
k + δ a.s. (6.2)

for some p < 2. Then there exist constants C and D, independent of X0, such that for all
k ≥ 0

Var(Xk) ≤ CαkpXp
0 +D. (6.3)

Proof. The scheme of the proof of Lemma 3.2 still works, it is only extended by some
extra technical details. We start by bounding E[Var(Xk+1 | Xk)], using Lemma 3.1 and
Jensen’s inequality for concave functions (p2 < 1):

E[Var(Xk+1 | Xk)] ≤ γE[Xp
k ] + δ ≤ γ

(
E[X2

k ]
) p

2 + δ = γ
(
Var(Xk) + E[Xk]

2
) p

2 + δ

≤ γ

(
Var(Xk) +

(
αkX0 +

β

1− α

)2
) p

2

+ δ.

Assuming that the induction hypothesis (6.3) holds for some fixed k, we can further
bound this as follows:

E[Var(Xk+1 | Xk)] ≤ γ

(
CαkpXp

0 +D +

(
αkX0 +

β

1− α

)2
) p

2

+ δ

≤ γ

((√
CαkX0

)2
+
√
C +D

2
+

(
αkX0 +

β

1− α

)2
) p

2

+ δ

≤ γ
((

1 +
√
C
)
αkX0 +

√
C +D +

β

1− α

)p
+ δ

≤ 2γ
(
1 +
√
C
)p
αpkXp

0 + 2γ

(√
C +D +

β

1− α

)p
+ δ. (6.4)
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Here we have used that (αkX0)
p ≤ (αkX0)

2 + 1 and (x+ y)p ≤ 2xp + 2yp for x, y ≥ 0. For
the term Var(E[Xk+1 | Xk]), we obtain the bound of (3.13), after which the induction
hypothesis (6.3) gives

Var(E[Xk+1 | Xk]) ≤
α4K

α2K − β2
Var(Xk) + α2K ≤ α4K

α2K − β2

(
CαkpXp

0 +D
)
+ α2K,

(6.5)

whenever K > β2/α2. Combining the bounds (6.4) and (6.5) leads to

Var(Xk+1) ≤
(
2γα−p

(
1 +
√
C
)p

+
α4−pK

α2K − β2
· C
)
αp(k+1)Xp

0

+

(
2γ

(√
C +D +

β

1− α

)p
+ δ + α2K +

α4K

α2K − β2
·D
)
. (6.6)

To complete the proof, this needs to be smaller than Cαp(k+1)Xp
0 +D. For this to be true,

we require that
α4−pK

α2K − β2
< 1 and

α4K

α2K − β2
< 1, (6.7)

which can be achieved by choosing K > β2

α2−α4−p . Now since p < 2 we can first choose C
and D (both independent of k) large enough such that the upper bound in (6.6) is indeed
smaller than Cαp(k+1)Xp

0 +D. This finishes the inductive proof.

With this lemma a statement analogous to Theorem 4.1 can be proved in the same
way for the case when the variance of Y (n) is of order np, p < 2.

7 Conclusions and remarks

We have studied sequences p(n) characterized by the property that each term is
a weighted average over previous terms. In several examples in the literature, such
sequences do not converge to a limit, which at first sight might be surprising. The main
purpose of this paper is to demonstrate that it is natural to expect non-convergence if
the largest weights in the average p(n) are given to values p(k) for which k is close to a
fixed fraction of n. It turns out that non-convergence is predictable or even inevitable
under fairly weak conditions. The intuition is that fluctuations in p happen on a large
scale, and if the averages are taken on a smaller scale, they can not let the fluctuations
vanish. Our methods are illustrated by proving non-convergence for the group Russian
roulette problem.

Another question one could ask is if p(n) converges in the sense that there exists a
periodic function f : R→ R with period 1 such that

lim
x→∞

|p([α−x])− f(x)| = 0. (7.1)

As is shown in [14], such a function exists in the case of group Russian roulette. However,
the setting of (2.1) and (2.2) is not sufficient to prove such convergence, as the following
example demonstrates. This means that one would need stronger assumptions on the
random variables Y (n). We believe that for proving (7.1), a suitable requirement could
be that the total variation distance between Y (n) and Y (n+1) goes to zero as n increases.
However, proving this goes beyond the scope of the current paper.

Example 7.1. Let p(0) = 0, p(1) = 1 and define Y (n), n ≥ 2 by

Y (n) =

{
2 · Bin

(
1
2n,

1
2

)
n even

2 · Bin
(
1
2 (n− 1), 12

)
+ 1 n odd.

(7.2)
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Then ∣∣∣∣E[Y (n)]− 1

2
n

∣∣∣∣ ≤ 1

2
, Var(Y (n)) ≤ 1

2
n. (7.3)

Letting p(n) = E[p(Y (n))] gives a sequence fitting the framework of (2.1) and (2.2).
However, Y (n) is even for n even and odd for n odd. This implies that

p(n) =

{
0 n even
1 n odd.

(7.4)

In this case the function p([x]) is periodic, but p([2x]) clearly is not periodic.

As a final remark, we note that our methods also apply to a continous setting where
g : (0,∞)→ R is an absolutely bounded function and where g(x) is given for x ≤ x0. In
this case the recursion is of the form g(x) = E[g(Nx)], x > x0, where Nx is a random
variable supported on (0, x).
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