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The authors correct the two following mistakes:

1. At page 5, line -20, it is proved in [13, Corollary 12] that the entropy converges at
rate 2ρ(A)

Entψ∞

(
etL
∗
A,Dh

)
≤ ce−2ρ(A)tEntψ∞ (h) ,

and not simply ρ(A) as it has been written.

2. At page 9, line 8, C should be replaced by CT :

∂t

(
α′′(ht) (∇ht)T M∇ht

)
≤ 2α′′(ht) (∇ht)T MCT∇ht

Indeed, the Jacobian Matrix of the function b(x) = Cx is CT and not C. This initial
mistake has the following chain of consequences:

• At page 9, from line 9 to 15, S
1
2 should be systematically replaced by S−

1
2 . For

the computations to hold, the matrix J̃ should be taken equal to its opposite,
meaning that at page 8, the line -5 should be(

J̃
)
k,l

=
νk + νl
νk − νl

.

• At page 9, the computation from line -6 to line -3 should be replaced by

Entψ∞ (ht) ≤ 1

2

∫
(∇ht)TS−1∇ht

ht
dψ∞
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≤ 1

2ν1

∫ ∣∣∣Q 1
2S−

1
2∇ht

∣∣∣2
ht

dψ∞

≤ e−2λ(t−s)νN
2ν1

∫ ∣∣∣S− 1
2∇hs

∣∣∣2
hs

dψ∞,

≤ νN
2ν1 minσ(S)

e−2λ(t−s)
∫
|∇hs|2

hs
dψ∞.

Note that an annoying factor maxσ(S)
minσ(S) has disappeared.

As a consequence of both these corrections, the main result is improved to the
following correct statement:

Theorem 2. For any C > 1 we can construct (A,D) ∈ I(S) such that for all h > 0, with
finite entropy, and for all t, t0 > 0 with t ≥ t0,

Entψ∞

(
e(t−t0)L

∗
A,Det0L−S,IN h

)
≤ C

1

2t0 minσ(S)
e−2(maxσ(S))(t−t0)Entψ∞ (h) .

Moreover it is possible to construct (A,D) ∈ I(S) with ‖A‖F ≤ 4N2
√

(maxσ(S))3

minσ(S) (where

‖A‖F =
√

Tr (ATA) is the Frobenius norm) such that for all h > 0, with finite entropy,
and for all t ≥ t0 > 0

Entψ∞

(
e(t−t0)L

∗
A,Det0L−S,IN h

)
≤ 1

t0 minσ(S)
e−2(maxσ(S))(t−t0)Entψ∞ (h) .
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